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PROJECT ABSTRACT

Despite the widespread use and popularity, the details of TCP/IP protocols, the
structure of the software that implements them & their interaction remain a mystery to most
computer professionals. To illustrate all these subtleties and internal details, we designed and
built 2 working system that implements the key protocols in the suite: TCP, UDP, IP &
ARP.

The code attempts to conform to the protocol standards and to include current
ideas. For example, our TCP code includes silly window avoidance and the Jacobson-Karels
slow-start and congestion avoidance optimizations, features sometimes missing from
commercial implementations. However we are realistic enough to realize that the
commercial world does not always follow the published standards, and have tried to adapt
the system for use in practical environment.

We have implemented the system under the Xinu Operating System. Xinu is a small,
elegant operating system that has many features similar to UNIX. Several vendors have used
versions of Xinu as an embedded OS in commercial products.

The documentation explores the design choices that undetie our software, and
describes the data structures and procedures that implement the protocols. It focuses on our
implementation, including the source code that forms the working system. Although this
implementation of ours was not developed as a commercial product, it obeys protocol
standards.

We don’t claim that the code we had developed is completely bug-free, or even that
it is better than other implementations. Indeed, after using it, we continue to find ways to

improve our software.
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1. INTRODUCTION

é
1.1 ORGANIZATION PROFILE

HCL Technologies is one of India's leading global IT services and product
engineering companies, providing value-added, software-led IT solutions and

services to large- and medium-scale organizations.

At HCL Technologies, we've cut our teeth on technology and that's what we
understand best. We don't stop asking ourselves some basic questions: Is there a
better solution? A different approach? A new technology? A more viable process?

A more cost-effective proposition?

The testimony of our technological prowess lies in the dedicated Offshore
Development Centers we operate for some of the world’s leading organizations.
Our clientele includes over 370 prestigious organizations in the world, including

40 Fortune 500 companies.

Qur presence across 14 countries gives us global reach and a vast rollout support
capability. Together with our formidable team of high-caliber software
professionals we have successfully positioned ourselves at the vanguard of the

global IT services revolution.

We continue to reiterate our key imperatives of focusing on our technology
competencies and keeping pace with continuous growth and learning. We believe

that in technology there are no half-measures.

Our growth has been a result of our unique business model and clearly defined
growth strategies. Offshore-led, technology-centric, powered by domain expertise
and a comprehensive understanding of diverse business verticals, HCL

Technologies' growth has been balanced and keeps exploring new dimensions.



1.2 PROBLEM DEFINITION

The TCP/IP software is part of the computer operating system. It uses a
separate thread of execution to isolate pieces of protocol software, making it
much easier to design, understand, and modify. Each thread or process executes
independently, providing apparent parallelism. Like most protocol software, our
implementation has a separate process for IP, TCP input, TCP output & TCP

timer management.

We have implemented the protocols under the Xinu operating system.
Xinu provides mechanisms that processes can use 1o synchronize their execution.
We use counting semaphores for mutual exclusion (i.e., to guarantee that only one
process accesses a piece of code at a given time), and for producer-consumer
relationships (i.e., when a set of processes produces a set of data items that
another set of processes consume). We also use a port mechanism that allows
processes to send messages to one another using a finite queue. The port
mechanism uses semaphores to coordinate the processes that use a finite queue. If
a process attempts to send a message to a port that is already full, it will be
blocked until another process extracts it. Similarly, if a process attempts to extract
a message from an empty port, it will be blocked until another process deposits a

message in the port.

Processes implementing protocols use both conventional queues and ports
to pass packets among themselves. For example, the IP input process sends TCP
segments to a port from which TCP extracts, while network input processes use a
queue to deposit arriving datagrams to the IP. When data is passed through
conventional queues, the system must use message passing or semaphores to

synchronize the actions of independent processes.



OUTPUT PROCESS STRUCTURE:

An application program, executing as a separate process, calls system
routines to pass stream data to TCP or datagrams to UDP. For UDP output, the
process executing the application program transfers into operating system
(through a system call), where it executes UDP procedures that allocate an IP
datagram, fill in the appropriate destination address, encapsulate the UDP
datagram in it, and send the IP datagram to the IP process for delivery.

For TCP output, the process exciting an application program calls a
system routine to transfer data across the operating system boundary and place it
in a buffer. The application process then informs the TCP output process that
new data is waiting to be sent. When TCP output process executes, it divides data
streams into segments and encapsulates each segment in an IP datagram for
delivery. Finally, the TCP output process enqueues the IP datagram on the port
where IP will extract & send it.

INPUT PROCESS STRUCTURE:

The network device drivers enqueues all incoming packets that carry IP
datagrams on queues for the IP process. IP extracts incoming packets from the
queues and demultiplexes them, delivering each packet to the appropriate higher-
level protocol software. When IP finds a datagram carrying UDP, it invokes UDP
procedures that deposit the incoming datagram on the appropriate port, from
which the application program reads it. When IP finds a datagram carrying a TCP
segment, it passes the datagram to a port from which the TCP input process

extracts it.
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System Analysis




2. SYSTEM ANALYSIS

;

2.1 SYSTEM REQUIREMENTS

2.1.1 HANDLING NETWORK INPUT & INTERRUPTS

To accommodate random packet arrivals, the system needs the
ability to read packets from any network interface. It is possible to solve
the problem of waiting for a random interface in several ways. Some
Operating system’s use the computer’s software interrupt mechanism.
When a packet arrives, a hardware interrupt occurs and the device driver
performs it’s usual duties of accepting the packet, and restarting the
device. Before returning from the interrupt, the device driver tells the
hardware to schedule a second, lower priority interrupt. As soon as the
hardware completes, the lower priority interrupt occurs as though another
hardware interrupt occurred. This second interrupt is known as software
interrupt, suspends processing and causes the CPU to jump to code that
will handle it.

Software interrupts are efficient, but require hardware that are not
available in all computers. To make our protocol software portable, we
chose to avoid software interrupts and designed code that relies only on

the conventional hardware interrupt.
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2.1.2 PASSING PACKETS TO HIGHER LEVEL PROTOCOLS

Communication between the network device drivers and the
process that implements IP uses a set of queues. When a data gram arrives,
the network input process enqueues it and sends message to the IP

process.
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Figure 3.2 Communication between the netwark devise drivers and the poa-
coss that implements [B uses o %t of quenes. When s datogram
srrives, the network input process engquanes 1t aned sends o mes-
s to the [P process.



2.1.3 PASSING DATAGRAMS FROM IP TO TCP

Because TCP is complex, we use a separate process to handle
incoming segments. A consequence of using separate process for IP &
TCP processes is that they must use interprocess communication
mechanism when they interact. Our implementation uses the port
mechanism. IP calls psend to deposit segments in a port, and TCP calls

perceive to retrieve them.
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incoming SDP datngrams directly in sepamate ports where they
cun be acosssed by application programs.

2.1.4 PASSING DATAGRAMS FROM IP TO UDP

IP process executes the UDP procedures that handle an incoming
datagram. These procedure examine the destination UDP protocol number,
use it select an operating system queue for the incoming datagram. The IP
process deposits the UDP datagram on the appropriate port, where an

application program can extract it.



2.1.5 FROM TCP THROUGH IP TO NETWORK OUTPUT

Like TCP input, TCP output is also complex. Connections must be
established, data must be placed in segments, and the segments must be
retransmitted until the acknowledgements arrive. Once the segment has
been placed in a datagram, it can be passed to IP for routing & delivery.

We use two TCP processes to handle the complexity.

The first called tcpout, handles most of the segmentation and data
transmission details. The second called tcptimer, manages the timer,
schedules retransmission timeouts, and prompts fcpout when a segment
must be retransmitted. |

The tcpout process uses a port to synchronize input from multiple
processes. TCP is stream oriented meaning that it allows an application to
send few bytes of data at a time. Consequently items in the port do not
correspond to individual segments. Instead a process that emits data,
places the data in a output buffer and places a message in the port
informing TCP that it has sent data. The timer process deposits a message
in the port whenever a timer expires and TCP has to retransmit the
segment. Thus the port can be thought of a queue of events that TCP must
handle.
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2.2 SCOPE OF THE SYSTEM
The scope of the system is to provide active experimentation with
the TCP/IP suite of protocols. Qur soul purpose is to develop source code

for the protocols & make them interact using the inter process

communication primitives.

2.3 SYSTEM ENVIRONMENT
Our implementation of TCP/IP has been developed using C on
Xinu platform. Xinu is a small, elegant operating system that has features
similar to UNIX. Several vendors have used versions of Xinu as an

embedded system in commercial products.
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3. SYSTEM DESIGN

é

3.1 MODULE DESIGN
3.1.1 THE ADDRESS RESOLUTION PROTOCOL

ARP binds high-level IP addresses to low level physical addresses.
Address binding software forms the boundary between higher layers of
protocol software, which uses only IP addresses, and lower layers of
device driver software, which use only hardware addresses.

Conceptually, we have divided the ARP implementation of ours into three

modules: an output module, input module, and a cache manager.

> The ARP Qutput Module: When sending a datagram, the
network interface software calls a procedure in the output
module to bind an IP address to an Hardware address. The
output procedure returns the binding, which the network

interface routines use to encapsulate & transfer the packet.

» The ARP Input Module: The Input module handles ARP
packets that come from the network; it updates the ARP

cache by adding new bindings.

» The ARP Cache Manager: The Cache Manager
implements the Cache Replacement policy; it examines
entries in the cache and removes them when they reach a

specified age.



For implementing the Address Resolution Protocol, we have followed

certain simple design rules:

> Single Cache: We have used a single physical cache that
holds value for all the networks. Each field entry in the
cache field contains which specifies the network from

which the binding was obtained.

> Global Replacement Policy: When replacing the cache
entries with another entry, we don’t check if the old and the
new entry correspond to the same network. Any existing
item in the cache can be removed, independent of whether

the new binding comes from the same network or not.

. g L » Cache Timeout & Removal: We use a time-to-live field
,~ ‘,_w':~“k o for each entry in the ARP cache for handling this issue.
~ ‘L . e g
‘\’k\c:c - Py Whenever an entry is added to the cache; we initialize the

time-to-live field on the entry. As time proceeds, the cache
manager decrements this value, and discards the entry
when the value reaches zero. This removal is independent

of the frequency with which the entry was used.

> Multiple Queues of Waiting Packets: If many packets are
destined for the same IP address & the required binding is
not in the Cache, the packets are queued until the binding
arrives for that address. Like this, there happens to be a

queue of outgoing packets for each entry in the ARP cache.



» Exclusive Access to the Cache: The procedure that

searches the ARP cache, require exclusive access. But the
searching procedure does not have code for mutual
exclusion. Responsibility to ensure mutual exclusion falls

to the caller.

3.1.2 THE INTERNET PROTOCOL

Conceptually, the IP is a central switching point in the protocol
software. It accepts incoming datagrams from the network interface
software as well as outgoing datagrams that higher-level protocols
generate. After routing a datagram, IP either sends it to one of the network

interfaces or to a higher-level protocol on the local machine.

Our IP implementation has two distinct parts: one that handles
input and one that handles output. The input part uses the PROTO field of
the IP header to decide which higher-level protocol module should receive
an incoming datagram. The output part uses the local routing table to

choose a next hop for outgoing datagrams.

In addition IP software must work in gateways. In particular
gateway software cannot be easily partitioned into input & output because
a gateway must forward an arriving datagram on to its next hop. Thus IP

might also generate output while handling an input datagram.



Our implementation of IP uses three main design primitives:

> Uniform Input Queue & Uniform Routing: We have

decided to use a single input queue style for all datagrams
IP must handle, independent of whether they arrive from
the network or local machine. In our code, we do not use a
special case for locally generated datagrams. All datagrams
are treated as same & a single routing algorithm is used to

route all of them.

> Independent IP Process: Our IP software executes as a
single, self-contained thread of control. Using a process for

IP keeps the software easy to understand and modify.

> Local Host Interface: To avoid making delivery to the
local machine a special case, we use a pseudo-network
interface for local delivery. When the IP algorithm routes
each datagram, it sends the datagram to this local interface.
The Local Interface uses the PROTO field to determine
which protocol software on the local machine to receive the

datagram.
3.1.3 THE USER DATAGRAM PROTOCOL

Conceptually, communication with UDP is quite simple. The
protocol standard specifies an abstraction known as the protocol port
number that application programs use to identify the endpoint of
communication. When an application program on machine A wants to
communicate with an application on machine B, each application must
obtain a2 UDP port number from its local operating system. Both

applications should use these port numbers when they communicate.



UDP provides both pair wise communication between peer
programs and many-one communication between clients and server. While
the two basic styles of demultiplexing both support clients and servers,
each has advantages and disadvantages. We choose to demultiplex using
only the destination protocol number, and make creation of server trivial.
To help support clients, the system includes a procedure that generates a

unique (unused) protocol port number on demand.

Our implementation can be split into UDP input, UDP output &
UDP checksum. The IP process executes the UDP input procedure, which
demultiplexes datagrams and deposits each on a queue associated with the
destination protocol port. Application programs allocate a port for
transmission and then call the output procedures to create and send UDP
datagrams. The UDP checksum is used to verify if the IP datagram that

carries the UDP, contains the correct IP source and destination address.

3.1.4 THE TRANSMISSION CONTROL PROTOCOL

Our implementation of TCP uses three processes. One Process
handles incoming segments, another manages outgoing segments, and the
third is a timer that manages delayed events such as transmission timeout.
In theory, using separate processes isolates the input, output, and event
timing parts of TCP and permits us to design each piece independently. In
practice, however the processes interact closely. Fér example, the input &
output process must co-operate to match incoming acknowledgements
with outgoing segments and cancel the corresponding timer retransmission
event. Similarly, the output & the timer process interact when the output
process schedules a retransmission event or when the timer triggers a

retransmission.



Transmission Control Blocks:

TCP uses a data structure called TCB for every active connection,
which contains all information about the connection, including the
addresses and port numbers of the connection end points, the current
round-trip time estimate, data that has been sent or received, whether
acknowledgement or retransmission is needed or not, and any statistics

TCP gathers about the use of the connection.

TCP Input Processing and the TCP Finite State Machine:
Our implementation uses a procedure driven implementation of the
TCP finite state machine in which one procedure correspond to each state.
Conceptually, TCP uses this finite state machine to control all interactions.
Fach end of a TCP connection implements a copy of the TCP state
machine and uses it to control actions taken when a segment arrives. The
TCP state machine completely specifies how TCP on one machine

interacts with TCP on another.

In practice, however the state machine does not fully specify
interactions. Instead, the machine specifies only the macroscopic state of
TCP, while additional variables specify the details or microscopic state.
More important, because the macroscopic transmission specifies the state
machine do not control output or retransmission, such events must be

handled separately.



anything freset

hegin CLOZED jm \

JAR¥ie opes '

etive dpen fayn

syndsyn + ack
send i1
reset

H¥N svndsvn +ack BYN \ efused
RECVD SEMT  Jitmennd !
reset
ack wyn + ack ack
i ESTAE- fin/ack
vlose ! fin LISHED

efose/ fin
clase fin

FiH fin Sk,

Smenost aftor 2 segrtent lifetimey

' S/

Figore 13.BS The TCP finite siate machize. Each endpoint begins in the
vhaced state. Labels om tremsitions show thy input thal caused
the trassition followed by the vntpat if any.



Example State Transition:

To understand the TCP finite state machine, consider an example
of the three-way handshake used to establish a connection between a client
and a server. Both the client & server will establish an end point for
communication, and both will have a copy of finite state machine. The
server begins first by issuing a passive-open operation, which causes the
server’s finite state machine to enter into listen state. The server waits in
the Listen state until a client contacts it. When the client issues an active
open, it causes TCP software on it’s machine to send a SYN segment to
the server and to enter the SYN-SENT state.

When the server which is waiting in LISTEN state, receives a
SYN segment, it replies with an SYN plus an ACK segment, creates a new
TCB, and places the new TCB in SYN-RECEIVED state. When the SYN
plus ACK segment arrives at the client, the client TCP replies with an
ACK, and moves from the SYN-SENT state to the ESTABLISHED state.
Finally when the Client’s ACK arrives at the newly created TCB, it also
moves to the ESTABLISHED state, which allows data transfer to proceed.

Because the TCP state machine contains few states, specifies few
transitions among the states, provides complex operations, our
implementation uses a procedure-oriented approach. Each state procedure
handles incoming segments. It must accommodate request to abort(e.g.;
RESET), special request to start (SYN), and request to shut down (FIN).

The requirement that TCP accepts segments out of order
complicates most state procedures. For example, TCP may receive a
request for shut down (FIN) before all data arrives. Or it may receive a
segment carrying data before a segment that completes the 3 way
handshake used to establish the connection. Our implementation
accommodates out of delivery by recording startup and shutdown events

in the TCB and checking them as each segment arrives.



TCP Output Processing:

TCP output is complex because it interacts closely with TCP input
& timer events, all of which occur concurrently. For example, when the
output process sends a segment, it must schedule a retransmission event.
Later, if the retransmission timer expires, the Timer process must send the
segment. Meanwhile the application program may generate data, causing
TCP to send more segments, or acknowledgements may arrive, causing
TCP to cancel retransmission events. However, the underlying IP protocol
may drop, delay,
or deliver segments out of order, events may not occur in the expected
order. Bven if data arrives at remote site, an acknowledgement may be
lost. Because the remote site may receive data out of order, a single ACK
may acknowledge receipt of many segments. Furthermore a site may
receive the FIN for the connection before it has received all data segments,
so retransmission may be necessary even after an application closes a
connection. Thus the correct response to an input or output event depends
on the history of previous events.

TCP output as a process:

Using a separate TCP output process helps separation execution of
input, timer and output functions, and allows them to operate concurrently.
For example, a retransmission timer may expire and trigger
retransmission, while the input process is sending an acknowledgment in
response to an incoming segment. The interaction may be especially
complex because a TCP segment may carry acknowledgements along with
data. If each procedure that needs output acts independently, TCP
generates unnecessary traffic.

To co-ordinate output, our implementation uses a single process to
handle output and makes all interaction message driven. When a
procedure need to generate output, it places information in the TCB and

sends a message to the TCP output process.






4. SYSTEM IMPLEMENTATION

?

The unit testing has been done separately for each of the modules. Both white box
and black box testing techniques were employed. The testing was done with maximum
number of test cases. The test cases were carefully designed during the process of coding
and design. The test cases covered almost every part of the code to make the modules
fault proof. The errors uncovered were rectified, and the modules were re-tested with all
the test cases to ensure that the corrective measures taken did not cause any inadvertent

effects. Some samples are shown in the table below.

4.1 Testing and Test Plan

The modules, their functionality and interaction between modules are
tested in the integrated subsystems. Testing was also carried out to investigate the

changes made in the individual modules, to check and find the weakness in them.

Various testing strategies like unit testing, integration testing, validation
testing and system testing were applied. The testing techniques like white-box
testing, basis path testing, control structure testing, and black box testing ensured

successful testing of the system.



4.2 Testing Methods

Unit Testing

The unit testing has been done separately for each of the modules. Both
white box and black box testing techniques were employed. The testing was done
with maximum number of test cases. The test cases were carefully designed
during the process of coding and design. The test cases covered almost every part
of the code to make the modules fault proof. The errors uncovered were rectified,
and the modules were re-tested with all the test cases to ensure that the corrective

measures taken did not cause any inadvertent effects.

Integration Testing

The integration testing was done when various modules of the system
were integrated together. Top-Down approach was followed during the process of
integration. Further, depth first integration was carried out. The black box testing
technique was employed throughout this phase. Stubs were created as required to
ensure an incremental approach, and later, on completion of each set of tests,
stubs were appropriately replaced with real modules. Finally, Regression testing
was conducted to ensure that the errors rectified were successfully working, and

they do not cause any adverse effects.

During testing, each interface provided by the system was supplied with
variety of arguments respective to it. The results were as expected for all

combinations of the arguments.



Validation Testing

The Validation testing was carried out at the culmination of the integration
testing. Validation was done against the validation criteria specified in the
software requirements specification. It was done as a series of black-box tests that
demonstrated conformity with requirements. It ensured that all functional
requirements are satisfied; all performance requirements are achieved,;

documentation is correct and human-engineered; and other requirements are met.

Performance & Stress Testing

As a part of system testing, performance tests were conducted along with
stress testing. The stress and performance of the system was calculated based on
the traffic on the network, system load and other system resources. It was found
that the system was working fine with no stress and slowed down in small
fractions of time when the traffic and CPU load was increased. The variation of
other available system resources like memory, disk-space did not make any

significant performance degradation in the system.

Recovery Testing

Recovery testing is a system test that forces the software to fail in a variety
of ways and verifies that recovery is properly performed. Many different test
cases were designed and tested, for example killing the dashboard explicitly,
forcing one of the workstation involved to crash, dismantling the network
connections abruptly, flooding the network. In all the cases the system responded

as expected, sending appropriate notifications and error messages.



5. LIMITATIONS AND FUTURE ENHANCEMENTS
f

The following enhancements can be done to our implementation of TCP:

» TCP Timer Management:
o Determining the remaining time for an event
o Inserting a Timer Event.

o Deleting a Timer Event.

» TCP Flow Control and Adaptive Retransmission:
o Congestion avoidance and control

o Slow-Start and congestion avoidance

» TCP Urgent Data Processing
o Sending Urgent Data



E

Conclusion




6. CONCLUSION

#

Developing source code for any protocol throws light on the minute details and
intricacies of the protocol. It also helps us to understand the Xinu system environment

and it’s system calls.

Understanding even simple ideas such as how TCP buffers data can help us
design, implement & debug applications. Though not built fora commercial purpose, this

project has helped us learn, understand and implement the protocols in TCP/IP.
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SAMPLE CODE

#—_——é

arpfind(u_char *pra, u_short prtype, struct netif *pni)

{
struct arpentry *pae;
int 1
for (i=0; i<ARP_TSIZE; ++i) {
pae = &arptablefi];
if (pae->ae_state == AS_FREE)
continue;
if (pae->ae_prtype == prtype &&
pae->ae_pni == pni &&
BLKEQU(pae->ae_pra, pra, pae->ae_prlen))
return pae;
}
return O;
}

void arpgsend(struct arpentry *pae)
{
struct ep *pep;
struct netif *pni;
if (pae->ae_queue == EMPTY)
return;
pni = pae->ae_pni,
while (pep = (struct ep *)deq(pae->ae_queue))
netwrite(pni, pep, pep->ep_len),



freeq(pae->ae_queue);
pae->ae_queue = EMPTY;

}
void arpinit()
{
int g
rarpsem = screate(1);
rarppid = BADPID;
for (i=0; i<ARP_TSIZE,; ++i)
arptable[i].ae_state = AS_FREE;
}

void arpgsend(struct arpentry *pae)

{
struct ep *pep;
struct netif *pni;
if (pae->ae_queue == EMPTY)
return,
pni = pae->ae_pni,
while (pep = (struct ep *)deq(pae->ae_queue))
netwrite(pni, pep, pep->ep_len),
freeq(pae->ae_queue);
pae->ae_queue = EMPTY;
}

int ipputp(unsigned ifn, IPaddr nh, struct ep *pep)

{
struct netif *pni = &nif[ifn};



struct ip *pip;

int hlen, maxdlen, tosend, offset, offindg;
if (pni->ni_state == NIS_DOWN) {

freebuf{pep);

return SYSERR;
}

pip = (struct ip *)pep->ep_data;
if (pip->ip_len <= pni->ni_mtu) {
pep->ep_nexthop = nh;
pip->ip_cksum = 0;
iph2net(pip);
pep->ep_order &= ~EPQO_IP,;
pip->ip_cksum = cksum((WORD *)pip, IP_HLEN(pip));
return netwrite(pni, pep, EP_HLEN-+net2hs(pip->ip_len));
}
/* else, we need to fragment it */
if (pip->ip_fragoff & IP_DF) {
IpFragFails++;
icmp(ICT_DESTUR, ICC_FNADF, pip->ip_src, pep, 0);
return OK;
}
maxdlen = (pni->ni_mtu - [P_HLEN(pip)) &~ 7;
offset =0,
offindg = (pip->ip_fragoff & IP_FRAGOFF)<<3;
tosend = pip->ip_len - IP_ HLEN(pip),
while (tosend > maxdlen) {
if (ipfsend(pni,nh,pep,offset, maxdlen,offindg) != OK) {
IpOutDiscards++;

freebuf{pep);
return SYSERR;



IpFragCreates++;
tosend -= maxdlen;
offset += maxdlen;
offindg += maxdlen;
}
IpFragOKs++;

IpFragCreates++;

hlen = ipfhcopy(pep, pep, offindg);

pip = (struct ip *)pep->ep_data,

/* slide the residual down */

memcpy(&pep->ep_data[hlen], &pep->ep_data[lP__HLEN(pip)+offset],
tosend),

/* keep MF, if this was a frag to start with */

pip->ip_fragoff = (pip->ip_fragoff & IP_MF)|(offindg>>3),

pip->ip_len = tosend + hlen;

pip->ip_cksum = 0;

iph2net(pip);

pep->ep_order &= ~EPO_IP;

pip->ip_cksum = cksum((WORD *)pip, hlen);

pep->ep_nexthop =nh;

return netwrite(pni, pep, EP_HLEN-+net2hs(pip->ip_len));

int upalloc(void)

{

struct upq  *pup;

int 1
wait(udpmutex);

for (i=0 ; i<UPPS ; i++) {



pup = &upgsli];

if (\pup->up_valid) {
pup->up_valid = TRUE;
pup->up_port =0;
pup->up_pid = BADPID;
pup->up_xport = pcreate(UPPLEN),

signal(udpmutex),
return i;
}
}
signal(udpmutex),
return SYSERR;
}
tcballoc(void)
{

struct tcb  *ptcb;

int slot;

wait(tcps_tmutex);

/* look for a free TCB */

for (ptcb=&tcbtab[0], slot=0; slot<Ntcp; ++slot, ++ptcb)
if (ptcb->tcb_state == TCPS_FREE)

break;

if (slot < Ntcp) {
ptcb->tcb_state = TCPS_CLOSED;
ptcb->tchb_mutex = screate(0),

} else
ptcb = (struct tcb *)SYSERR,;

signal(tcps_tmutex);

return ptcb;



int tcpabort(struct tcb *ptcb, int error)

{

tepkilltimers(ptcb),

ptcb->tcb_flags |= TCBF_RDONE|TCBF_SDONE;
ptcb->tcb_error = error;
tcpwakeup(READERS[WRITERS, ptcb);

return OK

int tepclosing(struct tcb *ptcb, struct ep *pep)

{

struct ip *pip = (struct ip *)pep->ep_data;
struct tcp  *ptep = (struct tep *)pip->ip_data;
if (ptcp->tcp_code & TCPF_RST)
return tcbdealloc(ptcb);
if (ptcp->tcp_code & TCPF_SYN) {
tcpreset(pep);
return tcbdealloc(ptcb);
}
tepacked(ptcb, pep);
if (ptcb->tcb_code & TCPF_FIN) = 0) {
ptcb->tcb_state = TCPS_TIMEWAIT;

signal(ptcb->tcb_ocsem); /* wake closer */
tcpwait(ptcb);

}

return OK



