P- 1002
ANALYST AID

PROJECT WORK DONE AT
TATA CONSULTANCY SERVICES, TRIVANDRUM

PROJECT REPORT

SUBMITTED IN PARTIAL F ULFILMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE OF
MASTER OF COMPUTER APPLICATIONS
OF BHARATHIAR UNIVERSITY, COIMBATORE.

SUBMITTED BY

NIHAS. A

0038M1043

GUIDED BY
EXTERNAL GUIDE INTERNAL GUIDE
Dr. S . Neethi, Mr. A, Muthukumar, M.Phil.,
Associate Consultant, Assistant Professor,
TATA Consultancy Services, Dept. of Computer Science & Engg,
Trivandrum. Kumaraguru College of Technology, -

Coimbatore.

Department of Computer Science and Engineering
Kumaraguru College of Technology
Coimbatore — 641006
April 2003,

Department of Computer Science and Engineering @
KUMARAGURU COLLEGE OF TECHNOLOGY -
COIMBATORE - 641 006.

CERTIFICATE

This 1s to certify that the project work titled

ANALYST AID

Done by

NIHAS. A.
0038M 1043

Submitted in partial fulfillment of the requirements for the award of the degree of

Master of Computer Applications of Bharathiar University.

Présoran He&; T (ﬂ{dal Guide

Submitted to University Examination held on 16-04-2003.

teftial Examiner X

ema xamu}eg /IL}/Q;

04 April 2003

CERTIFICATE

This is to certify that Mr Nihas A, a student of MCA from Kumaraguru College of
Technology, Coimbatore has undergone Project Training in our organization between
16 December 2002 to 30 March 2003

He has undertaken a project titled “ANALYST AID”

During his Project Training he has performed well and earned a name as a sincere and
hardworking person.

We wish him all the best in his future endeavors.

N
For TATA CONSULTANCY SERVICES
_:?MW w I . —— / s

(Dr. S. NEETHI) , (PRAMOD CHANDRASEKHAR)
ASSOCIATE CONSULTANT ASSISTANT MANAGER HR

PROJECT GUIDE

TATA CONSULTANCY SERVICES
A Division -of Tata Sons Limited
Technopark Campus, Kartyavattom P.0., Thinuvananthapuram - 695 581, India
Tel : 91 -471- 700671 Fax:91-471 - 700682 E-mall : tictvm@tvm.ics.coin Website & www.1Cs .com
Registered Office : Bombay House 24, Homi Mody Street, Mumbai 400 001

DECLARATION

I hereby declare that this project entitled ANALYST AID, submitted to the
Bharathiyar University as the project of Master of Computer Application Degree, is a record of
original work done by me under the supervision and guidance of Dr. S. Neethi, Associate
Consultant, TATA Consultancy Services, Trivandrum and Mr. A. Muthukumar, M Phil.,
Course Co-ordinator, MCA, Kumaraguru College Of Technology, Coimbatore. And, this
project work has not formed the basis for the award of any

Degree/Diploma/Associateship/Fellowship or similar title to any candidate of any university.

Place: Coimbatore W / :}/

Date: 16 -04-2003 " (Nihas A)

ACKNOWLEDGEMENT

It is my privilege to thank some of the eminent persons who have rendered
invaluable help in the successful completion of my project work.

First and foremost, | would like to express my deep sense of gratitude to
Dr. S. T, hangasamy, B.E (Hon’s), Ph.D., Head of Department of Computer Science and
Engineering for his valuable guidance and for all the help extended during the course of
the project work and its successful completion.

I fervently express my gratitude to Mr. R. Narayanan, Vice President (Training
& Education), Tata Consultancy Services (TCS), Thiruvananthapuram for providing an
opportunity to carry out my project work at TCS.

I extend my sincere thanks to Mr. K, Lalita Prasad, Training—in-Charge, TCS for
permitting me to carry out the project work at TCS.

I especially acknowledge the valuable guidance and support give to me by
Dr. Seenivasagam Neethi (External Guide), Associate Consultant, TCS.

I also thank Ms, Meera S., Assistant Consultant, TCS without whose
encouragement and constructive criticism, the final version of the project could not have
been perfected.

I sincerely appreciate the assistance and co-operation extended to me by
Ms. Georgeen, the Infrastructure Development and Management (IDM) staff, and the
Admin Department of TCS,

I owe a great deal to my respected project guide Mr. A. Muthukumar, MCA,
Lecturer Department of Computer Science and Engineering, for the motivation, constant
encouragement and kind suggestions in every step throughout this project.

ABSTRACT

Analyst Aid, a software developed at TATA Consultancy Services, Technopark,
Thiruvananthapuram, is a system which assists the requirement understanding phase in
the software development life cycle. The system helps the user in determining the key
factors in the consultancy problem and their relationships and thereby structuring the
problem. As we know, the understanding of a system cannot be automated completely; it

requires user intervention in finalizing decisions. The user plays a major part in the act.

The software has two subsystems working hand in hand - an analyzer and a
graphical editor. The analyzer is a fully graphically supported software that helps in
performing the analysis of the problem to be solved. Meanwhile, the graphical editor is
equipped with tools that help in the structured representation of the perceptions, beliefs or
values of the entities that define the problem. The user inputs a problem descriptive
scenario to the analyzer through its text editor. The subsystem identifies the key
elements or components in the document and does the SNAC analysis (where SNAC is
Stakeholders, Needs, Alterables and constraints) of the problem, which is a requirement
analysis method. The user of the system is free to change these components identified by
the system thereby increasing the flexibility of the system. The analyst can then use the
graphical editor to draw a Cybemetic Influence Diagram (CID) connecting the key

factors in the problem, which structures the problem.

Analyst Aid is a system developed in the Linux platform. The languages used for
development are C++. The user interface has been realized using the Qt library for X11.
It provides application developers with all the functionality needed to build state-of-the
art graphical user interfaces. The language processing tools like Flex and GNU Bison

have been used. Flex is a scanner generator tool and Bison is a parser generator.

CONTENTS

INTRODUCTION

1.1. Project Profile

1.2, About the organization

1.3. About the system
BACKGROUND

2.1. The procedure of SNAC analysis

2.1.1.

The SNAC process

2.2, Cybernetic Influence Diagram

2.2.1.
2.2.2.

Steps involved in the preparation of CID
Analysis of the CID

DEVELOPMENT ENVIRONMENT
3.1. Hardware and Software platforms

3.1.1.
3.1.2.
3.1.3.
3.14.
3.1.5.
3.1.6.

About Linux

About X Windows

About C++

GNU debugger - GDB

About Qt

Tools used

3.1.6.1. Brill Tagger — A parts of speech tagger
3.1.6.2. Flex — Fast lexical analyzer generator

3.1.6.3. Bison — A parser generator

REQUIREMENT ENGINEERING
4.1. Requirement Analysis

4.1.1.
4.1.2.

Problem recognition

Problem evaluation and solution synthesis

4.2. Use cases

4.3. Requirement definition

4.4. Requirement specification

4.4.1.
4.42.

Functional specification of SNAC phase

Functional specification of CID phase

~N NN Y WO N —

HA.&A&WWWMWNNNNM'—‘*“’-"—"—"—‘
\O\)-b-&'—‘OOUIUI-hv—‘OOI\)NO\OUl-bDJbJNOOO

10.

SOFTWARE DESIGN

5.1. Architectural design
5.1.1. Abstract specification of the SNAC module
5.1.2. Abstract specification of the CID module

5.2. Data design

5.3. Algorithm design

5.4. Interface design

PROGRAM DESIGN LANGUAGE - PDL

SOFTWARE TESTING

7.1, Unit testing

7.2. Module testing

7.3. Structural testing

CONCLUSION

SCOPE FOR FUTURE DEVELOPMENT

APPENDIX

Appendix A - Screen shots

Appendix B — Acronyms

Bibliography

Figures and tables

Table 1

Table 2

Fig. 1

Fig. 2

Fig. 3

52
53
56
59
60
66
69
72
77
78
81
81
84
85
87
88
101
102

27
80
54
55
56

INTRODUCTION

1. INTRODUCTION

1.1. Project Profile

Project Title : Analyst Aid

Official Name : SE Tool Box

Project Objective : Develop a tool that assists an analyst in a consultancy
problem

Organization : TATA Consultancy Services

External Guides : Dr. Seenivasagam Neethi,

Associate Consultant,

TATA Consultancy Services,
Technopark,
Thiruvananthapuram.

Internal Guide . Mr. MuthuKumar A,
MCA Course Coordinator,
Department of Computer Science,
Kumaraguru College Of Technology,
Coimbatore.

1.2. About the Organization

TATA Consultancy Services (TCS) is a division of Tata Sons Ltd., the holding
company of the $11.3 billion Tata Group, India’s best-known business conglomerate.
Established in 1968, its founding was based on the understanding that the management
problems in Indian industry could be resolved through the effective use of information
technology. Under the leadership of Dr. F.C. Kohli, TCS spearheaded the pioneering

efforts in creating a globally recognizable brand for the Indian software industry.

Research and development play a critical role at TCS. The Systems
Engineering and Cybernetics Center (SECC), TCS, initiated the dissemination of
Systems Engineering and Cybernetics Techniques in TCS. TCS invests about 4 percent
of its annual revenues in training, a shining example of which can be seen at the state-
of-the-art training center in Thiruvananthapuram in the south India state of Kerala.

The ‘Induction Training Program’ (ITP), which is for all the recruits from engineering

Analyst Aid 2

colleges, is a specially designed, 77-day training course at the Thiruvananthapuram
facility. The ITP is conducted with the objective of transforming engineers from

diverse disciplines into software professionals.
1.3. About the System

The system Analyst Aid can be used by an analyst while understanding a
problem for which a software solution is to be found. The system assists an analyst in
understanding and structuring the problem. The problems that the analyst has to deal
with can be any consultancy problem. To arrive at a perfect solution for any problem
requires a better understanding of it. Here understanding does not mean mere
understanding, but the right understanding, which is not an easy task. The software is

named as Analyst Aid as its duty is to assist or aid in the analysis of a given problem.

Often when an analyst is presented with a consultancy problem, there can be
some typical gaps in cognition, perception, or communication. It is typical that the
problem which, the customer poses is not the real problem. This is termed as the
cognitive gap which, is the difference between the real problem and the problem as
understood by the customer. Moreover there can be gaps between perceptions of
various stakeholders. The gaps in the consultancy problem can be further augmented
by the communication gap between the customer and the analyst. This situation leads
the analyst to study the problem in detail for a structured understanding which helps

in bridging the three types of gaps.

Here, a Systems Thinking approach has been followed. This is a way of
thinking that focuses on the relationships between parts forming a connected whole for
a purpose. System Thinking forms the basis for clear thought and communication.
Thinking systemically helps one to look at a system as interconnected parts functioning

as a whole and thus enables the analyst to reach the right solution to the right problem.

There are several structured methods that facilitate systems thinking like
Interpretive Structural Modeling (ISM), SNAC (Stakeholders, Needs, Alterables and

Constraints) analysis, Cybernetic Influence Diagram (CID) analysis etc. Of these ISM

LI

Analyst Aid

is used for solving complex problems. We are confining our study on non-complex

problems. So SNAC analysis and CID analysis are taken into consideration.

In SNAC analysis the first step is to create a problem descriptive scenario. A
typical problem description should contain all the requirements needed for the system.
The descriptive scenario is a document that furnishes information relevant to the
organization. Information contained would relate to the following aspects: mission
and strategies of the organization, internal status of the organization, environmental
information to identify sources of constraints, opportunities and threats. The software
is able to identify the key elements in the document i.e., the words and phrases that
have significant relevance to the situation mentioned in the descriptive scenario.
Apart from identifying the keywords in the document, the system also classifies the
key elements into four categories, the Stakeholders, Needs, Alterables and Constraints
(SNAC). The next step is to represent the relationship between each of these
identified SNAC components. Representing the relationship is important because it
finally helps the user in framing the objectives of the system. The user of the system
is free to access the graphical editor at every stage to draw the Cybernetic Influence
Diagram (CID) of the components that the system identified. The editor is enabled
with different tools, which helps the user to draw the CID with the factors that he
identified in the system or he can import the factors that the system identified
automatically from the SNAC analysis phase. Analysis of the CID facilitates
identification of the elements crucial for the problem situation, the extent of influence
of the factors in the diagram etc. By this way he will be able to verify the results
obtained by the analyzer with the CID. The main advantage of the CID editor is that
it provides an efficient loop identification, loop analysis and merge-burst point

analysis algorithm.

Analyst Aid 4

BACKGROUND

Analyst Aid

2. BACKGROUND

2.1. The Procedure of SNAC Analysis

SNAC (Stakeholders, Needs, Alterables and Constraints) analysis is used to

generate a comprehensive and exhaustive set of objectives for an organization.
2.1.1. The SNAC Process

1. The first step in SNAC analysis is in preparing a descriptive scenario of the
organization. A descriptive scenario is a document that furnishes information
relevant to the organization. The descriptive scenario is prepared after

extensive interaction with the client.

2. The descriptive scenario should be screened for key elements. Key elements
are words and phrases that have significant relevance to the situation
mentioned in the descriptive scenario. In other words, each element represents a

set of ideas, keeping in view the context within which these elements are used.

3. The next step in SNAC analysis is to classify the key elements into four
categories: Stakeholders, Needs, Alterables and Constraints. These categories

are defined below:

a. Stakeholders are individuals, groups or agencies who have a stake in the
organization, their needs have to be fulfilled by the organization, either by
choice or by obligation. Stakeholders can be also be defined as those who

will be affected by the policy of the organization.

b. Needs, refer to the requirements of stakeholders, which are to be fulfilled

by the organization.

c. Alterables, are parameters, events or processes that can be controlled or

altered to fulfill the needs of stakeholders.

Analyst Aid 6

d. Constraints are limitations imposed by factors that are not controllable by
the organization. Qualification is generally required for classifying an

element as a constraint.

4. In principle, the same key element can be classified as a Need, an Alterable or

a Constraint

5. Objectives are developed based on the criteria that each objective satisfied Needs

of the Stakeholders either by overcoming a constraint or by changing an Alterable.

6. Cross interaction matrix can be prepared to get a clear understanding of the
interactions among various key elements. A Cross interaction matrix is one
that represents interactions between Stakeholder and Needs and Alterables,
Constraints and Alterable, Needs and Constraints. Matrix elements indicate
the extent of interaction among Key elements. The output from SNAC
analysis contains objectives both at corporate and department level. To arrive
at specific department objectives, the objective set has to be mapped against

the functional structure of the organization.
2.2. Cybernetic Influence Diagram (CID)

It is a method for problem structuring. It is a structured representation of the
perceptions, beliefs or values of the various stakeholders that define the problem.
This representation enables the client to reflect on or refine his/her ideas regarding the
problem situation. It thus guides careful problem construction through broadening of

issues until they can be explained.
CID aims at helping to client/consultant team to:
v" Understand the perceptions of the various stakeholders regarding the situation.

v' Gather the explanations of the stakeholders as to why the situation is as it is

and why it matters to them.

Analyst Aid 7

v Gradual uncovering of the various facets of the situation under examination

and establishment of linkages among of these.
v Identify the key issues within the problem situation and their relationship.
v Define the nature of the problem.
v Establish the nature of the system within which the issues are defined.

Analysis of the CID facilitates identification of a small number of elements
crucial for the problem situation. It helps manage complexity without reducing it by
identifying the network of interrelated problems that make up the issues as posed

initially by the client.
2.2.1 Steps involved in the preparation of CID

The following steps are involved in the preparation of a CID. The process is
not sequential but is iterative in nature, depending on the ability to draw out the
perceptions of the stakeholders, and understanding of the complexity of the situation

under study.
i. Knowledge Acquisition

Based on the preliminary understanding of the situation under study all the
relevant empirical and theoretical information is collected. Initially the richest
possible picture of the situation under consideration should be arrived at by collecting
as many perceptions and aspects of the problem as possible from a wide range of
sources and people with a stake in the problem situation. It is important to refrain

from imposing any analysis at this stage.
ii. Sources of data

The forms and sources of data may be diverse and are collected both from
primary and secondary sources. Literature survey, discussions and interviews with
different sets of stakeholders of the system will provide a better understanding of the

situation. Nominal group technique can be used to elicit optimum information in a

Analyst Aid g

iii. Descriptive scenario

The consultants’ understanding of the situation is compiled in the form of a
descriptive scenario of the problem situation. This statement should include al] that

internal and external factors that impinge on the situation and their interrelationships.
iv. Identification of factors or elements

From the descriptive scenario, the factors or key elements that constitute the
situation are identified keep in view the purpose of the analys;is, They originate from
the perceptions and mental images of the stakeholders involved. Key elements are
words and phrases that have significant relevance to the situation as described in the
descriptive scenario. In other words, each element Tepresents a set of ideas that are
relevant for the problem situation. They key elements can be reviewed for clubbing

of two or more elements or elaboration as required.
V. Identification of relationships among factors

This crucial step involves establishing the perceived direct relationship
between the factors based upon the understanding of the problem situation while
refraining from the valye Judgments. A matrix may be developed to plot the
relationships among key elements. CID can be visually depicted by having key
elements as nodes and relationships among the key elements as directed links. Each
link represented by arrow from one element to another Tepresents a proposition. The
direction of the link depicts a relationship like ‘causes’, ‘influences’, ‘leads to’,
‘inheres’, ‘decreases’ etc. The translation of aj] propositional relationships into

arrow-links produces a set of interconnected and interacting feedback cycles.
vi. Ratify the inter-linkages

The primary use of the CID till this stage is not as a problem-solving tool but

rather as a reflective device. The client is invited at this Stage to correct the

Analyst Aid 9

impressions gained by the consultant. In so doing, the client may also reflect on the
influences between a few elements that he/she perceives to be of interest. The
resultant diagram needs to be ratified with the various stakeholders/experts/clients

with respect to the factors and the relational links.
vii. Modify the CID

Based on the discussions with the client and various stakeholders, the
relationships represented in the CID have to be modified. This needs to be done till
the consultant is confident of having arrived at a representation that is reasonably
acceptable to all stakeholders. Drawing the CID is an iterative process and it

undergoes various changes before taking its final form.
2.2.2 Analysis of the CID

CID enables a consultant to manage complexity without reducing it. It has a
potential to unearth the network of underlying problems and also suggest what can
and cannot be done about the problem. Hence, it is necessary to understand how this
knowledge can be utilized under various problem situations. Interpretation of the CID
has to be undertaken in relation to the purpose of analysis. The following may be

useful in the context of planning for an organization.
i. Merge and Burst Points

The presence of merge points and burst points indicates the criticality and
importance of certain key factors. Merge points are those nodes where convergence
of a lot of arrows takes place while burst points are the nodes from which a lot of
arrows diverge. These elements are potent because they have ramifications for a large
number of other elements. The burst points provide maximum leverage to the
organization in implementing change, if it is within the control of the organization. In
the case of merge points, a number of other factors need to be acted on before

achieving desired change with respect to this element.

Analyst Aid 10

ii. Domain Analysis

Calculate the total number of in-arrows and out-arrows from eact node that is
its immediate domain. Those nodes whose immediate domain is the most complex

are central to the problem situation and may need to be explored in greater detail.
iii. Feedback loops

The detection of feedback loops is central to the investigation. They imply the
possible existence of growth, decline or feedback control and hence the organization’s
ability to react or exploit changes in the environment. The critical elements that need
to be monitored by the organization can be identified through analysis of feedback
loops. Also, if the management wants to stimulate changes they can introduce
strategic relationships and create significant loops. Identification of the feedback
loops also facilitates review of the cause and effect as perceived by the stakeholder. If
true feed back loops are identified, then there is a need to establish the nature of
feedback.

a. Negative Feedback Loops

Feedback loops are negative when the loop contains an odd number of
negative links. They depict self-control and are oriented towards reaching or
maintaining a stable equilibrium state. That is any perturbation in the state of

variables will result in stabilizing dynamics to bring activity under control.
b. Positive Feedback Loops

An even number of negative links or all positive links suggest a
positive feedback cycle that is oriented towards producing cumulative change
in a given state leading to exponential growth or decline. The change

generating process may be directed towards purposive growth or decline.

Analyst Aid 11

DEVELOPMIENT
ENVIRONMIENT

Analyst Aid

3. DEVELOPMENT ENVIRONMENT

3.1 Hardware and Software platforms

Hardware : PC with X11 Linux Operating System.
Software : C++, Qt library
Software Tools : Brill Tagger, flex, GNU bison

3.1.1 About Linux

Linux is a Unix clone written from scratch by Linus Torvalds with assistance
from a loosely-knit team of hackers across the Net. It has all the features as expected
in a modern fully-fledged Unix, including true multitasking, virtual memory, shared
libraries, demand loading, shared copy-on-write executables, proper memory
management and TCP/IP networking. Linux is a free (GPL Licensed), from scratch
operating system based heavily on the POSIX and UNIX API’s. It supports both 32
and 64 bit hardware and provides a stable multi-user internet ready operating system.

It works on IBM PC compatibles and 386 or higher processor.

Linux itself is not Unix, although many people call it that and is very hard
pushed to tell the difference. This is because the Unix trademark is specific to
systems that meet a complex set of X/Open standards and has a cost. Some of the
many applications for Linux are X11 Desktop, File server, Computing Backend, Web
Server, Usenet News, Terminal Server, FTP Archive, and Firewall. Linux uses
Internet and industry standard components and protocols giving a system with
complete network integration. The operating system can act as a serve for most major
file serving protocols, and provide all the major Internet applications. The X window
system provides a networked and platform independent graphical interface that
(unlike proprietary user interfaces) allows one desktop to access applications running
on multiple machines across local and wide area networks. Linux is normally
obtained as a “distribution”. This is a combination of the Linux operating system

kernel and other tools, utilities and applications. Some of these are available for free

(WP

Analyst Aid !

over the Internet and others on CD-ROM. Because Linux itself is free software that
can be freely copied, many distributions are available both over the Internet and sold

on CD-ROM with added convenience and support.
3.1.2 About X Windows

The X Window System, more simply ‘X’ or ‘X11°, is judged worldwide to be
one of the most successful open source, collaborative technologies developed to date.
It is the de facto standard graphical engine for the UNIX and Linux operating systems
and provides the only common windowing environment bridging the heterogeneous
platforms in today’s enterprise computing. The inherent independence of the X
Window System from operating system and hardware, its network-transparency, and
its support for a wide range of popular desktops are responsible for its continuing and

growing popularity. All major hardware vendors support the X Window System.

The X Protocol was developed in the mind 1980°s amid the need to provide a
network transparent graphical user interface primarily for the UNIX operating system.
X provides for the display and management of graphical information, much in the
same manner as Microsoft’s Windows and IBM’s Presentation Manager. They key
difference is in the structure of the X Protocol. Whereas Windows and Presentation
Manager simply display graphical applications local to the PC, the X Protocol
distributes the processing of applications by specifying a client-server relationship at
the application level. The what to do part of the application is called an X client and
is separated from the how to do part, the display, called the X server. X clients
typically run on a remote machine which has excess computing power and displays on

an X server. The benefit is true client-server and distributed processing.

The X Protocol defines a client-server relationship between an application and
its display. To meet this the application (called an X client) is divorced from the
display (known as the X server). X further provides a common windowing system by
specifying both a device dependent and an independent layer, and basing the protocol
on an asynchronous network protocol for communication between an X client and X

server. In effect, the X Protocol hides the peculiarities of the operating system and

Analyst Aid 14

the underlying hardware. This masking of architectural and engineering differences
simplifies X client development and provides the springboard for the X Window

System’s high portability.

The software Analyst Aid is developed in Linux environment and requires a

good user interface. X11 provides a strong basement for such GUI applications.
3.1.3 About C++

C++ was initially designed and implemented by Dr. Bjarne Stroustrup at
AT & T Labs (then AT & T Bell Labs). The first commercial release happened in
1985. The language gained widespread use in industry and academia during the
1980s, and around 1990 the major computer and software tools suppliers started to

provide C++ to their users as a major implementation tool.

C++ is a general purpose programming language with a bias towards systems

programming that
e isabetter C
e supports data abstraction
e supports object-oriented programming
¢ supports generic programming

C++ supports low-level programming in traditional styles, data abstraction,
object-oriented programming, and generic programming. C-++ was initially
developed from the C programming language by the addition of facilities for object-
oriented programming from the SIMULA programming language. C++ is
distinguished among progamming languages by a combination of efficiency (like C
and Fortran) and abstraction facilities. The “abstraction facilities” provided by C++
allow programs to be expressed in terms natural to application designers (rather than
lower-level computer-oriented terminology). The C++ abstraction mechanisms are

distinguished by their run-time efficiency.

Analyst Aid . 15

The designers of C++ wanted to add object-oriented mechanisms without
compromising the efficiency and simplicity that made C so popular. One of the
driving principles for the language designers was to hide complexity from the

programmer, allowing him to concentrate on the problem at hand.

Because C++ retains C as a subset, it gains many of the attractive features of
the C language, such as efficiency, closeness to the machine, and a variety of built-in
types. A number of new features were added to C++ to make the language even more
robust, many of which are not used by novice programmers. C++ is rich with a set of
libraries. As our system has to do a large amount of string manipulations, the string
library was used most. Some of the functions in the string library and there syntax are

listed below.

a. strlen
Function : Calculates the length of a string.
Syntax : size_t strlen (const char * s)
Return value : The function strlen returns the number of

characters in 5, not counting the NULL-terminating character.

Description : The function strlen calculates the length of s.
b. strcat
Function : Appends one string to another.
Syntax : char *strcat (char *dest, const char *src)
Return value : The function returns a pointer to the resultant

concatenated string.

Description : The function strcat appends a copy of the source

to the end of destination. The length of resulting string is strlen (dest) +

strien (src).

Analyst Aid 16

¢. stremp

Function : Compares one string with another.
Syntax : int strcmp (const char *s1, const char *s2)
Return value : The function returns a value that is

<0, if sl is less than s2
==0, if s1 is same as s2
>0, if s1 is greater than s2

Description : The function strcmp performs comparison
between sl and s2, beginning with the first char in each string and
continuing for subsequent characters until the corresponding characters
differ or until the end of one of the strings is reached. The characters

are treated as unsigned character type.

d. strcpy
Function : Copies one string to another.
Syntax : char *strcpy (char *dest, const char *src)
Return value : The function returns dest.
Description : The function strcpy copies the string src to dest,

stopping after the terminating NULL character.

e. strespn

Function : Scans a string for the initial segment not

containing any subset of a given set of characters.
Syntax : size_t strcspn (cost char *s1, const char *s2)

Return value : The function returns the length of the initial
segment of the string sl that consists entirely of characters not present

in the string s2.

Analyst Aid 17

Description : The function strcspn scans a string for the initial

scgment not containing any subset of a given set of characters.

f. strstr
Function : Scans a string for the occurrence of a given
substring.
Syntax : char *strstr (const char *s1, const char *s2)
Return value : The function returns a pointer to the element in

s1, where s2 begins (points to s2 in s1). If s2 does not occur in sl,

strstr returns NULL.

Description The function strstr scans sl for the first

occurrence of the substring s2.

g. strtok

Function : Searches one string for tokens that are separated

by delimiters defined in a second string.
Syntax : char strtok (char s1, const char *s2)

Return value : The function returns a pointer to the token found

insl. The NULL pointer is returned when there are no more tokens.

Description : The function considers the string sl to consist of
a sequence of zeros or more text tokens, separated by combinations of
one or more characters from the Separator string s2. The first call to
strtok returns a pointer to the first character of the first token in s1 and
writes the NULL character into sl at the pint immediately following
the returned token. Subsequent calls with NULL as first argument wil]
work through string sI in this way. until no token remains. The

Separator string s2, can vary from call to call.

Analyst Aid

3.14

h. strncpy

Function : Copies a given number of bytes from one stream

to another, truncating or padding as necessary.

Syntax : char* strncpy (char* dest, const char* src, size_t
maxien)

Return value : The function strncpy returns dest

Description : The function strncpy copies a maximum of

maxlen characters from Src to dest, truncating or NULL-padding the
string dest. The target string dest, might not be NULL-terminated if

the length of src is maxlen or more.
GNU debugger (GDB)

GDB, the GNU Project debugger, allows to see what is going on ‘inside’

another program while it executes or what another program was doing at the moment

it crashed.

GDB can do four main kinds of things (plus other things in support of these)

to help the user catch bugs in the act:

v

v

Start the program, specifying anything that might affect its behavior.
Make the program stop on specified conditions.
Examine what has happened, when the program stopped.

Change things in the program, so that the user can experiment with correcting

the effects of one bug and go on to learn about another.

The program being debugged can be written in C, C++, Pascal (and many

other languages). Those programs might be executing on the same machine as GDB

Analyst Aid 19

(native) or on another machine (remote). GDB can run-on most popular UNIX and

Microsoft Windows variants.

3.1.5 About Qt

Qt is a cross-platform C++ GUI application framework. It provides
application developers with all he functionality needed to build state-of-the-art
graphical user interfaces. Qt is fully object-oriented, easily extensible, and allows

true component programming.

Since its commercial introduction in early 1996, Qt has formed the basis of
any thousands of successful applications worldwide. Qt is also the basis of the
popular KDE Linux desktop environment, a standard component of all major Linux

distributions.
Qt is supported on the following platforms:
e MS/Windows — 95, 98, NT, and 2000

¢ Unix/X11 - Linux, Sun Solaris, HP-UX, Digital Unix, IBM AIX, SGI IRIX

and a wide range of others.
¢ Embedded - Linux platforms with frame buffer support.

QU/X11 does not require any additional graphical layer above X11, neither Xt
nor Motif nor win32 emulation libraries. It is highly optimized native code that runs

directly on top of the lowest graphical layer Xlib.

Qt includes a rich set of Widgets (‘controls’ in Windows terminology) that
provide standard GUI functionality. Qt introduces an innovative alternative for inter-
object communication, called Signals and Slots that replaces the old and unsafe
callback technique. Qt also provides a conventional Events model for handling mouse
clicks, key presses, etc. Qt’s cross-platform GUI applications can use all the user
interface functionality required by modern applications, such as menus, context

menus, dockable toolbars, balloon help. drag and drop, etc. Intuitive naming

Analyst Aid 20

conventions and a conventions and a consistent programming approach simplify
coding. Qt also includes Qt Designer, a tool for designing user interfaces
graphically. Qt Designer supports Qt’s powerful Layouts in addition to absolute
positioning. Qt Designer can be used purely as a design tool, or it can be used 10

create entire applications with the built-in C++ code editor.

Qt has excellent support for 2D and 3D graphics. Qt is the de-facto standard
GUI toolkit for platform-independent Open GL programming Qt makes it possible to
create platform-independent database applications using standard databases. Qt
includes native drivers for Oracle, Microsoft SQL Server, Sybase Adaptive Server,
PostgreSQL, MySQL and ODBC-compliant databases. Qt programs have native look
and feel on all supported platforms using Qt’s Styles and Themes support. From a
single source tree, recompilation is all that is required to produce applications for
Windows 95/98/NT4/ME/2000, Mac OS X, Linux, Solaris, HP-UX and many other
versions of Unix with X11. Qt applications can also be compiled to run on
QtEmbedded. Qt’s gmake build tool produces Makefiles or . dsp files appropriate
to the target platform. Since Qt’s architecture takes advantage of the underlying
platform, many customers also use Qt for single-platform development on both

Windows and on Unix because they prefer the Qt approach.

Qt uses Unicode throughout and has considerable support for
internationalization. Qt includes a variety of domain-specific classes. For example,
Qt has an XML module that includes SAX and DOM parsers. Objects can be stored
in memory using Qt’s STL-compatible collection classes. Local and remote file
handling using standard protocols are provided by Qt’s input/output networking
classes. Qt applications can have their functionality extended by plugins and dynamic
libraries. Plugins provide additional codecs, database drivers, image formats, styles

and widgets. Libraries can offer an unlimited range of functionality.

Because of all these functionality that Qt provides, it was found to be the best

for this application development.

Analyst Aid 21

3.1.6 Tools Used
3.1.6.1. Brill Tagger — A parts of speech tagger

Brill Tagger is used to tag the parts of speech of each word appearing in the
problem descriptive scenario that is given as input to the system Analyst Aid. Brill
Tagger is a rule-based tagger. In the training phase, this tagger makes an initial
hypothesis about the correct tags. In an iterative fashion it then betters its
performance with regard to the training corpus by postulating context dependent tag
rewrite rules. Brill’s tagger is written in C. The accuracy of the part-of-speech tagger
should be around 95-97% (i.e. 95-97% of the word tokens in arbitrary English text

receive the correct tag).

Brill Tagger is a parts of speech tagger, which tags each word in the input text
with the appropriate part of speech. Tagging is done in two stages. Every word is
assigned its most likely tag in isolation. Each word in the tagged training corpus has a
lexical entry consisting of a partially ordered list of tags, indicating the most likely tag
for that word, as well as all other tags seen with that word (in no particular order). A
list of transformations is provided for determining the most likely tag for words not in
the lexicon. Unknown words are first assumed to be nouns (proper nouns if
capitalized), and then cues based upon prefixes, suffixes, infixes, and adjacent word
co-occurrence are used to change the guess of most likely tag. Next, contextual

transformations are used to improve accuracy.

To compile the programs, type (in the tagger base directory):
make

To execute the program, type:

tagger LEXICON YOUR-CORPUS BIGRAMS LEXICALRULEFULE
CONTEXTUALRULEFILE

Analyst Aid 22

where YOUR-CORPUS is the file name of the (currently untagged) corpus you wish
to have tagged, and the other files are all provided with the tagger. Options (which

are typed after all the file names) are:

-h .- help
-w wordlist :: provide an extra set of words beyond those in LEXICON.
-i filename .. writes intermediate results from start state tagger.

into filename

-s number :: processes the corpus to be tagged “number” lines at a time.
This should be specified if memory problems result from

trying to process to large a corpus at once.
-S - use start state tagger only.

-F - use final state tagger only. In this case, YOUR-CORPUS is a
tagged corpus, whose tagging will be changed according to
the final-state-tagger contextual rules. YOUR-CORPUS
should be tagged corpus ONLY when using this option.

The tagger writes to standard output. The output can be also be redirected to

some file.
Information on training files
LEXICON

A list of (word tag 1 tag2 ..tagn), where tag 1 is the most likely tag for "word"
in the training corpus, and tag2...tagn are other taggings of "word" seen in the training
corpus (in no particular order). There are three different lexica provided with Brill

Tagger.

LEXICON. BROWN. AND.WSJ was derived from the Penn Treebank tagging of the
WSJ, roughly 3 million words, and the Brown Corpus. LEXICON.BROWN was

Analyst Aid

N
(V8]

derived from the Penn Treebank tagging of the Brown corpus only. LEXICON.WSJ was
derived from only the WSJ. (LEXICON is a link to LEXICON.BROWN.AND.WS3lJ)

Which lexicon you choose to use will depend on the type of corpus you wish to tag.
CORPUS: the corpus you wish to tag

Should be one sentence per line, with punctuation (and anything else
appropriate) tokenized. Words can be pretagged by tagging with two slashes: H's the
winner (at least, that's what I was told). The boy//NN said: “I am here”.

BIGRAMS: a list of adjacent word pairs seen in the training corpus

Used to apply transformations such as: “change the tag from X to Y if word Z
ever appears to the right”. In this distribution, this file is just set to a dummy list, as a
place holder. This is because “BIGRAMS” is only used for unknown words, and
there is no Brown or WSJ text in the Penn Treebank that is not tagged.

LEXICALRULEFILE: list of transformations used for initial tagging of words

not in the lexicon

There are two lexical rule files provided with the Brill Tagger.
LEXICALRULEFILE.BROWN was derived from roughly 300,000 words of tagged
text from the Brown Corpus. LEXICALRULEFILE.WSJ was derived from roughly
300,000 words of tagged text from the WSJ. (LEXICALRULEFILE is a link to
LEXICALRULEFILE.WSJ)

CONTEXTUALRULEFILE: list of contextually triggered transformations

CONTEXTUALRULEFILE.BROWN was derived from roughly 600,000
words of tagged text from the Brown Corpus. CONTEXTUALRULEFILE.WSJ was
derived from roughly 600,000 words of tagged text from the WSJ
CONTEXTUALRULEFILE.WSJ.NOLEX was derived from roughly 600,000 words
of tagged text from the WSJ, disallowing all transformations that make reference to

words. (CONTEXTUALRULEFILE is a link to CONTEXTUALRULEFILE.WSJ)

Analyst Aid 24

How the Part-of-Speech Works

In the first step, a lexical lookup module assigns exactly one tag to each
occurrence of a word (usually the most frequent tag for that word form), disregarding

context.

The lexicon has been generated from tagged corpora and contains more than
93,000 entries.

In the second step, words not in the lexicon are handled separately, by the
guesser. The guesser starts by assigning tag NNP to unknown capitalised words, NN

to others. This is the relevant rule:
replace (pos ‘unknown’ ‘NNP’ 'NN’) # [isCap#[0]]

Then replacement rules are applied that may change these tags on the basis of

a simple suffix analysis. Here is a guessing rule:
replace (pos ‘NN’ *JJN) 4 [suffix#less#[O]]
The rule means “replace tag NN with JJ if the word in question ends in “less”.

replace (pos ‘VB’ ‘'NN’) # [canHave# ‘NN’ #[0] pos#
‘DT’ #[~1]]

The rule means “replace tag VB with NN if the word in question can have tag

NN (according to the lexicon) and if the pervious word is tagged DT”.

The present system uses around 50 guessing rules and nearly 300 context
rules. Both kinds of rules have been induced from tagged corpora by means of
Transformation Based Learning (TBL). At the directory where the tagger is installed

the list of files that are generated are given below.

Analyst Aid 25

[root@AA/Bin_and_Datal#l1s

BIGRAMS LEXICALRULEFILE.BROWN
CONTEXTUALRULEFILE LEXICALRULEFILE.WSJ
CONTEXTUALRULEFILE.BROWN LEXICON
CONTEXTUALRULEFILE.WSJ LEXICON.BROWN
CONTEXTUALRULEFILE.WSJNOLEX LEXICON.BROWN.AND.WSJ
contextual-rule-learn LEXICON.WSJ.Z
final-state-tagger NBEST-RULES
fix-kbest-rule-learn nbest-tagger
kbest-contextual-rule-learn start-state-tagger
LEXICALRULEFILE tagger

When an input file named untagged-input-file is tagged using the following

command the tagger gives the following output.

[root@AA/Bin_and_Dataj#tagger LEXICON untagged-input-file BIGRAMS
LEXICALRULEFILE CONTEXTUALRULEFILE | MORE

START STATE TAGGER::LEXICONREAD

START STATE TAGGER::CORPUSREAD

START STATE TAGGER::RULEFILEREAD

START STATE TAGGER::BIGRAMS READ
$5585S55S55SS55SS
SS55S55SS55SSS

FINAL STATE TAGGER :: READ IN OUTPUT FROM START

FINAL STATE TAGGER :: READ IN LEXICON

Sib R R RRRVRR A iR OAOURRv RO R DR ARAVRRTRIERATIURVRRIRTOITRIAIAAFAREARRRERRORNIRIRRERET
iiniaaiiiiiiduanoauaRavanngRIRi R aRaRORIRRERRRIRRRIRTIRRHORIIREANENIYONRRARIRRARRIIEIIDEIIY
iisiiaviiaibaaiiiivisaisivivaiiiisisiiiiasaniiaaqivitisiiniiig

The/DT September/NNP October/NNP term/NN jury/NN had/VBD been/VBN
charged/VBN by/IN Fulto/NNP Superior_Court_Judge Durwood Pye/NNP
to/TO investigate/VB reports/NNS of/IN possible/JJ”/” irregularities/NNS </
in/IN the/DT hard-fought/JJ primary/JJ whic/WDT was/VBD won/VBN
by/IN Mayor-nominate_Ivan_Allen_Jr./NNP./. “/” Only/RB a/DT relative/JJ
handful/NN of/In such/JJ reports/NNS was/VBD received/VBN “/”/, the/DT
jury/NN said/VBD,/,”/” considering/VBG the/DT widespread/JJ interest/NN
in/IN the/DT election/NN,/, the/DT number/NN of/IN voters/NNS and/CC
the/DT size/NN of/IN this/DT city/NN /" /.

[root@AA/Bin_and Data]#

The accuracy of the parts-of-speech tagger should be around 95-97%

(i.e., 95-97% of the word tokens in arbitrary English text receive the correct tag).

Analyst Aid 26

The tag set used in Brill Tagger.

Description

POS Tag Example
CC coordinating conjunction and
CD cardinal number 1, third
DT Determiner the
EX existential there there is
FwW foreign word d’hoevre
IN preposition/subordinating conjunction in, of, like
1 Adjective green
JJR adjective, comparative greener
JIS adjective, superlative greenest
MD Modal could, will
NN noun, singular or mass table
NNS noun plural tables
NNP proper noun, singular john
NNPS proper noun, plural vikings
PRP personal pronoun i, he, it
PRPO possessive pronoun my, his
RB Adverb however
RBR adverb, comparative better
RBS adverb, superlative best
RP Particle give up
TO To to go, to him
UH Interjection uhhuhhuhh
VB verb, base form take
VBD verb, past tense took
VBG verb, gerund/present participle taking
VBN verb, past participle taken
VBP verb, sing. present, non-3d take
VBZ verb, 3" person sing. present takes
WDT wh-determiner which
WP wh-pronoun who, what
WPO possessive wh-pronoun whose
WRB wh-abverb where, when

Table 1

Analyst Aid

27

3.1.6.2. Flex — Fast lexical analyzer generator

flex is a tool for generating scanners — programs which recognized lexical
patterns in text. flex reads the given inputs files, or its standard input if no file
names are given, for a description of a scanner to generate. The description is in the
form of pairs of regular expressions and C code, called rules. flex generates as
output a C source file, ‘lex.yy.c’, which defines a routine ‘yylex () ’. This
file is complied and linked with the ‘-1f1’ library to produce an executable file.
When the executable is run, it analyses its input for occurrences of the regular

expressions. Whenever it finds one, it executes the corresponding C code.
Syntax

flex [-bedfhilnpstvwBFILTV78+? —ClaefFmr] -ooutput-

Pprefix —Sskeleton]

[--help —version] [filename....]
Format of the input file

The flex input file consists of three sections, separated by a line with just ‘%% " in it:

definitions

oo
o\

rules

oe
o

user code

The definitions section contains declarations of simple name definitions to
simplify the scanner specification, and declarations of start conditions. Name definitions

have the form:

Analyst Aid 28

name definition

The “name” is a word beginning with a letter or an underscore (‘) followed
by zero or more letters, digits, ¢ °, or - (dash). The definition is taken to bzgin at the
first non-white-space character following the name and continuing to the end of the
line. The definition can subsequently be referred to using “{name}”, which will

expand to “(definition)”.
The rules section of the £1ex input contains a series of rules of the form:
pattern action
where the pattern must be unindented and the action must begin on the same line.

Finally, the user code section is simply coded to *lex. yy.c’ verbatim. It is
used for companion routines, which call or are called by the scanner. The presence of
this section is optional; if it is missing, the second ‘%%’ in the input file may be

skipped, too.

In the definitions and rules sections, any indented text or text enclosed in ‘%
{‘and *%}’ is copied verbatim to the output (with the *%{}’ ‘s removed). The

‘% {}’ ‘s must appear unindented on lines by themselves.

In the rules section, any indented or %{} text appearing before the first rule
may be used to declare variables which are local to the scanning routine and (after the
declarations) code which is to be executed whenever the scanning routine is entered.
Other indented or %{} text in the rule section is still copied to the output, but its

meaning is not well-defined and it may well cause compile-time errors.

In the definitions section (but not in the rules section), an unindented comment
(i-e., a line beginning with “/*”) is also copied verbatim to the output up to the next
“*/”-

Analyst Aid 29

How the input is matched

When the generated scanner is run, it analyses its input looking for strings
which match any of its patterns. If it finds more than one match, it takes the one
matching the most text (for trailing context rules, this includes the length of the
trailing part, even though it will then be returned to the input). If it finds two or more

matches of the same length, the rule listed first in the £1ex input file is chosen.

Once the match is determined, the text corresponding to the match (called the
token) is made available in the global character pointer yytext, and its length in the
global integer yyleng. The action corresponding to the matched pattern is then
executed (a more detailed description of actions follows), and then the remaining

input is scanned for another match.

If no match is found, then the default rule is executed: the next character in
the input is considered matched and copied to the standard output. Thus, the simplest
legal flex input is: %% which generates a scanner that simply copies its input (one

character at a time) to its output.
Generated scanner

The output of flex is the file ‘lex.yy.c’, which contains the scanning
routine ‘yylex (), a number of tables used by it for matching tokens, and a
number of auxiliary routines and macros. By default, ‘yylex ()’ is declared as

follows:

Int yylex{()
{

..various definitions and the actions in here...

Whenever ‘yylex ()’ is called, it scans tokens from the global input file
yyin (which defaults to stdin). It continues until it either reaches an end-of-file (at

which point it returns the value 0) or one of its actions exccutes a return statement.

Analyst Aid 30

Interfacing with Bison

One of the main uses of flex is as a companion to the bison parser
generator. Bison parsers expect to call a routine named ‘Yylex ()’ to find the next
input token. The routine is supposed to return the type of the next token as well as
putting any associated value in the global yylval. To use flex with bison, one
specifies the *~d’ option to bison to instruct it to generate the file ‘y.tab.h’
containing definitions of all the * $tokens’ appearing in the bison input. This file

is then included in the f1ex scanner.
3.1.6.3. Bison-A parser generator

Bison is a general-purpose parser generator that converts a grammar
description for an LALR (1) context-free grammar into a C program to parse that
grammar. Bison is upward compatible with Yacc: al] properly-written Yacc
grammars ought to work with Bison with no change. Anyone familiar with Yacc
should be able to use Bison with little trouble. One needs to be fluent in C

programming in order to use Bison.

Bison was written primarily by Robert Corbett; Richard Stallman made it
Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added

multicharacter string literals and other features.

In order for Bison to parse a language, it must be described by a context-free
grammar. This means that specifying one or more syntactic groupings gives rules for
constructing them from their parts. For example, in the C language, one kind of
grouping is called an ‘expression’. One rule for making an expression might be, “An
expression can be made of a minus sign and another expression”. Another would be,
“An expression can be an integer”. Rules are often recursive, but there must be at

least one rule, which leads out of the recursion.

The most common formal system for presenting such rules for humans to read

is Backus-Naur Form or “BNF”, which was developed in order to specify the

Analyst Aid 31

language Algol 60. Any grammar expressed in BNF is a context-free grammar. The

input to Bison is essentially machine-readable BNF.

Not a!l context-free languages can be handled by Bison, only those that are
LALR (1). In brief, this means that it must be possible to tell how to parse any
portion of an input string with just a single token of look-ahead. Strictly speaking,
that is a description of an LR (1) grammar, and LALR (1) involves additional
restrictions that are hard to explain simply; but it is rare in actual practice to find an

LR (1) grammar that fails to be LALR (1).
Language and Context free grammar

In the formal grammatical rules for a language, each kind of syntactic unit or
grouping is named by a symbol. Those, which are built by grouping smaller
constructs according to grammatical rules, are called nonterminal symbols; those
which can’t be subdivided are called terminal symbols or token types. We call a piece
of input corresponding to a single terminal symbol a token, and a piece corresponding
to a single nonterminal symbol a grouping. One nonterminal symbol must be
distinguished as the special one, which defines a complete utterance in the language.

It is called the start symbol. In a compiler, this means a complete input program.

The Bison parser reads a sequence of tokens as its input, and groups the tokens
using the grammar rules. If the input is valid, the end result is that the entire token
sequence reduces to a single grouping whose symbol is the grammar’s start symbol.
If we use a grammar for C, the entire input must be a “sequence of definitions and

declarations’. If not, the parser reports a syntax €rror.
Overall Layout of a Bison Grammar

The input file for the Bison utility is a Bison grammar file. The general form

of a Bison grammar file is as follows:

{

C declarations

o©

%}

Analyst Aid 32

o
o

Grammar rules

oo
oo

Additional C code

The *¢%7, ‘¢{’ and ‘%)’ are punctuation that appears in every Bison

grammar file to separate the sections.

The C declarations may define types and variables used in the actions. Pre-
processor commands can also be used to define the macros used there, and use

“#include”, to include header files that do any of these things.

The Bison declarations declare the names of the terminal and non-terminal
symbols, and may also describe operator precedence and the data types of semantic
values of various symbols. The grammar rules define how to construct each non-
terminal symbol from its parts. The additional C code can contain any C code to be
used. Often the definition of the lexical analyzer yylex goes here, plus subroutines
called by the actions in the grammar rules. In a simple program, all the rest of the

program can go here.

¥
(wJ

Analyst Aid

REQUIREMENT
ENGINEERING

Analyst Aid

4. REQUIREMENTS ENGINEERING

4.1 Requirements Analysis
4.1.1 Problem Recognition

TATA Consultancy Services (TCS) hud developed a new vision called
Concept to Code. This says that you are given a problem or a concept, there will be a
tool which will convert this concept to its equivalent hard code through a series of
steps. The project entitled Analyst Aid is done as a first step towards
Concept to Code. The first step is to structure and understand the problem. The
results of this will be given to UML diagram generator, whose output could be

converted to code using the already available tool called Master Craft.

The problem is find an answer to the question, “How can you understand a

problem well?”

Understanding a problem is the primary step involved in solving it.
Particularly in finding software solutions to problems, which involve a lot of effort
and resources, the lost will be enormous if mistakes are made at this initial stage.
Wrong understanding can occur because of many reasons. Gap in communication is
one such reason, the user will be describing an aspect and the software
vendor/consultant may understand it in another way and he may provide a
controversial solution for the problem. There can be cases where even though the
user specifies his requirements hard on paper, the software vendor/consultant is not be
able to extract all the required essentialities from that document and provide the user
with the solution. Here, the analyst fails because of the defective way of
understanding the problem. Unless the analyst is able to correctly structure the
problem and understand the right problem in the right way he will definitely fail to
realize the apt solution for it. So this work is an attempt to develop a tool that will

assist the analyst throughout the understanding procedure.

Understanding the problem means going through the problem, identifying the

factors that are important in the system and factors that are not. Also we should be

Analyst Aid 35

able to connect these factors together in some way which will help us in reaching the

objective of the system.

Two important problem structuring methods are followed here; the SNAC
(Stakeholders, Needs, Alterables and Constraints) analysis and the Cybernetic

Influence Diagram (CID) analysis.

Here SNAC analysis is used because we are concentrating in developing a
software which assist in analyzing typical application oriented problems. Application
oriented problems are those on which we can perform a view point oriented analysis
i.e. in those systems we can get different view points if we view the system on behalf
of the different stakeholders appearing in the system. These stakeholders with
varying needs will be connected with various activities and in doing these activities
there could be numerous constraints. Thus for analyzing an application oriented
problem SNAC is best.

In SNAC analysis, the key components found in typical problem, i.e. the
stakeholders, needs, alterables and constraints are extracted. This is a natural
language processing problem. From the lexicographical clues obtained from the
document the analyst should be able to trace the probable stakeholders evolved in the
system, their needs, and the constrains and alterables that come into existence while
solving their needs. In CID analysis, a diagram connecting the key elements of the
problem is drawn which helps the analyst to structure the problem. Now the diagram
is analyzed for loops, merge points and burst points. Finding the loops in the diagram
and studying their behavior is a method of structuring the problem. The resultant

polarities of these loops are also found.

Analyst Aid was developed as part of an attempt to develop a tool that will

assist an analyst to understand any problem, typically a consultancy problem.
The system initially focuses on attaining the following objectives

v Find the key elements in the document and perform SNAC analysis of the

document.

Analyst Aid 36

v Enable the user to draw the CID of a problem using a graphical editor and to

the merge point, burst point and loop analysis of the diagram.

In the manual process of understanding a problem, the analyst goes through a
problem descriptive scenario, which is a document that covers all the requirements of
the user in solving the problem. The analyst then notes the important key elements in
that document by underlining that portion of text. From these key elements identified,
the analyst tries to draw a relationship between them. This approach will help the
analyst to structure the problem and get a clear idea about the problem. The same

idea is followed in Analyst Aid also.

The system gets a problem descriptive scenario as its input. With the
lexicographical clues, it identifies a set of key elements in them. The phrases or
patterns that usually fall under the key element category are verb and noun phrases in
the document. So we have to find the noun and verb phrases in the document to get
the key elements. Finding the SNAC components also requires a lexicographical
analysis. A stakeholder will always be a noun, this is the greatest clue in finding a
stakeholder. A need wusually occur in some regular pattern say
fo + implement + actions, so these patterns could be found from the document and
marked as needs. The constraints and alterables eventhough could be found with the
help of some lexicographical clues, these will not be identified by the system. This is
because this will require a component of artificial intelligence in the system, which is
avoided inorder to reduce the complexity of the system. So the user is left to find the

constraints and alterables in the document.

For performing the CID analysis of a problem the analyst has to draw its CID.
CID is a structured representation of the perceptions, beliefs or values of the various

stakeholders that define the problem.

Analysis of the CID facilities identification of a small number of elements
crucial for the problem situation. The system Analysis Aid provides a graphical

editor which will enable the user to draw the CID and also perform loop analysis,

Analyst Aid 37

merge point and burst point analysis of the diagram. These analysis results are stored

in a matrix form for future use.
4.1.2 Problem evaluation and solution synthesis

The objective of the system can be redefined as, Analyst Aid is a software
tool, which assists an analyst through out the understanding phase of the software
development life cycle. The thing from which we have to start our work is the
problem descriptive scenario of any problem. Thus Analyst Aid should include the

following functionality.
a. Identify the key elements from a problem descriptive scenario

b. Perform the SNAC analysis of the document

c. Specify the relationships between the SNAC components and store it
in a matrix

d. Provide a graphical editor which facilitates to draw a CID of the
problem

€. Perform the analysis of the CID, which includes the loop analysis,

merge point and burst point analysis

f. Represent the CID in a matrix form

Solution synthesis of the key element identification function

The first thing that we have to take into consideration is that identifying key
elements is a natural language processing problem. For any kind of NLP problem
which need to deal with the grammar, the initial step is to find the part of speech of
each word or token occurring in the document. So we have to specify to which part of

speech each word belongs. The corresponding part of speech should be attached to

Analyst Aid 38

each word so that the words could be rhanipulated after this. This leads to the idea of

tagging each word with its parts of speech.

A parts of speech tagger named Brill Tagger was found as a solution to this.
This tagger is a context sensitive rule based tagger that makes its predictions almost
95-97% accurate for the parts of speech that the word is likely to be. Now as the
tagging is accurate to such a high percentage the further processes which is based on

this will also will not be less error prone.

Key elements are formed by the noun and verb phrases in the document. Now
we have to identify these phrases. For that grammar rules for these phrases are
written and let a parser to detect these grammars. The parser goes through the
document and finds these phraseé and writes it into a file. Thus the system outputs a
set of noun and verb phrases that can be the key elements. The user has to select the
required ones from the list of keywords. Analyst Aid should provide an interface to

the user to select and deselect the list of key words from the document.
Solution synthesis of SNAC analysis

This also involves the lexicographical analysis of the document. In finding the
stakeholders and needs the document itself provides some clues. The nouns in the
document correspond to the stakeholders. So we need to extract these nouns from the
document to get the stakeholders. But what has to be taken into consideration is that
there can be many unimportant nouns in the list. The system should be able to

minimize this stakeholders list to some extent.
Solution synthesis of relationship representation

The SNAC components identified from the document should be analyzed to
understand the relationship between them. That is, if there are a set of stakeholders.
then we have to find which stakeholder is connected to which need, in fulfilling which
need a constraint or an alterable comes etc. Finding these relationships helps the
analyst to understand the problem clearly. The system cannot find the relationship on

its own, but it can provide an interface to the user to specify the relationships. These

Analyst Aid 39

relationships between the SNAC components are to be stored in a matrix for future

use.
Solution synthesis of the CID editor

Another method for analyzing the problem is CID. Drawing the CID of a
problem helps the analyst to structure the problem and also identify the critical factors
involved in solving the problem. Developing a graphical editor plus an analyzer that
will do the analysis of the graph drawn can facilitate this. The graphical editor should
have a good user interface. As Linux is the platform chosen for doing the project, and
C++ the language for programming, using Qt library functions for designing the user
interface will have robustness to the system. Qt supports many functions for a good

user interface design.

Analyst Aid 40

4.2 USE CASES

Analyst Aid

Identify key
elements

Perform SNAC
analysis

Perform CID
analysis

Identifying of key elements

Analyst/User

Add
\ keyword
Modify
keyword
Analyst / User

Analyst Aid

41

SNAC analysis

Modify
Stakeholders

/l Modify Needs

Identify
constraints and
alterables

Analysis/User

Specify
relationship

Frame
objectives

Analyst Aid

42

Analyst/User

CID analysis

Draw factor

Draw arrow

Delete
factor

Delete
arrow

Set Polarity

Open CID
file

Open list of
facrors

Save CID
file

Loop
Analysis

Merge point
analysis

Burst point
analysis

Analyst Aid

4.3 Requirement Definition

A software requirement definition is an abstract specification of the services,
which the system should provide, and the constraints under which the system must
operate. The requirement definition of the system Analysis Aid can be defined as

follows.

The software should enable the user for a better understanding of the
consultancy problem to be solved with the help of SNAC analysis and CID analysis.
By performing the SNAC analysis the user is able to define the inter-linkages between
the SNAC components. These inter linkages help the user to set the objectives to
solve the problem. CID is a problem structuring method. The structured
representation helps the user to find the perceptions, beliefs of values of the various

stakeholders that define the problem.
4.4 Requirements Specification

The specifications of the software are described in detail in requirement
specification. There are different methods for specifying requirements like structural
language specification, graphical notations, mathematical specifications etc. The
specifications of the functions that the software should support are obtained from the

analysis of the problem. Thus the functions of the system can be listed as below.
1. Identification of key elements

The key elements are the words or phrases that have significant relevance to
the situation described in the problem. Each element represents a set of ideas,
keeping in view the context within which these elements are used. The system should
be capable of listing the potential key elements from the lexicographical clues
obtained from the document. The list of key elements should not contain redundant
data. The user may be allowed to add new keywords from the document to the
system-generated list. There should also be a provision to delete the unwanted

keywords from the list. The generated list of keywords may be stored for later use.

Analyst Aid 44

2, Performing SNAC analysis of the document

SNAC analysis process requires classification of the SNAC components and
then specifying the relationships between them. The classification is done with the
guidance of the user. The stakeholders are found by performing lexicographical
analysis of the document. The system should be able to guess the probable
stakeholders with the help of some dictionary, which gets enriched intelligently.
Some of the needs can also be identified from the document using lexicographical
analysis. The user has to mark the alterables and constrains in the document. The
user has a role in finalizing the component list. So he should be able to modify this

list according to his need.

To understand the system more, the user needs to analyze the relationships
between the SNAC components. For this a cross-interaction matrix connecting these
components is to be prepared. The relationships that are to be specified are between
Stakeholder and Need (S-N), Need and Alterable (N-A), Need and Constraint (N-C),
an finally Constraint and Alterable (C-A). For each set a matrix is generated showing
the interaction. The structure of the matrix is as given below. Here the interaction

between S-N is taken into consideration.

NI N2 N3 ... upto Nm
S1 1 0 |
S2 0 0 0
S3 1 1 |
Upto
Sn

This cross-interaction matrix represents that the stakeholder S1 is connected to
needs N1 and N3. The stakeholder S2 has no needs and the stakeholder s3 is
connected to all the needs listed here. The matrix can be of order m X n matrix where

m is the total number of needs and n total number of stakeholders.

The user is the entity who specifies the relationships between the components.
Hence the system should provide an interactive interface for recording these

relationships.

Analyst Aid 45

3.

Provide graphical editor for drawing the CID

The CID is an efficient method for structuring a problem. The graphical editor

allows the user to represent the problem graphically. The user can also load the list of

key elements derived from SNAC analysis phase. The graphical editor is capable of

performing graph analysis. The graph analysis includes loop iaentification, merge

point analysis and burst point analysis.

The graphical editor should include the following functionally to facilitate

CID drawing/analysis:

a. Draw a factor or add a factor to the existing graph.
b. Modify the name and position of the factor.

C. Delete the factor from the graph

d. Draw an arrow between two selected factors.

€. Delete an arrow between two selected factors.

f. Load a CID file to the editor.

g. Create a new instance of the editor.

h. Load the list of factors from the SNAC analysis phase.
i. Save the CID to a file

J- Perform loop analysis of the graph.

k. Identify Merge points and Burst points.

Set the polarity of the arrows.

Drawing the CID with the factors obtained the SNAC analysis phase helps the

user in verifying the validity of the objectives derived from the system.

The functions of the system are represented using the standard functional

specification method.

Analyst Aid 46

Function
Description

Inputs
Outputs
Destination

Requires
Pre-condition

Post-condition
Side-effects

Function
Description

Inputs
Outputs
Destination

Requires
Pre-condition

Post-condition
Side-effects

Function
Description

Inputs
Outputs
Destination

Requires
Pre-condition

Post-condition
Side-effects

4.4.1. Functional specifications of SNAC module

Identify key elements

Key elements relevant in the document are identified and listed.
The key elements are the noun phrases and verb phases in
the text. Requires lexical and syntactical analyzer to find
these phrases.

Text file describing the consultancy problem.

List of potential key elements

The user selects the required key elements from the list of
potential key elements.

The user should click the identify button.

The user should open the text describing the problem onto
the application’s text editor.

Nil

None

Perform SNAC analysis

Finds out the S, N, A and C components in the document.
Involves several sub activities in doing SNAC analysis.

Key elements identified from the document.

Objectives to be realized to solve the problem.

Specifies the relationship between the SNAC components.
This helps the analyst in understanding the system.

The user to invoke the SNAC button.

The user should open the text describing the problem onto
the application’s text editor.

The components are listed to the user to specify relationships.
None

Extract nouns

Extracts the nouns/group of nouns occurring consecutively
throughout the document and writes it to a file.

Text file with parts of speech tagged.

File containing the superset of stakeholders/nouns.

The component stakeholder is obtained from this function.
The user can add new stakeholder or delete existing
stakeholders from the list.

The user should invoke the SNAC analysis function of the
application.

The parts of speech should be tagged.

Nil

None

Analyst Aid

47

Function
Description

Inputs
Outputs
Destination

Requires
Pre-condition

Post-condition
Side-effects

Function
Description
Inputs
Outputs
Destination

Requires
Pre-condition

Post-condition
Side-effects

Function
Description

Inputs
Outputs
Destination

Requires
Pre-condition

Post-condition
Side-effects

Prune stakeholders.

The initial list of stakeholders obtained by extracting nouns
from the document contains many irrelevant stakeholder
types. This function uses stakeholder dictionary and an
efficient search algorithm to prune this list of stakeholders.
Redundant stakeholders are also eliminated.

File containing list of stakeholders.

Pruned list of stakeholders.

Displays the list of stakeholders to the user to make a final
decision about its importance.

Stakeholder dictionary.

The user should invoke the SNAC analysis function of the
application. Also grouping and extracting of nouns have to be
done.

The user should be able to add/delete the stakeholders from
this list.

Stakeholder dictionary can get updated.

Extract needs

Identifies and extracts the need patterns in the document.
Problem description text file that is tagged.

File containing the list of needs.

Displays the list of needs to the user to make a final
decision about its importance.

A scanner that identifies the need pattern.

The user should invoke the SNAC analysis function of the
application. Also grouping of nouns has to be done.

The user should be able to add/delete need patterns from
this list.

None

Identify alterables and constraints.

Alterables and constraints cannot be differentiated by the
lexicographical clues. Therefore the user has to select and
mark the pattern in the document as an alterable or
constraint. Already existing patterns are not allowed to mark.
Plain problem description file.

List of alterables and constraints.

Displays the list of alterables and constraints to the user to
make a final decision about its importance.

User intervention to mark the alterables and constraints.

The user should invoke the SNAC analysis function of the
application. Also grouping of nouns has to be done.

The user should be able to add/delete patterns from this list.
None

Analyst Aid

48

4.4.2.

Function
Description

Inputs
Outputs
Destination
Requires

Pre-condition

Post-condition

Side-effects

Specific relationship between SNAC components.

The user with an interactive interface specifies relationship
between S-N, N-C, N-A and C-A. Generates a cross-
interaction matrix of these components.

Files containing list of SNAC components.

A matrix representation of the relationships.

The user can frame objectives of the organization from
these relationships.

User intervention to make the relationship between the
different components.

The user should invoke the SNAC analysis function and
mark relationship function of the application.

The user should be able to load new problem description
text and continue with the analysis process right from the
beginning.

None

Functional Specification of CID Module

Function
Description

Inputs
Qutputs
Destination
Requires
Pre-condition
Post-condition
Side-effects

Function
Description

Inputs
Outputs
Destination

Requires
Pre-condition
Post-condition
Side-effects
Function
Description

Draw factor

Adds a factor to the CID editor screen. The user should
specify the position, name, font size and font style of the
factor. When added to the diagram, the factor becomes the
current selection. The user chooses the factor position by
moving the cursor to the area where the factor is to be added.
The name, position, font size, font style of the factor.
Modified CID with factors added.

Parameters of the CID is stored in a data structure.

The user to invoke the draw factor function.

The CID editor should be in draw mode.

The parameters of the CID should be updated.

None

Add arrow

Adds an arrow between two factors. The user adds arrow
by selecting the from-factor and to-factor of the arrow. The
polarity of the arrow is also be specified.

The from-factor and the to-factor of the arrow to be drawn.
Modified CID with arrows added.

The application stores parameters of the arrow into a data
structure.

The user to invoke add arrow function.

The CID editor should be in draw mode.

The parameters of the CID should be updated

None

Lock screen

Locks the screen thereby preventing the user to invoke all

Analyst Aid

49

Inputs
Outputs
Destination
Requires
Pre-condition
Post-condition
Side-effects

Function
Description
Inputs
Outputs
Destination

Requires
Pre-condition
Post-condition
Side-effects

Function
Description

Inputs
Outputs
Destination

Requires
Pre-condition
Post-condition
Side-effects
Function
Description

Inputs
Outputs
Destination

Requires
Pre-condition
Post-condition
Side-effects

Function
Description

Inputs

other functionality.

Nil

Nil

Disables all the draw functionality.

The user to invoke lock function.

The editor should be in draw mode.

The parameters of the CID should be updated.
None

Delete factor

Deletes the factor from the current location in the diagram.
Factor that is to be deleted.

The modified CID

Parameters of the CID are updated and stored in a data
structure.

The user to invoke delete factor function.

The editor should be in draw mode.

The parameters of the CID should be updated.

None

Delete arrow

Deletes the arrow between two factors. The user deletes the
arrow by selecting the from-factor and to-factor of the arrow.
The from-factor and to-factor of the arrow to be deleted.
Modified CID

Parameters of the CID are updated and stored in a data
structure.

The user to invoke delete arrow function.

The editor should be in draw mode.

The parameters of the CID should be updated.

None

Identify merge points

Finds the merge points in the diagram and highlights them
in the CID

Matrix representation of the CID

CID with merge points highlighted.

The user gets an idea about the importance of the factor and
thereby helps to find the complexity of the diagram.

The user to invoke merge point analysis function.

The editor should be in draw mode.

Nil

None

Identify burst points

Finds the burst points in the diagram and highlights them in
the CID.

Matrix representation of the CID.

Analyst Aid

N
<

10.

Outputs
Destination

Requires
Pre-condition
Post-condition
Side-effects

Function
Description

Inputs
Outputs

Destination
Requires
Pre-condition
Post-condition
Side-effects

Function
Description
Inputs
Outputs
Destination
Requires
Pre-condition

Post-condition
Side-effects

Function
Description

Inputs
Outputs
Destination

Requires
Pre-condition
Post-condition
Side-effects

CID with burst points highlighted.

The user gets an idea about the importance of the factor and
thereby helps to find the complexity of the diagram.

The user to invoke burst point analysis function.

The editor should be in draw mode.

Nil

None

Perform loop analysis

Identifies the loops in the diagram and perform loop
analysis, and finds the resultant polarity of the loop.

Matrix representation of the CID

Displays the total number of loops found, each loop and its
resultant polarity.

Gives an idea of the complexity of the diagram.

The user to invoke loop analysis function.

The editor should be in draw mode.

Nil

None

Load an existing CID file

Loads a CID file with ‘.cid’ extension in the graphical editor.
CID file

CID of the “.cid’ file loaded.

Stores CID analysis information.

A file with ‘.cid’ extension

The file with the “.cid’ extension should strictly be in the
format for which the application is designed.

Nil

None

Load list

The user can open the key element list to a combo box in
the application.

A text file containing key elements

The populated combo box.

The user can assign the name of the factor as the key
element loaded in the combo box of the application.

A text file containing key elements.

Identification of key elements.

The combo box is populated.

None

Analyst Aid

51

SOFTWARE DESIGN

Analyst Aid

5. SOFTWARE DESIGN

Software design mainly focuses on data, architecture, interfaces and
components design. Each of the analysis models provides information that is
necessary to create the design models required for a complete specification of design.
Thus the design task produces a data design, architectural design, interface design and

component design.
5.1 Architectural Design

The architectural design defines the relationship between major structural
elements of the software. The architectural design representation can be derived from
they system specification, analysis model, and the interaction of subsystems defined
within the analysis model. An object oriented design approach is used in designing
the architecture of the system. The overall architecture specifies that there are two
modules in the system; the SNAC analysis module and the CD analysis module.

These two subsystems interact with each other to reach the objectives of the system.

The system Analyst Aid mainly comprises of two subsystems — Stakeholders,
Needs, Alterables, Constraints (SNAC) analysis module and Cybernetic Influence
Diagram (CID) analysis module. In the SNAC analysis module the user/analyst can
perform the SNAC analysis of the problem descriptive scenario of the system to be
solved. The SNAC analysis results in a cross-interaction matrix between the SNAC
components from which the user can frame the objectives of the problem whose
solution is to be given by the analyst. In the CID analysis module he can draw the
CID connecting the key factors/components in the problem. Drawing the CID
enables the analyst to understand the problem and helps him to find the complexity of
the problem. The CID module also helps the analyst in performing the merge-point,
burst-point and loop analysis of the CID. The analyst can use also use the application
as a validation tool. That is the can find the SNAC components from the SNAC
phase and frame a set of objectives. Then he can draw a CID connecting these
components to realize the objectives framed. This will give the analyst a visualization

of the problem. Visualization of the key factors in the problem influencing each

Analyst Aid 53

other, helps in reducing the gaps in peréeiving and understanding the problem. So if
the analyst feels that all components and relationships are not identified in the primary

step he can go back to the SNAC module and repeat his analysis.

The following diagram can depicts the structure of the system.

Description of the
problem to be

solved

U

Analyst Aid

SNAC CID

1l

Problem structure

Set of Objectives

Fig. 1

The objectives of the SNAC module is to perform SNAC analysis of the
document which describes the consultancy problem. The SNAC analysis comprises a
series of steps involving lexicographical analysis of the problem description. The

steps involved are shown in

Analyst Aid 34

Problem
descriptive

Brill Tagger |———p Tagged

Group Nouns

text document
v ! I
Stakeholders I Prune . Identity Needs Identify key
dictionary stakeholders list elements
__/_
/q"jx Stakeholders

=

5

<}

g

o

g

2

e

=

o)

v
Marks alterables and Alterables
constraints]
Constraints
USER/ANALYST
Fig 2

Key
elements

Analyst Aid

W
(W)

The CID module contains a graphical editor which helps in drawing the CID
and also an analysis part which does the analysis of the diagram. The structure of the

CID module can be depicted using the diagram.

SNAC

Key Graphical Graph analysis
elements > Editor Analyzer <:> Phase

<3’Lontrols and modiﬁ:’>

USER/ANALYST

Fig3
S.1.1 Abstract specification of the SNAC module

To the SNAC phase, the problem descriptive text is given as the input. The
output of this phase is a set of objectives needed to sole the problem. The user of the

system plays an important role in transforming the input into output.

The system needs to go through the text describing the problem and hence
requires a lexicographical analyser. The first step in doing the lexicographical
analysis is, to identify the parts of speech of each word in the document. There are
several techniques to identify this. One can use a set of parts of speech dictionaries

which consist of all the common words that occur in English language. That is a noun

Analyst Aid 56

dictionary consisting of all the nouns, a preposition dictionary with prepositions, an
adjective dictionary with adjectives and like wise. The program can take each word
in the descriptive text and tag it with the appropriate tag. But there can be situations
where no parts of speech dictionary contain the match. In that case the word can be
treated as noun. The problem with this method is that sometimes a word can occur in
more than one parts of speech form. The decision has to be made depending on the
previous one or two words occurring in the sentence. Thus the decision is context
sensitive. For e.g. the word look can occur both as a noun and a verb. As this
program does not take the context of tagging into consideration, an alternate tagging
technique is adopted. This tagging technique uses an already available tagger named

Brill Tagger which is context sensitive.

This tagger makes use a file LEXICON, which is a dictionary consisting of
almost 93696 different words with the tag of the word specified on its side, the word
can have more than one tags. The tag is given according to their frequency of
occurance. The most likely tag is written first and the tags following have less
frequency of occurance. Brill Tagger is a rule based tagger. It consists of a set of
rules to be applied to the word depending on the context. Brill Tagger is found to be
highly efficient and makes its prediction 95-97% accurate.

Once tagging is done, the next important module in SNAC phase is the one
which identifies key elements in the document. Key elements are the words and
phrases that have significant relevance to the situation mentioned in the descriptive
scenario. The key elements are assumed to be the noun phrases and verb phrases
occuring in the document. To identify the key elements a parser can be used. The
needs of the stakeholders can also be found with the help of the parser, since needs

occur in a specific pattern. The needs are the verb phrases in the document.
Eg of a need pattern to + implement + actions

The parser will identify the occurrence of such patterns in the input text.

Analyst Aid 57

The alterables

and constraints cannot be differentiated using the

lexicographical clues in the document and it is the analyst/user who has to identify

them. They system should provide an interactive interface to specify the relationships

between these SNAC Components and thereby arriving at the objectives of the

organisation.

Functional design specification of some of the modules in the SNAC phase is given

below:

1. Function
Description

Inputs
Outputs
Destination
Requires
Pre-condition

Pot-condition
Side-effects

2. Function
Description

Inputs

Outputs
Destination
Requires
Pre-condition

Post-
condition
Side-effects

3. Function
Description

Inputs
Outputs
Destination

Format the problem description text file for the tagger.

The input text is to be formatted in such a way that each line
should contain only one sentence. The punctuation marks should
be separated with a space.

Problem description text.

Formatted text is written onto a temporary file.

The tagger requires its input in this specified format.

A scanner that formats input text to the tagger’s format.

The user should invoke the identifying key elements function or
the SNAC analysis function of the application.

The input text content remaing unchanged.

None

Remove spaces

The scanner is likely to insert unwanted spaces in its output file,
which is formatted for the tagger. These spaces are removed.

The output temporary text file from the scanner that formats the
text for the tagger.

Spaces removed text is written onto a temporary file.

The tagger requires its input in this specified format.

A scanner that detects and removes extra spaces.

The use should invoke the identifying key elements function or
the SNAC analysis function of the application.

Te input text content remains unchanged.

None

Tag the input text with parts of speech.

Tags each word in the input text with the corresponding parts of
speech tag. Also keeps track of the context under which each
word is tagged. '

Formatted text file

Tagged file

The parts of speech each word in the input text is to be known for
performing lexicographical analysis.

Analyst Aid

58

Requires
Pre-condition

Post-
condition
Side-effects

4. Function
Description

Inputs
Outputs
Destination

Requires
Pre-condition

Post-
condition
Side-effects

Brill Tagger and supporting files.

Input to the tagger should in strict format. The user should
invoke the identifying key elements function or the SNAC
analysis function of the application.

Nil

None

Group nouns

Groups consecutively occurring nouns, noun group preceded by
one or two adjectives, noun group with the preposition ‘of’ in
between.

Text file with parts of speech tag attached to each word.

Text file containing grouped nouns.

Grouping nouns facilitates identifying stakeholders and also
writing grammar for the parser generator.

Scanner that identifies the patterns to be grouped

The user should invoke the identifying key elements function or
the SNAC analysis function of the application.

Content of the text file should remain intact.

None

5.1.2 Abstract specification of the CID module

The system CID consist of 2 sub modules, drawing the CID and performing

the analysis of the diagram. As every graphical editor, the CID editor also contains

facilities to draw/delete a factor in the CID, draw/delete an arrow and move the

factors/arrow in the diagram with the help of a mouse.

The analysis part of the CID performs different types of analysis like

e Merge point analysis

e Burst point analysis and,

e Loop analysis

Merge points are those nodes where convergence of many arrows takes place

while burst points are the nodes from which a lot of arrows diverge. These elements

are potent because they have ramifications for a large number of other elements.

Analyst Aid

59

Merge points are to be found out depending on the condition that number of incoming
arrow should be greater than a threshold number. The burst point is also found using
this method but here the outgoing arrows are taken into consideration. Identification
of the feedback loops also facilitates review of the cause and effect as perceived by

the stakeholder.

The user interface of CID editor is designed to be highly interactive. It shows
a Windows like interface and gives appropriate messages to the user, thereby making
his job easy. The user interface is designed keeping Qt — a cross-platform C++ GUI
application framework in mind which gives flexibility in adding a wide range of

functionality to the system.
5.2 Data Design

The data design transforms the information domain model created during

analysis into the data structures that will be required to implement the software.

The most important data structure used in the system Analysis Aid is the data
structure file. Almost all the files used are text files in which each byte represents one
character according to the ASCII code. This in contrast with a binary file, in which
there is no one-to-one mapping between bytes and characters. ASCII files are
sometimes called plain txt files. The language used for developing the system is C,
and C++. Both the languages are rich with file manipulation functions. The Qt
library also provides a set of functions facilitating file manipulation. The data files

used are listed below.
i. problem description file

This file is a normal text file describing the problem to be solved. The file is
not allowed to contain any sort of formatting. The headings that usually come in

these type of input texts are to be avoided. There is no limit in the length of the file.

Analyst Aid 60

ii. file with ‘for’ extension

This is the file, which comes as the output from the scanner that formats the
input text file. This formatting is done in such a way that only one sentence is there in
a line. Thus an EOL (end of line) character separates each sentence. The punctuation
marks occurring in the text are also separated by a space. This formatting is done

exclusively for the Brill Tagger.

For. e.g. If the input text is:

John (I think) said: “Who are you?” He then gave me $10.
would become:

John (I think) said: “Who are you?”

He then gave me $ 10.

iii. file with ‘.rem’ extension

The scanner can introduce some extra blank spaces into the output document after the
formatting is done. The file with ‘.rem’ contains problem descriptive text in the

tagger’s format with unwanted spaces removed.

iv. file with ‘.tag’ extension

This file is obtained as the output file from the Brill Tagger. The tagger will

tag each word and punctuation marks in the document.

Fore.g. If the input test is:

This is not a program of socialized medicine.

would become:

This/DT is/'VBZ not/RB a/DT program/NN of/IN socialized/VBN medicine/NN./.

Here Dt, VBZ, RB, NN, IN, VBN are tags associated with different parts of speech.

Analyst Aid 61

V. file with ‘.grp’ extension

The tagged document file is taken and the consecutively occurring nouns in
that file are grouped into small nuggets in the <GP> </GP> tags. The text
with the grouped nouns is written into the file with .grp extension. The other words

are kept intact in this tile.
vi. file with ‘.txt’ extension

This system uses 4 files with .txt extension. Of which two of them output.txt
and sneed.txt are outputs from the parser that identifies the noun and verb phrases and
need patterns in the document. The contents in these files are in the format given

below.
oulput.txt:

{Insurance industry}<NPH> {undergoing dramatic changes} <VPH> {likely
entry of foreign and private insurers} <NPH> {increased customer expectations}
<VPH>.

sneed. Ixt:

{to implement the provisions} <ND>,
{providing social security benefits} <ND>.
{meeting certain requirements} <ND>,

The other two files are cachecat.txt and fulleat.txt. These files serve as
stakeholder dictionary. Cachecat.txt contains the most probable words that occur as
stakeholders in typical application problems and fullcat.txt contains other set of words
that have a less chance of being stakeholders. So some domain specific knowledge
assumed while creating these dictionaries. The nouns groups in the text file that are
enclosed in <GP>.....</GP> tags are the probable stakeholders. But all of them are

not required. The list has to be pruned to get only the stakeholders that come in

Analyst Aid 62

typical application orientation problems. The cachecat.txt file is searched first to

increase the efficiency.
vii. file with ‘.slist’, ‘.need’, “.alt’, ‘.cons’

These are the respective text files that contain the list of stakeholders, set of

needs, alterables and constraints that are found in the document.
viii. file with ‘.key’ extension

This file contains the key elements that are identified from the document.
ix. file named LEXICON

The file name LEXICON is the data file that the tagger uses to find the tag of

the words in English language. Each record in the tagger is in the general format
word tagl tag2 tag3....... tagn

Tagl denotes the most likely tag of the word and the following tags denote the other
probable tags of the word. The structure of the LEXICON has not been altered but
the tags ending with “$’ sing in the file have been changed.

For example PRPS$ - possessive pronoun
WP$ - possessive wh-pronoun

The parser does not support $ in its input, the reason behind this being the fact
that the symbol ‘$’ is used to refer the value in the value stack used by the parser.
Thus $$ shows the top of the stack, $2, the second element in the stack and SO on.
Hence the tag PRP$ needs to be changed to PRPO and WP$ to WPO.

As already mentioned the tagger is a rule-based tagger and consists of a set of
rules to be followed in certain contexts. A sample set of rules in the rule file is given

below.

Analyst Aid 63

NNs fhassuf 1 NNS x
NN. fchar CD x

NN - fchar JJ x

NN ed fhassuf 2 VBN x
NN ing fhassuf 3 VBG x

The first line denotes that if the tag is NN (i.e. noun) and the word has a suffix
‘s’ with length 1 should be changed to NNS (denoting Nouns or noun in plural form).

a new set of rules which, identifies the date patterns in the document is added
to the system. Only a specific format of date is supported i.e.dd-mm-yyyy or dd-mm-
yy. For supporting this hyphenated version of date the rules added are

CD - fchar RG x
RG — fchar DAT x

If a cardinal number has a hyphen been it is marked as a RG, range and if an
RG has again a hyphen then it will be marked as a DAT, indicating date tag. These
were the changes made in the data files used by the tagger. Structure of the matrix

showing inter linkages.

X. A matrix, that represents the relationship between the SNAC

components.

The matrix is a cross-interaction matrix. There are four matrices representing

the relationships between S-N, N-A, N-C and C-A.
xi. Structure of the ‘.cid’ file

In the CID module a diagram that is saved using the editor is saved in a file
with ‘.cid’ extension. This file is preserved in a particular format. The file contains

the following information.

Analyst Aid 64

The file starts with a header called CID header.

This header is followed by the description of the factors in the diagram. They have

the format.
» factorid - to identify the factor
» in-arrow id - to identify the in-arrow
» out-arrow id - to identify the out-arrow
> X_pos - x position on the screen of the factor
> y_pos - y position of the factor on the screen
» box_width - width of the box enclosing the factor
» box_height - width of the box enclosing the factor

Following this, the source and the destination detail of all the arrows in the diagram

are also stored as shown below.

» from_id - id of the from factor

> to_id - id of the to factor

> pol - polarity of the arrow

» xmiddle drawn - x middle position of the factor box at which the arrow
is

> ymiddle drawn - y middle position of the factor box at which the arrow

is

Analyst Aid 65

5.3 Algorithm Design
The software Analyst Aid uses three main algorithms.

a. An algorithm that helps in minimising the list of nouns extracted from the

problem description text.
b. Loop analysis algorithm — which does the analysis of the CID.

c. Merge-Burst point analysis algorithm — which finds the merge points and burst

points in the CID.
Trimming the nouns list

In this algorithm two dictionary filed are used. The first dictionary called
cachecat.txt contains only key words that can occur as stakeholders in a typical
application-oriented problem. As the name suggests this serves as a cache for the
search, i.e. at first this entire dictionary file is searched and if a match occurs then that
word is assumed to be a stakeholder. The match does not mean a dump mach. The
word that is to be determined as a stakeholder is allowed to have its sub string in the
cachecat. txt dictionary. Thus if a sub string of the word is found in the cachecat.txt
dictionary it is considered as a stakeholder. If the cachecat.txt file does not contain
any of the sub strings of the word it searches the next dictionary file named fullcat.txt.
The whole words, which is to be determined to be a stakeholder or not is searched as

such in the fullcat.txt dictionary. The steps of the algorithm are given below.

1. Open nouns list file
2. While not end of nouns list
2.1 take each noun
2.2 open the cachecat.txt dictionary
2.3 while not end of cachecat.txt file
2.3.1 search for the word or a sub string of the word in the

cachecat.txt file.

Analyst Aid 66

232 if a match is found go to step 3.
2.3.3 gotostep 2.3.
2.4 open the fullcat.txt dictionary
2.5 while not end of fullcat.txt
2.5.1 search for the full word in the file
2.5.2 if full word is found go to step 2.6
2.5.3 gotostep 2.5
2.6 gotostep?2.
If the non is not found in fullcat.txt or cachecat.txt go to step 5
The word is assumed t be a stakeholder, go to step 6.
The noun is not a stakeholder.
Close all files.

S AW

Loop analysis algorithm]

This algorithm does in exhaustive search for identifying the loops in the CID.
It reads a matrix that denotes the adjacency matrix of the diagram. The search is
performed on the whole matrix until all the edges have been traced. The polarity of
each loop is found by counting the number of positive edges and negative edges and
subtracting them. The result indicates the polarity of the loop. The algorithm can be

given as follows.

1. begin
2. Initializes total visited_array, current visited_array, current _path_array and
path-ten to zero.
3. Till the end of all the nodes
3.1 If total visited array equals zero
3.2 Search the graph
3.3 If the node array is not empty
3.4 from path_len-1 till thé end
3.5 if it reaches the same node
3.6t03.3

3.7 till the end of path_len o he loop stores the nodes in an array

Analyst Aid 67

3.8 checks for duplicate loops and if not already present
3.9 adds to the loop array and its polarity
3.10 gottostep 3

3.11 sets the total visited_array and node array to 1, increments the path len
and current_path to node.

3.12 till the end of all the nodes

3.13 checks if it is the same as node and if not same

3.14 checks for 1 entry in the matrix and if present

3.15 search for the loop

3.16 sets the current visited node array to 0 and decrements the path len

4. end
The merge and burst point analysis algorithm

Every factor has an in-degree and an out-degree associated with it depending
on the number of arrows going into and out of it. The difference between this in-
degree and out-degree are calculated. If the in-degree is greater than a threshold
value, or equal to the out-degree it is considered as a merge point and if it is the in-
degree the point is a burst point. The algorithm for the merge and burst analysis is

given below.

1. While not end of the factor array
1.1 read the in-degree and out-degree of the factor
1.2 if temp=in-degree-out-degree>0 go to step 1.4.
1.3 store the temp in the burst array.
14 goto 1.6

1.5 store the temp in merge array.

1.6 goto 1.
2. bubble sort merge array
3. bubble sort burst array
4. store the merge burst values in the an array with values 1, and 2 in it, where 1

represents merge point and 2, burst points.

Analyst Aid 68

5.4 Interface Design

The interface design focuses on two areas of concern: a) the design of
interfaces between software components, and c¢) the design of the interfaces between a

human and the computer i.e. user interface design.
a. Interfacing between the software components

There are different software components in the system Analyst Aid that needs
to communicate with each other to work as a whole. These components should be
interfaced properly in-order to get the desired results. Design of inefficient interfaces
could corrupt the data that is transferred between components. In our system most of
the data transfer between components are through member functions of the objects
forming these components. Special care is taken in designing member functions that

need to interact with other objects and illegal type castings are avoided.
b. User Interface Design

The user interface design creates and effective communication between a
person and a computer. The user interface design begins with the identification f user
task and environmental requirements. Once the user tasks have been identified, user
scenarios are created and analyzed to define a set of interface objects and actions.
These form the basis for the creation of screen layouts that depicts graphical design

and placement of icons, menus etc.

The user interface of the system Analyst Aid has a major role in realizing its
objectives. The software needs to take its major decisions with the user guidance. So
a good user interface should be maintained. The graphical user interface is designed
for the system to ease the user effort. The system supports both menus and buttons
that invoke the various functionality of the system. The interface mimics typical
windows based application software to which users are familiar. The template of the

user interface design is given below.

Analyst Aid 69

Title of the software
Menu items and the icons facilitating the functions

Body of the application

Status bar of the application
Fig4

The user interface should meet the following requirements
v Menu selection for all major functions

Icons showing the major functions

Function short cut keys for easy navigation

Visually appealing colors and design of the screen

Messages guiding the user

Mouse enabled

Text and object selection and dragging

AN N N NN RN

Right click functionality to the mouse

In the SNAC module the application screen is divided into a 14 by 7 grid
layout. The grid layout helps the different user-interaction components to be fixed at
different positions in the application. Some of the user-interaction components that
are needed in the application are a text editor, a text viewer-to view the text, a check
list consisting of different key words found in the system, a list box showing the

different SNAC components identified in the system.

The CID graphical editor provides a good interface for drawing the CID. It
makes use of the mouse to draw and change the diagram. The editor is equipped with
a large amount of facilities that help the user in analyzing the diagram and viewing
the analysis result graphically. For example the editor shows the merge and burst

points of the diagram highlighted after the merge and burst analysis.

Analyst Aid 70

PROGRAM DESIGN
LANGUAGE

Analyst Aid

6. PROGRAM DESIGN LANGUAGE (PDL)

PDL for Analyst Aid Menu Options

Begin
= If option selected is new_doc
= Open a new application window.
= Else if option selected is open_doc
= Open the problem description text file to the editor of the application
= Else if option selected is save_file
= Save the document in the text editor to a file
= Else if option selected is save As_file
= Save the document in the text editor to a file with a new name
= Else if option selected is print_file
= Print the document in the text editor
= Else if option selected is quit
= Close the application
= Else if option selected is what’s_this
= Enable the what is this function
= Else if option selected is cut
=> Cut the selected text from the text editor
=> Else if option selected is copy
= Copy the selected text from the text editor
=> Else if option selected is paste
= Paste the selected text from the text editor
= Else if option selected is identify_key_element
= Do identify
= Else if option selected is snac_analysis
=> Do snac
=> Else if option selected is matrix_analysis
=> Do matrix editor
=> Else if option selected is cid
= Do cid and invoke graphical editor
= End if
End;

PDL for identify_key_elements

Begin
= If text_of editor edited is TRUE
= Call save _file
= Else
= Format input text for tagger to get a. for file

Analyst Aid 72

— Remove unwanted spaces in the .for to get .rem file
= Tag the .rem file to .tag file
= Group the noun patterns in the .tag file to get .grp file
— Remove unwanted space in the .gap file to get .rem file
— Parse the .rem file to obtain the aoun and verb
phrases and write to an output file
— Extract the noun and verb phrases from this output file to .keys file
= Set status message “Key elements identified”
= Highlight the noun and verb phrases identified and
display it in the text view of the application
= If more_keywords is TRUE
= Set message “Select and right click to add a new keyword”
= Enable the popup_menu function of the text editor
= End if
= If modify clicked
= Write the modified key words to the file
=> Else if add clicked
= Prompt a text box to get the new keyword
= End if
= End if
End;

PDL for SNAC analysis

Begin
= If text_of editor edited is TRUE
= Call save_file
= End if
= Ifidentify _already clicked is TRUE
= Do noun_prune with the help of dictionary files
= Else
= Format input text for tagger to get a .for file
= Remove unwanted spaces in the .for to get .rem file
=> Tag the .rem file to .tag file
=> Group the noun patterns in the .tag file to get .grp file
— Remove unwanted space in the .grp file to get .rem file
= Extract the nouns from the .grp file to get .slist file
= Parse the .rem fle to get the need patterns in the .need file
= List SN components in the list box of the application
= Parse the .rem file to get the alterable patterns in the .alt file
— Enable user to select drag and drop the alterable and
constraint patterns from the document to the list
box of the application
= List the AC components in the list box of the application

Analyst Aid 73

= Set status message “SNAC components identified”
= If mark_relation clicked is TRUE
= Do mark_relations
= End if
= End if
End;

PDL for mark_relations

Begin
= If option selected is s_n
= Load .slist file to the combo box
= Load .need file to the checklist
= Else if option selected isn_a
=> Load .need file to the combo box
=> Load .alt file to the checklist
= Else if option selected isn_c
=> Load .need file to the combo box
= Load .cons file to the checklist
= Else if option selected isc_a
=> Load .cons file to the combo box
=> Load .alt file to the checklist
= End if
= If do_retister clicked
= Generate matrix of the relationship.
=> Write the component relationships one by one in a
file for the user to frame objectives
=> Show opened and created files.

= End if
End;
PDL for CID menu options
Begin

= If option selected is new_doc
=> Open a new application window.
= Else if option selected is open_file
=> Open the .cid file to the graphical editor of the application
=> Else if option selected is open_list
= Open the key elements list file to the combo of the application
=> Else if option selected is save_file
= Save the CID to a .cid file
= Else if option selected is save As_file

Analyst Aid 74

— Save the CID to a .cid file with a new name
= Else if option selected is print_file
= Print the document in the text editor
= Else if option selected is quit
= Close the application
= Else if option selected is what’s_this
=> Enable the what is this function
= Else if option selected is draw_mode
=> Enable the draw functions in the editor
= Else if option selected is lock_mode
= Disable all the draw functions of the editor
=> Else if option selected is draw_{factor
= Draw a factor at the position where the mouse is clicked
= Else if option selected is draw_arrow
= Draw an arrow between the from and to factor selected
= Else if option selected is delete_factor
=> Delete the factor which is selected
= Else if option selected is delete_arrow
— Delete the arrow connecting the from factor and the to factor
= Else if option selected is mege_analysis
= Do merge-point analysis and highlight the merge point in the graph
—=> Else if option selected is burst_analysis
= Do burst-point analysis and highlight the burst point in the graph
= Else if option selected is loop_analysis
= Perform the loop analysis of the graph and show the
different loops existing in the diagram and their
resultant polarity
=> Else if option selected is about
= Show the about dialog box
= End if

End;

PDL for the draw factor function

Begin
= If draw_mode is TRUE
= Initialize all its variables, no_in_arrows,
no_outarrows, X_y_position, text_of factor,
box_width, box_height, factor_id
= Click on the editor window where the factor is to be drawn
= Set the driver as its parent

Analyst Aid 75

= Registers this factor_name, its (x, y) position,
factor_id on to a driver which controls all the
activities
= End if
End;

PDL for draw arrow function

Begin
= If draw_mode is TRUE
= Click on the form_factor and to_factor of the arrow
= Set the polarity of the arrow as —ve, +ve or zero
= Initialize all the arrow variables, arrow_id, from_factor, to_factor
= Increment the no_of_arrow in the from_factor and to_factor
= Find the middle points of the two factors to which
the arrow is connected
=> Register these details to the driver
= End if
End;

Analyst Aid 76

SOFTWARE
TESTING

Analyst Aid

7. SOFTWARE TESTING

The system should be verified and validated at each stage of development.
The verification involves checking that the program confirms to its specification,
whereas validation involves checking the program as implemented meets the users

expectations. The stages involved in testing are
» Unit Testing
» Module Testing
» Sub-system Testing
» System Testing

The testing process can be listed as

i. Requirement traceability — all the requirements are individually tested.
ii. Testing schedule

iii. Test recording procedure — the results of the test are recorded.

iv. Hardware and software requirements for testing

7.1 Unit Testing

The individual components are tested to ensure that they operate correctly.
Some of the units in the system are taken into consideration and their test cases are

described.

Analyst Aid 78

Unit being tested

Test cases

Test Outputs

a. Formatting the input text for

the tagger

i. Check whether more than
one space is there between
tokens

Single space between
tokens

ii. All punctuation marks
should be considered

Punctuation marks
should be separated by a
single space.

iii. Check whether program
output miss any of the input
tokens (if rules don’t match
this may happen)

Rules should cover all
types of inputs

iv. Check the program
output for different input
files having varying patterns
of text.

Program should support
all patterns of input text

Grouping of tagged nouns

The groups are formed by

i. one Or more nouns
occurring consecutively

ii. patterns with the
preposition “of” between
nouns

iii. patterns with nouns
preceded by one or two
adjectives

All the noun groups
coming under these
category should be
enclosed in
<GP>....</GP> tags.

parser which identifies
words

key

check whether almost all
verb and noun phrases are
included

Can miss some of the
verb phrases, but the
entire noun p[phrases
should be included

Analyst Aid

Program which eliminates the
duplicate elements from the list
of stakeholders

Words can occur in plurals
and singular form, only any
one of the form should be
preserved.

Words can occur in lower
and upper cases, only one of
the form is written.

Only noun groups with word
whose starting letter is
capital and has one or more
“of” preposition should be
taken.

For eg. State Bank f India

while settlement of claims
should not be taken

List of stakeholders
which don’t contain
duplicates

Parser which identifies need

Check if all the expected

All the need patterns are

patters patterns are found. The | needed

parser takes the longest

token if two grammars are

matched. So it can miss

some patterns
Generate matrix of the | Check the matrix do not | Stores 1 if there is a
relationship between the SNAC | store garbage values relation and 0 if no
components relation
Merge point analysis Checks if the merge points | Different type of

satisfies the threshold | complexity diagrams are
specified drawn and there merge
points are found to
check the correctness of
the algorithm
Loop analysis Checks if all the loops in the | The polarity of the
diagram are found loops, and the total

Duplicates loops should not
be allowed

number of loops in the
diagram and the path of
the loops are listed

Burst point analysis

Burst point also have a
threshold value that should
not be exceeded

The points which have
out arrows less than the
threshold value should
be listed

Table 2

Analyst Aid

80

7.2 Module Testing

Module interface is tested to ensure that information properly flows into and
out of program unit under test. The local data structure is examined to ensure the data
is stored temporarily maintains integrity during all steps. Boundary conditions are
also tested. The unit tested modules are combined together to form a module and then
the test cases for the modules are designed. Modules comprises the classes which
come in the system. Using the debugger GNU gdb the classes can be executed one by
one and the errors can be traced and corrected. The independent paths through the
control structure are exercised to ensure that all the statements in the module are

executed at least once. Finally all error handling paths are tested.
7.3 Structural testing

It is a white-box testing method. In white-box testing, the tester can analyze
the code and use knowledge about the structure of a component to derive test data.
Here an analysis of the code can be used to find how many test cases are needed to
guarantee a given level of test coverage. For a module to be white box tested, a
testing strategy called basis path testing an be used, whose objective is to exercise
every independent path through the component. If every independent path is
executed, then all statements in the program must have been executed at least once.
All conditional statements are tested for both true and false values. The starting point
for path testing is a program flow graph. A sample code PDL of one of the units in

the system is given below.
PDL of the program that eliminates duplicates in the stakeholders list.

Begin
= 1. while stakeholders list end
= 2. read one record
= 3. if reading the list for the first time
= 4. write to the output file
= 5. else
= 6. search record for apostrophe symbol
= 7. if there is apostrophe
= 8. set flag

Analyst Aid 81

= 9. else
= 10. search the record for the word “of” in 1t
= 11. if there is “of”
= 12. count the words starting with lower
case and set flag
= 13. else
= 14. search record is present in the output
file and set flag
= 15. if not found in the output file
= 16. remove “s” from the record if
“g” is there and search for new record
= 17. set flag
= 18. if not found
= 19. remove “ies” from the record
if “ies” is there and search for
new record
= 20. set flag
= 21. if not found
=> 22. change the upper case words
to lower and search and also vice versa
= 23. set flag
=> 24. end if
= 25.end if
=> 26. end if
= 27. if flag <2
= 28. write the record to the output file
= 29. end if
=> 30. end if
= 31. end while
= 32. End;

Analyst Aid 82

CONCLUSION

Analyst Aid

8. CONCLUSION

The system Engineering and Cybernetics Center (SECC), Pune, a division of
TCS developed a multi-modeling framework as against traditional problem solving
approach for consultancy process. This multi-modeling technique makes use of
several process and techniques in performing the diagnosis and design phase of
problem solving. Integrating these techniques in one framework creates a new vision
called Concept to Code. The vision aims at producing the hard code equivalent to

consultancy problem.

The software Analyst Aid is an attempt to create the initial phase of the
Concept to Code realization project. It assists the analyst in initial problem
discovery and diagnosis phases. The software can be further enhanced in the
following way to proceed with the realization of Concept to Code project. The
information architecture derived from this software can be transformed to UML
notations. These notations, if interfaced with TCS like ADEX or Master Craft can

produce the code equivalent to it.

Analyst Aid 84

SCOPE FOR FUTURIE
DEVELOPMENT

Analyst Aid

9. SCOPE FOR FUTURE DEVELOPMENT

Analyst Aid, a software developed at TATA Consultancy Services,
Technopark, Thiruvananthapuram, is a system which assists the requirement
understanding phase in the software development life cycle. The system
helps the user in determining the key factors in the consultancy problem and
their relationships and thereby structuring the problem. We can do more
things to the system to develop a perfect tool for an analyst. The following

are the some of the future development of this project.

It can be used to validate the CID module.
Develop self - interaction matrix rather than cross interaction matrix.

The system will automatically generate the self interaction matrix
using SNAC components and it will extract all the objectives of the

system.
Integrating with CID module in more effective way.

We can add more rules to identify all stakeholder, need, alterables and

constraints.

Extract the overall object from the interaction matrix .

Analyst Aid 86

APPENDIX

Analyst Aid

SCREEN SHOTS

Analyst Aid

[=t Analyst Qid [Doct

£l

ig. d'aIOols Help <&

o= aaw]]:

Analyst Aid

89

Eile Edit Tools Help ~ : R
[osaavtualldrw el
Corporation of Tnvandrum wants 1o set up counters in various parts of the ¢city from where citizens can
make a vanety of payments. The system should support user-friendly screens and simple puil down
menus. The network topology has to be optimal making bast use of avaitable bandwidth Auditors need
Department-wise collection statements everyday. Interfaces with backend servers will be defined al 3

later date. Those manning the counters need to be trained on the System Design aspects so that they
can rectify simple configuration related probiems

| N

on.of Trivendrum wants 10 st up ‘counters in various parts of the city from where citizens can
ariely of payments. The system should support user-friendly screens and simpte pull down
‘nedwork fopology has 10 be optimal making best use of available bandwidth. Auditors need
ineni-wite Colection stalements everyday. interfaces with backend servers will be defined al a
tafer ‘dats. Those manning e counters need to be trained on the System Design aspects s0 that they
c rectty simple confguration reiated problems.

mmﬁmmummmmmmurmmymmm tmt
cmmmamdpm.mwmwm—muﬂym and sunple pult
m«m.mmwmmmmmbwm of available bandwidth .
Auditors need mﬂ-mmm& everyday . nterfaces with backend servers 11~ ‘nebwork
will beumaamm.mmmmﬂmumuw on the System
Design aspects sommmmﬁfymmmaummwmm.

Y T TR

45 oniied | Soledd o Coipads o K]

Analyst Aid 90

i -+ analyst fid
Ede Edit Tools Hel

[RELT AR

T

Corporation of Trivandrun: wants to set up counters in various parts of the clty from where citizens can
make a vanety of payments. The system should support user-friendly screens and simple pull down
menus. The network topology has o be optimal making best use of available bandwidth. Auditors need
Department-vase collection statements everyday. interfaces with backend servers will be defined at a
later date. Those manning the counters need to be trained on the System Design aspects so thal they
can rectify simple configuration related probiems.

Corporation of Trivandrum wants to set up counters in various paris of the city from where citizens
can make a variety of payments . The system should support user-friendly screens and simple pull
down menus . The network topology has 1o be optimal making best use of avaifable bandwidth .
Auditors need Department-wise collection statements everyday . Interfaces with backend servers
will be defined at a laler date . Those manning the counters need to be trained on the System
Design aspects so that they can rectify simple configuration related problems

Keywords dentified [Select desirad keywords from Bst]

1.‘,“ Zubierd

fmvor?

e

wandrum wants 10 set up counters in vanious parts of the city from where citizens can
make a variety of payments. The system should support user-friendly screens and simple pull down
menus. The network topology has to be optimal making best use of availabie bandwicth. Auditors need
Department-wise collection statements everyday. Interfaces with backend servers wilt be defined at 2
iater date. Those manning the counters need to be trained on the System Design aspects so that they

can rectify simple configuralion related problems.

Corporation of Tr

mmarmmwmwmmmmmummmmmdm
mmamaw.memmmm-mmmwwb putt
ammt.mmwnammmmwmumuanm.
Auditors need Department-wise collection statements everyday . interfaces with backand servers
wnmmma:‘wm.m«mmmmmmmmwmmmsnm
Dedmmtsnmmymncﬁfysmphmﬂwmmmoum.

‘Keywords Idenfitied [Select desired keywords froaret

Analyst Aid 91

EEE

[oeusvrseldsuc

Corporation of Trivandrum wants 1o sét up counters in various parts of the city from where citizens can Keywords

make a variety of payments. The system shoutd support user-friendly screens and simpte pull down — ‘
menus. The network topology has to be optimal making best use of available bandwidth. Auditers need

Department-wase coliection statements everyday Interfaces with backend servers will be defined at a Modiy |

ater date Those manning the counters need to be trained on the System Design aspects s0 that they

can rectify simpte configuration retated problems Add \

™ Corporation of Trivandrum

I~ citizens

™ suppon user-friendly screens
I~ network lopology

T to be optimal making

™ Audttors

I~ need Department-wise collec

Corporation of Trivandrum wants 1o set up courders in various pars of the city from where citizens I~ Interfaces
can make a variety of payments . The system should support user-friendly screens and simple pull
down menus . The network tapology has to be optimal making best use of available bandwidth . [~ manning the counters

Auditors need Department - wise coflection statements everyday . Interfaces with backend servers | System Design aspects
will be defined at a later date . Those manning the counters need to be trainad on the System
Design aspects so that they can rectify simple configuration relaled problems T™ rectify simple configuration

I~ use of avaliable bandwidth

‘Keywords identified { Select desired keywords from list]

ﬂg'ﬁjgaff‘i];m_ns‘uelp; ; L

0s.)
Corporation of Trivandrum wants 10 set up counters in various pans of the ¢ity from where citizens can
make » SEESRIREESEENE. The sysiem should support user-friendly screens and simple pull down
menus, The network lopology has 1o be optimal making test use of available bandwidth Auditors need
Department-wise coliection stalements everyday. Interfaces with backend servers will be defined at a
taler date. Those manning the couners need to be frained on the System Design aspects so that they
can reclify simple configuration related problems.

o T Gy

Cupd-aﬂmoﬂdvmnwmbsmwwm:slnvanouspammmwywomvmwcmzms I interfaces
canmawielyolpaymems.mwmawmommandsimplepun o E
down menus : The network topalogy has 1o be optimal making best use of available bandwidth . ™ manning the counters
Auditors need Department-wise collection statements averyday . interfaces with backend servers Design aspacts
ﬂnmmaatwdm.mmmunmmnmmbewmu on the System r S,ysjamh_: O
Design aspects so that they can rectify simple configuration refated probiems T~ rectity simple configuration
™ use of available bandwidth

Keywords identiied [Select desired keywords fom ist] R . 4

Analyst Aid 92

Jiix]

Carporation of Trivandrum wants to set up counters in various parts of the city from where citizens can Keywords

make a variety of payments. The system should support user-friendly screens and simple pull down

menus. The network topology has to be optimal making best use of availabie bandwidth. Audilors need §
Department-wise collection statements everyday. Interfaces with backend servers will be defined at a : Modity
jater date. Those manning the counters need to be trained on the System Design aspects s that they [EEST Add

can rectify simple configuration related probiems
I™ Corporation of Trivandrum

I ciizens

I~ support user-friendiy screent
I~ network topology

I~ to'be optimal making

I Audmrs

J 1 nesd Department-wise coilec
Corporation of Trivandrum wants to set up counters in various parts of the city from where citizens I interfaces .
can make a variety of payments . The system should support user-friendly screens and simple pull o
down menus . The network topology has to be optimal making best use of avallable bandwidth . I manning the counters
Auditors need Department-wise collection statements everyday . interfaces with backend servers |1 sm Design aspects

will be defined at a later date . Those mantiing the counters need to be trained on the System
Design aspects so that they can rectify simple configuration related problems . ™ rectify simpte configuration
I~ use of available handwidth

T variety of payments

unpaaﬁmotmvmmnmupcmmvanouspm of the City trom where citizens
mmam.mwmnﬂMamtm_Mymmm
Mm_m.»mmmwwwmopmmmﬂmofavahm
bandvadih . Auditors need Department-wise collection statements everyday . interfaces with
bmvmwllmuﬁmudalawuue.Thosemmmglhecomtusneedhbewnedon
ﬁosmmmlssowmeycanmﬁlymcmﬂgmmn reiated problems .

Corporation of Trivandrum
chizent

Auditors

manning the counters

E. 0L

Ane_liyaridﬂ et S e e —— =

DL IE]

lle. Edit Jools ﬁep
[osaav:va

Corporation of Trivandrum wants 1o set up counters in various parts of the city from where citizens
2an make a variety of payments . The system should support user-friendly screens and simple
pull down menus . The network topology has to be oplimal making best use of available
bandwidth . Auditors need Department -wise collection statements everyday . interfaces with
packend servers will be defined at a iater date . Those manning the counters need to be trained on

the System Design aspects so that they can related problems .

keholder . Need . . alterable o Constraint -
Corporation of Trivandrum to be optimal making variety of payments best use of availabie bandwidth
citizens manning the counters Auditors Interfaces with backend servers
Auditors support user-friendly screens Department-wise collection
manning the counters to set up counters

rectify simple configuration

te bandvddth
and servers
; ollection

Classified P

Analyst Aid

Elle Edt Tools :Hélp
D&SE

Corporatiol
can make
putt down
bandwidth
backend §
the Sys

Corporation
citizens

Auditors
manning th

S Mo

>Alterables - Alterable<- >Congstraints

le bandwidth
nd servers
ollection

le bandwidth
kend servers
oliection

Analyst Aid

95

HDWEI-“

Corporation| —
can make a RS
pull down m| € StakeHolder<->Need € Need<->anstraint's " ‘Need<->Alterables ¢ Alterable<->Constraints

bandwidth .

backend se
the SysteN\]

N 1o be optimal manning the ﬁl's,‘s:?:!éhm o'setup rectify simple

making counters cbreens 1 counters configuration

Corporation) J

of Trivandrum. | ! ‘ | ! |

citizens . . 1

Auditors '

le manning the : 5
holder counters | | | l J :

Corporation 4 bandwidth
citizens nd servers
Auditors pllection
manning the

‘Stakeholder<>Need Need<>Consﬁ'ainls | Need<>Alterables ‘Anerablekxonstraints‘

File Edit Tools Help ‘ N
DSEaw l NA . varety of payments 'A_Uditd'rs

Corporation of Tri

can make a variety 0
pull down menus . Th
bandwicth . Auditors
backend servers will

meSyswnDasignT

|
|
!
!
|

use of available bandwidth

rfaces with backend servers
ipartment-wise collection

-configuraficn

Classtfied Potential stakehoiders

Analyst Aid 96

S AgalysL i) i
Eile Edit Tools Heip - -

[osaaw]

Corporation |;
can make a

pull down m
bandwidth .

backend sen
the System

Llaxéholde(

Corporation
citizens
Auditors
manning the d

-

use of available bandwidth
taces with backend servers
artment-wise collection

ey

T

partes Y

3. -inpm mes D DUPe D KEWidgetcpp
A Bin_and Data (relat [J ExTneed [KEWIdgeth
g utils Erelation D exTract [KEWidgetmoc
7 @mn dict Gaversion11 [FORmat [kEwidgeto °

[caTegerize [1Gm D KeyWoruAnaIys

Analyst Aid

97

Elle‘amvgrea‘ta Mode Analysis Help

‘ saaex F;B—éx X EMﬁ[ﬁnmgmz_ﬂu][courer +]

Cocporation of
Trivandrum
manning the

counters

Analyst Aid 08

“ FA}Q‘ D— 4 a‘f <ha =lfcourier =]

Rsaex

RAThel
Edt.

Fq»@ B x X

FACTOR 6

FACTOR 2 FACTOR 3

Analyst Aid -

]f _] 14 _Jl courier ¥} |

A e

FACTOR 6 FACTOR 5
g
+ +
FACTOR 1 FACTOR 1 FACTOR 8 FACTOR 4
+ +
+
FROTOR 2 FACTOR 3

[14_=]] courier

List of Factors

1:FACTOR 2
2:FACTOR3
3:FACTOR 4
4:FACTORS
5:FACTOR b

6. FACTOR?
7:FACTORS
§.FACTOR1

Loop #1:
FACTOR 2 - FACTOR 1 - FACTOR 6 - FACTOR S - FACTOR 4 - FACTOR 3

Polartty : (+)

1

|

g

| S
|
! _

\

L

‘ Loop #2:
b FACTOR 2 - FACTOR1 - FACTOR7 - FACTOR 8 - FACTOR 4 - FACTOR 3
B Polarity : (+)

Analyst Aid 100

API
ASCII
BNF
CID
DFD
DOM
FTP
GPL
GUI
ISM
ITP
LALR (1)
LSB
MSB
MUD
ODBC
SAX
SECC
SNAC
SQL
SSH
STL
TBL
TCS
UML
VMS
XML

ACRONYMS

Application Program Interface

American Standard Code for Information Interchange
Backus Naur Form

Cybernetic Influence Diagram

Data Flow Diagram

Document Object Model

File Transfer Protocol

General Public License

Graphical User Interface

Interpretive Structural Modeling

Internal Training Program

One token Look Ahead Left Recursive

Least Significant Bit

Most Significant Bit

Multi-User Dimension

Open Database Connectivity

Simple API for XML

Systems Engineering and Cybernetics Center
Stakeholders, Needs, Alterables and Constraints
Structured Query language

Secure Shell

Standard Template Library

Transformation Based Learning

Tata Consultancy Services

Unified Modeling Language

Vitual Memory System

Extensible Markup Language

Analyst Aid

101

BIBLIOGRAPHY

1. Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling
Language User Guide, Addison-Wesely,1999.

2. lan Sommerville, Software Engineering, Addison-Wesely, Fifth Edition,
1999.

3. Joseph O’Connor and Ian McDermott, The Art of Systems Thinking — Harper
Collins Publishers, 1997.

4. John R. Levine, Tony Mason, Doug Brown, Unix Programming Tool — Lex &
Yace, O’ Reilly, First Edition, 1995.

5. Roger S. Pressman, Software Engineering — A Practitioners Approach,
McGRAW- HILL Guide, Addison-Wesely.

www.dictionary.com

doc.trolltech.com

Analyst Aid

102

