DATA ENCRYPTION AND DECRYPTION

SRM SYSTEMS AND SOFTWARE LIMITED

gD ~]O76
PROJECT REPORT

Submitted in partial fulfillment of the
Requirements for the award of the Degree of
Master Of Science In Applied Science - Software Engineering
Of Bharathiar University, Coimbatore.

Submitted By
Mr. N.Rajesh
Reg.No: 0037S0096

Guided By
Mrs. S.Devaki, B.E., M.S.
‘Asst. Professor, Kumaraguru college of Technology,
Coimbatore - 641 006.

Mr. S. Kamesh
Software engineer
SRM Systems And Software Limited
Chennai.

Department of computer Science and Engineering
Kumaraguru College of technology
Coimbatore - 641 006.

CERTIFICATE

Department of Computer Science and Engineering
Kumaraguru College of technology
Coimbatore - 641 006.

This is to certify that the project work entitled
“ Data Encryption and Decryption ™

Done By

Mr. N.Rajesh
Reg.No: 0037S0096

Submitted to the partial fulfiliment of the requirements for the award
of the Degree of Master of Science in Applied Science - Software
Engineering of Bharathiar University, Coimbatore.

During the Academic Year 2003 - 2004

Signature of Guide 6 Head of the Department

Certified that the candidate was examined by us i{éhe project in the
Project Work Viva Voce Examination held on Quu { and the
University Register Number was 0037S0096.

Q 2Ye 9 cro
nternal Examlr(e." Ex&ernal Examiner
250

1 SYSTEMS AND SOFTWARE LIMITED

G.N. Chetty Road, T.Nagar, Chennai - 600 017.
| - 44 - 8250771, 8258757, 8269471 Fax : 91 - 44 - 8283359
1 - srm@srmsoft.co.in Web Site : http://www.srmsoft.com
"Off : 2, Veerasamy St., West Mambalam, Chennai - 600 033.

SRM

SYSTEMS AND SOFTWARE

23.09.2003

CERTIFICATE

This is to certify that the project work entitled “DATA ENCRYPTION &
DECRYPTION” was Analyzed, Designed and Developed by
Mr.N.RAJESH of KUMARAGURU COLLEGE OF TECHNOLOGY
(CBE), submitted in partial fulfillment of the requirements of degree of 4"
Year M.Sc¢ (S.E) has been carried out in our organization from June 2003
to Sep 2003.This project has been developed using VC++,

We wish him success in all his future endeavors.

For SRM Systems And Software Limited

e

Manager—Pl:djects

DECLARATION

I hereby declare that the project entitled "DATA ENCRYPTION
AND DECRYPTION” submitted to Bharathiar University, Coimbatore,
as the project work of Master of Science in Applied Science - Software
Engineering, is a record of original work done by me under the
supervision and guidance of Mr. Kamesh, Software Engineer, SRM
Systems and Software LTD and Mrs. S. Devaki, B.E., M.S., Asst.
Professor, Department of Computer Science and Engineering,
Kumaraguru college of Technology, Coimbatore. And this project work
has not found the basis for the award of any Degree/ Diploma/
Associate ship/ Fellowship or similar title to any candidate of any

University.

Place: cew3A7pRE Signature of the Student
Date: 2pjeqirecs

Countersigned By

Project Guide
(Mrs. S. Devaki)

ACKNOWLEDGEMENT

At the outset, I would like to remember the sacrifices made by
two people, who have all along been with me, and who are, mainly
responsible for what I am today - My Parents.

I would like to express my gratitude to our beloved Principal Dr.
K.K.Padmanabhan, Kumaraguru college of Technology, Coimbatore,
for his constant encouragement throughout my course.

I wish to thank Prof.S.Thangaswamy, Prof & Head,
Department of Computer Science and Engineering, Kumaraguru
college of Technology, Coimbatore, for his invaluable guidance and
suggestions that encouraged me to complete this project successfully.

I admit my heart full thanks to my internal project guide, Mrs.
S.Devaki, B.E., M.S., Asst. Professor, Department of Computer
Science and Engineering, Kumaraguru college of technology,
Coimbatore, for being supportive throughout the tenure of my project.

I am especially thankful to Mr. S. Kamesh, Software Engineer
and Project Guide, SRM Systems and Softwares limited, Chennai, for
providing me guidance and suggestions throughout the tenure of my
project.

I also take this opportunity to extend my sense of gratitude to all
the faculty members, non - teaching staffs of the Computer Science &
engineering Department, K.C.T, Coimbatore, for their guidance and co
- operation rendered throughout my course.

SYNOPSIS

The project “DATA ENCRYPTION AND DECRYPTION" aims
the protection or security of the data, by using encryption and

decryption.

The project aims to provide a more reliable, accurate and fast
solution for data encryption and decryption. A through study existing
manual system and discussion with the personnel involved to this
particular problem revealed the difficulties faced by the user and lead
to the development of the proposed project "DATA ENCRYPTION
AND DECRYPTION".

In the proposed system Visual C++ is used for convert the data
into non - readable format or cipher text format and cipher text
format into readable format or normal text. In this project the normal
text is converted into cipher text within seconds. The cipher text is

converted into normal text in no time.

CONTENTS

‘ Page No
1. INTRODUCTION 1
1.1 Data encryption and Decryption 1
1.2 Basics Data encryption and Decryption 2

2. SYSTEM STUDY & ANALYSIS
2.1 Feasibility Study 3
2.2 Proposed System ’

3. PROGRAMMING ENVIRONMENT 9
3.1 Hardware Configuration 9
3.2 Description Of Software’s & Tools Used 10
3.3 Cryptography 13
3.4 private Key Cryptography 14
3.5 Public Key Cryptography 16
4. SYSTEM DESIGN & DEVELOPMENT 19
4.1 Input Design 19
4.2 OQutput Design 21
5. SYSTEM IMPLEMENTATION AND TESTING : 22
5.1 System Implementation 22
5.2 System Testing 24
6. CONCLUSION 26
7. BIBILIOGRAPHY 27
A. Sample screens 28

B. Sample code 32

1. INTRODUCTION

1.1 Data encryption and decryption

The Encryption Project uses a private-key encryption to
encrypt files. Private-key encryption algorithms use a single private
key to encrypt and decrypt data so it also referred to as symmetric
encryption because the same key is used for encryption and
decryption. Thus, we need a key and an initialization vector to
encrypt and decrypt data. Without an the same input block of
plaintext will encrypt to same output block of cipher text, but with
the output of two identical plaintext blocks are different and it is
hard for unauthorized user to recover the key. The disadvantage of
private-key encryption is that it presumes two parties have agreed
on a key and communicated their values. Also, the key must be
kept secret from unauthorized users. Because of these problems,
private-key encryption is often used in conjunction with public-key

encryption to privately communicate the values of the key.

1.2 Basics Of Data encryption and Decryption

Cryptography deals with the transformation of ordinary text
(plaintext) into a coded form (cipher text) by encryption and the
transformation of cipher text into plaintext by decryption.
Historically, before the advent of mechanical or electrical
computers, the transformation was performed by hand and
included, for example, the procedures of substitution and
transposition. Whether performed by hand or by computer, these
procedures, or transformations, are mathematical in nature. The

transformation procedure is known as the cryptographic algorithm.

In a computer environment, the encryption and decryption
algorithm uses a cryptographic key to perform these mathematical
transformations. The key functions as an input parameter to vary
the transformation of plaintext to cipher text and vice versa. The
data are more secure to transfer through e —-mail or through some
other media. The information’s are not able to identified or sensed

by others.

2. System Study and Analysis

2.1 Feasibility Study
Encryption

Encryption is the transformation of data into a form
unreadable by anyone without a secret decryption key. Its purpose
is to ensure privacy by keeping the information hidden from anyone
for whom it is not intended, even those who can see the encrypted
data. For example, one may wish to encrypt files on a hard disk to

prevent an intruder from reading them.

In a multi-user setting; encryption allows secure
communication over an insecure channel. The general scenario is as
follows: Alice wishes to send a message to Bob so that no one else
besides Bob can read it. Alice encrypts the message, which is called
the plaintext, with an encryption key; the encrypted message,
called the cipher text, is sent to Bob. Bob decrypts the cipher text
with the decryption key and reads the message. An attacker,
Charlie, may either try to obtain the secret key or to recover the
plaintext without using the secret key. In a secure cryptosystem,
the plaintext cannot be recovered from the cipher text except by
using the decryption key. In a symmetric cryptosystem, a single key

serves as both the encryption and decryption keys.

Authentication

Authentication in a digital setting is a process whereby the
receiver of a digital message can be confident of the identity of the
sender and/or the integrity of the message. Authentication protocols
can be based on either conventional secret-key cryptosystems like
DES or on public-key systems like RSA; authentication in public-key

systems uses digital signatures.

Public Key Cryptography

Traditional cryptography is based on the sender and receiver
of a message knowing and using the same secret key: the sender
uses the secret key to encrypt the message, and the receiver uses
the same secret key to decrypt the message. This method is known
as secret-key crvptography. The main problem is getting the sender
and receiver to agree on the secret key without anyone else finding
out. If they are in separate physical locations, they must trust a
courier, or a phone system, or some other transmission system to
not disclose the secret key being communicated. Anyone who
overhears or intercepts the key in transit can later read all
messages encrypted using that key. The generation, transmission

and storage of keys is called key management; all cryptosystems

must deal with key management issues. Secret-key cryptography

often has difficulty providing secure key management.

Whitfield Diffie and Martin Hellman invented public-key
cryptography in 1976 in order to solve the key management
problem. In the new system, each person gets a pair of keys, called
the public key and the private key. Each person's public key is
published while the private key is kept secret. The need for sender
and receiver to share secret information is eliminated: all
communications involve only public keys, and no private key is ever
transmitted or shared. No longer is it necessary to trust some
communications channel to be secure against eavesdropping or
betrayal. Anyone can send a confidential message just using public
information, but it can only be decrypted with a private key that is
in the sole possession of the intended recipient. Furthermore,
public-key cryptography can be used for authentication (digital

signatures) as well as for privacy (encryption).

Here's how it works for encryption: when Alice wishes to send
a message to Bob, she looks up Bob's public key in a directory, uses
it to encrypt the message and sends it off. Bob then uses his private
key to decrypt the message and read it. No one listening in can
decrypt the message. Anyone can send an encrypted message to

Bob but only Bob can read it. Clearly, one requirement is that no

one can figure out the private key from the corresponding public

key.

Here's how it works for authentication: Alice, to sign a
message, does a computation involving both her private key and
the message itself; the output is called the digital signature and is
attached to the message, which is then sent. Bob, to verify the
signature, does some computation involving the message, the
purported signature, and Alice's public key. If the results properly
hold in a simple mathematical relation, the signature is verified as
genuine; otherwise, the signature may be fraudulent or the

message altered, and they are discarded.

2.2 Proposed System Study

Encrypting File System (EFS) allows users to store data
securely on local computers. EFS does this by encrypting data in
selected NTFS files and folders. Because EFS is integrated with the
file system, it is easy to manage, difficult to attack, and transparent
to the user. This is particularly useful for securing data on
computers that may be vulnerable to theft, such as mobile

computers.

Files and folders cannot be encrypted or decrypted on FAT

volumes. Also, EFS is designed to store data securely on local

computers. As such, it does not support the sharing of encrypted

data.

EFS encryption keys

Once a user has specified that a file be encrypted, the actual
process of data encryption and decryption is completely transparent
to the user. The user does not need to understand this process.
However, the following explanation of how data encryption and

decryption works might be useful for administrators.

This explanation only applies to files, not folders. Folders
themselves are not encrypted, only the contents of the files within a
folder. Like folders, sub-folders are not encrypted; however, they

are marked to indicate that they contain encrypted file data.
Encryption of files works as follows:

« Each file has a unique file encryption key, which is later used to
decrypt the fileé's data.
. The file encryption key is in itself encrypted--it is protected by

the user's public key corresponding to the user's EFS certificate.
« The public key of an authorized recovery agent also protects the

file encfyption key.

Decryption of files works as follows:

. To decrypt a file, the file encryption key must first be decrypted.
The file encryption key is decrypted when the user has a private
key that matches the public key.

« The user is not the only person that can decrypt the file
encryption key. A recovery agent can also decrypt the file
encryption key, by using the recovery agent's private key.

« Once the file encryption key is decrypted, either the user or the

recovery agent to decrypt the data in the file can use it.

Private keys are held in a protective key store, and not in the

Security Account Manager (SAM) or in a separate directory.

3. Programming Environment

3.1 Hardware Configuration

Hardware specification of the system is used in the project:
Pentium 300 MHZ

128MB RAM / 20 GB Hard Disk Drive

1.44 MB Floppy Disk Drive

SVGA Monitor

104 keys Keyboard

Platform:

Operating System : Microsoft Windows98

Software Used : Visual C++

3.2 Description Of Software’'s & Tools Used

Visual C++ 6.0

The major purpose of Visual C++ is to support the newest
Microsoft technologies, such as the New Active Desktop in Internet
Explorer 4.0. With Visual C++ 6.0 we can develop for Internet
Explorer 4.0 by accessing the power and flexibility of Dynamic HTML
and the new common controls. Internet Explorer 4.0 support
enables us to integrate the web directly into Microsoft Foundation

Class (MFC) applications.

Visual C++ has supported writing ActiveX documents for
some time. Now it supports writing ActiveX document containers,
including support for printing, saving, and loading. We can
seamlessly get all the functionality of programs such as Excel or
Word in our MFC applications with DocObject Containment. You can
easily put full - featured charts, graphs, or even Web browsers right

in our applications, with full menu merge.

The Visual C++ Integrated Development Environment, or IDE
is organized into four distinct areas. They are, Menu and Toolbars,
Project view window, code editor, and debug window. The menu

items enable we to access different options not only for the IDE but

mlemm Ernw i rrzenrsll Arasacd tleinAa diffarant meaeanit oantione we can

control everything from the compiler’s behavior of the code editor.
All the toolbars are fully dockable. This means that they can be
docked to any of the four sides of the IDE’ s main window. We can

also “float” the toolbars anywhere on our desktop.

The debug window displays important during the project
building process and while our project is executing within the Visual
Studio debugger. Typically, the debug window will display error
messages that occur when we compile, or build, our project. We can
also write messages directly }to the debug window from within our

project by using the Trace Macro.

Microsoft Foundation Class (MFC)

'MFC is the abbreviation for a collection of C++ classes
produced by Microsoft that are called the Microsoft Foundation
Classes. MFC provides an object - oriented framework those
application developers can use to create Windows applications. MFC
is organized as a hierarchy of C++ classes. Several high - level
classes provide general functionality while the low - level classes
implement more specific behaviors. Each of the low - level classes
is derived from a high - level class and, thus, inherits the behaviors
of the high - level class.

MFC handles many common Windows - related tasks, such as

having to write to the same message-handling loop in every
Wwindows application we develop, MFC implements the message loop
for us and provides easy to understand and use member functions,
like OnPaint(), which enables us to insert code to handle the

window message.

In addition to the class hierarchy, MFC also provides an
application development model. This model is called the
Document/View model. Document/View, or Doc/View is method of
designing an application so that the application’s data is separated
fro the user interface elements. This allows the two parts of the
application to stand on their own, enabling the programmer to make
changes to one without having to make drastic changes to the

other.

3.3 Cryptography

The art or science encompassing the principles and methods
of transforming an intelligible message into one that is
unintelligible, and then retransforming that message back to its
original form. An algorithm for transforming an intelligible message
into one that is unintelligible by transposition and/or substitution
methods is called cipher. The transformed text is called cipher text.
Some critical information used by the cipher, known only to the
sender and receiver is called key. The key is used for decrypting the

data from the cipher text format.

The process of converting plaintext to cipher text using a
cipher and a key is called Encipher (Encode). The process of
converting cipher text back into plaintext using a cipher and a key is

called Decipher (Decode).

The study of principles and methods of transforming an
unintelligible message (cipher text) back into an intelligible message
(normal text) without knowledge of the key is called cryptanalysis,
it also called code breaking. Both cryptography and cryptanalysis is

called cryptology.

3.4 Private Key Cryptography

The most ancient and basic problem of cryptography is secure
communication over an insecure channel. A wants to send to B a
secret message over a communication line that may be tapped by
an adversary. The traditional solution to this problem is called

private key encryption.

In private key encryption, A and B agree on a pair of
encryption and decryption algorithms E and D, and an additional
piece of information S to be kept secret. We shall refer to S as the
shared secret key. The adversary may know the encryption and
decryption algorithms E and D which are being used, but does not

know S.
Private Key Algorithms are also known as Symmetric Algorithms.

Block Ciphers

Symmetric-key block ciphers are the most prominent and
important elements in many cryptographic systems. Individually,
they provide confidentiality. As a fundamental building block, their
versatility allows construction of pseudorandom number generators,
stream ciphers, MACs, and hash functions. They serve as a central
component in message authentication techniques, data integrity
mechanisms, entity authentication protocols, and (symmetric-key)

digital signature schemes.

No block cipher is ideally suited for all applications, even one
offering a high level of security. This is a result of inevitable
tradeoffs required in practical applications, including those arising
from, for example, speed requirements and memory limitations
(e.g., code size, data size, cache memory), constraints imposed by
implementation platforms (e.g., hardware, software, chip cards),
and differing . tolerances of applications to properties of various
modes of operation. In addition, efficiency must typically be traded

off against security.

Stream Ciphers

Stream ciphers are an important class of encryption
algorithms. They encrypt individual characters (usually binary
digits) of a plaintext message one at a time, using an encryption
transformation, which varies with time. By contrast, block ciphers
tend to simultaneously encrypt groups of characters of a plaintext
message using a fixed encryption transformation. Stream ciphers
are generally faster than block ciphers in hardware, and have less
complex hardware circuitry. They are also more appropriate, and in
some cases mandatory (e.g., in some telecommunications

applications), when buffering is limited or when characters must be

limited or no error propagation, stream ciphers may also be
advantageous in situations where transmission errors are highly

probable.

3.5 Public Key Cryptography

The setup of a public-key cryptosystem is of a network of
users rather than a single pair of users. Each user in the network
has a pair of keys associated with him, the public key, which is
published under the users name in a public directory accessible for
everyone to read, and the private-key, which is known only to the
user. Running a key-generation algorithm generates the pair of
keys. To send a secret message to a user everyone in the network
uses the same exact method, which involves looking up the public
key from the public directory, encrypting the message using the
public key, and sending the resulting cipher text to the user. Upon
receiving the cipher text, the receiver can decrypt by looking up his

private key.

A particular public-key cryptosystem is thus defined by a
triplet of public algorithms (G, E, D), the key generation,
encryption, and decryption algorithms. The asymmetric key system
does not have the disadvantages of a symmetric key system
because the public key is made widely available so that anyone can

possess it. In this system only the private key needs to be kept

private. Each entity can retrieve another entity’s freely available

public key, thus removing key distribution management complexity.

Exhibit 3-2 shows the public key cryptography’s use of

the public and private keys.

Bab's Alice

public key

yave
|

The private and publie keys are dilferent

bt inatherutically related. What either
key encrypts the other cans dearypt and

vice versa. Knowing the public key, #

i not computationally feasible to compule
the private. Bob keeps one key private and
‘meakes the olher public. Alice enorypts with
Fob's public key and only Bob’s private key
can decrypt.

Advantages of public-key cryptography
1. Only the private key must be kept secret (authenticity of
public keys must, however, be guaranteed).
2. The administration of keys on a network requires the
presence of only a functionally trusted TTP as opposed to an
unconditionally trusted TTP. Depending on the mode of usage,

the TTP might only be required in an offline manner, as

I Y

3. Depending on the mode of usage, a private key/public key
pair may remain unchanged for considerable periods of time,
e.g., many sessions (even several years).

4. Many public-key schemes yield relatively efficient digital
signature mechanisms. The key used to describe the public
verification function is typically much smaller than for the
symmetric-key counterpart.

5. In a large network, the number of keys necessary may be

considerably smaller than in the symmetric-key scenario.

Disadvantages of public-key encryption

1. Throughput rates for the most popular public-key encryption
methods are several orders of magnitude slower than the
best-known symmetric-key schemes.

2. Key sizes are typically much larger than those required for
symmetric-key encryption, and the size of public-key
signatures is larger than that of tags providing data origin
authentication from symmetric-key techniques.

3. No public-key scheme has been proven to be secure (the
same can be said for block ciphers). The most effective
public-key encryption schemes found to date have their
security based on the presumed difficulty of a small set of

number-theoretic problems.

4. SYSTEM DESIGN AND DEVELOPMENT

System Analysis and design comprise of the design, file
design and output design phases. All these phases are related to
one another in some manner. So they will not be designed in

separate ways. Hence this will be done only in an integrated way.

Another thing is requirement of user. Each user has same
type of requirements. Hence design of the system completely
depends on the requirements of user. In this project, the user can
work easily. In this project the user give only the input file during
encryption and give input file (.enc file) and the key (generated

during encryption) for decryption.

4.1 INPUT DESIGN

The input design to the Data encryption and decryption
contains the path of the input fie and the destination for both output
file and the key during en;ryption and decryption. So input screens
have been designed according to these details. All these

information are inside a single window.

The screens are well laid without any cramping of input fields.

o e o bl el Elum s amomae gmrm i oo |y~

input files from the explore. Thus, the screen is designed to be very

user - friendly.

Validation at the screen design level is simple but it restricts
the unauthorized person. The software has a password, it protect
the software. This software encrypts the input file (Normal data)
into the cipher text (.enc file) within few seconds. And it decrypts
the input file (.enc file) into normal data format in no time. The
cipher text is not understandable and this is not possible to decrypt

into normal data format without using key.

4.2 OUTPUT DESIGN

Output design is a very important phase in the designing of a
system. The important objective of any system is in its capability of

producing high quality outputs.

This system has three outputs. They are,
1. Encrypted data (cipher text) from normal data format after
Encryption.
2. The Key generated during Encryption for protect the
encrypted data.

3. Normal data from Cipher text after Decryption.

In this software, after encryption creates two outputs one is
encrypted format (cipher text) of the input file and the second one
is key for decrypt. After decryption it generates the original format

i.e., normal text format from the cipher text.

5. SYSTEM IMPLEMENTATION AND TESTING
5.1 System Implementation

The project undergoes a versioning and release management
before it is delivered to the Users. It is a process of identifying and
keeping track of different versions and releases of the software.
And the released product usually includes Configuration files
defining how the release should be configured for particular
installations. Data files needed for successful operations. An
installation program, which is used to help install the system on the
target hardware. Electronic and paper documentation describing
the system. All these information are made available on a medium,
which can be read and understood by the customer for the

software.

Operational Documentation

Properly produced and maintained system documentation is a
tremendous aid to maintenance engineers. The system
documentation includes all of the documents describing the
implementation of the system from the requirements specification

to the final acceptance rest plan.

A complete set of Operational Documentation was prepared

for the User or Administrator, which included the features of this

L r'y I | T

Y

procedure was included in the documentation for data encryption,
data decryption and the use of key generated after the encryption
for decrypt the data. The documentation is prepared keeping in
mind users who have little or no knowledge of computers.

The operational documentation includes a document
describing the overall architecture, a maintenance guide, a user
manual for operations like how to data encrypted and decrypted,
and how to use the key and maintain the key. The purpose of input
controls and the validations for the same are explained
diagrammaticalily. A clear picture of the system and its

functionalities are thus provided.
System Maintenance:

The process of changing a system after it has been delivered
and is in use is called software maintenance. The changes may
involve simple changes to correct coding .errors, more extensive
changes to correct de's'ign errors, or significant enhancements to
accommodate new requirements. It is the process of changing the

system to maintain its ability to survive.

Owing to scope creeps or new requirements in the future

there could be possibilities for changes in the system in future. The

will make it more adaptable to changes. The application domain is

clearly defined which will help in making changes to a new domain.

5.2 System Testing

Periodical tests were conducted during the design and
implementation phases of development. Tests were conducted as
per test plans, which were scheduled according to the company’s
policies. A detailed report on various tests conducted is given
below. A Bottom - up testing methodology was adapted to test the
system developed. A bottom - up test strategy starts with the

fundamental components and works upwards.

While conceiving the Architectural Design of the design phase
in development decomposing of the entire project into modules, the
relationship between the normal text and the data they encrypted
into cipher text thoroughly analyzed. In formulating the detail
design during the design phase an analysis was conducted on the
algorithm specification to implement functions, decision on data
structures to represent data, and the decision of design techniques

to be followed.

In the implementation phase tests were conducted according

to the most widely used two stages testing process. The system

Unit Testing

Unit testing was used to test individual units (i.e., Functions)
in the system and ensure that they operate correctly. Alternate
logic analysis and screen validations were tested in this phase to
ensure optimum efficiency in the system. The procedures and

functions used and their association with data were tested.

Module Testing

Module testing was used to ensure that the dependable
components in a module work in coordination with one another.
Functional testing, performance testing and stress tests were
conduct on modules independently to ensure robustness in the
system developed. The various functions and their validations in
module were analyzed and tested. The procedures and functions

common to a module were also tested during module testing.

RMEYINIEN N REIOY

6. CONCLUSION

Thus the data can be transmitted securely using the
Encryption and Decryption. The mulitiple Encryptions will be very
hard to break. The public key and private key encryptions are more
secure than the single key encryption because others can also use
the single key to decrypt the data. The disadvantage of single-key
encryption is that it presumes two parties have agreed on a key and
communicated their values. Also, the key must be kept secret from
unauthorized users. Because of these problems, single-key
encryption is often used in conjunction with public-key encryption to

privately communicate the values of the key.

7. BIBLIOGRAPHY

David J. Kruglinski, George Shepherd, Scot Wingo, “Programming Microsoft
Visual C++", Microsoft Press; Fifth Edition ¥2

Richard C. Leinecker and Archer Tom, «\fisual C++ 6 Programming Bible”,
IDG Books India (P) Ltd; Fifth Edition 3%

Roger S.Pressman “Software Engineering and Application”, McGraw Hill;
Fourth Edition 4903
_

John Paul Mueller «\fisual C++ 6 from the Ground up’, Tata McGraw Hill,
1998

Andvew Teroobaum Computex Netwosks '(ahaMcqme\\\,\,ﬁ%
WEB SITES

) www.msdn.microsoft.comlvisualc
www.visionx.comlmfcpro

<
3
[4

ENCDEC exzenc
ENCDEC exe.key

\se_projectsirajeshiende\Encryption.do
i3 1:\sc_projectsirajeshendeiEncryption.do;
yse_projecisirajeshiendelEncryplion.do

APPENDIX =

Coding

#include"Main.h"

#include"Functions.h"
//START WINMAIN//
int WINAPI WinMain(HINSTANCE hiInstance, HINSTANCE

hPreviInstance,
LPSTR IpCmdLine, int nCmdShow)

DialogBox(hInst, MAKEINTRESOURCE(IDD_PASSWORD), NULL,
(DLGPROC)DIgPasswordProc);

if(1CorrectPassword) return false;
splash(hInstance);
App_Init();
//FILL WINDOW CLASS//
//DECLARE WINDOW CLASS
WNDCLASS wndWc;

wndWec.style = CS_OWNDC |CS_HREDRAW | CS_VREDRAW;
wndWc.lpfnwWndProc = (WNDPROC) WndProc;
wndWc.cbClsExtra = 0O;

wndWc.hInstance =hInstance;

wndWc.hIcon =

LoadIcon(hInstance, MAKEINTRESOURCE(IDI_ICON));
wndWc.hCursor = LoadCursor(0, IDC_ARROW);
wndWc.hbrBackground =
(HBRUSH)GetStockObject(BLACK_BRUSH);
wndWec.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);
wndWoc.lpszClassName = "EncDec";

//REGISTER WINDOW CLASS
RegisterClass(&wndWc);

//FILL WINDOW CLASS//

//CREATE MAIN WINDOW//

hwnd = CreateWindow("EncDec", "ENCRYPT / DECRYP
T",WS_OVERLAPPEDWINDOW,rc.left,rc.top, 450,300,NULL, NULL,

hInst, NULL);

//SHOW WINDOW
ShowWindow(hwnd, SW_SHOW);

//CREATE MAIN WINDOW//

//SPLASH TIMER

splashTimer();

//MAIN LOOP//

{
TranslateMessage(&Msg);

DispatchMessage(&Msg);

¥
//MAIN LOOP//

//RELEASE WINDOW

DestroyWindow(hwnd);

return Msg.wParam;

¥

//END WINMAIN//

//START WNDPROC//
LRESULT CALLBACK WndProc(HWND hwnd, UINT Msg, WPARAM
wParam, LPARAM [Param)
{
switch(Msg)
{

//WM_CREATE//

case WM_CREATE:

{

ENC = CreateWindow("Button","E N C R Y P
T",WS_CHILD | WS_VISIBLE |
BS_PUSHBUTTON,2,220,215,25,hwnd,(HMENU)ID_ENC, hlInst,0);

DEC = CreateWindow("Button","D E C
R Y P T'WS_CHILD | WS_VISIBLE |

KEY = CreateWindow("Button","Key...",WS_CHILD |
WS_VISIBLE | |

BS_PUSHBUTTON,20,150,60,22,hwnd,(HMENU)ID_KEY,hInst,0);
KEY2 = CreateWindow("Button","Key...",WS_CHILD |
WS_VISIBLE |

BS_PUSHBUTTON,360,150,60,22,hwnd,(HMENU)ID_KEY,hInst,0);

INF = CreateWindow("Button","InFile...",WS_CHILD |
WS_VISIBLE |
BS_PUSHBU'I.‘I'ON,20,40,60,22,hWnd,(HMENU)ID_INF,hInst,O);

INF2 = CreateWindow("Button","InFile...",WS_CHILD |
WS_VISIBLE |
BS. PUSHBUTTON, 360,40,60,22,hWnd,(HMENU)ID_INF,hInst,0);

OUF = CreateWindow("Button","OutFile...",WS_CHILD |
WS_VISIBLE |
BS_PUSHBUTTON,20,95,60,22,hwnd,(HMENU)ID_OUF,hInst,0);

OUF2 = - CreateWindow("Button","OutFile...",WS_CHILD |
WS_VISIBLE |

BS_PUSHBUTTON,360,95,60,22,hwnd,(HMENU)ID_OUF,hlInst,0);

El = CreateWindow("Edit",NULL,WS_CHILD |
WS_VISIBLE | WS_BORDER
,85,40,270,22,hwnd,(HMENU)ID_E1,hInst,0);

E2 = CreateWindow("Edit",NULL,WS_CHILD |
WS_VISIBLE | WS_BORDER
,85,95,270,22,hwnd,(HMENU)ID_E2,hInst,0);

E3 = CreateWindow("Edit",NULL,WS_CHILD |
WS_VISIBLE | WS_BORDER
,85,150,270,22,hwnd,(HMENU)ID_E3,hlnst,0);

break;

b
///WM_CREATE/////111111111111111111111111711

//WM_COMMAND//////11111111111111111111111117

case WM_COMMAND:
{

switch(HIWORD(wParam))
{
case BN_CLICKED:

switch(LOWORD(wParam))

{

case ID_ENC:

{
Encrypt();
break;

}

case ID_DEC:
Decrypt();
break;

}

case ID_INF:

{

InFileOpen();

break;

b

case ID_OUF:

{
OutFileOpen();
break;

)

case ID_KEY:

{
KeyFileOpen();
break;

b

case ID_ABOUT:

{

DialogBox(hInst,
MAKEINTRESOURCE(IDD_ABOUT), NULL, (DLGPROC)DlgAboutProc
)i

break;
h
case IDM_EXIT:
{
Exit();
break;
)

}//switch(LOWORD(wParam))

}//switch(HIWORD(wParam))
break;

by

ZZZ//////////////////////////WM_COMMAND//////////////////////////

ZZ////////////////////////////WM_DESTROY////////////////////////////

case WM_DESTROY:
{

break;

b
J111111111111111117110111111111/WM_DESTROY//////1711111111111111111717
/117

'7//;///////////////////////////WM_KEYDOWN///////////////////////////
/1!

case WM_KEYDOWN:

{
switch (wParam)
{
case VK_ESCAPE:
{
PostQuitMessage(0);
break;
}
}
break;
b5

Z;/;///////////////////////////WM_KEYDOWN///////////////////////////
/

;///////////////////////////////WM_TIMER///////////////////////////////

case WM_TIMER:

{
ShowWindow(SPL,SW_HIDE);

KillTimer(hwWnd,1);
break;
¥

;///////////////////////////////WM_TIMER///////////////////////////////

}//switch(Msg)

return DefWindowProc(hwnd,Msg,wParam,|Param);
b

[111111111111111111117111117]//END
WNDPROC////1111111111111111111111111117

11T TTSTART
DLGPROC///1111111111111111111H11T1THTTT

LRESULT CALLBACK DIgPasswordProc(HWND hwnd, UINT message,
WPARAM wParam, LPARAM |Param)

{
char Password[25]={0};

switch(message)

{
case WM_INITDIALOG:

return TRUE;

case WM_COMMAND:
switch(LOWORD(wParam))

case IDOK:

{

GetDlgItemText(hwnd,
IDC_PASSWORD, Password, 25);

if('strcrnp(Password, "Password") ||

CorrectPassword = true;

EndDialog(hwnd, FALSE);
else

MessageBox(hwnd, "InValid
password!(The Password is 'password)","E R R O R ",
MB_OK);

)

return TRUE;

}
case IDCANCEL.:

{

int response;

response=MessageBox(hwnd, "Are
You Sure?","EE R R O R !?!", MB_YESNO);

if(response==IDYES)

{
EndDialog(hwnd, FALSE);

s
return TRUE;

¥

break;

case WM_CLOSE:
{
EndDialog(hwnd, FALSE);

break;

bs
case WM DESTROY:

break;

¥

return FALSE;
t

JHTT117171177END
DLGPROC////111111111111111111111T1H117T7

[1107110111111171111111771/START
DLGABOUTPROC/////1/1111111111111111111111111

LRESULT CALLBACK DlgAboutProc(HWND hwnd, UINT message,
WPARAM wParam, LPARAM |Param)

{

switch(message)
{
case WM_INITDIALOG:

return TRUE;

case WM_COMMAND:

{
switch(LOWORD(wParam))
{
case IDOK:

EndDialog(hwnd,FALSE);

)2

break;

}

case WM_DESTROY:

break;

case IDOK:
{

return TRUE;

return FALSE;
b

J1111101111111111111111177/7END
DLGABOUTPROC/////11/111111111111111111111111

