FINGER PRINT RECOGNITION SYSTEM

PROJECT REPORT ﬁ

P55

Submitted in partial fulfillment of the

WA NT SF AL

requirement for the award of the degree of the
Bachelor of Engineering in Information Technology

of

Bharathiar University, Coimbatore.

Submitted by

S.R.ASHOK RAJAN T.JAGADEESWARAN
002750071 002750078

Under the guidance of

Mrs.V.VANITHA M.E

Lecturer.

DEPARTMENT OF INFORMATION TECHNOLOGY
KUMARAGURU COLLEGE OF TECHNOLOGY,
COIMBATORE — 641006.

MARCH 2004.

DEPARTMENT OF INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY
(Affiliated to Bharathiar University, Coimbatore)

CERTIFICATE

P
\ = 4

This is to certify that the project entitled

FINGER PRINT RECOGNITION SYSTEM

is done by

S.R.ASHOK RAJAN T.JAGADEESWARAN
002750071 002750078

and submitted in partial fulfillment of the
requirement for the award of the degree of the

Bachelor of Engineering in Information Technoiogy

Of
Bharathiar University, Coimbatore.

- -
< jL__KM 3/ \\)\&

Professor & Head of the department Guide
(Dr.S. THANGASAMY) (M1s.V.VANITHA)

Certified that the candidates were examined by us in the project work
Viva voce examinationheldon __2& - ¢ 2 04

& by e

Internal Examiner f -~ External Examiner

Declaration

S.R.Ashok Rajan 002750071
T.Jagadeeswaran 002750078

declare that we do the project entitled “FINGERPRINT RECOGNITION
SYSTEM”, and to the best of our knowledge, a similar work has not been submitted
earlier to the Bharathiar University or any other institution, for fulfillment of the

requirement of the course study.

This project report is submitted on the partial fulfillment for the requirement for

the awards of the degree of Bachelor of Engineering in Information Technology from

Bharathiar University.
TS
sl
Place: Coimbatore. [RAshok Ra]ji
Date: 45 2 g, [T. Jagam

roject (@fd by
—
\.4‘

Mrs. V.Vanitha MLE.,

ACKNOWLEDGEMENT

The exhilaration achieved upon the successful completion of any task
should be definitely shared with the people behind the venture. This project is an
amalgam of study and experience of many people without whose heip this

project would not have taken shape.

At the onset, we take this opportunity to thank the management of our
college for having provided us excelient facilities to work with. We express our
deep gratitude to our Principal Dr .K. K. Padmanabhan Ph.D., for ushering us in
the path of triumph.

We are always thankful to our beloved Professor and the Head of the
Department Dr.S. Thangasamy Ph.D., whose consistent support and enthusiastic

involvement helped us a great deal.

We are greatly indebted to our beloved guide Mrs.V.Vanitha M.E.,
Lecturer, Department of Computer Science and Engineering for her excellent
guidance and timely support during the course of this project. As a token of our

esteem and gratitude, we honor her for her assistance towards this cause.

We also thank our project coordinator Mrs. S. Devaki M.S., and our

beloved class advisor Ms. P. Sudha B.E., for their invaluable assistance.

We also feel elated in manifesting our deep sense of gratitude to all the
staff and lab technicians in the Department of Computer Science and

Engineering.

We feel proud to pay our respectful thanks to our Parents for their
enthusiasm and encouragement and also we thank our friends who have

associated themselves to bring out this project successfully.

SYNOPSIS

As the need for personal authentication increases, many people are
turming to biometric authentication as an alternative to traditional security
devices. An effective fingerprint recognition system is presented here for the
purpose of E-attendance. The matching system consists of two main blocks:
The first allows for the extraction of essential information from the reference
image offline, the second performs the matching itseif. The information is
obtained from the reference image by minutiae extraction procedures and
also the pore extraction process, which we have proposed for the further
developments. The fingerprint identification using minutia based on three
point matching to cope with the strong deformation of fingerprint due to static
friction or finger rolling. Also proposes the further enhancement on the facility
to match the pore-based recognition, which will not fail in any of the worst
conditions. The verification algorithm is implemented using language 'C".
Low false reject and zero false accept error rates have been predicted based
on the technique that possesses various advantages over systems employed

in current world.

CONTENTS

introduction

1.1. Existing System and Limitations
1.2. Proposed System and Advantages

System Requirement Analysis
2.1. Product Definition

Software Requirements Specification

3.1. Introduction
3.2. Specific Requirements

System Design Specification

4.1. Overall Design

4.2. Design Diagram

4.3. Biometrics

4.4. Finger Print Recognition

4.5. Minutiae

4.6. Methods for Extraction

4.7. Three Point Matching Algorithm
4.8. Functions Used

4.9. Algorithm

Product Testing

Future Enhancements
Conclusion
Bibliography

Appendix

o

Too®

13
13
16
17
19

21

23

24

25

26

1.IntrOduction

Our project is an effort to improvise the existing finger print recognition
systems. This system aims at extracting and recognizing fingerprint for the security
purpose like bank automation, criminal identification. Here the input is taken in the
form of an image file. The images are processed and the minutiae are extracted for
the verification process. Output is displayed on the screen according to the

threshold value.

1.1.Existing system and limitations :

The limitation of the existing systems is that those existing systems are in
limited constraints in the way of obtaining the matching points and the way of
calculating the co-ordinates of the reference points to verify the fingerprint and the

verification process also complex because of the algorithm used.

1.2.Proposed system and advantages :

The goal of a verification system is to compare two fingerprint images: a
fingerprint captured and processed in a particular moment with one fingerprint
stored in the database in real time. in this work a verification system is proposed
and it is shown in Fig 1.1. Two steps, an off-line and online step, compose this
system. In the off-ine step all fingerprints of a set of person are captured,
processed and stored in a database for later use. In the on the line step a person
gives its own fingerprint to verify the identity: the fingerprint is compared with ones
stored in the database. In Fig1.1, it is possible to see that the phases of off-line

and on-ine steps are constituted by: image enhancement, minutiae extraction and

matching. The matching algorithm used here is a triangular algorithm that is based

on line length and line angle between minutiae.

The applications here are,

>

v V ¥V V

Financial Services
Health Care

Law Enforcement
Criminal |dentification
Citizen Identification

MAGE | mvace

MINU e
—p - TIAE L p| DATA
NPUT ENHANCEMENT EXTRACTION BASE

MAGE [ace
NPUT ™| ENHANCEMENT

P EXTRACTION '

MINUTIAE MATCHING

Fig 1.1.Proposed system

RESULT

—»
YESNO

2. System Requirement Analysis

2.1. Product Definition

Fingerprint Recognition System extracts and recognizes fingerprint image
and then compares the test image with the reference image for the security and
identification purpose. Here the input is taken in the form of an image file that
contains the Fingerprint. The minutiae’s are extracted from the images and converted
as the binary value. Three point matching algorithm is used on these image files to
identify the fingerprints. The output is displayed on the screen according to the
Threshold value.

3.Software Requirement Specification:

3.1.Introduction
3.1.1.Purpose

The purpose of this system is to produce an active demonstration of the use
of fingerprints as neural networks where minutiae’s can be stored on a database.
And then a competitive analysis is performed on the fingerprint and compared to
the database. The process here is to compare a fingerprint with the stored
database.

3.1.2. Scope

The system will aim to produce the following results:

Demonstrate the fingerprint Verification can be used in conjunction with
minutiae using Three point Matching Algorithm and Produce a demonstration on
fingerprint Verification.
3.1.3.Definitions, Acronyms, Abbreviations
Definition

Biometrics:

Biometric technologies are defined as "automated methods of identifying or
authenticating the identity of a living person based on a physiological or behavioral
characteristic.”

Three Point Matching:

This is the algorithm where the minutiae of the finger prints are extracted
and compared with the testing image. The three minutiae points are the bifurcation,
ridge ending, and the plain.

Acronyms and Abbreviations :

tif image Format of fingerprint image.

GuUl Graphical User Interface.
SDD Software Design Description.
SRS Software Requirements Specification.

Minutiae Points like bifurcation, ridge ending and plane for comparison.

Extraction obtaining the minutiae points for verification and future
enhancement.

3.1.4.0verview
Upon completion of the project the system will demonstrate among other
things its feasibility for use in the real world. The significant components will
consist of a PC, a fingerprint scanner. All these components will be integrated to
produce a system with a high level of security using fingerprint verification as a
means of identification.
3.2.Specific Requirements:

3.2.1.Functional Requirements

3.2.1.1.Introduction

The basic use of this is for easier and quicker retrieval of Fingerprint

Verification hence decrease the amount of overhead in the other non secured

security system.

3.2.1.2.List of Inputs

The Fingerprint of the user.

3.2.1.3.Information Processing Requirement
From the captured input the minutiae points on the fingerprints which are
bifurcation points, ridge ending, and planes are extracted and converted as the

binary information regarding with the co-ordinates of the axes X, y.

3.2.2.Performance Requirement:
3.2.2.1.Security
The system will authenticate users via their fingerprint characteristic, a
template of which will be stored on the database. This template will be compared
to a live scan taken at the time of user authentication. Other fields of the certificate
will contain information such as the name of the user, name of the issuing

authority and a digital signature of the issuing authority.

3.2.3.Design Constraints
3.2.3.1. Hardware limitations
Minimal Requirements are

Pentium il processor and above.
64 MB RAM

10 GB Hard Disk

101 Keys Keyboard

3.2.3.2. User Interfaces, Screen Formats

The user interface to be designed will be user friendly so that no other
professional training is required on the user part.The User interface for
promoting the Fingerprint will be present and another form in which the details

or various categories present in the corresponding history will be there.

3.2.3.3. Hardware Interfaces and Software Interfaces with other systems
The hardware interface to be designed provides communication between
fingerprint Scanner and the PC. The software interface provides a database,
which stores the required Fingerprint. The user-interface is to be designed in C.
3.2.4.0ther Requirements
3.2.4.1. Operations required by the user
The Fingerprint should be unique for all the users so that the integrity is
maintained.
3.2.4.2. System Reliability
The system will be designed, and tested in the laboratory with the objective
of determining its feasibility for use in the real world. As a result a major
factor that will contribute to the success of the project will be the reliability of
the system developed.The level of security provided should be higher than
that provided by conventional security systems in use today. This fact
should be emphasised in the design of the security policy if the system is to

be considered for commercial use.

4.System Design Specification

4.1.0verall Design:

Our system implements algorithms to extract the minutiae of the
fingerprintform the image file, to recognize them and verify the output. The
algorithm extract the three points called bifurcation, plain, and the ridge end from
the image file. Three point matching aigorithm is used here for extracting those
points. In the next module, which is the matching algorithm, the reference image
minutiae points which are extracted form the previous module are compared with
the test image module where the same three minutiae of the test images also
extracted. The threshold values of the variances between those two images are
calculated using this algorithm. The final module of the project is simply the output

module where according to the threshold value the output whether matched or not

matched is displayed.

4.2.Design Diagram:

Finger Print
Scanner

Coordinate

.
Image Extraction

Acquisition

i Computer

Finger Print Software
Recognition

System

I Status

FingerPrint |3 Flag
Database

Fig.1.2.Design Diagram

4.3. BioMetrics:

Biometrics and bioinformatics are the fast developing scientific direction, studying
the processes of creation, transmission, reception, storage, processing, displaying and
interpretation of information in all the channels of functional and signal systems of
living objects which are known to biological and medical science and practice. Modern
natural sciences at present sharply need in the updating of scientific picture of the

world, and the essential contribution in this process can be made by the biometric and
biomedical methods.

How is "Biometrics’ Defined?

Biometric technologies are defined as “automated methods of identifying or
authenticating the identity of a living person based on a physiological or
behavioral characteristic."

Because biometrics can be used in such a variety of applications, it is very difficult to
establish an all-encompassing definition. The most suitable definition of biometrics is:

The automated use of physiological or behavioral characteristics to
determine or verify identity.

To elaborate on this definition, physiological biometrics is based on measurements
and data derived from direct measurement of a part of the human body. Finger-scan,
ifis-scan, retina-scan, hand-scan, and facial-scan are leading physiological biometrcs.
Behavioral characteristics are based on an action taken by a person. Behavioral
biometrics, in turn, is based on measurements and data derived from an action, and
indirectly measure characteristics of the human body. Voice-scan, keystroke-scan,
and signature-scan are leading behavioral biometric technologies. One of the defining
characteristics of a behavioral biometric is the incorporation of time as a metric — the
measured behavior has a beginning, middle and end. It is important to note that the
behavioral/physiological distinction is slightly artificial. Behavioral biometrics is based
in part on physiology, such as the shape of the vocal chords {voice-scan) or the
dexterity of hands and fingers (signature-scan). Physiological biometric technologies
are similarly informed by user behavior, such as the manner in which a user presents
a finger or looks at a camera. However, the behavioral, physiological distinction is a
helipful tool in understanding how biometrics work and how they can be applied in the
real world.

Biometrics techniques may be classified in three categories:

» Those based on the analysis of biological traces (odor, saliva, urine, blood, DNA,
etc.)

» Those based on behavioral analysis (movement of a signature line, typing on a
computer keyboard, etc.)

» Those based on morphological analysis (fingerprints, shape of the hand, lines of
the face, network of veins on the retina, the iris of the eye, etc.)

4.4.FINGERPRINT RECOGNITION

Due to steady increases in computing power and the advent of unobtrusive, easy-
to-use fingerprint sensors, fingerprints (Fig3) are used more frequently as a biometric
(identification based on a physiological or behavioral characteristic) for identification
and recognition. Since fingerprints are unique, even between identical twins, they are
perfect for various security uses. The primary technique for matching newly acquired
prints is the extraction and matching of landmarks known as minutiae. Minutiae are
areas where the ridges of the print either terminate to form a ridge ending, or split into
two new ridges, forming a ridge bifurcation (see Fig 1.3 (a-d)).

Fig 1.3: Fingerprint

Numerous procedures have been proposed for the extraction of minutiae points from
fingerprint images. Most of them, however, involve extensive pre-processing of the
fingerprint image. A common approach for example, involves the thinning of the
ridges, also known as skeletonization or ridge extraction. The process of ridge

extraction requires extensive pre-processing, which is time consuming. Each

technique improves upon the previous, and the final approach combines the results of
the initial three in an attempt to classify the data through clustering.

Each technique classifies an extracted frame into one of three groups: (1) a ridge
ending, (2) a bifurcation, or (3) a plain simply, no minutia point).

rint i gs

{b) Plain righne ' §¢) Béfierction ¢d} Ending

fe} Rotated plan ridge {Fy Rotatied bifurcation {1} Rowted eading

Fig 1.4 (a-d): Ridge bifurcation

The human fingerprint is comprised of various types of ridge patterns, traditionally
classified according to the decades-old Henry system: left loop, right loop, arch, whorl,

and tented arch. Loops make up nearly 2/3 of all fingerprints, whorls are nearly 1/3,
and perhaps 5-10% is arches.

4.5.Minutiae

Most fingerprint recognition systems make use of minutiae. These are local
discontinuities in the ridge-valley pattemn. In (see Fig1.4), the ridges are represented
by black lines and the valleys are white. All minutiae can be described as &
combination of ridge endings and bifurcations. The types, positions and orientations
of the minutiae are reliable features for fingerprint matching.

in order to extract minutiae from a gray-scale fingerprint image, typical image
processing transformations, like determination of the directional field, filtering,
binarization, and thinning, are applied to an image. The comparison of the original
minutiae’s stored in the template with the minutiae's obtained from the fingerprint is
done in the algorithm illustrated in Fig 1.5.

Fig 1.5. Template matching

4.6. Methods for Extraction of minutiae points

Minutiae (see Fig 1.6), the discontinuities that interrupt the otherwise smooth fiow
of ridges, are the basis for most finger-scan authentication. Codified in the late 1800's
as Galton features, minutiae are at their most rudimentary ridge endings, the points at
which a ridge stops, and bifurcations, the point at which one ridge divides into two.
Many types of minutiae exist, including dots (very small ridges), islands (ridges siightly
longer than dots, occupying a middle space between two temporarily divergent
ridges), ponds or lakes (empty spaces between two temporarily divergent ridges),
spurs {a notch protruding from a ridge), bridges (small ridges joining two longer
adjacent ridges), and crossovers (iwo ridges which cross each other). Other features
are essential to finger-scan authentication.

The core is the inner point, normally in the middle of the print, around which swirls,
loops, or arches center. It is frequently characterized by a ridge ending and several
acutely curved ridges. Deltas are the points, normally at the lower left and right hand
of the fingerprint, around which a trianguiar series of ridges center.

CIOSSOVET
core
bikurcation
nidgs ending
island

deita

pore

Fig 1.6. Fingerprint image
The location and distribution of the pores as a means of authentication, but the
resolution required to capture pores consistently is very high. Once a high-quality
image is captured, there are a several steps required to convert its distinctive features

into a compact template. This process, known as feature extraction, is at the core of
finger-scan technology. The image must then be converted to a usable format. If the
image is grayscale, areas lighter than a particular threshold are discarded, and those
darker are made black. The ridges are then thinned from 5-8 pixels in width down to
one pixel, for precise location of endings and bifurcations.

Minutiae localization begins with this processed image. At this point, even a very
precise image will have distortions and false minutiae that need to be filtered out. For
example, an algorithm may search the image and eliminate one of two adjacent
minutiae, as minutiae are very rarely adjacent.

Anomalies caused by scars, sweat, or dirt appear as false minutiae, and algorithms
locate any points or pattems that don't make sense, such as a spur on an island
(probably false) or a ridge crossing perpendicular to 2-3 others (probably a scar or
dirt). A large percentage of would-be minutiae are discarded in this process. The point
at which a ridge ends, and the point where a bifurcation begins, are the most
rudimentary minutiae, and are used in most applications.

There is variance in how exactly to situate a minutia point: whether to place it
directly on the end of the ridge, one pixel away from the ending, or one pixel within the
ridge ending (the same applies to bifurcation). Once the point has been situated, its
location is commonly indicated by the distance from the core, with the core serving as
the 0, 0 on an X, Y-axis. Some company uses the far left and bottom boundaries of
the image as the axes, correcting for misplacement by locating and adjusting from the
core. In addition to the placement of the minutia, the angle of the minutia is normaily
used.

When a ridge ends, its direction at the point of termination establishes the angle
(more complicated rules can apply to curved endings). This angle is taken from a
horizontal line extending rightward from the core, and can be up to 359.

In addition to using the location and angle of minutiae, some vendors classify minutia
by type and quality. The advantage of this is that searches can be quicker, as a
particularly notable minutia may be distinctive enough to lead to a match. A vendor
can also rank high versus low quality minutia and discard the latter.

7. THREE POINT MATCHING ALGORITHM

in order to define an effective matching technique, a deformation model must be
identified. When looking at different images containing the same fingerprint, a strong
global deformation of the images can be observed. This distortion is due to static
friction on a sensor surface, or paper, or roling of the finger during ink-based
registration techniques. However, small portions of the images do not appear to
exhibit manifest distortion. The idea of how to take into account small local variations,
which may lead to huge global distortion, is discussed as follows.

A pair of triangies forming a square are reported in fig 1.7. in particular fig 1.7.a.By
shortening or extending some of the edges by less than 10 percent of their original
length, the two images shown in fig 1.7.b and fig 1.7.c may be obtained. This small
distortion makes the original form easily recognizable and may be comparable with the
local distortion of a fingerprint image. In particular, the area around minutiae may be
slightly distorted due fo static friction caused by the fingertip touching a hard surface.
By replicating the square of fig 15 several times, it is possible to create a big image.

T @

&) {b))

Fig 1.7.(a) Two triangles forming a square, (b) and (c) distortion of the triangles,
where each edge is shortened or extended by less than 10 percent of its original
length

The Three point matching algorithm is used to extract a possible minutiae set

where the matching is established. The result is a number of matching minutiae pairs

on the reference and test images.

Three point matching algorithm creates a connected graph on both images. The

corresponding minutiae are identified. When any new minutia comes in the picture.

This procedure allows for matching on a local basis, where distortion is small and can

also identify two fingerprints with considerable global distortion.

4.8.Function used

GetNextMiutiae() : gets the next, already not considered, reference minutiae
form the ordered set.

GetNextTestMinutiae (ref): gets the next, already not considered, test
minutiae corresponding to ref minutiae from the ordered set with decreasing
similarity between test and reference regions.

LineL.ength (ref1, ref2, test1, test2): computes the length difference between
the lines connecting two minutiae in the reference image and two in the test
image.

ComputeAngle (reft, ref2, test1, test2): computes the angle between two
lines connecting minutiae pair ref1, ref2 and pair test1, test2, respectively.
AddMatchedMinutiae (ref1, ref2, test1, test2): adds the pairs of matched
minutiae in reference image and in test image to the already matched minutiae
list.

GetNextMinutiae (ref1, ref2, test1, test2): gets the next minutiae pair
belonging to an already matched line both in reference and test images.

MinimumMatch is the minimum number of required minutiae to match for a
valid identification.

GetNextCloseMinutiae(ref1,ref2): gets the next, already not considered
reference minutiae from the ordered minutiae list minimizing the function
max(L2(ref1,ref2), L2(ref2,ref3)) where max() is the larger between two real
numbers and L2() is the Euclidean norm on the bidimensional Cartesian plane.

ComputeTestCoordinates(X,Y,ref3,ref1,test1,ref2,test2): Computes the
(X)Y) coordinates corresponding to ref3 using the linear root-translation defined
but the mapping ref1-> test1, ref2->test2 according to the formula:
=ax3+by3+Cx Y= -bx3+ay3+Cy
Where
a= ((X2-X1)*(x2-x1) + (Y2-Y2) (y2-y 1)) ((x2-x1) "2+ (y2-y2) *2)
b= ((X2-X1)*(y2-y1) + (Y2-Y2) (x2-x1))f ((x2-x1) "2+ (y2-y2) "2)
Cx= X1-ax1-by1
CY=Y1-ay1+bx1

With the uppercase variables referring to the test coordinate space and the
lowercase coordinates to the reference coordinate space.
OrderTestMiutiae (ref, X, Y): orders the test minutiae corresponding to the
reference minutiae ref according to the increasing distance from point of
coordinate (x, y) in the test image.

NumberOfMatchedMinutiae(): computes the number of aiready matched
minutiae.

MaxDistance is the maximum allowable deformation between segments.
MaxAngle allows controlling the maximum rotation.

4.9.Algorithm

Do
/I sets two minutiae on reference image

ref1=GetNextMinutiae();
ref2=GetNextMinutiae();

Do
/! sets two corresponding two minutiae on test image

test1=GetNextTestMinutiae(ref1);

Do
test2=GetNextTestMinutiae(ref2),

if(test1 1= null)
Dist=LineLength (ref1, ref2, test1, test2);
Angle=ComputAngle (ref1, ref2, test1, test2);

Endif
1/ corresponding is valid if deformation is less than threshold

Until (dist < MaxDistance and angle < MaxAngie) OR (test == null)

Until (test1 != null or test2 == null)

if(test1 == null or test2 == null)
Goto end_NO_MATCH,;
Endif
// adds minutiae pair to already matched list
AddMatchedMinutiae (ref1, test1, ref2, test2);

Do
/I sets third minutiae for each pair of reference and test matching minutiae

pairs /1 according to roto-translation defined by minutiae pairs
Validpair = GetNextNubytiaePair (&ref1, &test1, &ref2, &test2);

If (validpair)
Do

ref3=GetNextCloseMinutiae (ref1, ref2);
If (ref3 != null)

/idefines 3rd minutiae corresponding area on test image
ComputeTestCoordinates (&X, &Y, ref3, ref1, test1, ref2, test2);
OrderTestMinutiae (ref3, x, y);

Endif
Do
test3=GetNextTestMinutiae (ref3);
If(test3 != null)
dist1=LinelLength (ref1, ref3, test1, test3);
dist2=LineLength (ref2, ref3, test2, test3);
angle1=ComputeAngle (ref1, ref3, test1, test3);
angle2=ComputeAngle (ref2, ref3, test2, test3);
Endif
/f corresponding is valid if deformation is less than threshold
Until ((dist1 < MaxDistance AND dist2 < MaxDistance AND angle1< MaxAngle
AND angle2 < MaxAngle) OR (test3 == null))

Until(test3 != null OR ref3 == null)

If{ ref3 1= null AND test3 != nuil)
AddMatchedMinutiae(ref1,test1,ref3,test3);
AddMatchedMinutiae(ref2, test2,ref3,test3);

Endif

Endif
Until validpair == false
Until NumberOfMatchedMinutiae() > MinimumMatch

5. Product Testing

The product has been tested and the output screen of the product are shown
below. Here the inputs are the two fingerprint images and the output is whether

matched or not matched.

INPUT SCREEN

OUTPUT SCREEN

6. Future Enhancements

This model is applicable to all the fingerprint verification systems because the
algorithm what we have approached is in the minutia based comparison is the best
one and the proposed model will give you 100% accuracy. So this model is the base
for any kind of fingerprint recognition system and in further it can be implemented in
the real time process .

7. Conclusion

A description of a fingerprint verification system using Three point matching
technique, which utilizes minutia position information, has been presented. The
verification algorithm has been implemented using language ‘C'. Furthermore, it has
been proposed that an added measure of security may result from the inclusion of
pores in the verification system. Based on the results of the work presented in this

paper, further research on the use of Multi-Biometric authentication systems is
warranted.

3.BIBLIOSHAPE

] Zsolt Miklos Kovacs-Vajna, "A Fingerprint Verification System Based on Three point
atching and Dynamic Time Warping," |[EEE Transaction on Pattern Analysis and
lachine Intelligence, VOL. 22, No. 11, pp 1266 - 1276, November 2000.

2] Toshio Kamei, Masanori Mizoguchi, “Fingerprint Reselection Using Eigenvectors," O-
186-8497-6/98, IEEE 1998.

3] Jonathan D.stosz, “Automated fingerprint verification system” IEEE 1997.

4] Dmitri Linde, "A New Approach to Fingerprint Verification," Computer Science
Yepartment, California Institute of Technology, May 31, 1996.

CODING:

#include "display.c”
short the image[ROWS][COLS];
float compute_line_length(int refl_x,int refl_y.int ref2 x,int ref2_y,int testl_x,int
testl_y,int test2_x,int test2_y);
float compute angle_length(int refl_x,int refl _y,intref2 x,int ref2_y,int testl_x.int
test] vy,int test2_x,int test2_y),
void main()
{
char color_transform{80] ,monitor_type[80],name2[80],rep[80];
intcolor,display_colors,ﬁle_d,ﬁrsttelement,ﬁrstgline,i,ie,il,image_colors,
invert,j,le,}1,not_finished response;
long mean_of_pixels;
struct tiff header struct image header;
int gdriver = DETECT, gmode, errorcode;
int midx, midy,disp;
initgraph(&gdriver, &gmode, ™");
errorcode = graphresult();
if (errorcode != grOk)

printf("Graphics error: %s\n", grapherrormsg(errorcode));
printf("Press any key to halt:");

getch();
exit(1); /* terminate with an error code */
i
not_finished =1;
TeESpONse =99;
il =1;
1€ =1;
1l =ROWS+I1:
le =COLS+1;

display _colors=16;

image colors =16;

invert =();
strepy(color_transform,"Straight mode™);
strepy(monitor_type,"VGA");

top();

gui(};

run();

cleardevice();

no_of minutiae=0;

top();

setcolor{ WHITE);

settextstyle(2,0,5);
outtextxy(130,getmaxy()-25,"Reference Image ");

read_tiff header(ref image,&image_header);
display#image(reffimage,the_image,il,ie,1],le,&image_header, 1);
no_of minutiae=0;
top();
setcolor(0);
settextstyle(2,0,5);
outtextxy(130,getmaxy()-25,"Reference Image ");
cleardevice();
top();
setcolor(WHITE);
settextstyle(2,0,5);
outtextxy(130,getmaxy()-25,"Test Image "),
read_tiff header(test_image,&image_header);
displayéimage(testﬁimage,the_image,il,ie,11,1e,&image_header,2);
cleardevice();
top();
setcolor(WHITE);
settextstyle(2,0,5);
outtextxy(130,getmaxy()-25,"Please Wait... ");
setcolor(WHITE);
settextstyle(8,0,1);
outtextxy(170+40-+50,200-20,"MATCHING.....");
matching();
cleardevice();
top();
result();
getch();
run();

}

result()

{

char *str;

char *app="",

int dd=0;

int dec, sign, ndig = 2;

double similarity=.51;

double sim_percent=0;

similarity=no_of valid_pair/(no_of_ref minutiac*1.0);
sim_percent=similarity®100;

setcolor(0);
settextstyle(2,0,5);
outtextxy(130,getmaxy()-25,"Test Image "),

setcolor(WHITE);

settextstyle(2,0,5);
outtextxy(130,getmaxy()-25,"RESULT "},

setcolor(0);

setfillstyle(11,3);

bar3d(115+30,85+30,getmaxx()-185+3 0,getmaxy()-215+30,0,0);
setcolor(0});

setfillstyle(1,7);

bar3d(100+30,100+3 0,getmaxx()-200+30,getmaxy()-200+30,1,1);
setcolor(0);

setfillstyle(1,0);

rectangle(150+40+50,200-20,350+40,230-20);
floodfill(155+40+50,205-20,0);

setcolor(15);

settextstyle(11,0,1);

outtextxy(145,200-9,"Status:");

if(sim_percent>=MATCH_THRESHOLD)

{

settextstyle(8,0,1);
outtextxy(170+40+50,200-20,"MATCHED");
i

else

settextstyle(8,0,1);
outtextxy(170+30+50,200-20,"NOT MATCHED");

}

settextstyle(11,0,1);
outtextxy(145,240-12,"Similarity:");

setcolor(Q});

setfillstyle(1,0);
rectangle(150+40+50,240-20,350+40,260-20);
floodfill(155+40+50,245-20,0);

setcolor(15);

settextstyle(12,0,1);

setcolor(15);

rectangle(135,135,getmaxx(}-200+30-5 Jgetmaxy()-200+30-3);
rectangle(137,137,getmaxx()-200+3 0-7,getmaxy()-200+30-7);
settextstyle(12,0,1);

setcolor(7);
setfillstyle(1,7);

rectangle(270,135,330,155);
floodfill(275,137,7);

setcolor(15);
outtextxy(277,133,"Output");
gotoxy(35,15);
printf("%f %" ,sim_percent);
} -
gui()
{
int ch=0;
int count=0;

unsigned int size=0;

int effect=0;
int order=0;
int del=50;
int arrow={);
int 1i=0,3j=0;

setcolor(YELLOW);
settextstyle(1,0,1);
outtextxy(20,100,"REF.IMAGE");
delay(50);
setcolor(0);
outtextxy(20,100,"REF. IMAGE");

size = imagesize(20, 80, 200, 120);
buf=malloc(size);

ch=0;
setcolor{ WHITE);
rectangle(290,102,500,125);

while(1)
{
setcolor(WHITE),
settextstyle(2,0,5);
outtextxy(130,getmaxy()-25,"Enter reference image name”),
settextstyle(1,0,1);
setcolor(11);

while(tkbhit())
{

if(effect==0)

if{order==0)
{

setcolor(0);
outtextxy(20,100,"REF.IMAGE");

setcolor(YELLOW);
outtextxy(21,100,"REF.IMAGE");

delay(del);

effect=1;

i
if(order==1)

{
delay(50);
putimage(20,80,buf, XOR_PUT);

setcolor(0);
outtextxy(21,100,"REF.IMAGE");

setcolor(YELLOW);
outtextxy(20,100,"REF.IMAGE");

delay(del);
effect=0;
order=0;

}

¥
if(effect==1)

if(order==0)
{

setcolor(0);
outtextxy(21,100,"REF IMAGE");

setcolor(YELLOW);
outtextxy(22,100,"REF.IMAGE");

delay(del);

effect=2;

}
if(order==1)
{
setcolor(0};
outtextxy(22,100,"REF.IMAGE");
setcolor(YELLOW);
outtextxy(21,100,"REF IMAGE");
delay(del);
effect=0;
h
}
if(effect==2)
{

if(order==0)
{

setcolor(0);
outtextxy(22,100,"REF.IMAGE");

setcolor(YELLOW);
outtextxy(23,100,"REF. IMAGE");

delay(del);

effect=3;

;

if(order==1)

{
setcolor(0);
outtextxy(23,100,"REF.IMAGE");

setcolor(YELLOW);
outtextxy(22,100,"REF.IMAGE");

delay(del);

effect=1;

}

1
if(effect==3)

if(order==0)

;

setcolor(0);
outtextxy(23,100,"REF IMAGE");

setcolor{ YELLOW);
outtextxy(24,100,"REF.IMAGE");

/fputimage(21,80,buf, XOR_PUT);
delay(del);

effect=4;

if(order==1)

{

}

}
if{effect==4)

setcolor(0);
outtextxy(24,100,"REF.IMAGE");

setcolor(Y ELLOW);
outtextxy(23,100,"REF.IMAGE");

//putimage(21,80,buf, XOR_PUT);
delay(del);

effect=2;

if(order==0)

{

setcolor(Q);
outtextxy(24,100,"REF.IMAGE");

setcolor(YELLOW);
outtextxy(25,100,"REF. IMAGE");

//putimage(21,80,buf, XOR_PUT);
delay(del);

effect=0;
order=1;

;
if(order==1)

setcolor(0);
outtextxy(25,100,"REF. IMAGE");

setcolor(YELLOW);
outtextxy(24,100,"REF.IMAGE");

/fputimage(21,80,buf, XOR_PUT):

delay(del);
effect=3;
;
//delay(10);
H
¥
setcolor(11);
ch=getch();
if{ch==8)
{
setcolor(0);
outtextxy(300,100,ref_image);
ref image[count--]=ch;
/fcount++;
ref imagefcount]="0"
setcolor(11};
outtextxy(300,100,ref_image);
h
clse
{

ref_image[count]=ch;
ref image[count+1]="0';
outtextxy(300,100,ref image);

count++;
}
ch=0;

j

setcolor(0);

for(ii=20;11<205;1i++)
for(j=80;jj<120;jj++)
putpixel(ii,jj,0);

setcolor{ YELLOW);
settextstyle(1,0,1);
outtextxy(20,100,"REF.IMAGE");
settextstyle(1,0,1);
setcolor(YELLOW);
outtextxy(20,200,"TEST IMAGE:");

getimage(20,200,140,240,buf);
delay(10);
putimage(20,200,buf, XOR_PUT);

effect=0,order=0,count=0;

ch=0;

while(1)

{
setcolor(WHITE);
rectangle(290,202,500,225);
setcolor(0);

settextstyle(2,0,5);
outtextxy(130,getmaxy()-25,"Enter reference image name");
setcolor(WHITE);

outtextxy(130,getmaxy()-25,"Enter test image name");
settextstyle(1,0,1);
setcolor(11);
while(!kbhit())
{
if{effect==0)
{
if(order==0)
{
putimage(21 ,200,buf, XOR PUT);
delay(50);
putimage(21,200,buf, XOR_PUT);
effect=1;
h
if{lorder==1)

{

putimage(20,200,buf, XOR_PUT);
delay(50);

putimage(20,200,buf, XOR_PUT);
effect=0;

order=0;

}

//delay(10);

1

if(effect==1)

{

i

if{forder==0)

{

putimage(22,200,buf, XOR_PUT);
delay(50);

putimage(22,200,buf, XOR_PUT);
effect=2;

}

if(order==1)

{

putimage(21,200,buf, XOR_PUT);
delay(50);

putimage(21,200,buf, XOR_PUT);
effect=0;

b

//delay(10);

if(effect==2)

{

}

iflorder==0)

{

putimage(23,200,buf, XOR_PUT);
delay(50);

putimage(23,200,buf, XOR_PUT);
effect=3;

if(order==1)

{

putimage(22,200,buf, XOR_PUT);
delay(50);

putimage(22,200,buf, XOR_PUT);
effect=1;

;
/fdelay(10);

if(effect==3)

{

if{order==0)

{

putimage(24,200,buf, XOR_PUT);
delay(50);

putimage(24,200,buf, XOR_PUT);
effect=4;

b

if{order==1)

putimage(23,200,buf, XOR_PUT);

delay(50);

putimage(23,200,buf, XOR_PUT);

effect=2;

b
//delay(10);

b
if{effect==4)
{

1
if(order==0)

{

putimage(25,200,buf, XOR_PUT);

delay(50);

putimage(25,200,buf, XOR_PUT);

effect=0;
order=1;

}
iflforder==1)

putimage(24,200,buf, XOR_PUT);

delay(50);
putimage(24,200,buf, XOR_PUT);
effect=3;
}
//delay(10);
H
j
ch=getch();
if(ch==8)
{
setcolor(0);

j

else

{

outtextxy(300,200,test_image);
test_image[count--]=ch;
test_image[count]="0"
setcolor(11);
outtextxy(300,200,test_image);

test_image{count]=ch;
test image[count+1]="0"

/fitoa{ch)
outtextxy(300,200,test image);
count++;

}
ch=0;

;
putimage(20,200,buf, XOR_PUT);

print_all()

{
int 1i=0;
for(ii=0;(ii)<no_of ref minutiae;in+-+)

printf("n refl_x=%d refl y=%d ",ref minutiae_x[ii],ref minutiae_y[11}},

matching()
{ -
nt
refl x=0refl y=0,ref2 x=0,ref2 y=0,testl_x=0,test]l_y=0,test2_x=0test2_y=0;
int ref3_x=0,ref3_y=0,test3_x=0,test3_y=0,new_x=0new_y=0;
int ii=0,jj=0,kk=0,11i=0,)])=0;
float temp=0,diff line_ length=0,diff line length2=0,diff line_length3=0;
float diff_angle length=0,diff angle length2=0,diff angle length3=0;
int minutiae_found=0;
associate_ref test();
for(ii=0;ii<(no_of ref minutiae-1)1i+=2)
{
minutiae_found=0;
refl x=ref minutiae_x[i1];
refl y=ref minutiae vyfii];
ref2 x=ref minutiae x[ii+1];
ref2 y=ref minutiae y[ii+1];
for(3j=0;j<10;jj++)
{
testl_x=ref test x[it][j1];
test]l y=ref test y[i][jj];

for(klk=0;kk<10;kl++)

{
test2_x=ref test x[ii+1][kk];
test2_y=ref test y[1+1][kk];

if(1((test]_x==test2_x) && (test] y==test2 v)

{
diff;line_length=compute_line_length(refl_x,refl_y,refZ)x,refQ_y,testl_x,
test]l_y,test2_x,test2_y);
diff_angle_length=compute_angle_length(ref 1 x,refl_yref2_x.ref2_ytest] x.tes
t1 y,test2 x,test2_y);
if(diff_line_length<=LINELENGTH_THRESHOLD &&
diff angle length<=ANGLE_THRESHOLD)

{

for(iii=0;iii<no_of ref minutiae;iii-++)

if(W((i==1i) || (dii==(it+1)))
{
ref3_x=ref minutiae_x[11i];
ref3 y=ref minutiae y[iii];
compute_test_coordinates(&new_x,&new _y,refl_x,ref 1 _yref2 x,ref2_y.r
ef3 xref3 ytestl_xtestl_y,test2 xtest2_y);

order test minutiae(new_x,new_y}

for(jjj=0;jij<no_of test_minutiae;jjj++)

{
test3 x=test_minutiae_x[ref3 test3[jjj]l;

test3_y=test_minutiac_y[ref3_test3[jjj]};
diff line length2=compute_line_length(ref 1 x,refl_yref3 x,ref3_ytestl_xtestl
y,test3 x.test3_y);

diff angle length2=compute_angle_length(refl_x,refl_y,ref3_x ref3 vitestl xte
stl_y,test3_x,test3_y);

diff_line_length3=compute_1ine_length(reﬂ_x,reﬂ_y,reﬁ_x,ref3_y,test2_x,test2
_ytest3 x.test3_y);

diff _angle len gth3=compute angle_length(ref2_x,ref2_y.ref3_x.ref3_y,test2 x.te
st3_ytest3 x.test3_y);
if{
((diff line length2<=LINELENGTH_THRESHOLD) &&
(diff angle length2<=ANGLE_THRESHOLD)&&
(diff line length3<=LINELENGTH_THRESHOLD) &&
(diff angle length3<=ANGLE THRESHOLD)))

{fprintf("valid pair");
no_of valid_pair+=2;
minutiae_found=1:

break;

1
4
1
i

if(minutiae found==1)

{
break;
}
}
h
if(minutiae_found==1)
{
break;
i
}
}
h
ifiminutiae_found==1)
{
break;
H

minutiae _found=0;

}

/fprintf("'no of valid paris=%d",no of valid_pair);
t
order_test minutiae(int n_x,intn_y)
{

int xx=0,yy;

mt tt1=0;

float tt=0,temp[100];

for(xx=0;xx<no_of_test minutiae;xx++)

{

ref3 test3[xx]=xx;
;
for(xx=0;xx<no_of_test_minutiae;xx++)
{

temp|xx]=sqrt(fabs((test_minutiae x[xxJ-n_x)*(test minutiae_x{xx]-
n_x))+fabs((test_minutiae_y[xx]-n_y)*(test_minutiae y[xx]-n B35

}

for(xx=0;xx<no_of test minutiag;xx+-+)

{
for(yy=xx+1;yy<no_of_test_minutiae;yy++}
{
if(temp[xx]>temp[yy])
{
tt=temp[xx];
temp[xx]=temp[yy];
temp{yy]=tt;
ttl=refd test3[xxI;
ref3 test3[xx]=ref3_test3[yy];
ref3 test3[yy]=ttl;
b
H
¥

}

compute_test_coordinates(int *test3_x,int *test3_y,int refl_x,int ref]l_y,int ref2_xint
ref2_y,int ref3 x,intref3 y,int testl x.inttestl_y,int test2_x,int test2_y)

{
int a=0;
int b=0;
int cx,cy,x1,y1;

a=(((test2_x - testl x y*(ref2_x -refl_x))+({test2_x -testl_y)*(ref2_y -
refl_y)/(((ref2_x -refl_x)*(ref2_x -refl_x))H((ref2 _y -refl_y)*(ref2_y -refl_y))).

b=(((test2 x - testl_x)*(ref2 y -refl_y))+((test2_y -testl_y)y*(ref2 x -
refl x))/(((ref2_x -refl_x)*(ref2_x -refl x))+((ref2_y -refl_y)*(ref2_y -refl_y))}

cx=(test] x-(a*refl_x)-(b*refl y));
cy=(test] y-(a*refl_y)+(b*refl x));
x1=(a%refd x)+{(b*refd_y)t+cx;
yi=((-b)*ref3 x)+(a*ref3_y)t+cy;

*test3 x=x1;
*test3_y=yl;

}

float compute line_length(int refl_x,int refl y.int ref2_x.int ref2_y,int testl_x,int
testl y,int test2_x,int test2)
{

int t1=0;

int t2=0;

float £1=0;

float £2=0;

float res=0;

// printf("n***refl_x=%d ref2_x=%d refl_y=%d
ref2_y=%d"refl_x,ref2_x,refl_y,ref2_y);
fl=pow((refl_x-ref2_x),2)+pow((refl_y-ref2_y),2);

fl=sqrt(f1);

ﬂﬂow((test1_x—testZ_x),2)+pow((test1_y—test2_y),2);
f2=sqrt(f2);

res=fabs(f1-12);
return(res);

}

float compute angle length(int refl_x,int refl_y,int ref2_x,int ref2_y,int testl x,int
test] y,int test2_x,int test2_y)

float f1=0,{2=0, res=0;
int t1=0,12=0;

ti=abs(refl_x-ref2_x);
if(t1=>0)

{

fl=fabs(refl y-ref2 y)/tl;

}

else

{

fl=abs(refl_y-ref2 x)/1;

b

Hprintf("n f1=%1"f1);
t2=abs(test] x-test2_x),
if(t12>0}

{

2=fabs(test]_y-test2 y)/12;

}

else

{
f2=fabs(test] _y-test2_y)/1;

3

Hprintf("n 2=%1",12);
res=fabs(f1-12);
return(res);

}
associate_ref test()
{
int 1i=0,jj=0,ref x=0,ref y=0.test_x=0,test y=0kk=0;
float temp[100];
for(ii=0;ii<no_of ref minutiae;ii++)
d

ref x=ref minutiae x[ii];
ref y=ref minutiae y[ii];
for(jj=0;jj<no of test minutiae;jj++)
{
test x=test_minutiae x[jj];
test_y=test_minutiae_y[jj];
temp[jj]=sqrt(fabs((ref _x-test_x)*(ref x-test_x))+fabs((ref_y-
test_y)*(ref_y-test_y)));

}
sort(temp);
map(ii,temp);
b
}
map(int ii,float temp1[100])
{
int kk=0;
for(kk=0;kk<10;kk++)
{
ref test x[ii][kk}=test _minutiae_x[test_order[kk]];
ref test y[ii]{kk]=test minutiae y[test order[kk]];
}
¥

sort(float temp1[100])

}

int 1i=0,;j=0,kk=0,tt1;
float tt=0,temp=0;

for(ii=0;ii<no_of test minutiae;ii++)

{
test_order[ii]=11;
h
for(ii=0:ii<no_of test minutiae;ii++)
{
for(jj=ii+1;jj<no_of test minutiae;jj++)
{
if{temp1[i1}>temp 1 [jj])
{
tt=temp1 [ii];
temp1{ii]=temp1{jj];
temp1[jj]=tt;
tt1=test order[ii];
test_order[ii]=test_order[jj];
test_order[jj]=ttl;
}
¥
}

show_image(short image[ROWS][COLS],int i, int i)

{

inti,j;
printf("\n ");
for(i=0;i<18;i++)
{
printf(" -%3d", itie);
h
for(i=0;i<20;i++)
{
printf{(™a %2d ", i+l);
for(j=0;j<18;j++)
{
printf("-3%d" image[i][i]);
}
}

printf("n Press enter to continue”);

SAMPLE SCREEN.

INPUT SCREEN

OUTPUT SCREEN

