Kumaraguru College of Technology
Department of Computer Science and Engineering
Coimbatore-641 006 150

QN1 -200

P- 1096
MINISERVER

Project work done at

SRM SYSTEMS AND SOFTWARE LIMITED

PROJECT REPORT

Submitted in partial fulfillment of the

Requirements for the award of the degree of
Master of Science in Applied Science

Software Engineering

Bharathiar University, Coimbatore
Submitted by

R.RAMYA
Reg.No-0037S0098

INTERNAL GUIDE

Mr.G.S Nanda kumar.B.E.,
Dept.of Computer Science& Engineering,
Kumaraguru College of Technology,
Coimbatore.

EXTERNAL GUIDE
Mr.S.Kamesh B.E,

SRM SYSTEMS AND SOFTWARE. Ltd,
CHENNAI

Department of Computer Science and Engineering l“zw\

KUMARAGURU COLLEGE OF TECHNOLOGY
Coimbatore — 641 006

ISO
annt-2n0

CERTIFICATE
PROJECT REPORT 2003

Certified that this is a bonafide report of
the project work done by

R.RAMYA
(Reg. No. 0037S0098)

W“‘Nl\/' g
S e 1 L Ko

‘ <
Mr.G.S Nanda Kumar.B.E. Prof. S. Thangasamy , Ph.D.,
Project guide Head of the Department
Computer Science & Engineering Computer Science & Engineering

Place: Coimbatore
Date:

Submitted for University examination held on

29/ /23

Internal Examiner External Examiner
% MM ' e
({ (/ //.__',.vﬁ..v, o ,‘..,‘:

SRM SYSTEMS AND SOFTWARE LIMITED
24, G.N. Chetty Road, T.Nagar, Chennai - 600 017. s R M
D:91-44- 8250771, 8258757, 8269471 Fax : 91 - 44 - 8283359

E-mail : srm@srmsoft.co.in Web Site : hitp://www.srmsoft.com SYSTEMS AND SOHWARE

Regd. Off : 2, Veerasamy St., West Mambalam, Chennai - 600 033.

23.09.2013

CERTIFICATE

This is to certify that the project work entitled “MINI SERVER” was
Analyzed, Designed and Developed by Ms. R.RAMYA of
KUMARAGURI COLLEGE OF TECHNOQLNGY (CBE), submitted in
partial fulfililment of the requirements of degree of 4™ Year M.Sc (S.E)
has been carried out in our organization from June 2003 to Sep 2003.This

project has been developed using VI++,

We wish him success in all his (iiure endeavors,

For BRI Systenis And Software Limited

e Boston e Chennai » London ¢« Tokvo

DECLARATION

I here by declare that the project entitled “MINISERVER”, submitted to Kumaraguru
College of Technology, Coimbatore Affiliated to Bharathiar university as the project
work of Master of Science in Applied Science Software Engineering ,is a record of
original work done by me under the supervision and guidance of Mr.S.Kamesh.B.E,
SRM Systems And Software Ltd., Chennai and Mr.G.S.Nanda kumar.,B.E., CSE
Department Kumaraguru College of Technology, Coimbatore and the project work has
not found the basis for the award of any Degree/Diploma/Associateship/Fellowship or

similar title to any candidate of any University.

D i
Place: Coimbatore L \W/7
Date: 27 /4 /¢ (R.RAMYA)

Reg.No:0037S0098

Countersigned by
. WY
e
-L%MW‘”W

(Internal Guide)
Mr.G.S. Nanda Kumar, B.E.,

Kumaraguru College of Technology,

Coimbatore.

ACKNOWLEDGEMENT

I am immensely grateful to Dr.K.K.Padmanaban BSc(Engg) , M.Tech., Ph.D.,
Principal , Kumaraguru College of Technology for his valuable support to come out with
this project.

I really feel delighted in expressing my heartful thanks to Dr.S.Thangaswamy
Ph.D, Prof & Head of Department of Computer Science and Engineering for his endless
encouragement in carrying out this project successfully.

My heartfelt thanks to our project coordinator Mrs.S.Devaki B.E., M.S, Assistant
Professor, for his unfailing enthusiasm, encouragement and guidance that paved me to the

completion of this project.

I am indent to express my heartiest thanks to Mr.G.S Nanda Kumar my project
guide who rendered his valuable guidance and support to do this project work extremely

well.

I am greatly indebted to chairman SRM Systems And Software Limited, chennai,
for getting us into his esteemed institution. I also thank Mr.S.Kamesh B.E who was my

guide and he has helped me a lot in my project.

I am also thankful to all the faculty members of the Department of Computer
Science and Engineering, Kumaraguru College of Technology, Coimbatore for their
valuable guidance, support and encouragement during the course of my project work..

My humble gratitude and thanks to my parents who have supported, to complete
the project and to my friends, for lending me valuable tips, support and cooperation

through out my project work.

SYNOPSIS

SYNOPSIS

The project titled “Miniserver” is a system side project for the concern SRM Radiant
Infotech Ltd. using vc++ platform. The concern has the capability to provide complete
end to end IT solutions to its customers through its matchless portfolio of

products,services and a large infrastructure network.

The project is to implement a server that gives users access to operating system functions
and programs over the Internet through a standard browser. Much of the functionality of
a Web server will be implemented, including the ability to execute CGI (Common
Gateway Interface) programs. Commands or programs can be entered from a browser,
sent to the server, executed, and the program output displayed back to the browser. From
a browser, it will be possible to control a remote computer's operation over an Internet

connection.

The remote computer or server will execute C++, Assembly programs and many DOS
commands from a browser, providing access and control of the server computer from

across the Internet.

The server recognizes a limited number of commands that are implemented internal to
the server program as regular C++ or Assembler functions. Any command not recognized
internally is passed on to DOS which attempts to execute the command as a program
contained in the server directory or as a DOS command. Essentially any well behaved
program that can be executed from the DOS command line can also be executed by the

SErver.

The program uses standard input and standard output.

CONTENTS PAGE NO

1. Introduction

1.1 Current status of the problem taken 1

1.2 Relevance and Importance 1

1.3 Need for the proposed system 1

1.4 Proposed system 2
2. Company Profile 3
3. Hardware And Software Specification

3.1 Hardware specification 7

3.2 Software specification 7

4. Proposed Approach to a product

4.1 Visual C++ 8
4.2 Assembly Level Language 8
4.2.1 Features of Assembly Level Language 8
4.2.2 Usage of Assembly Level Language 9
5. Details of the design
5.1 System design 10
5.2 Input design and output design 10
5.3 System flow diagram 11
5.4 Network diagram 12
5.5 Code design 14
5.6 Project Description 15
6. Implementation details 23
7. Testing 24
7.1 Testing objectives 24
7.2 Levels of Testing 25
7.2.1 Unit testing 26
7.2.2 Integration testing 26
7.2.3 Validation testing 27

7.2.4 Output testing 27

8. Conclusion and Future outlook

8.1 Conclusion
8.2 Limitations
8.3 Future enhancements

9. References

10. Appendix
10.1 Sample coding
10.2 screen design

1. INTRODUCTION
1.1 Current Status of the Problem:

Computer operating systems provide management and access services for the hardware
resources of the system. These services are often accessible at the programmer level as
callable functions or at the user level through some interface such as a command line in
DOS and Unix or a GUI as in Mac or Windows.. In DOS one types dir and the
command.com program reads the command and executes the directory listing program or
function. In Windows one clicks the Windows Explorer icon to perform much the same
operation. This requires that every system to have DOS installed in it and the user does
not have the facility of remote accessing or remote manipulation . The user on net has to
open the DOS window each time to know the files present etc... rather than to find out
directly from the browser. Moreover DOS only has limited commands and does not

facilitate user defined commands.

1.2 RELEVANCE AND IMPORTANCE
1.2.1 Existing System

The existing system does not allow remote accessing or remote manipulation. The

drawbacks of the system are

1. The software needs to be installed in each system
2. User defined commands cannot be added

3. DOS commands could not be executed via browser.

1.3 Need for Proposed System

Owing to the above mentioned drawbacks in the existing system, an automated system 1s
proposed. The proposed system aims to eliminate these drawbacks. It can be viewed as

user friendly, efficient easing the work of the user

The benefits of the proposed system are
» User defined commands can be added.

= DOS commands can be executed via browser.

1.4 Proposed System:

The proposed system is aimed at providing remote access and installation and eases the

task of a user. The proposed system is user friendly.

The proposed system has been developed using VC++ overriding its foundation classes.
Since it makes use of TCP/IP protocol the proposed system will overcome the drawbacks

of the existing system. The user defined commands are developed in assembly language.

The advantages of the proposed system are
¢ Remote access and installation.
e Increases the speed.
e Decreases the memory.

e Increases the scope of the browser.

2. COMPANY PROFILE

SRM SYSTEMS AND SOFTWARE is a company committed to provide support to
small, medium and large corporations in the development and management of software
essential to their needs over the entire life cycle of a project or system. All corporations,
regardless of size, need to process enormous amounts of data in support of the day-to-day
operation of the company and the dependence on a corporate information system and up-
grade the existing ones. In seeking efficient and cost-effective approaches to manage

change, many companies have found outsourcing to be particularly attractive.

SRM Systems and Software is here to provide expert services and support for “change
management” in software systems allowing your organization to focus on its core
business. SRM Systems and Software offers the expertise of experienced individual
software consultants, as well as an offshore facility with a state-of-the-art information
technology infrastructure and a well-trained and committed staff, all at extremely
competitive prices. We at SRM provide our clients the potential for significant savings
without a compromise in quality or schedule. SRM Systems and Software guarantees
that the software services will be delivered to the customer on time, within budge,
incomplete conformance means that at SRM, we are indeed

“ Determined to Make a Difference”.

MISSION STATEMENT

The stated mission of the SRM System and Software is to offer value addition to the
customer’s Business through IT Solutions of high quality and appropriate Technology on

time and on budget.

CORPORATE BACKGROUND

e Reputation built over 3 decades
e Global vision

e Asset base of over US $100 million

e Many interests but one objective - Commitment to Excellence

SRM Systems and Software is a unit of the renowned SRM Group, which in the
past30 years has established itself in Southern India in the field of Engineering
education and Research. Over the years, the SRM Group, with an asset base of more
than US $ 50 million, has expanded into the fields of Health Care, Hospitality,

Manufacturing, Financial Services and Construction.

SRM Systems and Software was established with a specific business focus on
Software Development and consultancy. As a member of the Software Technology
Park of India, SRM Systems and Software benefits through business and customs
duty incentives from the Government of India and consequently is committed to

export 100% of its products and services.

The overseas office of SRM Systems and Software in Boston provides an effective
link to customers in the United States and other parts of the world. Efforts are under
way to establish similar offices in Japan, UK, Europe and Australia. Connected by
broadband data links, the Headquarter in Chennai and the overseas offices will be
positioned to provide customers global information technology market by an

unwavering commitment to quality.

SRM Systems and Software - A Customer Centric Company

OBJECTIVES

e World Class Products
e Commitment to Quality
e Impeccable Customer Service

e Excellent Technical Support

BUSINESS ETHICS

e Customer is God
e Work is Worship
¢ Employee is Strength

¢ Humanity is the Base

STRATEGY

e Our International strategy is to penetrate and service the market by On-site, Off shore
& Tumkey projects based on our expertise and related software solutions

e Our Domestic Strategy in India is to increase market share, expand Client base and

focus on large IT contracts.

UNIFIED STRENGTH

e Three decades of SRM’s Track Record

e Strong Team Work

e Excellent Technical Competence

e Structured Project Approach

e Customer Centric and Focus on Customers’ Customers

e Japanese Language Competence

SERVICES OFFERED

SRM Systems and Software through its Strategic Business Units offers the following

services.

CUSTOMIZED SOFTWARE DEVELOPMENT

SRM can provide complete business turnkey solutions to small, medium and large size
companies spanning every phase of the software life cycle: System Analysis, Design,

Implementation, Testing, Installation and Maintenance. The SRM staff has an

accumulated experience of more than 300 man-years in varied application areas. SRM

offers software services in the following technology areas:

e Web Based Applications and e-commerce

e (Client-Server (two-three and n-tier Technology)
e Group Ware and Workflow

o Multimedia and Computer Graphics

e Computer Aided Design and Computer Aided Manufacturing

SRM guarantees each customer that any project executed by SRM will be developed as
per the specifications, delivered on time, and without cost overrun. SRM strictly adheres
to the latest Software Engineering standards in the development of customized software.
The aim of SRM is to win the allegiance of each customer so that the relationship does
not end with the completion of the first contract but becomes an ongoing and mutually

beneficial association.

3. HARDWARE AND SOFTWARE SPECIFICATION

3.1 Hardware Specification

System Pentium III @600MHZ
Cache 128 MB

RAM 128 MB

Hard Disk 20 GB

Monitor 14” Color Monitor

Keyboard 104 Enhanced

Mouse Logitech three button mouse
NIC L AN cord

3.2 SOFTWARE SPECIFICATION

Operating system: Windows workstation

Software required:

e Visual C++
e MS-DOS
e Assembly Level Language

PROPOSED APPROACH TO THE
PROJECT

4. PROPOSED APPROACH TO A PRODUCT

Software used to develop the system is Visual C++,

4.1 VISUAL C++:

Visual C++ has various features for which it is selected. It has very good compiling tools.

Some of the features of Visual C++ are
* Supports network communication programs
e Supports ActiveX, ODBC, OLE

¢ Easy to handle graphics and animation

e Easy to write threading applications

4.2 ASSEMBLY LEVEL LANGUAGE

* A low-level processor-specific programming language design to match the processor’s

machine instruction set

* Each assembly language instruction matches exactly one machine language instruction

* we study here Intel’s 80x86 (and Pentiums)

4.2.1 Features of Assembly Level Language

* To learn how high-level language code gets translated into machine language
— 1.e.: to learn the details hidden in HLL code

* To learn the computer’s hardware
— by direct access to memory, video controller, sound card, keyboard. ..

* To speed up applications

— direct access to hardware (ex: writing directly to I/O ports instead of doing a

system call)

— good ASM code is faster and smaller: rewrite in ASM the critical areas of code

4.2.2 Usage of Assembly Language

There is some debate over the usefulness of assembly language. In many cases, modern
compilers can render higher-level languages into code as that runs as fast as hand-written

assembler.

However, some discrete calculations can still be rendered into faster running code in
assembler, and some low-level programming is simply easier to do in assembler. Some
system-dependent tasks performed by operating systems simply cannot be expressed in
high-level languages. Many compilers also render high-level languages into assembler
first before fully compiling, allowing the assembler code to be viewed for debugging and

optimization purposes.

Many embedded devices are also programmed in assembly to squeeze the absolute
maximum functionality out of what is often very limited computational resources,
though this is gradually changing in some areas as more powerful chips become

available for the same minimal cost.

DETAILS OF THE DESIGN

S5.DETAILS OF THE DESIGN
5.1 SYSTEM DESIGN

The system design phase follows system analysis. It provides the information that is to be
fed in the system and how the output is obtained. The design goes through logical and
physical stages of development. Logical design the physical system, prepares input and
output specification,makes the browser send and receive input and output from the
remote server.The physical design maps out the details of the physical system,plans the

system implementation.
5.2 INPUT DESIGN AND OUTPUT DESIGN:

The definition of a well behaved program is one that uses standard input and standard
output. The basic idea is that a program that reads standard input and writes standard
output can read the keyboard or a file, write the screen or a file, without any changes to
the program. This is performed by the operating system through redirection. For example,
the following C++ program reads until a ' ' or blank is entered, converting characters 'A'-

'Z' to lowercase and outputting (note that other characters might be mangled).

Suppose the name of the program executable is lowcase.exe. Once compiled, the program
can be executed several ways.

» lowcase - The input is from the keyboard and output to the screen.

» lowcase < a2z - The input is from the file a2z and output to the screen.

> lowcase > z2a - The input is from the keyboard and output to the file z2a.

» lowcase < a2z > z2a - The input is from the file a2z and output to the file z2a.
Assuming that the a2z file contained the one line:
ABCDE Z 12345
the program would output to the file z2a the characters through the first '’
converted to lowercase as: abcde

» lowcase ABCDE Z 12345 - From the browser as in the second figure below. The
third figure is the resulting output, stopping at the first ' ".

10

5.3 SYSTEM FLOW DIAGRAM

The system flow diagram gives a clear picture of a system, which is a network of
functional processes connected to one another by data. System flow diagrams is
particularly used for operational systems in which the functions of the system are
important. System flow diagrams are used in software engineering field as a notation for

studying system design issues.This provides the functional view of the system.

e

lirowser

The input string fed to the browser is treated as HTML format. The format is then sent to
the server through HTTP. The common gateway interface is used for converting the
HTML format .The CGI produces the script for the given HTML input which is filtered
and transferred to DOS through API.

The output obtained undergoes similar conversion from the script to the HTML format

which is displayed on the client browser.

11

5.4 NETWORK DIAGRAM

The diagram shows the client-server nature of the miniserver. The communication is

done over LAN network via browser.

PORTS:
A port is a special memory location that exists when two computer are in communication
via TCP/IP. Application uses a port number to an identifier to other computers. Both

sending and receiving computers use this port to exchange data.

SOCKET:
Combination of an IP address and port number. It provides point to point, two way

communication between the processes.
WINSOCK:
Winsock is a DLL (Dynamic Link Library) and runs under Windows 3.x, Windows for
WORKGROUPS, WINDOWS NT, AND WINDOWS 95. The WINSOCK.DLL is the
interface to TCP/IP and, from there, on out of the internet.
The diagram shows how it works:

WinSock-compliant Application

WINSOCK.DLL

TCP/IP

Modem or Network card

Network and beyond

12

WINSOCK.DLL actually acts as a “layer” between your Winsock application and
TCP/IP stack.

SERVER
Driver
Graphics \¢——
Classes
BROWSER

EHE &

13

5.5 CODE DESIGN:

In this design an object physical characteristics or performance characteristics or
operational instructions are specified. This can also show the inter relationship and may

sometimes be used to achieve secrecy or confidentiality.
The development methodology is used in the code design. The approach used here is the

top-down approach. Here codes are used for capturing, sending files and signals across

networks.

14

5.6 PROJECT DESCRIPTION

A minimal server has been implemented in a combination of C++ and Assembler as a
starting point. The main project tasks are to: a) translate several of the existing C++

functions into Assembler, b) extend the server to perform additional functions, and c)

implement some useful CGI operations as Assembler programs.

The following diagram illustrates how the browser would get a directory listing of the

server computer. The user typed dir into the browser, which sends the request to the

server, which executes the DOS dir command. The

Browser

[
[

dir *.cpp

{]

Alo1oaln

|
|

dir command prints the directory listing to standard output, which is sent back to the

Remote
Server

dir *.cpp

{

Alo1aal

DO=

server, and finally back to the browser, where it is displayed.

The following three figures depict:

> User input of dir *.cpp to display the directory of only the C++ files.

> The directory results displayed by the browser.

> The server trace window showing the input to the server from the browser and

the output from the dir execution that was sent o the browser.

5.6.1 How the Server Works

The server talks to the browser. Everything the server inputs from the browser, works

with, and sends back to the browser is a string.

15

Browser sends user input "Help" to server. Server recognizes "Help" as an internal

server command.

Handle External
Commands Carmmands

z L Server

Internal
Commands

DOS

Browser help/

Server responds by sending HTML text for the "Help" command.

rows /ﬂnls Handle External
B er \‘dlaq Commands Commands DOS

TE%F Server
D =
L m

Internal
Commands

The server, as illustrated above, gets its input from the browser. This input is just the
string that the person using the browser typed in before hitting the Enter key. The server
examines this input to determine whether either an internal command, one that the server
can handle itself, or an external command, one that the server doesn't have a clue about
and passes on. The server examines the input from the browser and determines whether
the first word the user typed was a server command. Basically, the command tells the
server what internal server function the user wants executed. If the first word is an
internal server command, the server just executes the appropriate C++ or Assembler

function. In the above figure the input is a server command /elp which is handled

16

internally by the server executing the HELP function and sending back a string of help

stuff.

If the server doesn't recognize that first word as a command, the server lets DOS have a
go at executing that word as the name of a DOS program. In the below diagrams, the dir
command is unrecognized by the server so is passed on to DOS which returns a string

containing the server directory listing.

Browser sends user input "dir" to server. Server fails to recognize "dir" as an

internal server command and passes "dir" text to DOS.

. Handle .\ External . \
Browser dir Commands dir Commands dir DOS
Server L
Internal
Commands

DOS executes "dir" returning generated text back to server. Server returns text

From DOS to browser.

17

/gms Handle / Un1s External ynis
Browser \ljgp Commands lp Commands ip DOS
Server
Internal
Commands

The function EXECUTEcmd that distinguishes between internal server and external DOS
commands 1s given below. It receives two strings, command is the command such as dir,

lowcase, echo, etc. and input is the input to the command or program.

For example, if help were entered in the browser, command="help" and input="""that is
the empty string. The function attempts to match command with all the internal
commands ("HELP", "STOP", and "VERSION") so would call the function HELP and
return the output of the HELP function. If echo hello is entered at the browser then

command="echo" and input="hello" and a call of ECHO("hello") is executed.

If lowcase ABCD 1234 were entered in the browser, command = "lowcase” and
input="ABCD 1234". None of the internal commands ("HELP", "STOP", and
"VERSION") would match with lowcase so the command and input would be passed to
the DOS function and the execution output returned. If dir *.exe is entered at the browser,
since it matches neither HELP, ST OP, VERSION, or ECHO a call of DOS("dir", "*.exe")

1s executed.

EXECUTEcmd - Handle Server and DOS commands

extern "C" char * EXECUTEcmd(char command[], char input[]) {
if (STRemp("HELP", STRupcase(command)) == 0)
return HELP();
if (STRemp("STOP", STRupcase(command)) == 0)
return STOP();
if (STRemp("VERSION", STRupcase(command)) == 0)
return VERSION();
if (STRemp("ECHO", STRupcase(command)) == 0)
return ECHO(input);

return DOS(command, input);

18

5.6.2 Extending the Server

The server can be extended by adding new internal commands similar to HELP, "STOP",
and "VERSION". The extensions could be original or expanding upon existing
commands, for example the REGDUMP command which is already functional but only
partially completed. The REGDUMP command displays the CPU eAx, eBx and eCx
register values in hexadecimal, it can be extended to display additional registers, the
stack, memory, etc. The REGDUMP command

display is as follows.

Remote Server

Enter command.

frEGDUNP

elx eBx elx
EAEAEAEL EBEBEBEE ECECECEC

It is important to note that ALL commands must return a pointer to a string. The
characters of the string are passed back by the server to the browser for display. In the
How the Server Works section, the dir command returns a copy of a string from DOS,

which the server returns back to the browser.
The method of extending the server is:

> Add the command to be recognized and the function call to the EXECUT, Ecmd
function. To add the VERSION command enter the two lines of
if (STRcmp("VERSION", STRupcase(command)) == 0)
return VERSIONY);
which matches command enter from the browser with "VERSION" then calls

the VERSION() function.

19

>

Add the prototype of the function called when the command is entered, for the
VERSION function:
extern "C" char *VERSION(void),

Write a C++ pseudocode then the assembler version in one file of the same

name as the function. It is not required that function and file be the same but

reduces confusion.

e Use the same approach from Homework 8. There are several sample
Assembler functions given that can be used as models, including the
VERSION.asm file.

e Assemble the function using (for VERSION.Asm):
tasm /mx /zi version

e Add the object and assembler files to the project.

e Build the project.

e FExecute the server.

5.6.3 Converting Existing C++ Functions to Assembler

There are a number of C++ functions in file student.cpp that can be converted to

Assembler. For example, the steps to converting STRlen to Assembler are:

>

YV V. V V¥V

Delete all but the function prototype, leaving extern "C" int STRlen(const char
s[]s

Convert the C++ to Assembler.

Add the STRlen.obj file to the project.

Build and execute the server.

Test

5.6.4 Adding DOS Commands

Writing a program that runs under DOS but is executed by the server offers the greatest

opportunity for accessing hardware and using BIOS and DOS functions. The DOS

commands can be any executable program that uses standard input and standard output.

20

Otherwise, the programs can be very Osimilar to those implemented earlier in this course,
except of course that GetDec, PutDec, etc. cannot be used for input and output.
Normally, the program would be written entirely in Assembler, using the 16-bit register

set and segment registers.

The output will be displayed in the browser just as it appears when executed at the DOS
prompt. HTML tags can be added to the text to improve the appearance when displayed
by the browser. For example, server output will be displayed as bold faced by the
browser if the text is surrounded by and . For example, bold stuff will

appear as bold stuff.

5.6.5 Design Constraints

The project is designed to be completed in several steps:

1. Start simple - The base project is written in C++ and some Assembler
examples. Get this to work first by building assembling REGDUMP.asm by:
tasm /mx /zi REGDUMP

¢ Build the Project.exe
* Execute to verify that the server works..

2. Remove one C++ function at a time and replace it with the corresponding

Assembler function.
* Delete everything from the first { to the last § of the function. For STRlen
the changes would be:
e extern "C" int STRLEN(char s[]) { int Cx=0; while (Fs++ =10
Cx++; return Cx; }
e extern "C" int STRLEN(char s[]);
* Write the Assembler function.

e STRlen proc Near

21

Ret
¢ Add Assembler object file to project.
* Assemble using tasm /mz /zi filename
® Rebuild all for Project.exe and execute.
3. Test project Assembler functions using same inputs as in Step 1. The results

should be the same.

5.6.6 Suggested Extensions

Other possible extensions are below, are we can devise other, long dreamed of
commands. These may be implemented either internally by adding to the server or

externally as standalone DOS programs.

* DEL - Delete a file or files.

" SWAP - Swap contents of two files.

* TAIL - Display a file from tail to head.

" GREP - Scan a file for occurrences of a string and display lines on which they are
found.

* TYPE - Display a file from head to tail.

= COPY - Copy file to another.

= APPEND - Append a file to another.

* PRINT - Print a file.

* DATE - Print and change system date.

* TIME - Print and change system time.

* DIR - File size, date, etc. to directory command.

* RESOURCES - Display available memory/disk used/available.

* REGDUMP - Extend the REGDUMP function for remaining registers including
eBp and eSp before the call to REGDUMP.

22

IMPLEMENTATION DETAILS

6. IMPLEMENTATION DETAILS

A crucial phase in the system life cycle is the successful implementation of the new
system design. Implementation is the stage of project when the theoretical design is
turned into a working system. Implementation involves creating computer- compatible
files, training the operating staff, and installing hardware, terminals and
telecommunications network (where necessary) before the system is up and running. A

crucial factor in conversion is not disrupting the functioning of the organization.

In system implementation, user training is crucial for minimizing resistance to change
and giving the new system a chance to prove its worth. The training aids include user

manuals, help screens, data dictionary, job aids etc..
There are three types of implementation:
» Implementation of a computer system to replace a manual system
> Implementation of a new computer system to replace existing system

> Implementation of a modified application to replace an existing one, using the

same computer.

23

TESTING

7.SYSTEM TESTING

Testing is an activity to verify that correct system is being built and is performed with
intent of finding faults in the system. Testing is an activity, however not restricted to
being performed after the development phase is complete. But this is to be carried out in
parallel with all stages of system development, starting with requirements specification.
Testing results, once gathered and evaluated, provide a qualitative induction of software
quality and reliability and serve as a basis for design modification if required. A project is

set to the incomplete without project testing.

System testing is process of checking whether the development system is working
according to the original objectives and requirements. The system should be tested
experimentally with the test data so as to ensure that the system works according to the
required specification. When the system is found working, test it with actual data and

check performance.

Software testing is a critical element of software quality assurance and represents the
ultimate review of specification, design and coding. The increasing visibility of software
as a system element and attendant “cost” associated with a software failure is motivation

forces for a well planned, through testing.

7.1 TESTING OBJECTIVES:

The testing objectives are summarized in the following three steps. Testing is the process
of executing a program with the intent of finding an error. A good test case is one that has
a high probability of finding an as yet undiscovered. A successful test is one that

uncovers as-yet-undiscovered error.

24

7.1.1 TESTING PRINCIPLES:

All tests should be traceable to customer requirements. Tests should be planned long
before testing begins, that is, the test planning can begin as soon as the requirement
model is complete. Testing should be “in the small” and progress towards testing “in
large”. The focus of testing will shift progressively from progressively from programs, to
individual modules and finally to the entire project. Exhaustive testing is not possible. To

be more effective, testing should be one, which has highest probability of finding errors.

The following are attributes of good test:

® A good test has a high probability of finding an error
e A good test is not redundant
e A good test should be ““ best of breed”

* A good test should be neither too simple nor too complex

7.2 LEVELS OF TESTING:

The details of the software functionality tests are given below. The testing procedure that

has been used is as follows

e Unit Testing
¢ Integration testing
e Validation testing

e Output testing

25

7.2.1 UNIT TESTING:

Unit testing is carried out to verify and uncover errors within the boundary of the smallest
unit or a module. In this testing step, each module was found to be working satisfactory
as per the expected output of the module. In the package development, each module is
tested separately after it has been completed and checked with valid date. Unit testing
exercises specific paths in the modules control structure to ensure complete coverage and

maximum error detection.
7.2.2 INTEGRATION TESTING:

Integration testing address the issues associated with the dual problems of verification
and program construction. After the software has been integrated a set of high-order test
are conducted. The main objective in this testing process is to take unit tested modules
and build a program structure that has been dictated by design.

The following are the types of Integrated Testing:

7.2.2.1 TOP-DOWN INTEGRATION:

This method is an incremental approach to the construction of program structure.
Modules are integrated by moving downward through the control hierarchy, beginning
with the main program module. The module subordinates to the main program module.
The module subordinates to the main program module are incorporated to the structure in

either a depth first or breath-first manner.
7.2.2.2 BOTTOM UP INTEGRATION:

This method designs the construction and testing with the modules at the lowest level in
the program structure. Since the modules are integrated from the bottom up, processing

required for modules subordinate to given level is always available and the need for stubs

26

is eliminated. The bottom up integration strategy may be implemented with the following

steps:

* The low level modules are combined into clusters that perform

a specific software sub-function.

® A driver (i.e.) the control program for testing is returned to

coordinate test case input and output.

e The cluster is tested.

¢ Drivers are removed and clusters are combined moving

upwards in the program structure.

7.2.3 VALIDATION TESTING:

At the end of integration testing, software is completely assembled as a package,

interfacing errors have been uncovered and correction testing begins.

7.2.3.1 VALIDATION TEST CRITERIA:

Software testing and validation is achieved through a series of black box tests that
demonstrate conformity with the requirements are achieved, documentation is correct and

other requirements are met.

7.2.4 OUTPUT TESTING:

Output testing is a series of different test whose primary purpose is to fully exercise the
computer based. Although each test has a different purpose all the work should verify

that all system elements have been properly integrated and perform allocated functions.

27

Output testing is the stage of implementation, which is aimed at ensuring that the system
works accurately and efficiently before live operations commence. The input screens,
output documents were checked and required modifications made to suit the program
specification. Then using the rest data prepared, the whole system was tested and found

to be a successful one.

28

CONCLUSION AND FUTURE
OUTLOOK

8. CONCLUSION AND FUTURE LOOK
8.1 CONCLUSION:

The complete design and development of the system is presented in this dissertation. The

system has user-friendly features. It is possible for any user to use this system.

The programming techniques used in the design of the system provide a scope for further
expansion and implementation of any changes, which may occur in the future. The
system has been tested by connecting with many systems and they provide satisfactory

performance.

This system is developed with the specifications and abiding by the existing rules and

regulations of the company.

Since the requirements of any organizations and their standards are changing day by day
the system has been designed in such a way that its scope and boundaries could be
expanded in future with little modifications. As a further enhancement this system can be

integrated with any other system.

This system has been developed using Visual C++. The main aim behind the
development of this system is to provide a solution for the client to execute DOS

commands through browser.

8.2 LIMITATIONS:

This project is very simple and easy to implement. This project is working properly. This
project is a successful one and this can be implemented easily. The system developed can
monitor only one system at a time. It can be run only in windows platform. The system
can monitor only those systems connected in one server and not many servers. The future

enhancement can monitor multiple systems at a particular time.

29

8.3 FUTURE ENHANCEMENTS:

There are many features that can be added to the system. Due to the insufficient time it
could not be incorporated in this system.

The future enhancements that can be provided are:

* Access to multiple clients at a particular time.

* Monitoring the system of another server from a server.

30

REFERENCES

9. REFERENCES

1.David J. Kruglinski, George Shepherd, Scot Wingo,
“Programming Microsoft Visual C++7,

Microsoft Press; Fifth Edition , 199 %

2 Richard C. Leinecker and Archer Tom,
“Visual C++ 6 Programming Bible”,

IDG Books India (P) Ltd; Fifth Edition. , /2% 7
3. Roger S. Pressman

“Software Engineering and Application”,
McGraw Hill; Fourth Edition

4.John Paul Mueller)

“Visual C++ 6 from the Ground up”,

Tata McGraw Hill. /199¢ o

5.MSDN Library

Web-sites:

www.codesheaven.com

www.SDKnet.com

www.codeguru.com

www.microsoft.com

31

APPENDIX

10. APPENDIX

10.1 SAMPLE CODING
SERVER MODULE

// Visual C++ Project | Settings | Link | Object/Library modules | ws2_32.1ib

#define WIN32 LEAN AND MEAN
#include <winsock2.h>
#include <iostream.h>

#include <stdlib.h>

#include "student.cpp"
#include "pipe.cpp”

#include "network.cpp"

// STRnew - Returns a pointer to memory allocated of specified length
extern "C" char * STRnew(int length) {

return (new char[length]);

// execute - Parse COMMAND and input from browser request. Execute and return
output
// string. The broswer request is in one of two forms, always terminated by a space:
/! command=COMMAND<sp>
// command=COMMAND-input1+input2+...<sp>
char * execute(char clientinput[]) {

char *command, *s, *input="";

int index1, index2;

if((index 1=STRindex("command=", clientinput)) '=-1) { // Not initial

connection

32

index 1=index1+8§;
index2=STRtoken(" \n\r",clientinput+index1);
if (index2 !=-1) {
clientinput[index 1+index2]="0"; //
Terminate GET input
CHARTrep(clientinput+index1, '+','"); //All+to"!
index2=STRtoken(" ",clientinput+index1);
if(index2==-1)

index2=STRlen(clientinput+index1); /l" No
blank found
else
index2-++;
// Remove blank

input = STRnew(STRlen(clientinput+index1+index2)+1);
STRcpy(clientinput+index 1+index2, input);
clientinput{index 1+index2]="0"; //

Terminate after command

}
command = STRnew(STRlen(clientinput-+index1)+1);

STRcpy(clientinput+index 1,command);
STRtrim(command);

s = EXECUTEcmd(command, input);

delete(command);
delete(input);

}

else {
s=STRnew(1);

// Must return valid string

s[0]="0";

33

return s;

}

// process - Process the input from the browser by:

// 1. Executing the user command request,

/! 2. Wrapping the execution output between <pre> and </pre> for HTML
formatting.

/! 3. Adding the user text box for the next request.

char * process(char clientinput[]) {

static const char *pre = "<pre>";

“static const char * pre = "</pre>\n\n";

static const char *title = "<H2>Remote
Server</H2>Enter command.";

static const char *action = "<form action=\"\"" method=\"GET\">";

static const char *input = "<input type=\"text\" name=\"command\" size=50>":

static const char *form = "</form>\n\n";

char *s, *t;

s = execute(clientinput);

t = STRnew(STRIen(s)+STRlen(pre)+STRlen(pre)+STRlen(title)+
STRlen(action)+STRlen(input)+STRlen(form)+1);

STRcpyf(title, t); // Add user input box

STRcat(action, t);

STRcat(input, t);

STRcat(form, t);

STRcat(pre, t); // Pre-formatted output automatically

STRcat(s,t);
STRcat(_pre, t);

34

delete(s);
return t;
}
// RemoteServer
void main(void)
{
char *inbuffer, *outbuffer;
SOCKET s, h;
struct sockaddr in sin;
int port=80;
cout << "Remote Server Running\n\n"; flush(cout);
if(startServer(port, s, sin) != 0) {
cout << "startServer() failed with error " << WSAGetLastError() << "n';
return;
}
while(1) {
if((h=connectClient(s,sin))==NULL) { //" Accept incoming
connection
cout << "connectClient() failed with error " <<
WSAGetLastError() << '\n';
return;
}
inbuffer = receiveClient(h);
cout << "\nServer Input\n" << inbuffer << "\n"; flush(cout);
outbuffer = process(inbuffer);
cout << "Server Output\n" << outbuffer << "\n\nCtrl C to stop server\n";
flush(cout);
sendClient(h,outbuffer);
delete(outbuffer);
delete(inbuffer);

35

PIPE MODULE

#include <windows.h>

#define BUFSIZE 4096

HANDLE hChildStdinRd, hChildStdinWr, hChildStdinWrDup,
hChildStdoutRd, hChildStdoutWr, hChildStdoutRdDup,
hInputFile, hSaveStdin, hSaveStdout;

BOOL CreateChildProcess(char cmd[]);
char *WriteToPipe(char input[]);
char *ReadFromPipe(VOID);

char *errorMessage(char s[]);

char * DOS(char cmd[], char input[])
{

SECURITY_ ATTRIBUTES saAttr;
BOOL fSuccess;
char *mputCopy = new char{strlen(input)+3];

char *writeResult;

strepy(inputCopy, input);
strcat(inputCopy, "\r\n"); // Add \n\r to terminate any input

// Set the blnheritHandle flag so pipe handles are inherited.
saAttr.nLength = sizeof(SECURITY ATTRIBUTES);

saAttr.bInheritHandle = TRUE,;
saAttr.IpSecurityDescriptor = NULL;

36

// 'The steps for redirecting child process's STDOUT:

/I 1. Save current STDOUT, to be restored later.

/I 2. Create anonymous pipe to be STDOUT for child process.
/I 3. Set STDOUT of the parent process to be write handle to
% the pipe, so it is inherited by the child process.

//" 4. Create a noninheritable duplicate of the read handle and
// close the inheritable read handle.

/! Save the handle to the current STDOUT.

hSaveStdout = GetStdHandle(STD _OUTPUT HANDLE);

/I Create a pipe for the child process's STDOUT.

if (! CreatePipe(&hChildStdoutRd, &hChildStdoutWr, &saAttr, 0))

return errorMessage("Stdout pipe creation failed\n");

/' Set a write handle to the pipe to be STDOUT.

if (! SetStdHandle(STD_OUTPUT_HANDLE, hChildStdoutWr))
return errorMessage("Redirecting STDOUT failed");

// Create noninheritable read handle and close the inheritable read

// handle.

fSuccess = DuplicateHandle(GetCurrentProcess(), hChildStdoutRd
GetCurrentProcess(), &hChildStdoutRdDup , 0,
FALSE,
DUPLICATE_SAME ACCESS),

1f('fSuccess)

2

return errorMessage("DuplicateHandle failed");

37

CloseHandle(hChildStdoutRd);

// The steps for redirecting child process's STDIN:

/I 1. Save current STDIN, to be restored later.

/I 2. Create anonymous pipe to be STDIN for child process.
/" 3. Set STDIN of the parent to be the read handle to the

// pipe, so it is inherited by the child process.

/" 4. Create a noninheritable duplicate of the write handle,

// and close the inheritable write handle.

// Save the handle to the current STDIN.

hSaveStdin = GetStdHandle(STD_INPUT HANDLE);

// Create a pipe for the child process's STDIN.

if (! CreatePipe(&hChildStdinRd, &hChildStdinWr, &saAttr, 0))
return errorMessage("Stdin pipe creation failed\n");

// Set a read handle to the pipe to be STDIN.

if (! SetStdHandle(STD INPUT HANDLE, hChildStdinRd))
return errorMessage("Redirecting Stdin failed");

// Duplicate the write handle to the pipe so it is not inherited.

fSuccess = DuplicateHandle(GetCurrentProcess(), hChildStdinWr
GetCurrentProcess(), &hChildStdinWrDup, 0
FALSE, // not inherited
DUPLICATE_SAME ACCESS);

if (! fSuccess)

K

2

38

return errorMessage("'DuplicateHandle failed");

CloseHandle(hChildStdinWr);

// Now create the child process.

if (! CreateChildProcess(cmd)) { // Program execution failed, try as DOS command
if (! CreateChildProcess("cmd.exe")) // NT cmdexe failed, try
command.com
if (! CreateChildProcess("'command.com")) // Win98/98 failed also
return errorMessage("Cmd.exe and Command.com execution
failed\n");
char *e="\n\rEXIT\n\r";
char *s = new char[strlen(inputCopy)+strlen(cmd)+strlen(e)+2];
strepy(s,cmd);
strcat(s,” ");
strcat(s,inputCopy);
strcat(s,e);
delete(inputCopy);
inputCopy=s;

// After process creation, restore the saved STDIN and STDOUT.

if (! SetStdHandle(STD_INPUT HANDLE, hSaveStdin))

return errorMessage("Re-redirecting Stdin failed\n");

if (! SetStdHandle(STD_OUTPUT_HANDLE, hSaveStdout))

return errorMessage("Re-redirecting Stdout failed\n");

// Write to pipe that is the standard input for a child process.

39

if ((writeResult=WriteToPipe(inputCopy)) != NULL)
return writeResult;
delete(inputCopy);

// Read from pipe that is the standard output for child process.

return ReadFromPipe();

BOOL CreateChildProcess(char cmd([])

{
PROCESS_INFORMATION piProclnfo;

STARTUPINFO siStartInfo;

// Set up members of STARTUPINFO structure.

ZeroMemory(&siStartInfo, sizeof(STARTUPINFO));
siStartInfo.cb = sizeof(STARTUPINFO);

// Create the child process.

return CreateProcess(NULL,

cmd, // command line
NULL, // process security attributes
NULL, // primary thread security attributes
TRUE, // handles are inherited

0, // creation flags

NULL, // use parent's environment

40

NULL, // use parent's current directory
&siStartInfo, // STARTUPINFO pointer
&piProclnfo); // receives PROCESS_INFORMATION

char * WriteToPipe(char input[])

{
DWORD dwWritten;

WriteFile(hChildStdinWrDup, input, strlen(input), &dwWritten, NULL);

// Close the pipe handle so the child process stops reading.

if (! CloseHandle(hChildStdinWrDup))
return errorMessage("Close pipe failed\n");
else

return (NULL);

char *ReadFromPipe(VOID)

{
DWORD dwRead;

CHAR chBuf[BUFSIZE];
HANDLE hStdout = GetStdHandle(STD OUTPUT_HANDLE);
char *newReturnBuffer, *returnBuffer=new char[1];

returnBuffer[0]="0";

// Close the write end of the pipe before reading from the
// read end of the pipe.

if (!CloseHandle(hChildStdoutWr))

41

ASSEMBLY LEVEL LANGUAGE CODING FOR USER DEFINED
COMMANDS

LOWCASE CONVERSION

CODE Segment

Main Proc Far

Assume Cs:CODE

do: Mov Ah, 7
Int 21H
Or Al, 20h
Mov DI, Al
Mov Ah, 2
Int 21H
while: Cmp DL "’

Jne do

Mov Ah, 4ch

Int 21H
Main Endp

CODE Ends

End Main

43

VERSION COMMAND

386
Model Compact, C

Extrn STRnew:near, STRcpy:near, STRlen:near
Public VERSION

.DATA
versionstr db "<h2>Remote Server Version 2000</h2>",0
.CODE
VERSION Proc Near ; extern "C" char * VERSION(void){
Push eBp ; static char *versionstr = "<h2>Remote Server Version
2000</h2>";
Mov eBp, eSp ; char *retstr = STRnew(STRlen(versionstr)+1);

. STRepy(versionstr, retstr);
; return retstr;
> 3

Push Offset versionstr

Call STRlen

Add eSp, 4
Add eAx,1
Push eAx
Call STRnew
Add eSp, 4
; €AX points to memory
Push eAx ; Save eAx before STRcpy
Push eAx

Push offset versionstr
Call STRcpy
Add eSp, 8

44

Pop eAx ; Restore eAx after call to STRcpy

Mov eSp, eBp
Pop eBp
Ret

VERSION Endp
End

45

FEW MICROSOFT DOS COMMANDS

ARP-The arp command is used to change the IP address on a network card

DOS-Date can be used to look at the current date the machine is set to as well as changed

if new date is entered.

CLS-Cls is a command which allows the user to clear the complete contents of the screen

and leave only a prompt.

ECHO-Echo is used to repeat the text typed in back to the screen and or can be used to

echo to a peripheral on the computer such as a COM port

DIR-The dir command allows you to see the available files in the current and or parent

directories.

Keyb-Keyb is used to change the layout of the keyboard used for different countries.

LABEL-Label is used to label the computer

MEM-Allows you to determine the available, used and free memory.

RENAME-Used to rename files and directories from the original name to a new name.

TREE-Allows the user to view a listing of files and folders in an easy to read list

46

Remote Server

Enter command.

Microsoft (R} Windows 95
{C)Copyright Microsoft Corp 1981-1996.

C:vayC3354Chgserver>DIR *.cpp
Volume in drive C has no label

Voluwe Serial Number is 145C-12EB
Directory of C:V\d\C335%C\server

SERVER CPP 6,626 11-10-89 10:19p server.cpp
PIPE CPP 6,037 11-10-99 B3:30p pipe.cpp
NETWORK CPP 2,080 11-10-99 7:45p network.cpp
3 file(s) 14,743 byres
0 dir (=) 2,059.37 MB free

C:NdAYC338\Chserver>EXIT

48

49

Remote Server

Enter command.

|lowcase ABCDE z 12345

Remote Server

Enter command.

abcde

50

