P- 163
ABE ROUTING ALGORITHM

Project Report

)
\ ™ 4

Submitted in partial fulfillment of the
Requirement for the award of the degree of the

Bachelor of Engineering in Information Technology of
Bharathiar University, Coimbatore.

Submitted by
N.Matheswaran R.Thirunavukkarasu
002750088 002750116
Under the guidance of
Mrs.J.Cynthia ML.E.,
Lecturer

DEPARTMENT OF INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY,
COIMBATORE — 641006.

MARCH 2004.

DEPARTMENT OF INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY
(Affiliated to Bharathiar University, Coimbatore)

CERTIFICATE

This is to certify that the project entitled

ABE ROUTING ALGORITHM
Is done by
N.Matheswaran R.Thirunavukkarasu
002750088 002780116

And submitted in partial fulfillment of the
Requirement for the award of the degree of the

Bachelor of Engineering in Information Technology of

o)
\ ™~ 4

f,.!(_/—/)
1Y

Bharathiar University, Coimbatore. L,
b

Professor & Head of the department Project Guide
(Dr.S.THANGASAMY) (Mrs.J. CYNTHIA)

Certified that the candidates were examined by us in the project work
Viva voce examinationheldon _»: s .oy :

- g o I s
P A e

7 2013

Internal Examiner External Examiner

DECLARATION

DECLARATION

We,
N.Matheswaran 0027S0088
R.Thirunavukkarasu 002780116

declare that the project entitled “ABE Routing Algorithm ”, is done by us
and to the best of our knowledge, a similar work has not been submitted earlier to the

Bharathiar University or any other institution, for fulfillment of the requirement of the
course study.

This project report is submitted on the partial fulfiliment of the
requirement for all awards of the degree of Bachelor of Engineering in Information
Technology of Bharathiar University.

At g

Ko ;
Place: Coimbatore. [N.Matheswaran]
oo AL e

Date: 24 -¢ " - Ol [R.Thirunavukkarasu]

Project Guidedy/f
/{ C/l m

A4
Mirs. J. éynthi:l M.E.,

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

The exhilaration achieved upon the successful completion of any task should be
definitely shared with the people behind the venture. This project is an amalgam of study
and experience of many people without whose help this project would not have taken

shape.

At the onset, we take this opportunity to thank the management of our college for
having provided us excellent facilities to work with. We express our deep gratitude to

our Principal Dr.K K Padmanabhan for ushering us in the path of triumph.

We are always thankful to our beloved Professor and the Head of the Department,
Dr.S.Thangasamy whose consistent support and enthusiastic involvement helped us a

great deal.

We are greatly indebted to our beloved guide Mrs.J.Cynthia MLE., Lecturer,
Department of Information Technology for his excellent guidance and timely support
during the course of this project. As a token of our esteem and gratitude, we would like

to honour her for her assistance towards this cause.

We also thank our project coordinator Mrs.S.Devaki M.S., and our beloved class
advisor Ms.P.Sudha B.E., for their invaluable assistance.

We also feel elated in manifesting our deep sense of gratitude to all the staff and

lab technicians in the Department of Information Technology.

We feel proud to pay our respectful thanks to our Parents for their enthusiasm and
encouragement and also we thank our friends who have associated themselves to bring

out this project successfully.

SYNOPSIS

SYNOPSIS

ABE (Alternative Best-Effort) is a novel service for IP networks. It provides a
low bounded queuing delay service in the Internet. The service is best-effort, and requires
no additional charging or usage control. Its goal is to help applications with stringent real
time constraints, such as interactive audio. With ABE, it is not required to police how
much traffic uses the low delay capability, the service being designed to operate equally
well in all traffic scenarios. Applications choose between receiving a lower end-to-end
delay and receiving more overall throughput. Every best effort packet is tagged as either
green or blue. Green packets receive a low, bounded queuing delay. To ensure blue
packets do not suffer as a result, green flows receive fewer throughputs during bouts of

congestion.

To test the router, separate network traffic simulator software will be necessary
(particularly for Green). While simulating network traffic by sending periodic or random
packets, there must be a variety of packet types to simulate real network traffic. Packet
editing features will be necessary to cook-up a packet before transmission. In this project,
we develop another custom made software which can generate various types of packets to
simulate multiprotocol network traffic for testing the performance of our ABE

implemented router.

CONTENT

CONTENTS

Introduction

1.1 Existing System & Limitations
1.2 Proposed System & Advantages
1.3 Literature survey

Software Requirement & Analysis 8
2.1 Product Definition

2.2 Project Plan

Software Requirement Specification 11
3.1 Purpose

32 Scope

3.3 Product Overview and Summary

34 Development & Operating Environment

3.5 Functional Specification

3.6 Functional Flowchart

3.7 Exception Handling

3.8 Optimization

System Design 18
System Testing 31
5.1 Testing the Traffic Generator

5.2 Testing the ABE Router Software

Future Enhancements 33
Conclusion 35
References 37
Annexure 39

9.1 Sample Code
9.2 Output Screens

INTRODUCTION

1. INTRODUCTION

Our project deals with routing the packets from one network to another network.
1.1 Existing System and Limitations

Router connects networks, thus working on the network layer of the OSI-model
(Layer 3). It is protocol depended and the network address on one interface is different
from that on another interface. A router consists of a computer with at least two network
interface cards supporting the IP protocol. The router receives packets from each interface
via a network interface and forwards the received packets to an appropriate output network
interface. Received packets have all link layer protocol headers removed, and transmitted

packets have a new link protocol header added prior to transmission.

A router introduces delay (latency) as it processes the packets it receives. The total

delay observed is the sum of many components including:

o Time taken to process the frame by the data link protocol

¢ Time taken to select the correct output link (1.e. filtering and routing)

¢ Queuing delay at the output link (when the link is busy)

e Other activities which consume processor resources (computing routing tables,

network management, generation of logging information)

The router queue of packets waiting to be sent also introduces a potential cause of
packet loss. Since the router has a finite amount of buffer memory to hold the queue, a
router which recetves packets at too high a rate may experience a full queue. In this case,
the router has no other option than to simply discard excess packets. If required, these may
later be retransmitted by a transport protocol.

Limitations
All the routing algorithms which are currently used consider the multimedia and

ordinary text packets as the same. Since the multimedia and ordinary packets are given the

same priority in routing, both packets have same queuing delay. So in Internet applications
like video chatting, video conferencing, etc.. the delay between the frames is high (i.e) the

frames cannot be continuously viewed.
1.2 Proposed System and Advantages

This proposed system assumes that the router has only output port queuing. It is
based on a new scheduling concept, DSD. One of the first schemes to implement ABE
that might spring to mind is a first come first served (FCFS) scheduling discipline with a
threshold drop policy to filter green packets. In such a scheme, blue packets would be
accepted when the buffer is not full, while green packets would only be accepted if they
can be served with a delay no greater than some maximum d. Most of the time, though,
there would be little or no incentive to be green. What is desired is to provide green with
the best service possible while still ensuring that green does not hurt blue. Any significant
extra gain by blue packets is at the expense of green ones. The gain blue packets would
enjoy under ABE should be kept to a minimum such that there is still an incentive to use
green packets whenever appropriate. This can be formalized by the following
optimization problem: minimize the number of green losses subject to the following

constraints:

¢ Green packets receive a queuing delay no larger than d.
e The scheduling is work-conserving.

¢ No reordering: blue (respectively green) packets are served in the order of arrival.

A solution to this problem is the DSD, a new scheduling algorithm based on the
concept of duplicates. Dead-lines are assigned to packets as they arrive, green and blue
packets are queued separately, and the deadlines of the packets at the head of blue and
green queues are used to determine which is to be served next. As previously discussed,
throughput transparency as well as local transparency is required for ABE to ensure rate-
adaptive green flows do not hurt blue. This is facilitated by the use of a parameter g,

which is used in deciding which queue should be served in the event that the deadlines of

the packets at the head of each queue can both be met if the other queue was served
beforehand. The value of g used at any given time is determined by a control loop as
described later. We can now describe DSD in detail.

1.2.1 Duplicate Scheduling with Deadlines (DSD)

Duplicates of all incoming packets are sent to a virtual queue with buffer size
Buft. A duplicate is admitted if the virtual buffer is not full. Packets in the virtual queue
are served according to FCFS at rate ¢, as they would be in flat best effort. The times at
which duplicates will be served are used to assign blue packets deadlines at which they
would have (approximately) been served in flat best effort. The original arriving packets
are fed according to their color into a green and a blue queue. Blue packets are always
served at the latest their deadline permits subject to work conservation. Green packets are
served in the meantime if they have been in the queue for less than d s, and dropped
otherwise. A blue packet is dropped if its duplicate was not accepted in the virtual queue.
Otherwise, it is tagged with a deadline, given by the time at which its duplicate will be
served in the virtual queue, and placed at the back of the blue queue.

A green packet is accepted if it passes what is called the green acceptance test and
dropped otherwise. A green packet arriving at time # fails the test if the sum of the length
of the green queue at time ¢ (including this packet), and of the length of the first part of
the blue queue that contains packets tagged with a deadline less than or equal to £ + d +
pg new, where pg new is the transmission delay for the incoming green packet, is more
than ¢ @ + pg new), and passes otherwise. The use of the test ensures the total buffer
occupancy, namely the sum of the green and blue queue lengths, does not exceed Buff,
which is discussed later. To facilitate understanding, we consider first the case where
green packets do not undergo the green acceptance test and where g = 1. The maximal
buffer size is Buff = 7 packets. The maximum green queue wait is d = 3 packets. B and
G denote blue and green packets, respectively. In the first snap-shot, B 1 is served at time
t = 0 in order to meet its deadline, then G 1, B 2, B 3, and B 4. G 2 has to be dropped

from the green queue because it has to wait for more than d 3, whereas B 6 had to be

dropped because the virtual queue length was Buyjff when it arrived.

At time =0
Deadline 6 4 3 2 0
Blue queue B5 | B4 | B3 | B2 | Bl
Deadline 3 2
G2 | 61
Green queue
B6

Virtual queue

At time =5
Deadline o 9 7 6
Blue queue BY | B8 | B7 | BS
Deadline 8 7
G4 | 63

Green queue

Virtual queue

Two snapshots as an example of DSD, at time t = 0 (top)

and t = 5 (bottom).

At time ¢ = 5, we reach the situation of the second snapshot. Since no blue packet has
reached its deadline yet, G 3 can be served, followed by B5, B7, G4, B8, and B 9.
Consider again the example in Fig. 2, except green packets are now enqueued only if
they pass the green acceptance test. This amounts here to accepting a green packet at time
t if the number of green packets in the queue at time t, augmented by the number of blue
packets in the queue with a deadline between ft, ¢ + 4], is no more than 4. The only
difference from Fig. 2 is that G 2 is no longer enqueued. Indeed, when it arrived, the
green queue already contained packet G 1, and the blue queue contained packets B 1, B
2, and B 3. The total queue length at time ¢ was 5 packets (including G 2), so G 2 fails
the test. An accepted green packet is then assigned a deadline which is the sum of its
arrival time plus its maximum waiting time d, and placed at the back of the green queue.
At each service time, a decision is made as to which queue to serve.

The serving mechanism’s primary function is to ensure that blue packets are
always served no later than their deadlines. The best performance green could receive
would be to then serve the green queue as much as possible, subject to this restriction.
However, as previously discussed, in addition to local transparency, throughput
transparency is needed to ensure that green adaptive applications do not benefit too much
from lower delay. It can happen at service time that both blue and green packets at the
head of their respective queues are able to wait, since letting the other packet go first
would still allow it to be served within its deadline. For the purpose of supporting
throughput transparency, when this situation arises the packet serving algorithm uses the
current value of the green bias g, a value in the range [0,1], to determine the extent to
which green is favored over blue. More precisely, when both blue and green packets can
wait, g is the probability that the green packet is served first.

The value g = 1 corresponds to the case where green is always favored.

Conversely, the value g = 0 corresponds to the systematic favoring of blue packets. In

Fig. 2, the packets served would have thus been, successively,B1,B2,G1,B3,B4
,B5,B7,G3,G4,B8,and B9 . A value of g less than 1 causes the delay for
green traffic to be increased. This increase in delay for green TCP-friendly traffic
reduces their throughput, thereby enabling blue traffic to increase its throughput.
Increasing the delay of non-TCP-friendly traffic may not reduce their throughput, but
blue flows are, in the worst case, equally as protected from this type of traffic as in a flat
best effort service. The value of g choice is made according to a control loop, described
later. All green packets who miss their deadline by waiting for more than d seconds
(these packets are said to have become stale) are removed from the green queue. At
service time, the possible events that arise and packets served by DSD are shown in

Table 1. Pseudo-code for DSD is given below. Let now be the cur-rent time, p.

SOFTWARE REQUIREMENT ANALYSIS

2. SOFTWARE REQUIREMENT ANALYSIS

System study is an activity that encompasses most of the tasks that we
have collectively called computer system engineering. System study is conducted with

the following objectives.
> Identify the needs.

> Evaluate the system concept for feasibility.

> Perform economic and technical analysis.

> Allocate function to hardware, software, people and other system elements.

> Create a system definition that forms the foundation for all subsequent
engineering works.

2.1 Product Definition

In the Internet, while video conferencing and video chatting the frame rate
is so low that the images move frame by frame. Since it moves frame by frame the
picture is not so clear. In this routing algorithm we identify the multimedia packets and
we give more precedence for it but we must see to that ordinary text packets don’t suffer.
We use a new algorithm called Duplicate scheduling with deadline. This routing
algorithm is most simple and flexible one. The ABE-unaware sources receive the same

service as they would if the network were flat best effort.
2.2 Project Plan

This project entitled “ABE Routing Algorithm” is to develop a software
package to implement the routing algorithm which would be used in the internet for faster
transmission of multimedia packets. We develop an another custom made software
‘Packet Generator’ to generate different kinds of packets which is helpful in testing the
algorithm.

Three important steps in implementation of ABE Algorithm is
> Packet Generation

> Packet Analysis

> Implementation of ABE algorithm

10

SOFTWARE REQUIREMENT SPECIFICATION

11

3. SOFTWARE REQUIREMENT SPECIFICATION

3.1 Purpose

The primary purpose of the Software Requirement Specification (SRS) is to
document the previously agreed functionality, attributes and the performance of the

“ABE Routing Algorithm”. This specification is the primary document upon which all of

the subsequent design, source code and test plan will be based.
3.2 Scope

The scope of the document is to describe the requirements definition effort. The
SRS is limited to description of the routing algorithms for the stringent real time

applications like video conferencing etc.
3.3 Product Overview and Summary

Our product provides a reliable, robust and efficient means of routing packets
from one network to another network. Our product basically deals with reduction of
queuing delay for the multimedia packets. The product is developed using the concept of
Duplicates Scheduling with Deadlines where the multimedia packets are given higher
precedence. The Packet Generator first generates different kinds of packets to create
traffic in the network. Then the packets are analyzed to check whether it is multimedia
packets or ordinary text packets. Then ABE Algorithm is used to route the packets with
the high precedence to the multimedia packets but the ordinary text packets are not affect

much.
3.4 Development and Operating Environment

The development environment gives the minimum hardware and software

requirements.

12

Hardware Specifications

Server

System Processor
Main Memory
Hard Disk
Monitor
Floppy Drive
Ethernet card

Clients
System Processor
Main Memory
Hard Disk
Monitor
Floppy Drive
Ethernet card

Software Specifications
Software (server)

Operating System
Programming Language

Main Libraries

Protocols

Software(clients for testing)
Operating System
Utilities

Protocols

Pentium I

64 Mb

10 Gb

15” Color Monitor
1.44 FDD

Intex PCI (rt18029)

Pentium II

32/16 Mb

1.2/42 Gb

15” Color Monitor
1.44 FDD

RL.2000 PCI (rt18029)

RedHat Linux 7.2

C++

bpf

USI++

libpcap (LIBPCAP 0.6.2), ncurses
All the Available Protocols in the
network

RedHat Linux 7.2

telnet, ping, fip, http
All the Available Protocols in the

network

13

3.5 Functional Specifications
The descriptions of the modules are as follows:
> Packet Generator

The traffic is monitored by the sniff_pack function of derived object pcap of Pcap
class. The timeout function is used to generate packets with respect to the traffic
connection; and also it is used to do update the screen outputs and process the key inputs.
To send packets, the objects ip, tcp and udp, which were derived from the classes IP, TCP,
UDP were used. The time delay was generated by randnum() function or sleep() function

depending on the choice we made during the input.

The keyboard interaction is indirectly implemented by using basic termios function
calls through the functions kbhit() and readkey(). In UNIX, there will not be kbhit()
function to interrupt the program during execution. This keyboard handling functions were

developed from a ¢ source code from internet.

The ncurses library functions were used to generate a pleasant window based text

screen output in UNIX terminal by using ETI screen mode.

> Packet Analysis & Implementation of the algorithm

The Routing requests and ICMP messages were monitored by the sniff pack
function of derived object pcap of Pcap class. The received packets were enqueued and
serviced according to the ABE algorithm. The time_out function is used to service the
packets which already enqueued in the queues; and also it is used to do update the screen

outputs and process the key inputs.

The keyboard interaction is indirectly implemented by using basic termios function
calls through the functions kbhit() and readkey(). In UNIX, there will not be kbhit()
function to interrupt the program during execution. This keyboard handling functions were

developed from a ¢ source code from internet.

The ncurses library functions were used to generate a pleasant window based text

screen output in UNIX terminal by using ETI screen mode.

14

3.6. Functional Flowchart

Flow chart for traffic simulator

=
!

Initialize the Ethernet
Device

v

Select the Transmission Type,
From and To IP address,
Packet Type

Display
Info

A

Listen Traffic
— if necessary With respect to the
Transmission Type

Display
Info

v

Set source , desti IP addr &
send the packet acc to selection

I

Select Suitable
Time delay fanction
with respect to the
Transmission Type

Display
Info

PR

Process the
key

Interrupted By
the user?

“Resume” selected

“New Input” Selected

15

Flowchart for ABE Router

Initialize the Ethernet
Device

v

Display the
Information

Set the required Inputs

Start Routing ?

Listen Traffic
Process Time out
and Packet arrival

Display the
Information

Display the

Information

If timeout,
do Pending

Events & Update

If it is a routing request, then
enqueue the packet according to
ABE algorithm

Display the
Information

I

Service the enqueued packet as per
ABE algorithm.

Process the pending keys & Update

the statistics & update the screen

No
Interrupted By
the user?

“Resume” is Selected

Process the key

16

“Input” is Selected

3.7 Exception Handling

In this router simulation model, we concentrated only on ABE
implementation. So, even it will not satisfy all the requirements of an IPV4 Router as per
the rfc 1812. In the ABE Traffic simulating program, we handled very basic information
while sending a packet. But there are few more things in the header and option fields of the
typical packet.

3.8 Product Optimization

The product is about to be implemented on Linux 7.2 (c++). If it can be
implemented with the concept of multitasking and inter-process communication of Linux

then the code would be said to optimized.

17

SYSTEM DESIGN

4. SYSTEM DESIGN

The system design is the high level strategy for solving the problem
and building a solution. System design includes decisions about the organization of the
system into subsystems, allocation of subsystems to hardware and software components,

and major conceptual and policy decisions that form the framework for the detailed design.

In the ABE Router software, the Main Module code is kept under the name
“ABEroute.cc”. Similarly, the Listening Module, Packet Enqueing and serving Module and
the Output Module of the project are kept in the corresponding files namely, “listen.cc”,
“enquesrv.cc” and “output.cc”.

In the ABE Traffic Simulator software, the Main Module code is kept under the
name “TrafficSim.cc”. Similarly, the Input Module, Output Module, Packet Sending

Module of the project is kept in the corresponding files namely, “input.cc”, “output. cc” and

“transmit.cc”.

The class IP of USI++ library contains all the necessary functions to send and receive
an IP packet. Similarly, the class TCP and UDP contains all the necessary functions to send
and receive TCP and UDP packets. In this project, Pcap class is handled in an efficient

manner to monitor the traffic and respond with respect to it.

Descriptions of the Packets & Packet headers

Structure IP packet header

The IP packet header consists of 20 bytes of data. An option exists within the
header which allows further optional bytes to be added, but this is not normally used.
The full header is shown below:

19

IP Header Length (in 32-bitwords) Type of Service Size of datagram (header + dlata)

(Nt used) /

Numnber of g \\ 15 16 ’ 31 ____ Flags & Fragmentation
network 4 | H| Tos 16-bit ok to spit large messages
hops | 16bk icentification _[flagsIT3bit fragmerk offset irto a series of |P packets
Adcress of N 1T | protocol | 16-bitheader checksum bfz . Fogs
semnrg // f32-bit source IP address \\ -¥- Don’t Fragment
node A2-bit destination IP address ™ X-- Unused

/ options (if any)
Address of Checksum to detectany
irtended ‘|L / dela N corruption of the IP
receiying { \ header within a router
nedle Type of transpart protocol to be used Data to be sent to recelving node

Figure 1: The IP Header

The header fields are discussed below:

e Version (always set to the value 4, which is the current version of IP)

e IP Header Length (number of 32 -bit words forming the header, usually five)

e Type of Service, now known as Differentiated Services Code Point (DSCP)
(usually set to 0, but may indicate particular Quality of Service needs from the
network, the DSCP defines one of a set of class of service)

e Size of Datagram (in bytes, this is the combined length of the header and the data)

e Identification (16-bit number which together with the source address uniquely
identifies this packet - used during reassembly of fragmented datagrams)

e Flags (a sequence of three flags (one of the 4 bits is unused) used to control
whether routers are allowed to fragment a packet (i.e. the Don't Fragment, DF,
flag), and to indicate the parts of a packet to the receiver)

o Fragmentation Offset (a byte count from the start of the original sent packet, set
by any router which performs IP router fragmentation)

e Time To Live (Number of hops /links which the packet may be routed over,
decremented by most routers - used to prevent accidental routing loops)

e Protocol (Service Access Point (SAP) which indicates the type of transport packet
being carried (e.g. 1 = ICMP; 2= IGMP; 6 = TCP; 17=UDP).

e Header Checksum (A 2's complement checksum inserted by the sender and

updated whenever the packet header is modified by a router - Used to detect

20

processing errors introduced into the packet inside a router or bridge where the
packet is not protected by a link layer cyclic redundancy check. Packets with an

invalid checksum are discarded by all nodes in an IP network)
e Source Address (the IP address of the original sender of the packet)
o Destination Address (the IP address of the final destination of the packet)
e Options (not normally used, but when used the IP header length will be > 5 32-bit

words to indicate the size of the options field)

‘C’ Structure of IP packet header

struct ip

{
u int8_t ip vhl; /* header length, version */
u int8_t ip_tos; /* type of service */
u_intlé_t ip_len; /* total length */
u_intlé_t ip_id; /* identification */
u_intlé_t ip_off; /* fragment offset field */
u int8 t ip_ttl; /* time to live */
u int8_t ip_p; /* protocol */
u_intl6_t ip_ sum; /* checksum */
struct in_addr ip_src,ip_dst; /*src &dest address*/

b

The User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) is a transport layer protocol defined by the US
Department of Defence (DoD) for use with the IP network layer protocol. It provides a
best-effort datagram service to an End System.

The service provided by UDP is an unreliable service which provides no guarantees
for delivery and no protection from duplication (if this arises due to software errors within
an Intermediate System (IS)). The simplicity of UDP reduces the overhead from using the

protocol and the services may be adequate in many cases.

21

A computer may send UDP packets without first establishing a connection to the recipient.
The computer completes the appropriate fields in the UDP header (PCI) and
forwards the data together with the header for transmission by the IP network layer.

Figure 2: The UDP protocol header

The UDP header consists of four fields each of 2 bytes in length:

e Source Port (UDP packets from a client use this as a service access point (SAP) to
indicate which session on the local client originated the packet. UDP packets froma
server carry the server SAP in this field)

e Destination Port (UDP packets from a client use this as a service access point
(SAP) to indicate which service is required from the remote server. UDP packets
from a server carry the client SAP in this field)

e UDP length (The number of bytes of data)

e UDP Checksum (A checksum to verify that the end to end data has not been
corrupted by routers or bridges in the network or by the processing in an end
system. If this check is not required, the value of 0x0000 is placed in this field, in
which case the data is not checked by the receiver.)

The UDP header and data are not processed by Intermediate Systems (IS) in the
network, and are delivered to the final destination in the same form as originally
transmitted.

22

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is a connection-oriented reliable
protocol. It provides a reliable transport service between pairs of processes executing on
End Systems (ES) using the network layer service provided by the IP protocol.

TCP providing reliable data transfer to FTP over an IP network using Ethernet
TCP is stream oriented, that is, TCP users exchange streams of data. The data are placed in
buffers and transmitted by TCP in transport Protocol Data Units (sometimes known as
"segments"). TCP is much more complex than UDP (which provides the Best Effort
service). TCP implements a number of protocol timers to ensure reliable and synchronized
communication between the two End Systems.

The TCP transport service is used by such applications as telnet, World Wide Web
(WWW), fip, electronic mail. The transport header contains a Service Access Point which
indicates the protocol which is being used (e.g. 23 = Telnet; 25 = Mail; 69 = TFTP; 80 =
WWW (http)).

‘C' Structure of TCP packet header
struct tcphdr
{

u_intl6_t th_sport; /* source port */

u intlé_t th dport; /* destination port */
tcp_seq th_seq; /* sequence number */
tcp_seq th_acks /* ack number */
u_int8_t th offx2; /* data offset, rsvd */
u int8 t th_flags; /* flags */

u_intl6_t th_win; /* window */

u_intl6_t th_sum; /* checksum */

u intl6_t th_urp; /* urgent pointer */

};

23

The functions handled from USI++ library

The listening of network traffic has been implemented by using the Pcap Class. The
receiving objects were inherited from the parent class RX and the Transmitting objects

were inherited from TX class.

The following functions are handled from USI++ library. The descriptions of this
functions were taken from the HTML document pages of USI++. So for further details, it
can be referred from the manual page itself Here, only the functions from the classes

which are related or used in this project are described.

usipp::IP Class

int usipp::IP::sendpack (void * payload, size_t paylen) [virtual]
Used to Send an IP Packet.

int usipp::IP::set_dst (const char *)
Used to set destination IP address. Not needed if the destination given in the constructor is
OK.

int usipp::IP::set_hlen (u_int8_t)
Set header-len in number of 32 bit words. 5 (5*4 = 20) in normal case. Contructor does this

for you, so you should not use this.

int usipp::IP::set_id (u_int16_t)
Used to set the ID-field of the IP packet.

int usipp::IP::set_proto (u_int8_t)

Used to set protocol number. If you use TCP {} or such, you don't need to do it yourself.

24

int usipp::IP::set_src (const char * ip_or_name)
Used to set source-adress IP address. Not needed if the destination given in the constructor
is OK.

usipp::Pcap Class

usipp::Pcap::Pcap (char *)
This constructor should be used to initialize raw-datalink-objects, means not IP/TCP/ICMP

etc. We need this b/c unlike in derived classes, datalink::init_device() cannot set a filter!

int usipp::Pcap::get_datalink ()
Return the actual datalink of the object.

u_intl6_t usipp::Pcap::get_etype ()
Get protocol-type of ethernet-frame maybe moves to ethernet-class in future?

char * usipp::Pcap::get_hwdst (char *, size_t)
Fill buffer with dst-hardware-adress of actual packet, use 'data link' to determine what HW

the device is. Now only ethemet s supported, but it's extensional.

char * usipp::Pcap::get_hwsrc (char *, size_t)
Fill buffer with src-hardware-adress of actual packet, use 'data link' to determine what HW

the device is. Now only ethernet s supported, but it's extensional.

into usipp::Pcap::init_device (char * dev, int promisc, size_tsnaplen) [virtual]
Initialize a device ("eth0" for example) for packet- capturing. It MUST be called before
sniffpack() is launched. Set 'promisc' to 1 if you want the device running in promiscuous
mode. Fetch at most 'snaplen' bytes per call.

Reimplemented from usipp:: RX.

25

int usipp::Pcap::sniffpack (void *,size_t) [virtual]
sniff a packet
Reimplemented from usipp:: RX.

usipp:: TCP Class

int usipp::TCP::sendpack (char * pay_string) [virtual]
Used to send a string.
Reimplemented from usipp::IP.

int usipp::TCP::sendpack (void * payload, size_t paylen) [virtuall
Used to send a packet.
Reimplemented from usipp:.IP.

int usipp::TCP::set_dstport (u_int16_t)
Set destination-port

int usipp::TCP::set_srcport(u_int16_t)

Used to set source-port

int usipp::TCP::set_tcpopt (char kind, unsigned char len, union tcp_options £)

Used to set a TCP-option of particular kind

int usipp::TCP::set_tcpsum (u_int16_t)

Used to set TCP-checksum. Doing these will prevent sendpack() from doing this for you.
Tt's not recommended that you do so, because the sum will almost be weak.

usipp::ICMP Class

u_int8_t usipp::ICMP::get_code ()
Get ICMP-code.

26

u_int16_t usipp::ICMP::get_icmpld ()
Get the id field from actual ICMP-packet.

u_int16_t usipp::ICMP::get_seq ()
Get the sequence-number of actual ICMP-packet

. u_int8_t usipp::ICMP::get_type ()
Get the type-field from the actual ICMP-packet.

int usipp::ICMP::init_device (char * dev, int promisc,
size_tsnaplen) [virtual]
Initialize a device ("eth0" for example) for packet- capturing. It MUST be called
before sniffpack() is launched. Set 'promisc' to 1 if you want the device running in

promiscous mode. Fetch at most 'snaplen’ bytes per call. Reimplemented from usipp::IP.

ICMP & usipp::ICMP::operator= (const ICMP &)
Assign-operator

int usipp::ICMP::sendpack (char * pay_string) [virtuall

send a ICMP-packet with string ‘payload' as payload. Reimplemented from
usipp:IP.

int usipp::ICMP::sendpack (void * payload, size_t paylen) [virtual]
send an ICMP-packet containing ‘'payload’ which is 'paylen’ bytes long

Reimplemented from usipp::IP.

int usipp::ICMP::set_code (u_int8_t)
Set ICMP-code.

27

int usipp::ICMP::set_icmpld (u_int16_t)
Set id field in the actual ICMP-packet

int usipp::ICMP::set_seq (u_int16_t)
Set the sequence number of the actual ICMP-packet.

int usipp::ICMP::set_type (u_int8_t)
Set the type-field in the actual ICMP-packet.

int usipp::ICMP::sniffpack (void * buf, size tlen) [virtual]
handle packets, that are NOT actually for the local address! Reimplemented from
usipp:IP.

The functions handled from ncurses library

Screen Initialization

To initialize the routines, the routine initscr or newterm must be called before any
of the other routines that deal with windows and screens are used. The routine endwin must
be called before exiting. To get character-at-a-time input without echoing (most interactive,

screen oriented programs want this), the following sequence should be used: initscr();
cbreak(); noecho();

Windows and the newwin Function

The ncurses library permits manipulation of data structures, called windows, which
can be thought of as two-dimensional arrays of characters representing all or part ofa CRT
screen. A default window called stdscr, which is the size of the terminal screen, is supplied.
Others may be created with newwin. Note that curses does not handle overlapping
windows, that's done by the panel(3X) library. This means that one can either use stdscr or
divide the screen into tiled windows and not using stdscr at all. Mixing the two will result

in unpredictable, and undesired, effects.

28

Windows are referred to by variables declared as WINDOW *. These data
structures are manipulated with routines described here and elsewhere in the ncurses

manual pages.

The move and addch functions

The most basic routines are move and addch. More general versions of these
routines are included with names beginning with w, allowing the user to specify a window.
The routines not beginning with w affect stdscr.) After using routines to manipulate a
window, refresh is called, telling curses to make the user's CRT screen look like stdscr.

The characters in a window are actually of type chtype, (character and attribute
data) so that other information about the character may also be stored with each character.
Special windows called pads may also be manipulated. These are windows which are not
constrained to the size of the screen and whose contents need not be completely displayed.

See curs_pad(3X) for more information.

The Video Attributes, Colors & Lines

In addition to drawing characters on the screen, video attributes and colors may be
supported, causing the characters to show up in such modes as underlined, in reverse video,
or in color on terminals that support such display enhancements.

Line drawing characters may be specified to be output. On input, curses is also able
to translate arrow and function keys that transmit escape sequences into single values. The
video attributes, line drawing characters, and input values use names, defined 1n
<curses.h>, such as A REVERSE, ACS_HLINE, and KEY_LEFT. If the environment
variables LINES and COLUMNS are set, or if the program is executing in a window
environment, line and column information in the environment will override information
read by terminfo. This would effect a program running in an AT&T 630 layer, for example,
where the size of a screen is changeable (see ENVIRONMENT).

If the environment variable TERMINFO is defined, any program using curses

checks for a local terminal definition before checking in the standard place.

29

The integer variables LINES and COLS are defined in <curses.h> and will be filled
in by initscr with the size of the screen. The constants TRUE and FALSE have the values 1
and 0, respectively. The curses routines also define the WINDOW * variable curscr which
is used for certain low-level operations like clearing and redrawing a screen containing

garbage. The curscr can be used in only a few routines.

Routine and Argument Names

Many curses routines have two or more versions. The routines prefixed with w
require a window argument. The routines prefixed with p require a pad argument. Those
without a prefix generally use stdscr.

The routines prefixed with mv require a y and x coordinate to move to before
performing the appropriate action. The mv routines imply a call to move before the call to
the other routine. The coordinate y always refers to the row (of the window), and x always
refers to the column. The upper lefi-hand comer is always (0,0), not (1,1).

The routines prefixed with mvw take both a window argument and x and y
coordinates. The window argument is always specified before the coordinates.

In each case, win is the window affected, and pad is the pad affected; win and pad are
always pointers to type WIN DOW.

30

SYSTEM TESTING

5.SYSTEM TESTING

The project is divided into two modules. These two modules are developed
separately and verified whether they function properly. After the completion of each
module sample images are used and tested. The two modules are

1. Traffic generator software
2. Traffic analyzer & ABE Implementation

5.1 Testing the Traffic Generator

We tested the traffic generator using the ABE router
software itself We get the inputs from the user such as source IP, destination IP, type of
packet. In the traffic analyzer part we get the packets from the ethemet card and display the
information’s about each packet (i.e.) source IP, destination IP, type of packet., source
MAC, destination MAC addresses. And we check whether the packet which we have

generated is traveling in the other side.

5.2 Testing the ABE Router Software

First we tested the ABE router sofiware whether it
works well for the multimedia packets (i.e.) we generated various packets like multimedia,
ordinary packets in the network. In our ABE router software, higher precedence is given to
the multimedia packets and we also see to that the ordinary packets doesn’t suffer too much
because of this. We checked it by having the two queues separately for multimedia packets
and ordinary packets, here the multimedia queue was fastly served. Thus our routing
software is tested. Also our software is tested for various kinds of traffic conditions by
generating different kinds of packets in the network using our packet generator software.

32

FUTURE ENHANCEMENTS

33

6. FUTURE ENHANCEMENTS

This project is based on USI++ library and is developed to
run in a UNIX server console only. This code can be ported to run in Microsoft Windows
machines by using suitable library. In the ABE Router program, the overall speed is
reduced to a very low level for the visual simulation and understanding of the ABE
concept. But, if it will be a working router implementation, then the design of the program
should be modified for maximum performance in terms of speed.

In this router simulation model, we concentrated only on ABE implementation. So,
even it will not satisfy all the requirements of an IPV4 Router as per the rfc 1812. But we
tried to implement some of the requirements such as ICMP. So in future versions we can
satisfy some other requirements as per the rfc 1812 such as IGMP, ARP etc,,

In the ABE Traffic simulating program, we handled very basic information while
sending a packet. But there are few more things in the header and option fields of the
typical packet. If we develop the input interface and sending mechanism to use such fields
to send a much customized packet in a specific manner.

The multi-processing and inter-process communicating capabilities of UNIX can be
explored and can be implemented to enhance the performance of listening mechanism and

packet enqueueing and packet servicing modules.

34

CONCLUSION

35

7. CONCLUSION

The ABE Router Program performed as we expected and it proves the efficiency of
the ABE service. Developing the project under Linux was a challenging task but the
resources of information and support were very rich in that platform

First, the program was tested in the network while only one or two nodes were
active. After that, it was tested while more than ten nodes were active. In both the cases the
performance was as expected. When more machines were active, it was found that the
messages displayed in message window scrolled very fast. So it was not possible to
perceive the screen output of the message window. But message window was useful while
the error messages were redirected during initializing ether device.

A typical router program usually run in background as daemon process. But this
program was designed to run in a console terminal which supports the enhanced terminal
interface capabilities

UNIX is very powerful with its multi tasking capabilities. So, the multi tasking
features can be used in future versions of ABE Router to improve the overall performance
of the program. This can be implemented by running the packet enqueing module end,
processing module, packet serving module and screen handling module of ABE Router as
three separate processes to improve the performance. The extracted information from the
captured packets can be buffered for future reference in an efficient manner to reduce the
processing time while deciphering information from newly captured packet. After the
development, the code can be optimized for better performance by making frequently using
functions as inline and replacing necessary simple data types with pointer type data.

As for as the Traffic Simulator program is concerned, the sofiware performed well
and simulated virtual traffic as we expected. The network traffic was simulated in such a
way that the packets were originated from lot of different IP clients. In the USI ++ library,
duplicating ether MAC address is not properly documented, so we could not use that
feature in our program. Ifit is possible to alter the MAC addresses of the out going packets
by some means, then conceptually Traffic Simulator would be a fulfilled one.

36

REFERENCES

8. REFERENCES

1. Zimmermann, “IEEE Spectrum 2000, Volume 26, Number 4”.

2. Douglous E Comer, “Internetworking with TCP/IP”, Volume-3, Prentice Hall, 1995

3. Meeta Gandhi, Tilak Shetty, Rajiv Shah, "The 'C' Odyssy UNIX - The Open
Boundless C “ (First Edition), BPB Publications,1992.

4. Zeyd M. Ben-Halim, Eric S. Raymond, Thomas E. Dickey, Linux Man Pages of
ncurses, based on pcurses by Pavel Curtis.

5. Sebastian Krahmer, Document pages of USH+

Websites Visited

www.itpre.com/tcpipfaq/default.htm
www.tcpdump.org
www.itprc.com

www.ieee.org

38

ANNEXURE

39

9. ANNEXURE

9.1 Sample Code

void push_back_packet(int color);
void serve_packet(int color);

void serve(int color);

int enqueue_packet();

int green_acceptance();

int find_deadline_len();

void updatequeue();

extern void get_ipinfo(char []);
extern void disp_packet_info();

void push_back_packet(int cl)
{

packet *c = new packet,
memcpy(&newpacket.packetbuf,buf,1 000);
memcpy(c,&newpacket,sizeof(packet));
virtual_queue.push_back(c);
switch(color)
{
case 0: blue_queue.push_back(c),

break;
case 1: green_queue.push_back(c);

break;

void serve(int cl)

{

switch(color)

40

{

case 0: if(blue_queue.size())

{
get_ipinfo(blue_queue.front()->packetbuf)',

blue_queue.pop_front();
virtual_queue.pop_front();
srvprintmsg("\nRouting a Blue Packet");

}
break;

case 1: if(green_queue.size())

{
get__ipinfo(green_queue.front()—>packetbuf);

green_queue.pop_front(),
virtual_queue.pop_front();
srvprintmsg("\nRouting a Green Packet");

}
break;

}
find_route(dip);

disp_packet_info();
sprintf(message,"\nGW/l\/Iet/Dev:%s",routestr);
srvprintmsg(message);

updatequeue();

}

//Packet Enqueuing Algorithm

int enqueue_packet()

41

{

//packet p arrives at the output port
[[dup=p

//Add dup to the virtual queue

struct timeval *tval,

gettimeofday(tval,(struct timezone *) NULL),
now=tval->tv_sec;

if (virtual_queue. size()=VQ_MAX_SIZE) /from virtual queue
{
sprintf{message,"\nQueue Limit. Packet Dropped");
printmsg(message);
send_icmp(ICMP_SOURCE_QUENCH,O,dip,sip);
return(0);

switch(color)

{

case 0:
vd = virtual_queue.size() ;//queuing delay received by dup in virtual queue
newpacket.deadline = now + vd;
push_back_packet(0);
sprintf{message,"\nBlue Packet Enqueued");
printmsg(message),

break;
case 1:

if('green_acceptance())//p fails "green acceptance test"

{

sprintf{message,"\nGreen Packet fails acceptance test");

42

send_icmp(ICMP_SOURCE_QUENCH,0,dip,sip);
printmsg(message);
return(0);
}
else
{
newpacket.deadline=now +d;
push_back_packet(1),
sprintf{message,"\nGreen Packet Enqueued"),
printmsg(message);
}
break;
}
updatequeue();
return(1);

}

// green acceptance test
int green_acceptance()
{
int pgnew=1; //new transmission delay for p
int lg=green_queue.size()+1,
int Ib=find_deadline_len();//length of packets in blue queue with deadlines <now +d + pg
new
if{lg + 1b > rate_c * (d + pgnew))
return(0);
else

return (1);

int find_deadline_len()

43

{

int i;

for (1= 0; i < blue_queue.size(); it++)
if (blue_queue[il->deadline < (now + d + pgnew)) continue;
return(i);

}

//Packet Serving Algorithm
// drop stale green packets,

// those packets from green queue who cannot be served
// within their deadline

void serve_packet()

{
if{lgreen_queue.size()) // no green to serve
{
if(blue_queue.size()) //blue waits to be served
serve(0);
}
else
if(!blue_queue.size()) // no blue to serve
serve(l);
else // both queues contain packets

{
1/ serve(l);
i retum;

pg = 1;//now-green_queue.front()->deadline; [ftransmissionDelay;
deadg= green_queue.front()->deadline;

pb = 1;/now - blue_queue.front()->deadline; /ftransmissionDelay;

44

deadb= blue_queue.front()->deadline;
if (now > deadb - pg)

serve(0); // because it cannot wait
else
{

if (now > deadg - pb)

serve(1); // because it cannot wait

else
if (probability_g)
serve(1);
else
serve(0);
}
}
}
void updatequeue()
{
ifiblue_queue.size())
{
sprintf{message,"Blue Queue [%660.*s]",blue_queue.size(),queuechar),
smessage(message,21,2,54);
}
else
{
sprintfimessage,"Blue Queue [%60s]"," "),
smessage(message,21,2,54);
}
if{green_queue.size())
{

45

sprintf(message,"Green Queue [%60.*s]“,green_queue.size(),queuechar);

smessage(message,22,2,52);

}

else

{
sprintf(message,"Green Queue [%60s]"," ");
smessage(message,22,2,52);

}

if{virtual_queue.size())

{
sprintf(message,"Virtual Queue [%60.*s]",virtual_queue.size(),queuechar);
smessage(message,23,2,53),

}

else

{
sprintf(message,"Virtual Queue [%60s]"," ");
smessage(message,23,2,53),

}
refresh();

}

46

9.2 Output Screen

The Opening Screen of the Router Program Interface while initializing Routing

The ABE Router Program While Enqueing Blue packets only

Virtual guese [

47

