Network Monitoring System

For P_ J109
InfoTech Global (India) Ltd.
Project Report

Submitted in partial fulfillment of the requirements for the award of the degree of
M.Sc. Applied Science (Software Engineering)
Bharathiar University,
Coimbatore.

Submitted By

B.C. SANTHOSH KUMAR
Reg. No. 993750088

Guided By

Mr. G. Baskar, (External Guide)
Miss. C.S. Sowmya M.E., (Internal Guide)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE — 641 006

CERTIFICATE

This is to certify that this project work entitled

“Network Monitoring System”

Submitted to

KUMARAGURU COLLEGE OF TECHNOLOGY

In partial fulfillment of the requirements for the award of the degree
of
M.Sc. APPLIED SCIENCE (Software Engineering)

The record work done by

B.C. SANTHOSH KUMAR
Reg. No. 993750088

During his period of study in the Department of Computer Science and Engineering,
Kumaraguru College of Technology, Coimbatore — 641 006, under my supervision and
guidance and this project work has not formed the basis for the award of any guidance
and this project work has not formed the basis for the award of any degree/ Diploma/
Associate ship/ Followed or similar title to any candidate of any university.

S jL ‘,6,,4 , Q,E&WWN

Professor and Head Staff-in-charge

Submitted for University Examinations held on 3 003/ 200k ...

| AN NS

In

ternal Examiner External Examiner (> €Y/

L ‘ cRisp

ATES

Date: 14.03-2004

To Whomsoever It May Concern

This is to certify that Mr. B. C. Santhosh Kumar M.Sc (Software
Engineering), Kumaraguru College of Technology, Coimbatore has successfully
completed the project “Network Monitoring System” in our organization from
December 2003 to March 2004.

Q. During the period the conduct of the student was good.

Thanking You

Yours truly
For Infotech Global (India) Ltd

G. Ruban
Director - Executions

DECLARATION

I hereby declare that the project work entitled

Network Monitoring System

Done at

InfoTech Global (India) Ltd.

and submitted to

Kumaraguru College of Technology

In partial fulfillment of the requirements for the award of the degree
M.Sc. APPLIED SCIENCE (Software Engineering)

Is a report of work done by me during my period of study in Kumaraguru College of
Technology, Coimbatore — 641 006

Under the supervision of

Mr. KR. Baskaran BE., M.S,,
Assistant Professor, Dept of Computer science & Engineering.
Kumaraguru College of Technology, Coimbatore.

/ v /’/,./
ﬁ(‘ O/N % -
Signature of the Candidate
(B.C. Santhosh Kumar)

Place : Coimbatore
Date : '

Staff-in-charge

Mr. KR. Baskaran B.E, M.S,,

Assistant Professor, Dept of Computer Science & Engineering,
Kumaraguru College of Technology, Coimbatore.

ACKNOWLEDGEMENT

/

To add meaning to the perception, it is my indebtedness to honor a few who

had helped me in this endeavor, by placing them on record.

With profound gratitude, I am extremely thankful to Dr.K.K.Padmanaban
B.Sc. (Eng), M.tech, Ph.D., Principal, Kumaraguru College of Technology, Coimbatore
for providing me an opportunity to undergo the MSc - APPLIED SCIENCE SOFTWARE
ENGINEERING course and thereby this project work also.

I extend my heartfelt thanks to my Computer Science & Engineering
Department head, Prof.Dr.S.Thangasamy B.E (Hons), Ph.D., for his kind advice and

encouragement to complete this project successfully.

It’s my privilege to express my deep sense of gratitude and profound thanks to
Mr.G.Baskar, NMS Project Manager, InfoTech Global (India) Ltd, Bangalore for having
allowed me to do my project work in his esteemed team and for helping me in all means

in successful completion of this project work.

Gratitude will find least meaning without thanking my course coordinator
Mr.K.R.Baskaran B.E, M.S., Assistant Professor, Dept of Computer Science &
Engineering and guide Ms. C.S. Sowmya M.E. for the valuable guidance and support
throughout my project.

Words are boundless for me to express my deep sense of gratitude and
profound thanks to Mr.V.Deepak, Mr.Hegde and all my associates at IGI, for all their

kind guidance and encouragement towards my projeét work.

My gratitude is due to all staff members of CSE department, my parents and
all my friends for their moral support and encouragement for successful completion of

my project.

B.C. Santhosh Kumar.

Abstract

The project is done at InfoTech Global (India) Ltd, Bangalore; the
main purpose of this project is to develop a Network Monitoring System
to supervise the network by collecting the information from diverse parts
of the network. This Project entitled “Distributed Network Monitoring in
Client/Server Systems” is developed using ANSI C and QT for Interface

Designing.

Emerging Network applications will push the limits of available
network bandwidth. Two critical services are required to guarantee
maximum efficient use of the network resources. The first is a unit for
monitoring the performance of each component within the system. The
second is a system for monitoring current network characteristics and
providing this information to network-aware applications, which can
effectively adapt to the current network conditions. Both capabilities
require an adaptive monitoring infrastructure: a monitor data
publishing mechanism and a monitor data analysis tools (logging
engine). This project will develop a service that will provide both of these

capabilities.

The NMS is composed of two parts. The first part is Data Analyzer,
the information gatherer, called the logging engine that resides on all the
computers making up the virtual environment. The logging engine is
designed, so that it runs for all users. The second part of the system is
the data publisher called dashboard that loads according to the user
privileges. A dashboard contains a complete customizable interface

where the user can customize the functionality of the NMS to ones needs.

Contents

/———_—_

o P N0 W

1.1
1.2

1.3
1.4

. INTRODUCTION
Organization Profile.............oooooi
Problem Definitioncooeeeeiiniiie e
1.2.1 ObBJECHVE.eeveeie et aeeiieee et e e
EXiStng SYStEm.ooooiiiin i
Proposed SyStem. ..o

SYSTEM ANALYSIS

21
22
23
24
25

System Requirements.oooomrrinimr
Scope of the SYStemooooiir i
System Environmentoooooi
System Modelingcooooveiiii
Justification of the Development Methodology..................

SYSTEM DESIGN

3.1
32
33

MOAUIE DESIZN ee e eee e e
PrOCESS VIBW. .. oot et et e e e e e e e e

Implementation VIEW... ..o

SYSTEM IMPLEMENTATION

4.1

42

43

Testing and Test Plan... ..o
Testing Methods....oooiin
Installation of the SYStem.viveiinmmniiniin e

REFERENCES
APPENDIX A
APPENDIX B

10
12

14
.20
25

27
28
32
33
34

INTRODUCTION

/

1.1. Organization Profile

InfoTech Global (India) Ltd is a unit of the renowned IGI Group,
which in past 10 years has established in Southern India in the field of
engineering education and research, committed to provide support to
small, medium and large corporations in the development and
management of software essential to their needs over the entire life cycle
of a system, providing expert services and support for "change
management" in software systems allowing your organization to focus on
its core business, offering the expertise of experienced individual
software consultants, as well as an off-shore facility with a state-of-the-
art information technology infrastructure, software services in Web
Based Applications and e-commerce, Client-Server (Two-Three and N-
Tier Technology), Group Ware and Workflow, Multimedia and Computer
Graphics, CAD,CAM.

InfoTech Global (India) Ltd is one of the fastest growing software
companies. It has many branches and strategic alliances located all over
the world; their world wide registered Global head office is located at
Bangalore. InfoTech Global (India) Ltd is currently having more than 250
strong, well-qualified team of Software and project management team,
with well proven track record in handling large multinational projects
and developing products for the global market place, with latest
technology & tools, proven on-time delivery records, cost effectiveness

and best of quality.

1.2. Problem Definition

The network has to be managed in order to optimize the utilization.
It is very difficult to monitor the network manually. There is a need for a
system to manage the network automatically, so that the performance of
the network can be improved, the resource utilization can be reduced

and intruders can be detected.

A stealth-monitoring utility is needed which provides the PCs
equivalent of the security camera (and much more), causing no

disruption to working practices or draining network resources.

Any user should able to know the status of the network and the

state of the individual PCs in the network sitting at any point.

Identifying performance bottlenecks and tuning clusters requires
accurate load and status information of all parts of the system. An ideal
monitor should be easy to configure and provide centralized graphical,
real-time feedback without interfering with the system it measures. Such
a tool must provide timely, accurate information even for systems under

extreme load without causing an overhead to the network by itself.
The NMS attempts to meet these goals.

1.2.1. NMS Objective

The NMS is used to supervise the network by collecting the
information from diverse parts of the network. It performs various
types of monitoring like performance monitoring, account

monitoring, system auditing and network traffic. NMS also

provides utilities for the user to meke the resource utilization

easier.

NMS

Notifies the status of the memory, hard disks.
Maintains secured log files.

Clears and updates the log files on periodic basis.
Generates query-based reports as per the user needs.
Does client auditing

Does network traffic analysis

Lists workstations on the network

Displays notification banners

vV VV V V V VY VYV

Provides utilities for resource sharing and information

exchanging.

1.3. Existing System

Several utilities like XStat, PMgr and NSpy provide most of the
monitoring features with one serious omission, continuous information
under extreme load. These tools typically employ a user-level daemon
process or sometimes a remote procedure call to monitor system

activities.

On a system under heavy load or one spending long amounts of
time inside the kernel, these tools are arbitrarily delayed since it take its
own time to execute itself to gather information, manipulate information
and transmit the information to the requested client. These tools act as

having a server component & a client component interacting at different

levels. So this makes the monitoring always possible from only one

location mainly the server.

This leads to a drawback like not being able to obtain the history of
the network at different levels, because any failure or tampering of

recorded information in the server leads to loss of information.

There are no possible ways to secure the log files. There are no
encrypted log files. So anyone can view the logs and can modify it.
Password protected log files are therefore a must. There are no built-in
customizable messages to notify the PC user that the working

environment is monitored with a monitoring program.

In general the existing systems
» Are not distributed
Detects network traffic.
Doesn’t maintain log files with security.

Doesn’t do client side auditing.

vV V V VY

Measures the performance of all nodes connected in the

network.

1.4. Proposed System

The proposed system is distributed network monitoring in
client/server systems. The approach is placing the information gatherer
(logging engine) inside the operating system, invoked at regular intervals
using the system’s soft clock interrupt handler, independent of
scheduling disciplines which were applied for the application programs

and the OS initiated processes.

The logging engine constructs and queues a simple network packet
containing the current system status, updates it in a state table and
broadcast it to other clients. The information gatherers constitute a
network service, convened with the data publisher (dashboard) at user

level.

NMS allows you to log all keystrokes, user names, passwords,
path names, access times and window titles, then send the log file by

broadcasting invisibly.

The NMS’s dashboard is provided with high user interface where
the user is able to set the log file size, file name, passwords, setting time
delays, built-in customizable message to notify the PC user regarding the
monitoring program since one should be indicated regarding the
surveillance. The user can customize the text of the popup messages or

banners according to the user’s needs.

There are possible controls for the user to start or stop the logging
engine whenever needed. The user can also customize it to load along

with the OS.

Backing up the log files, resource sharing, mapping to virtual drive
(thru NFS), a chat panel, and file related activities for set of file, for
individual files, are the key feature of the NMS.

The NMS
>

Vv

The NMS

Detects network traffic and generates notification on
network overload.

Audits multiple clients dynamically.

Maintains secured log files and generates query based
reports.

Provides higher level of user interaction

Notify the CPU breakdown (user, system, intruders, and
idle.)

Notify the device status (read/write bytes, busy
percentage)

Notify the Memory usages

Notify the file activities

Provide file related utilities and communication utilities

for the user.

will be a heavy base for monitoring stand alone as well as

PCs in a network.

SYSTEM ANALYSIS

/

2.1. System Requirements

< Hardware Requirements

» Network enabled Workstations with Intel 80X86(or its
clones) capable of running Linux.

» Bus/Star based interconnection network

<4 Software Requirements

» Linux (Kernel - 2.2.16 or higher)
» ANSI C/C++ compiler for Linux platform
» QT for Interface Designing

< Functionality Requirements

» State Table: The key mechanism in the NMS is the state
table, which is maintained at every client and updated at
intervals. Analyzing the state table the information of the

network at a particular instance can be gathered

> Task Control Mechanisms: The NMS provides
mechanisms for spawning a task on a local/remote host,
killing a task, signaling a task apart from other message

passing routines.

> Message Passing Mechanisms: Various message-passing
primitives are implemented in this NMS. These routines

follow an asynchronous mode of communication.

> Group Communication: NMS has facilities to address a
group of tasks together. Various group operations like

broadcast, multicast are implemented.

2.2. Scope of the System

The scope of this system 1is to provide a network monitoring
solution. The system can be used by any PC User, a network
administrator for any kind of network utilization like a file operation, a

chat or a surveillance tool.

The boundary of the system is limited to Intranet at present and

the future enhancement takes it to the Internet.

2.3. System Environment

< Development Environment
The NMS has been developed using C/C++ language & QT
on Linux platform. GNU C/C++ compilers were used for the

development of the system.

< Implementation Environment
It is mandatory that each workstation be configured for NFS
(Network File System) for file sharing between the nodes in the

2
L X4

7
o

7
0’0

cluster. Also as every user requires identical logins in each of the

workstations, the presence of NFS in the network is assumed.

Network Monitoring

Network Monitoring is closely watching the network and
recording the activities in the network called auditing. A network is
audited. This auditing applies to each and every client available in

the network.

Network Monitoring Tool

Software which does Network Monitoring is known as

Network Monitoring Tool. It acts like a video camera for a network.

Distributed Network Monitoring

Distributed Network Monitoring is monitoring the network
from different places and placing the reports in a distributed
fashion. The main issue to be considered is consistency of data.
The reports should be consistent. At any terminal the report

generated should be same.

About QT

Qt is a cross-platform C++ GUI application framework. It
provides application developers with all the functionality needed to
build state-of-the-art graphical user interfaces. Qt is fully object-
oriented, easily extensible, and allows true component

programming.

Since its commercial introduction in early 1996, Qt has
formed the basis of many thousands of successful applications
worldwide. Qt is also the basis of the popular KDE Linux desktop
environment, a standard component of all major Linux

distributions.

Qt is released in different editions. Qt Enterprise Edition and

Qt Professional Edition for commercial software development.

2.4 System Modeling

The NMS is composed of two parts. The first part is Data Analyzer,
the information gatherer, called the logging engine that resides on all the
computers making up the virtual environment. The logging engine is
designed, so that it runs for all users. The second part of the system is
the data publisher called dashboard that loads according to the user
privileges. A dashboard contains a complete customizable interface

where the user can customize the functionality of the NMS to ones needs.

An exemplary diagram of the NMS computing model is shown in

Figure 2.1. An architectural view of the NMS is shown in Figure 2.2.

Supervisor Mode

Operator Mode

Figure 2.1 NMS Computational Model

History,
Dashboard/
logging engine

Dard
logging engine

Dashboard/
logging engine

Figure 2.2 NMS Architectural Overview

The C language procedures for the NMS user interface are
implemented as functions, following the general conventions used by
most C systems, including Unix-like operating systems. The Graphical
User Interface (GUI) is given for the dashboard using QT, a cross-
platform GUI framework for Linux where the C language procedures are

given a handle.

The NMS messages are uniquely identified by the Message
Transmission Manager and the Message Recipient Manager available in

the logging engine.

2.5 Justification of the Development Methodology

Incremental Model is the software process model used for the
development of this system. The whole project was decomposed into
different phases based on the requirements, and a step-by-step
implementation of each phase was carried out. As this system is radically
different from other software systems, and the software process was not
very clear during the commencement of the project, evolutionary software
process models seemed to be the ideal ones. Unlike spiral model, the
incremental model does not require risk assessment expertise, and hence
seemed to be the apt strategy to be adoptéd for the development of the

system.

The NMS is built using C/C++ and QT on Linux platform. As Linux
is the most preferred operating system for compute intensive, real-time
and scientific computations, it serves as felicitous platform for making a
Distributed NMS. The system uses internal data-structures queues and
linear lists. C++ was preferred over C to implement these data-structures
as it provides object-oriented features, which is necessary to manage the
complexity of the system. Apart from the implementation of these data-
structures, the rest of the system is built using ANSI C constructs. The
internal communication between various processes in the system is

realized through synchronous sockets.

SYSTEM DESIGN

f/_—————————_

3.1 Module Design

< The Main Module — NMS

The Prime modules in NMS are
> Data Analyzer (logging engine)
» Date Publisher (dashboard)
» Utility
» Log Generator

Figure 3.1 shows how NMS acts to different user privileges.

Check User Supervisor Mode

> Log Generator

Operator Mode

Figure 3.1 Loading NMS

®
o

The NMS operates in two modes namely
» Supervisor Mode
» Operator Mode

The Supervisor mode is one where the user having
supervisor privileges can access the full functionality of the NMS.

All available prime modules are initialized.

The Operator mode is one where the end-user is logged, the

data publisher is not initiated in this mode.

Data Analyzer

The Data Analyzer is responsible for information gathering
and logging the information collected in files and making them
available in a distributed manner. The Data Analyzer is a

collection of sub modules interacting among themselves.

Each and every sub modules available in the Data Analyzer
is made to interact with the Log Generator, a separate module for

the information logging operations.

The modules available in the Data Analyzer are listed below

System Analyzer
System Auditor

Fault Analyzer
Network Auditor
Resource Analyzer
Manager-Transmission
Manager- Reception
State Table Generator
State Table Recorder

vV VV V VY V VY Y Y

The System Analyzer is responsible for checking the

hardware present in individual systems available in the network.

The System Auditor is responsible for the user activities in
each system. The user activity is recorded at regular intervals and

then broadcasted. The state table and the log files are updated.

The Fault Analyzer is responsible for checking the network

faults, i.e. break in the path (no physical link between two clients)

The Network Auditor is responsible for tracking the traffic in
the network. It takes care of the network load and updates the logs

at regular interval. The information from the network auditor is

used for remedies.

The Resource Analyzer is used to check whether the system

is available in the network. The analyzer not only checks the

clients but also finds the peripherals like printers, scanners

available in the network.

The Manager-Transmission is responsible for getting the
message from different sub modules and framing the appropriate

headers to the messages and sending the message.

The Manager-Reception is responsible for receiving the
messages from the co-modules available in the parent client as
well as the co-clients. It takes care of deframing the framed

messages received and distributing it to appropriate co-modules.

The State Table Generator is responsible for generating a

state table and updating it in other clients.

The State Table Recorder writes the current state table to the

physical medium.
Data Publisher

A data publisher contains a complete customizable interface
where the user can customize the functionality of the NMS to ones
needs. The user with supervisor privileges can only access the data

publisher.

The data publisher is provided with a graphical use interface
(GUI) from which the user can easily customize his setting for X-
window Systems. The data publisher also works with a CUI

environment.

The prime modules of the data publisher are
» Customize Manager

» Report Generator

The Customize Manager can be used to set the intervals for
logging, refreshing the physical medium, placing the history at the
server, clearing all logs after backing-up, number of days a log can
retain, the size of the log files, naming the log files, place of
distribution, start/stop logging engine along with OS, setting up

the user controls.

The Report Generator is the user level interface which is used
to extract the information from the logs maintained, from the state
tables using various requirement parameters like date and time

ranges, user names and system names from the user.

Utility

The utility module is the set of utilities for the users to make

use of the available resources to higher extents.

The sub-modules of the utility module are
Chat

Resources Tracker

Information Tracker

Information Manipulator

vV VV V V

Virtual Drive Mapping

The Chat is a simple communication utility for the users to
exchange messages. There is possibility for one-one, one-many

and many-one communication.

2
0.0

The Resources Tracker is used to find the computer in the
network. This is similar to a find computer utility available in the

network neighborhood application of Microsoft.

The Information Tracker is used to find the files available in
the network. Checking is done for multiple instances at multiple

locations.

The Information Manipulator takes care of file copy, file move,
file delete. Batch processing is possible, i.e. copying or moving or

deleting set of files.

The Virtual Drive Mapping is directing a drive virtually
created to another client’s directory or a drive. The fstab system
file’s information is modified to make this mapping. The mapped

drive can be accessed as a local drive.

Log Generator

The Log Generator generates log on all activities related to
the NMS and the information obtained through NMS. This is an
individual module, which always interacts with all other modules
in the NMS. The log generator acts independent of the modules

and creates log for the NMS related services also.

3.2 Process View

< Utilities

» Chat

The Chat is a simple communication utility for
the users to exchange messages. There is possibility for

one-one, one-many and many-one communication.

Get Client list

PR L
r Receive — °9
1 Display
1 Check Msg
Check Msg
s End Msg
Initiator Others

Figure 3.2.1(A) Chat

» Resource Tracker

The Resources Tracker is used to find the
computer in the network. This is similar to a find
computer utility available in the network neighborhood

application of Microsoft.

Client IP

Get Client list
!
Check

. No
Available Indicate Absence

Yes
Display —| Log

Figure 3.2.1(B) Resource Tracker

» Information Tracker

The Information Tracker is used to find the files
available in the network. Checking is done for multiple

instances at multiple locations.

N

Get Client list
v

Analyze Clients

S
Indicate Over

Display Log
¥
Log

Figure 3.2.1(C) Information Tracker

» Information Manipulator

The Information Tracker is

available in the network. Checking is done for multiple

instances at multiple locations.

used to find the files

._m Source |Destination

Invoke Procedure

No

Any More

Log

Yes

Log
I

Figure 3.2.1(D) Information

v Choose an operation from the list, a file copy or

move or delete or rename.

v Choose the files, source destinations and required

parameters.

v’ Invoke appropriate procedures and log events.

Manipulator

» Virtual Drive Mapping

The Virtual Drive Mapping is directing a drive
virtually created to another client’s directory or a drive.
The fstab system file’s information is modified to make
this mapping. The mapped drive can be accessed as a

local drive.

[Drive/Dir to Map(D)

!

Create Temp Directory (T)
+

Address T with a Drive Letter
v
Get Access Rights of D

!

-
Update Settings File

! !

Log Display

Assign D to T

Figure 3.2.1(E) Virtual Drive Mapping

3.3 Implementation View

N Layer 4
Application Level User Interface
NMS Messages Layer 3
NMS Customized Message Layer 2
Passing routine
UDP protocol & BSD Sockets Layer 1

Figure 3.3 Implementation Model

< Overview

The implementation model consists of four layers and

is depicted in the figure 3.3. They are

» UDP protocol & BSD Sockets

» NMS Customized Message Passing routines
» NMS Messages

> Application Level User Interface

% Layers

> UDP Protocol & BSD Sockets

NMS internally uses BSD sockets and UDP
Protocol for communicating with various processes/modules
through the network. It is to be noted here that UDP
provides an unreliable, connectionless packet delivery

service.
» NMS Customized Message Passing Routines
The responsibility of this layer is to provide a
reliable, connectionless communication mechanism, which

can be used to transfer data/messages through the network

by the NMS.
> NMS Messages

Various modules of the NMS interact with each

other through pre-defined messages.
> Application Level User Interface

The User Level Interface is given to customize

the NMS and make use of the system to the higher extent.

SYSTEM IMPLEMENTATION

/

The unit testing has been done separately for each of the modules.
Both white box and black box testing techniques were employed. The
testing was done with maximum number of test cases. The test cases
were carefully designed during the process of coding and design. The test
cases covered almost every part of the code to make the modules fault
proof. The errors uncovered were rectified, and the modules were re-
tested with all the test cases to ensure that the corrective measures
taken did not cause any inadvertent effects. Some samples are shown in

the table below.

4.1 Testing and Test Plan

The modules, their functionality and interaction between modules
are tested in the integrated subsystems. Testing was also carried out to
investigate the changes made in the individual modules, to check and

find the weakness in them.

Various testing strategies like unit testing, integration testing,
validation testing and system testing were applied. The testing
techniques like white-box testing, basis path testing, control structure

testing, and black box testing ensured successful testing of the system.

4.2 Testing Methods

& Unit Testing

The unit testing has been done separately for each of the
modules. Both white box and black box testing techniques were
employed. The testing was done with maximum number of test
cases. The test cases were carefully designed during the process
of coding and design. The test cases covered almost every part
of the code to make the modules fauit proof. The errors
uncovered were rectified, and the modules were re-tested with
all the test cases to ensure that the corrective measures taken
did not cause any inadvertent effects. Some samples are shown

in Table 4.1.

Seq. Condition being
Test case Expected output
No. checked
Deleting the Log file | Creates & updates
1 Delete PST)
externally logs and continues
Deleting the Hstry Redistributes,
2 Delete Hstry updates local logs
record externally .
and continues
Updates HLT and
Network Try to find the .)
3 . . continues with local
disconnected stability
host
Externally killing the | Indicates error and
4 Kill logging engine logging engine automatically
module dashboard exits
L The log file size
Log file size . Warn the user and
5 increases than the)
overflow wait
user specified size
. Try to connect to a | Print message and
6 Invalid IP force
offline machine stop
Gathered
) information could Print message and
7 No disk space
not be stored due to stop
disk out of space
. . Warns the user and
Date/Time out of | Giving invalid date)
8 . proceeds with valid
range and time for reports
data
. . Setting up negative | Warn the user and
9 Invalid log file size .)
log file sizes wait
Stopping the logger | Updates local logs
10 Pause logger

for some time

and resumes

Table 4.1 Test Cases

/
L X4

Integration Testing

The integration testing was done when various modules of
the system were integrated together. Top-Down approach was
followed during the process of integration. Further, depth first
integration was carried out. The black box testing technique
was employed throughout this phase. Stubs were created as
required to ensure an incremental approach, and later, on
completion of each set of tests, stubs were appropriately
replaced with real modules. Finally, Regression testing was
conducted to ensure that the errors rectified were successfully

working, and they do not cause any adverse effects.

During testing, each interface provided by the system was
supplied with variety of arguments respective to it. The results

were as expected for all combinations of the arguments.

Validation Testing

The Validation testing was carried out at the culmination
of the integration testing. Validation was done against the
validation criteria specified in the software requirements
specification. It was done as a series of black-box tests that
demonstrated conformity with requirements. It ensured that all
functional requirements are satisfied; all performance
requirements are achieved; documentation is correct and

human-engineered; and other requirements are met.

L)
o

Ll
0.0

Performance & Stress Testing

As a part of system testing, performance tests were
conducted along with stress testing. The stress and
performance of the system was calculated based on the traffic
on the network, system load and other system resources. It was
found that the system was working fine with no stress and
slowed down in small fractions of time when the traffic and CPU
load was increased. The variation of other available system
resources like memory, disk-space did not make any significant

performance degradation in the system.

Recovery Testing

Recovery testing is a system test that forces the software
to fail in a variety of ways and verifies that recovery is properly
performed. Many different test cases were designed and tested,
for example killing the dashboard explicitly, forcing one of the
workstation involved to crash, dismantling the network
connections abruptly, flooding the network. In all the cases the

system responded as expected, sending appropriate

‘notifications and error messages.

& Platform Relevant Testing

The system has been tested on two flavors of Linux,
namely Red Hat and SuSE. The kernels that involved in testing
were versions 2.2.16 and 2.4.2. It was found that these were

completely compatible with the NMS.

4.3 Installation of the System

Installation of the NMS is very simple, and can be done by any

user with a valid account on the host.

Before Installation the system, it’s forced in to many server-
testing phases. After the system clears all the tests, it’s released for
Installation. After the data has been initially set, the system is ready for
use. The Installation type or the change over technique from the existing

system is a step by process.

First a module in the part of the system is Installation and
checked for suitability and the efficiency. If the end user related to the
particular module is satisfied, the next step of Installation is processed

with. That’s modules related to the previous module are Installation.

FUTURE ENHANCEMENTS

——_—_—_—_/——#

This session briefs about the possible enhancements that can be

done to improve the scope and functionality of the system.

& Support for Heterogeneous Architecture

Though Linux is the only operating system supported
by NMS in its first version, other UNIX clones like System V,
SCO Unix, Free BSD, AIX, and Solaris could easily be
accommodated. Future versions may also support other

radically different platforms like Windows and Mach.

The scope can be extended to Internet.

CONCLUSION

/

«“NMS” has been developed keeping in mind the entire network user
roles satisfaction. The system has been developed in an interactive

manner and has been targeted for use in Intranet.

The tool takes care of the performance of the network,
maintenance of log files, resources available in the network, system
auditing and traffic in the network. Extending the scope for the Internet
can enhance the system. The tool is designed to get adapted to the

changes that occur in future.

The key feature of the tool is that NMS is distributed, providing

possible path for recovery in case of failures.

REFERENCES

/
Books:

W. Richard Stevens, “Unix Network Programming”, Volume 1, Second
Edition, Addison Wesley, 1999

Pradeep K. Sinha, “Distributed Operating Systems”, IEEE Computer
Society Press, 1998

Andrew S. Tanenbaum, “Modern Operating Systems » Prentice Hall of
India, 1996

Douglas E. Comer, « Internetworking with TCP/IF’, Volume 1,

(Principles, Protocols and Architecture), Third Edition, Prentice Hall of
India, 2001

W. Richard Stevens, “Unix Network Programming”, Prentice Hall of
India, 2000

V. Honavar, “Distributed Knowledge Networks”, IEEE Computer
Society Press, 1999

G. Helmer, J. Wong, V. Honavar, and L. Miller, “Intelligent Agents for
Intrusion Detection”, [IEEE Computer Society Press, 1998

J. Yang, R. Havaldar, V. Honavar, L. Miller, and J. Wong,
«Coordination and Control of Distributed Knowledge Networks”, IEEE
Computer Society Press, 1998

Web Pages
» General Linux Advocacy — December 2003

1. http://oloon.student.utwente.nl /linux/LDP/HOWTO /mini/
Advocacy.html
The Linux Advocacy mini-HOWTO.

2. http://www.10mb.com/linux/

» User Interface design pages — January 2003

1. http://www.cis.ohio-

state.edu/~perlman/CIS516/ uidesign.html

Intelligent User Interface design -- a book length site

2. http://www4.ncsu.edu/ ~aklikins/gnome /style.html

The GNOME (GNU Network Object Model Environment)
homepage for Ul design

» Linux — December 2003

1. http://www.linux.com

2. http://www.linux.net

» Performance Monitor — December 2003

1. http://www.usenix.org/students /research.html

2. http://www.cs.iastate.edu/ ~honavar/aigroup.html

» Forums/ Groups — December 2003

1. http://www.yahoogroups.com /linux

2. http:/ /www.linuxforum.com

APPENDIX A

(

Project Dictionary

A.1 Process State Table Structure (PST)

Date Time | Duration | Process Id | Title Path | Text Status

This state table contains the list of all process happening in a

single client. This table is recorded to the log file in each and every client.

A.2 Host List State Table Structure (HLT)

System IP Status

This state table is dynamic, holding the clients available in the
network and the status of the client. The status is a Boolean data

holding O or 1 as values.

The status value 0 indicates shutdown and 1 indicates presence.
When a state table is created the current system updates the value by 1

and any normal termination leads to a value 0.

This action is also recorded. This state table is unique in all

clients.

A.3 Distributed History File Structure (Hstry)

Logs

Hstry file is updated at all clients at regular intervals specified by
the user, the file is created and information from all PST is appended.
The PST of all clients is cleared.

This Hstry file is distributed at all available clients and the data

publisher can access it for reports at any time.

At a user specified interval, the server is updated with only one

copy of the Hstry and all other copies are cleared.

There is also option for customizing the NMS to have Hstry

permanently in various systems.

A.4 NMS Message Format

NMS Message Header | Module Header Message

The NMS Message format is a combination of NMS Message
Header, Module Header and Actual Message.

The NMS Message Header will indicate that the message is for
NMS.

The Module Header indicates to which module the message belongs to.

A.4.1 Message Header List

1. NMS Message Header — “<N><M>"

2. Data Analyzer

Modules Headers
System Analyzer <SA>Z>

System Auditor <SA>D>

Fault Analyzer <FA>Z>

Network Auditor <NA>D>
Resource Analyzer <RA>Z>

Transmission <TM>R>
Manager

Reception Manager | <RM>R>
State Table | <ST>G>

Generator

State Table Recorder | <ST>R>

3. Data Publisher

Modules Headers

Customize Manager | <CM>R>

Report Generator <RP>R>

4. Log Generator — “<LG>G>"

5. Utilities

Mapping

Modules Headers
Chat <CH>U>
Resource Tracker <RT>U>
Information Tracker |<IT>U>
Information <IM>U>
Manipulator

Virtual Drive | <VD>U>

Appendix B

#

Glossary of Terms

Distributed Computing Environment (DCE)

The OSF Distributed Computing Environment is a comprehensive,
integrated set of services that supports the development, use and
maintenance of distributed applications. It provides a uniform set of
services, anywhere in the network, enabling applications to utilize the

power of a heterogeneous network of computers.

Interconnection network

It is the system of logic and conductors that connects the
processors in a parallel computer system. Some examples are bus, mesh,

hypercube and Omega networks

Latency

The time taken to service a request or deliver a message which is
independent of the size or nature of the operation. The latency of a
message passing system is the minimum time to deliver a message, even

one of zero length, which does not have to leave the source processor.

Single Point of Failure

This is where one part of a system will make the whole system fail.

State Table

The key mechanism in the NMS is the state table which is
maintained at every client and updated at intervals. Analyzing the state
table the information of the network at a particular instance can be

gathered

Sockets

Also commonly known as Unix Berkeley Sockets, these were
developed in the early 1980s as a means of providing application writers
a portable means of accessing the communications hardware of the
network. Since sockets allow point-to-point communications between
processes, it is used in most of the networked workstation

implementations of message passing libraries.

