%ﬁ“‘f

ACC COMPILER AND JEDITOR
§

ﬁ\
o ,ﬁ‘ “2:

¥ =
ﬁ\ !

PROJECT WORK DONE AT
<, o ?
TOV

PENTASOFT TECHNOLOGIES
"’3"2: *f O’Q’/
H AN b

.../v

CHENNAI
PROJECT REPORT
SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENT FOR THE AWARD OF THE DEGREE OF

M.Sc [APPLIED SCIENCE] SOFTWARE ENGINEERING
OF BHARATHIAR UNIVERSITY, COIMBATORE

SUBMITTED BY
VISHAL KUMAR SINGHAL
Reg No. 993750099

UNDER THE GUIDANCE OF

External Guide Internal guide
Ms RAJSHREE SHIVA, M.C.A M. RAJASEHAR, M.C.A
Pentasoft Technologies
Chennai

Lecturer — Dept of CSE - KCT
Coimbatore

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE - 641 006

OCT 2003 - MARCH 2004

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
KUMARAGURU COLLEGE OF TECHNOLOGY

(Affiliated to Bharathiar University)
COIMBATORE — 641 006
OCT 2003 — MARCH 2004

CERTIFICATE

This is to certify that the project entitled
JavaCC Compiler and JEditor

DONE BY

VISHAL KUMAR SINGHAL
Reg No. 993750099

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE OF

M.Sc [Applied Science] SOFTWARE ENGINEERING

OF BHARATHIAR UNIVERSITY
Professor and HOD Intexlal Guide
Submitted to University Examination held on e l g Reey.

External Examiner f

!

Internal Examiner

TECHNOLOGIES LIMITED

(Formerly Pentafour Communications Ltd.)

@ PENTASOFT T
e

09 March, 2004

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Mr.Vishal Kumar Singhal, pursuing fifth year M.Sc.
Software Engineering at Kumaraguru College of Technology, Coimbatore,
has succesfully completed the project titled «JavaCC Compiler and Editor'n

the area of Java. The duration of the project was from October 2003 till March
2004.

During this period, we found him to be sincere and hardworking.

For PENTASOFT TECHNOLOGIES LTD.,

ey

M.A Farzana

Centre Manager

DECLARATION

| hereby declare that the project entitled “JavaCC Compiler and
JEditor* submitted to Bharathiar University, Coimbatore as the
project work of Master of Science Degree in Software
Engineering, is a record of original work done by me under the
supervision and guidance to Ms. Rajshree Shiva [Project Manager],
PentaSoft, Prof.K.R.Baskaran— Asst.Professor & Course
Coordinator [Software Engineering] , Kumaraguru College of
Technology, Coimbatore and this project work has not found the
basis of the award of any Degree/Diploma/Associate ship /Fellowship

or similar title to any candidate of any university.

Place: CoO1™MBATORE
Date : 3O | L | kooY

Violsd
Vishal Kumar Singhal
Registration No: 993750099

M.Sc [Software Engineering]
Kumaraguru College of Technology

ACKNOWLEDGEMENT

At the outlet I would like to thank my principal Dr.X.K Padmanaban,
Kumaraguru College of Technology, Coimbatore, and Dr.S.Thangasamy,
Head of Department, Computer Science and Engineering for giving me the

opportunity to do this project as a part of my course.

I express my sincere gratitude to professor K.R.Baskaran — Asst. Professor
and course co-ordinator [Software Engineering} and Mr.R Rajasehar
M.C.A, Lecturer who personally been my mentor and guide for the

successful completion of the project.

A project of this size requires a guide who takes pain to spend time and
hands out invaluable advice from time to time. Here I am greatly indebted to
Ms. Rajshree Shiva, M.C.A, Project leader, for his invaluable guidance from
start to finish.

I thank my parents who have extended endless support to my all my

endeavors.

I thereby thank all the people who in one way or the other have helped me in

my completion of the project.

CONTENTS

. INTRODUCTION

1.1. PROJECT OVERVIEW
1.2. ORGANIZATION PROFILE

. SYSTEM STUDY & ANALYSIS
2.1. EXISTING SYSTEM
2.2. PROPOSED SYSTEM

. PROGRAMMING ENVIRONMENT
3.1. HARDWARE CONFIGURATION
32 DESCRIPTION OF SOFTWARES & TOOLS USED

. SYSTEM DESIGN
4.1. INPUT DESIGN
472. PROCESS DESIGN

 SYSTEM IMPLEMENTATION AND TESTING
5.1. SYSTEM IMPLEMENTATION
5.2. SYSTEM TESTING

. CONCLUSION
_ SCOPE FOR FUTURE DEVELOPMENT
BIBLIOGRAPHY
APPENDIX
SAMPLE SCREENS

PAGE NO.
1

B [3]

LA

21
22
23

24
25
27

31

32

33

35

INTRODUCTION

1.1 PROJECT OVERVIEW

JavaCC Compiler

The JavaCC Project is a Java software project from DMS which provides a

sramework for developing compiler applications using Java.

JavaCC contains a set of tools which allow you to edit and generate classfiles:
dis (Java disassembler), KSM (Java assembler) and KJC. KJC compiles Java
source code to bytecode, with all the same plus even more features as
commercial compilers.

. JavaCC can be executed from existing Makefiles and IDE's.

. JavaCC is coded in java, so it is extremely fast.

The resulting byte code is small -- starting at about 11 Kbytes.
. No additional runtime libraries are required. The generated source code is
the entire parser.

Editor

It is used to tidy up your java code, making it easier to read. 1t supports features
such as Color Syntaxing, bracket matching, and a line number gutter.

Most of its features are obvious, it supports cut, copy, paste, undo, redo as
expected,

New features currently being developed include :

« Code Completer feature

. Customizable Toolbar & Menu bar, Popup Menus & Key maps.

« Improvements made to the Project Manager & Jar File Manager Tools.
« Fite saving facility to back-up edited files before compiling.

« Color printing.

1.2 ORGANIZATION PROFILE

Pentasoft Technologies Limited (formerly Pentfour communication Limited)
with the acquisition of the Software Division from Pentfour Software and Exports
Limited (PSTL) has recorded acquired for USD 205 million, has added to the
revenue growth of the company. The company has registered a turnover
Rs.100.01 Crores for the quarter ended December 31, 2000. The turnover for the
nine months ended December 31,2000, is Rs.286.70 crores.

The company focuses on 5 main SBU's namely Business Software Services,
Education and Training; System Integration; Engineering services and Internet &
Communications Services. The Company is awarded ISO 9001 Certificate in the
areas of Engineering Services (CAD/CAM).

The company has tied up with IBM as business partner, Sybase, Compaq,
Oracle, Microsoft, Novell, silicon Graphics, apple, synon, obsidian, SUN, SSA,
Eastman Kodak,. DELL (Asia) and Purdue University, UAS, Siemens for
Exchange and Video Conferencing, Comsat Max for VSAT, AT & T for
Networking to give a total solution through integration of Hardware, software and
Networking.

Pentasoft technologies Ltd., has a wide network of offices spread over North
America, Europe, Australia, Mauritius, Singapore, Malaysia, Thailand, Bangalore,
Bombay, Calcutta, Coimbatore, Delhi, Hyderabad, Madurai, Mangalore, and
Trivandrum.

SYSTEM STUDY L ANALYSLS

2.1 EXISTING SYSTEM

Most proposals which introduce contract programming
in Java use preprocessing techniques and transiate the source code into an
instrumented source code. This approach violates abstraction and modularity.
Source to source transiators make debugging of the byte code very
uncomfortable and prevent separate compilation, since the source code or the
body of the methods of the inherited type must be available to the compiler.

2.2 PROPOSED SYSTEM

This proposal needs no extensions to the classloader or other changes to the
JVM. The source code of the parent class is not necessary, it is not a source to
source translation. Abstraction, modularity and separate compilation is fully
supported. The code can be translated to Java byte code in one step. This is
very useful because it makes the debugging of the code much easier than
debugging of code produced by a precompiler.

« The development process is safer, quicker, and in some ways simpler
since optimizations can be done on the generated Java Code

« It is possible to reuse existing, aggressive optimizers.

Small software components integrated in Web services - These components
can undergo frequent changes from one ioad to another by the same client. As a

result, in this context, a JIT compiler is the most appropriate solution.

Platform-independent large software - Such programs may or may not be
related to Web services. Java technology is used because of its machine
independence. The Java tools themselves are examples of such programs (e.g.,
compiler, disassembler, ...). These programs change

infrequently and are often used by many users. Therefore, keeping a local,
optimized version of the compiled code is advantageous. By comparison to a JIT,
that always get the latest version of the software, this approaches requires the
management of local optimized versions. This can be implemented by a revision
control system that compiles and instalils new software versions as they are

released, in a automatic and transparent way.

Platform-dedicated software - Examples are operating system components [3]
and embedded applications. For these applications, the Java technology
provides safety. These applications are characterized by very infrequent
changes. Hence, it is advantageous to optimize the final code for the target
system.

PROGRAMMING
ENVIRONMENT

3.1 HARDWARE CONFIGURATION

SERVER:

Processor - Pentium il
Speed : 433 MHZ

Ram - 128MB

Hard Disk :20GB

Operating System : Windows 2000
Disk Drives - 1.44 Floppy Disk Drive, 40 x Compact Disk
Monitor - 14" Color Monitor
CLIENT:

Processor : Pentium

Speed : 400 MHZ

Ram 64 MB

Hard Disk 10 GB

3.2 DESCRIPTION OF SOFTWARES USED

JAVA DEVELOPMENT TOOLKIT VERSION 1.2.1

Architecture of a JavaCC Compiler

Architectural Overview

A modemn optimizing compiler can be logically divided into four parts:

s The compiler front end

The front end includes the scanner and parser which read
the Java source and build an abstract syntax tree (AST) representation of the
source code. The front end must also be able to read the symbol information in
the Java ".class" files that are referenced by import statements. After converting
the source into an AST, the front end resolves symbol declarations, does
semantic analysi's and builds the symbol table and other supporting data
structures. The output of the front end is an AST where each node in the AST is

annoted with either type or symbol information.

« Java symbol table design issues

The symboi table is one of the core data structures in a
compiler. Unlike the AST, which can be deleted after the flow graph is built, the
symbol table "lives" as long as the Java source is being compiled. Java’s scoping
and lack of unique names within a scope complicate symbol table construction.

« The middie pass

The middie pass performs tree to tree transformations and
builds the control flow graph of basic blocks that the optimizer works on. An
example of a tree {o tree transformations is method in-lining.

+ The optimizer

The optimizer builds data structures that describe the variable
usage throughout the control flow graph for the method (this is usally called
global data flow). This information is used to optimize data references globally
within a method.

« The code generator

The code generator generates instructions for the target
processor. The code generation phase also does machine dependent
_ optimization, inciuding peep-hole optimization and load/store scheduling.

Features of JEditor include:

o All the work now takes place from one window.

« Colour syntaxing for Java, JSP, C & HTML files.

« Running the Compiler, Appletviewer, Browser, or Application Viewer from
within Jeditor.

« Compile error to line finder.

« Editing features including cut, copy, paste, find, replace, goto line, print,
undo, redo.

« Customise your own environment, by specifying your Own compiler,
Interpreter, and browser, and changing fonts, tab spaces, syntax colours &
window placements.

» Options to customise menus, toolbars, popup windows & key accelerators.

« Save wamings before closing windows.

« The facility to load Java, project and HTML files from the command line,
using drag and drop or double clicking on the Java or project file.

« Builtin HTML Help browser.(Improved from 0.89)

« MethodFinder - A quick method finder.

 Facility to decompile a class straight into an editor window.

+ FError line to source finder.

Jeditor - Running/Compiling Documents

Jeditor can now open,edit,compile and run documents from any
directory. The default setting are designed to enable a user to edit,save, compile
and test files which are are all stored within the same directory, and using javac
as the default compiler tool.

All the options in the execute menu act upon the current
document. The only exception to this rule is when a project is open, and all the
relevant project details have been entered to override it.

You can set different classpaths and output directories using
Options - Java Options and then click on the paths tab. Again if you set any of
these, then they overmide the defaults.

This feature is useful for people who are working on documents
that might be stored in different directories, or where external packages might

need to be accessed.

Finally, for even greater flexibility, users can run their own scripts
from within Jeditor to perform more awkward tasks that Jeditor might be finding a
bit to difficult to handle.

All input and output from running,compiling documents etc will
appear in the console window which appears underneath the editor window.

Jeditor - Console Window

The console window is at the bottom right of the main Jeditor window, and
shares space with the error window. ou can switch between the two windows by
clicking on the required tab.

From here you can type commands as you would a DOS box or Unix console

window.
The console window also dispiays input and output from the execute menu.

So far the only builtin intemal command that the window recognises is cls and

this will clear the console screen.
The console window is a works in progress, so bear with me.

Jeditor - Methods Finder

The methods finder is displayed in the bottom left part of the main Jeditor
window.

It works by reading the current java document, and displaying the documents
methods in its own window. If you wanted to find a particular method in the
source code, all you would need to do is click on the relevant method, and it

automatically hilights the line within your source code in the editor window.

Sometimes the methods window gets a bit lost (This shouldn't happen any more,
so let me know if it does) In this case, click on the update methods button -
located at the end of the bottom toolbar. This will refresh the methods window.

Another part of the Jeditor project that still needs a lot more development.

The Project Manager window is displayed in the top left part of the Jeditor main

window.

In order to use the project manager, options are made available through the
butions on the bottom toolbar of Jeditor or the Project option on Jeditors main
menu bar.

To use the project manager, firstly you need to create a new project.

When starting a new project the first thing you will be asked for is a project name.
This project name will then be displayed in the project window. Now you are
ready to add/remove files you your project and also set-up the project properties
(Properties such as classpath, buildpath etc). Remember o save your project
when ever you make changes & and always use the .prj extension when doing
so. This will make it easier for you to find your projects in future. Once you save
your project, you can load it up, and not have to bother setting paths again. You
can also double ciick on the file names to open them up in the editor window.

At the moment, there are not many features built into the project window, this is
being worked on.

Jeditor - Code Completer

This is the Code complete diaiog box that is opened when you press Ctrl-Space
whilst editing text.

To find a word, just type it as if you were typing a word in the editor, when the
required word is displayed, press enter, and that word is then inserted into your
main edit window.

You can also find words by using the up and down arrows to scroll through the
list or use the drop down menu using the mouse.

To close the window without selecting a word either use the mouse to close the
window, or press escape.

You can also select a word by double clicking on it with the mouse.
Jeditor - Java Options

The java Options dialog box allows you to set java specific settings. It includes
three tabs as shown above.

The tabs allow you to alter the following settings:

Directories Tab
Allows you to set the type of compiler,browser,interpreter,debugger(not fully
functional) and decompiler of your choose.

User Paths Tab

Allows you to define a common classpath and output directory for your work.

Options Tab

Allows you to set javac options that you can use to compile your code with.

All the above options are saved as soon as you press the OK button, and wili
iake effect from then on. The options are stored in a file called Jeditor.properties
and this file can be found in your home directory.

Jeditor - Jeditor Options

The Jeditor Options dialog box allows you alter settings to the main IDE.

It currently has five tabs as shown above.
More details below:

The Editor fab

This allows you to change the font size and font type of the main Jeditor window
(includes the project window, the methods finder window and the editor window.
The tab spaces allows you to set the tab to spaces ratio in the main editor. The
look and feel allows you to change the look and feel of Jeditor.

Console Tab
Allows you to alter the font type and size of the console window.
It also allows you to select a foreground and background colour of the console

window, and displays these colour settings within the Console Tab window.

Preferences Tab
Not yet implemented

Syntax Colours Tab

Allows you to customise the colour syntaxing for each of the different types of
supported languages, and displays there settings within this window. Current
languages supported so far are: Java, JSP, JavaScript HTML and C/C++

ABOUT JAVA

Java has generated more interest in the computer industry, particularly in regard
to the Intemet and multimedia, than any other product during the summer and
early fall of 1995. Its impact on the World Wide Web could be as dramatic as the
spreadsheet was for PCs. Some have described it as the great enabling
technology for electronic commerce. Others predict it will change the software
distribution industry and how software providers or ISVs go to market. Still others
say it will help levei the playing field relative to that small company based in
Redmond. So what exactly is it?

Java is a software technology -- actually a computer language -- available for the
Intemet (albeit useful on plain vanilia networks or as a standalone language).
Developed by Sun, it has some very special properties. With Java, applications
can be requested by a user over the Intemet and run on a local machine. The
sender need not know what the user environment looks like in terms of either

hardware or software. And Java makes virus transmission almost impossible.

As a language Java looks like a simpler version of C++, so the developer
community has a minimal leaming curve. What's more, Java is a secure

language, the most secure language available on the Internet.

Benefits

Because Java is platform independent, sofiware developers need to create and
test only one version of their application they don't need to write or maintain
separate versions for Macintosh, Unix, NT, Windows 95, etc. In the future, those
considering investments in hardware or operating software won't have to worry
whether a specific application runs in their particular environment, since Java will
run virtually anywhere.

For system administrators and information technology executives, Java simplifies
revision control and access control because it requires only one copy of the
software in one controlled location. This single application just gets loaded to a
user at run time. Process and administration is left to those who do it best,
without imposing on the flexibility and individuality that PC and workstation users
have grown to love.

A new paradigm is born

For software providers, the Intemet represents a free distribution medium. More
significantly, it gives them equal "shelf" space to the mega companies, and
simplifies release and update distribution.

Some experts see the software sales model changing from a fixed purchase
price to a potentially more lucrative per-usage scheme. For example, a user
might buy a 50-use package for $9.99, as opposed to a one-time purchase price

of $199 that provides unlimited use. Not only will software suppliers likely make
more money in the long run, but at the smaller price, bootlegging becomes less
attractive.

Structurally the model changes, too. Module packaging becomes different -- the
word processor gets separated from the speliing checker and the grammar
checker and the graphics piece. If you use the word processor and not the
graphics or grammar checker, why pay for the suite?

Software providers also could better control who has their software and gain
better access to users without having to pray that the warranty card or fax or dial-
up registration is completed. Shipping an updated release would be a thing of the
past: The next time the user downloads, they get the upgrade.

This new paradigm has significant implications for electronic commerce, from
plotting your portfolios with live data and what-f options to securing a hotel
reservation while viewing a walk-through of the various room options. Not
surprisingly, the game industry is looking at Java very sefiously. Advertising,
retail, and transaction-oriented applications will realize significant benefits. To
send a new home banking package out to fix a bug or add a feature, companies
such as financial institutions used to have to contact all their users. Now such

improvements can be implemented automatically.

Finally, for the computer industry, Java technology is open and essentially free.
Like the NFS approach that Sun pioneered in the 1980s, choice of hardware and
software is left to the user, as it should be.

How does this work?

Instead of being written and compiled in a traditional way (that is, for a particular
platform), programs written in Java are ptatform independent. The resulting code
(called an applet) is what gets shipped across the network. One of the special
characteristics of Java is that it does not allow pointers outside of its own code.
External pointers, which Java prohibits, are a prerequisite for viruses as we know
them today. To do damage, code must get out of its own memory space, so a

legitimate Java applet cannot transmit a virus. On the user side sits a program (a
HotJava browser, for example) that performs two tasks. First it checks the applet
syntax to ensure it's a legitimate Java program. Then it executes the applet,
supplying the required information relative to the user's environment. Users need
the runtime Java interpreter that checks the code, then executes the applet. The
interpreter is installed on the users machine either as a part of a browser that
plays the applet or as part of a larger 0s.

Key Benefits of Java

Why use Java at all? Is it worth leaming a new language and a new platform?
This section explores some of the key benefits of Java.

Write Once, Run Anywhere

Sun identifies "Write once, run anywhere" as the core value proposition of the
Java platform. Translated from business jargon, this means that the most
important promise of Java technology is that you only have to write your
appiication once-for the Java platform--and then youll be able to run it
anywhere.

Anywhere, that is, that supports the Java platform. Fortunately, Java support is
becoming ubiquitous. It is integrated, or being integrated, into practically all major
operating systems. It is built into the popular web browsers, which places it on
virtually every Intemet-connected PC in the world. It is even being buitt into
consumer electronic devices, such as television set-top boxes, PDAs, and cell
phones.

Security

Another key benefit of Java is its security features. Both the language and the
platform were designed from the ground up with security in mind. The Java
platform allows users to download untrusted code over a network and run it in a
secure environment-in-which it cannot do any harm: it cannot infect the host

system with a virus, cannot read or write files from the hard drive, and so forth.

This capability alone makes the Java platform unique.

The Java 2 Platform takes the security model a step further. It makes security
levels and restrictions highly configurable and extends them beyond applets. As
of Java 1.2, any Java code, whether it is an applet, a serviet, a JavaBeans
component, or a complete Java application, can be run with restricted

permissions that prevent it from doing harm to the host system.

The security features of the Java language and platform have been subjected to
intense scrutiny by security experts around the world. Security-related bugs,
some of them potentially serious, have been found and promptly fixed. Because
of the security promises Java makes, it is big news when a new security bug is
found. Remember, however, that no other mainstream platfoorm can make
security guarantees nearly as strong as those Java makes. If Java's security is
not yet perfect, it has been proven strong enough for practical day-to-day use
and is certainly better than any of the altematives.

Network-centric Programming

Sun's corporate motto has always been "The network is the computer.” The
designers of the Java platform believed in the importance of networking and
designed the Java platform to be network-centric. From a programmer's point of
view, Java makes it unbelievably easy to work with resources across a network
and to create network-based applications using client/server or multitier
architectures. This means that Java programmers have a serious head start in
the emerging network economy.

Dynamic, Extensible Programs

Java is both dynamic and extensible. Java code is organized in modular object-
oriented units called classes. Classes are stored in separate files and are loaded
into the Java interpreter only when needed. This means that an application can
decide as it is running what classes it needs and can load them when it needs

them. It also means that a program can dynamically extend itself by loading the
classes it needs to expand its functionality.

The network-centric design of the Java platform means that a Java application
can dynamically extend itself by loading new classes over a network. An
application that takes advantage of these features ceases to be a monolithic
block of code. Instead, it becomes an interacting collection of independent
software components. Thus, Java enables a powerful new metaphor of
application design and development.

Internationalization

The Java language and the Java platform were designed from the start with the
rest of the world in mind. Java is the only commonly used programming language
that has intemnationalization features at its very core, rather than tacked on as an
afterthought. While most programming languages use 8-bit characters that
represent only the aiphabets of English and Western European languages, Java
uses 16-bit Unicode characters that represent the phonetic alphabets and
ideographic character sets of the entire world. Java's internationalization features
are not restricted to just low-level character representation, however. The
features permeate the Java platform, making it easier to write intermationalized

programs with Java than it is with any other environment.
Performance

As | described earlier, Java programs are compiled to a portable intermediate
form known as byte codes, rather than to native machine-language instructions.
The Java Virtual Machine runs a Java program by interpreting these portable
byte-code instructions. This architecture means that Java programs are faster
than programs or scripts written in purely interpreted languages, bui they are
typically slower than C and C++ programs compiled to native machine language.
Keep in mind, however, that although Java programs are compiled to byte code,
not all of the Java platform is implemented with interpreted byte codes. For

efficiency, computationally intensive portions of the Java platform--such as the
string-manipulation methods--are implemented using native machine code.

Although early releases of Java suffered from performance problems, the speed
of the Java VM has improved dramatically with each new release. The VM has
been highly tuned and optimized in many significant ways. Furthermore, many
implementations include a just-in-time compiler, which converts Java byte codes
to native machine instructions on the fly. Using sophisticated JIT compilers, Java
programs can execute at speeds comparable to the speeds of native C and C++
applications.

Java is a portable, interpreted language; Java programs run almost as fast as
native, non-portable C and C++ programs. Performance used to be an issue that
made some programmers avoid using Java. Now, with the improvements made
in Java 1.2, performance issues should no longer keep anyone away. In fact, the
winning combination of performance plus portability is a unique feature no other
language can offer.

Programmer Efficiency and Time-to-Market

The final, and perhaps most important, reason to use Java is that programmers
like it. Java is an elegant language combined with a powerful and well-designed
set of APls. Programmers enjoy programming in Java and are usually amazed at
how quickly they can get resuits with it. Studies have consistently shown that
switching to Java increases programmer efficiency. Because Java is a simple
and elegant language with a well-designed, intuitive set of APls, programmers
write better code with fewer bugs than for other platforms, again reducing
development time.

SYSTEM DESIGN

42 PROCESS DESIGN

Java Source ——P

Code

JavaCC
JavaEditor
javac
Util Compiler

Java Source
Code

— » | JavaCC

N

/ ByteCode

ByteCode

Bytecode

Assertion

4.1 INPUT DESIGN

input design is a part of overall system design, which requires very careful
attention. If the data going into the system is incorrect then the processing and
output will magnify these errors.

About project data’s
The inputs in the system are of three types:

1.External: which are prime inputs for the system
2 Internal: which are user communications with the system

3.interactive: which are inputs entered during a dialog with the computer

The above input types enrich the proposed system with numerous
facilities that make it more advantageous in comparison with the existing normal
system .all the input entered are completely raw, initially, before being entered
into a database, each of them availing processing. The input format in this
system has been designed with the following objectives in mind.

Intelligent output design will improve systems relationships with the user and help
in decision making. Outputs are also used to provide a permanent hardcopy of
the results for latter consultations. The most important reason, which tempts the
user to go for a new system is the output. The output generated by the system is
often regarded as the criterion for evaluating the usefulness for the system. Here
the output requirements use to be predetermined before going to the actual
system design. The output design is based on the following

» Determining the various outputs to be presented to the user.
» Differentiating between inputs to be displayed and those to be
printed.

% The format for the presentation for the outputs.

SYSTEM IMPLEMENTATION
L TESTING

5.1 SYSTEM IMPLEMENTATION

Implementation is that stage of the project when the theoretical design is
turned into a working system. At this stage of the main workload, the greatest up
heaved and the major impact on the existing practices shifts to the under
department. A lot of planning has to go in for the successful impiementation of

the system.

Bearing in mind that implementation is a project in itself; care was taken to
develop an effective methodology for implementing the system. The major steps

that were carried out in these stages are summarized below:

« Training was given to the user of the system both theoretically as well as
practically. They were briefed on the lines on the objectives of the system,
how to operate if and the benefits that wouid be reaped from the system.

» The system as tested in the user's environment and the user was prompted
to give his suggestions.

« Existing data’s was converted into file structures compatible to the system.

« The strategy used changeover of the system was parallel changeover. The
manual system was run parailel along with the automated system to test the

validity of the system.

Maintenance issues

Maintenance is the ease with which a program can be corrected if any
error is encountered, adapted if its environment changes or enhanced if the

customer desires a change in requirements.

The software is characterized by the following activities. In this project

considerable amount of time is spent in maintenance and monitoring.

1. Corrective maintenance.
2. Adaptive maintenance.
3. Perfective maintenance.

4. Preventive maintenance.

Corrective maintenance
Corrective maintenance is to uncover the error still exist after testing.
During this maintenance work the user is asked to work on the system and if any

error is reported.

Adaptive maintenance

The adaptive maintenance is needed if the platform or the environment of
the project is o be change. For the project the language takes care of all these

things.

Perfective maintenance

The third maintenance activity is perfective maintenance. The

recommendation of new capabilities and modification of existing function and

general enhancement are received from the user and proposed for future

enhancement.

Preventive maintenance

The preventive maintenance is to improve the future maintainability and

reliability and to provide better basis for future enhancement.

5.2 SYSTEM TESTING

Testing is a predominant technique to validate the system dex)éiﬁb"e’d .t.he
process begins from preparing test plan. The phases in the testing process are
that done during implementation to verify the software and one after it to validate
the system and to access the reliability of it. We have done both. The test data
were provided manually or simuiated by writing code for it .we mainly followed a

bottom-up approach for testing.

The testing phase, an unavoidable part of software development promotes
error detection, a complete verification determining whether the objectives and
the user requirements are fulfilled. The system test is based on the given below

following

Program Testing

Program testing promotes an error-free program by correcting the syntax
and logical error. When a program is tested the actual output is compared with
the excepted output. When there is a discrepancy the sequence of instruction

must be traced to determine the problem.

Breaking the program down into self-contained portions, each of which
can be checked at certain points, facilities the process. The idea is to compare

program values against desk calculated values to isolate the program.

Unit testing
Unit testing is done to check the correctness and validity of modules.

Errors are rectified per module and program clarity is increased.

Sequential or series testing

Sequential or series testing is checking the logic of one or more programs
in the candidate system, where the out put of one program will effect the

processing done by other program

Integration testing

In integration testing all modules are clipped under the major module and
tested again to verify the results. A module can have inadvertent, adverse affect
on any other or on the global data structures, causing serious problem. A
problem arising due to the poor interfacing such as data loss age is corrected in

this phase.

System testing

System testing, the final step uncovers the weakness not found in early

stages. This involves validation and testing which determines whether the

software functions as the user expects it. Modifications are made so that at the
completion phase it satisfied the end-user.

There should be careful planning of how the system will be provoked and the
test data designed. The system analyst should be quite clear about the test
objectives. System test data can rarely be compressive enough to test the
system fully. Some aspects of the system will have to be tested using the live

operation.

CONCLUSION

CONCLUSION

The software entitle “JavaCC compiler and Editor” is implemented to replace in
Java use preprocessing techniques and translate the source code into an
instrumented source code. This approach violates abstraction and modularity.
the manual system efficiently .Tthis package designed for the all users to work in

GUI friendly mode in efficient manner.

The developed system is highly interactive one and is user
friendly as it is enabled by menu. The system provides accurate updating data
validation and integrity is observed in theSystem further extension in the system
can be made to submit more reports to the management. This will give the
management a clear picture of the proceedings in the company valuables
suggestion can be incorporated in the system.

SCOPE FOR FUTURE DEVELOPMENT

The future development of the package is to implement Prefernces tab and

embedding of jdbc concepts,Bean concepts similar to J developer.

BIBLIOGRAPHY

Shigeru Chiba ; Javassist — A Reflection-based Programming Wizard for

Java ; In Proceedings ofOOPSLA’98 Workshop on Reflective
Programming in C++ and Java, October 1998.[3]Matt Greenwood ;
CFParse ; On-line at

www.alphaWorks.com (search for CFParse).[4]AP1 on-line at

java.sun.com/j2se/1.3/docs/apV/ java/lang/reflect/Proxy html[5}From John
Rose’s work ; Solution at

java.sun.com/products/jfc/tsc/articles/, generic-listener2/[6]From John
Rose’s work ; Solution at
java.sun.com/products/jfc/tsc/articles/gencric-listener/ [9]Michiaki
Tatsubori, Shigeru Chiba ; OpenJava ; On-line at
http://www.hlla.is.tsukuba.ac.jp/~mich/openjava/4

The Java Handbook
by Patrick Naughton, Michael Morrison

Publisher; Osborne/McGraw-Hill
ISBN: 0-078-82199-1

Pages: 424

Price: $27.95

7Publication Date: April, 1996
Bottom Line: In Print

« & o & & 90

Java in a Nutshell: A Desktop Quick Reference for Java Programmers
by David Flanagan

Publisher; O'Reilly & Associates, Inc.
ISBN: 1-565-92183-6

Pages: 460

Price; $19.95

Publication Date: May, 1996

Bottom Line: Buy It

Thinking in Java
by Bruce Eckel

Publisher: Prentice Hall

ISBN: 0-136-59723-8

Pages: 1152

Price: $39.95

Publication Date: December, 1998
Bottom Line: Buy It

JavaBeans for Dummies

by Emily Vanderveer
o Publisher: IDG Books Worldwide
« ISBN: 0-764-50153-4
o Price: $24.99
+ Bottom Line: 77?7

Web Developer's Guide to JavaBeans
by Jalal Feghhi

e Publisher; Coriolis Group
e [ISBN:1-576-10121-5
s Price: $39.99

Advanced Java Networking
by Prashant Sridharan, Laraine Peterson, Biil Reiken

Publisher: Sunsoft Press/Prentice Hall
ISBN: 0-137-49136-0

Pages: 500

Price: $49.95

Publication Date: May, 1997

Bottom Line: Browse It

* & & ® &

SAMPLE SCREENS

Jeditor Window

actionPerformed
buildwindow
windowClosing
main

JEDITOR Sample Program

Bt Tudorial example program.
Wathan Fiatky, 22700

i 135 tutonial implements ActianListener {
£ Ramber of res ihe button was pushed
protected inf pushCount;

public vad actionPerformediActionEvent €){
Count++,

R
:\EDITOR>
ello world!

-\EDITOR>

attionPerformed
buildwindow
iwindowClosing
main

Creating and saving new Java File

o135 ohe

puhlic static voig main{String as)
{
Systern.outprinting

actionPerformed
buildwWindow
ndewClosin:

Compiling the java Program and Error Dedcuting

Sysiem.outprinting -2
iutorial me = new futorial(;

Frame frame = me.buildWindow(5

=T

T\EPITOR>
éiello world!
AVEDITOR>
*VEDITOR>
s \EDITOR>
netscape’ is not recognized ss an internal or externsl command,
erable program or batch file.
AEDITOR>
1lle world!
A EDITOR>

actionPerformad
buildWindow
lwindewClosing
{main

as$s one

{
puhlic static voi¢ main(String asl

Hiavac -classpath GAEDITOR GWEDITORR one java"
Sarrar: cannat read: GNEDITORWNe java
;1 emmor

ere were errors in the compilation

A successful Compiled Program

Nathap Fiaoler, 772146

bl ciass tulorial implements ActionListener {
7™ Murnber oF Yrnes the Tuiltan was persted

peotected int pushCount,

publc void actionPerformed(ActionEvent €) {

aclionParformed
buildwindow
windowClosing
main

Executing the program

public void actionPerformediActionEverit e} {
pushCount++,

attionPerformed -\EDETOR>
buildwindow Hello world!
windowClosing

netscepe' is not recognized as an imternal or externsl comnand,

arable program or batch file.
\EDITOR>
Helle world!

Output

Opening File Dialog Box

actev.java

app1.java

(3 app2java
[appa.java

attionPerformed
buildwWindow
AndowClosing

JEditor IDE Options

nettcape’ is not recogmized as an internal or extarnal command,
reble progran or batch file.

EDITOR>

llo world!

IZVEDLITOR>

