HANDWRITING RECOGNITION SYSTEM

g>~//75

150 8001

Project Report

Submitted in partial fulfillment of the
Requirement for the award of the degree of the

Bachelor of Engineering in Information Technology
Bharathiyar University, Coimbatore.

Submitted by

Arun Kumaran M. Sreenidhi V.
002750066 0027S0111

Under the guidance of

Mr. M. Nageswara Guptha B.E.,

Lecturer

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE - 641006.

MARCH 2004.

DEPARTMENT OF INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY
(Affiliated to Bharathiar University, Coimbatore)

€\

NANAGENENT STV
1S0 9061

CERTIFICATE

This is to certify that the project entitled

HANDWRITING RECOGNITION SYSTEM

done by

Arun Kumaran M. Sreenidhi V.
002750066 0027S0111

Submitted in partial fulfillment of the
Requirement for the award of the degree of the

Bachelor of Engineering in Information Technology of
Bharathiar University, Coimbatore.

. /
<. T = 7 (%/1 44/ 20y
Professor & Head of the department Project Guide
(Dr. S. Thangasamy) (Mr. M. Nageswara Guptha)

Certified that the candidates were examined by us in the project work
Viva voce examinationheldon .y &2 200 4

Q AU
adE - AL

Internal Examiner External Examiner

Declaration

Declaration

Arun Kumaran M. 0027S0066
Sreenidhi V. 002750111

declare that we did the project entitled “Handwriting Recognition
System”, and to the best of our knowledge, a similar work has not been
submitted earlier to the Bharathiar University or any other institution, for
fulfillment of the requirement of the course study.

This project report is submitted in partial fulfillment of the requirements for

the Award of the degree of Bachelor of Engineering In Information Technology of
Bharathiar university.

Mo

Place: Coimbatore. [Arun Kumaran M.]

Date: v /¢ 5/ ‘04 [Sreenidht V]

Project Guided by

Mr. M. Nageswara Guptha B.E.

Acknowledgement

ACKNOWLEDGEMENT

The exhilaration achieved upon the successful completion of any task
should be definitely shared with the people behind the venture. This project is an
amalgam of study and experience of many people without whose help this

project would not have taken shape.

At the onset, we take this opportunity to thank the management of our
college for having provided us excellent facilities to work with. We express our
deep gratitude to our Principal Dr .K. K. Padmanabhan Ph.D., for ushering us in
the path of triumph.

We are always thankful to our beloved Professor and the Head of the
Department, .Dr. S. Thangasamy Ph.D., whose consistent support and
enthusiastic involvement helped us a great deal.

We are greatly indebted to our beloved guide Mr. M. Nageswara Guptha
B.E., Lecturer, Department of Computer Science and Engineering for his
excellent guidance and timely support during the course of this project. As a
token of our esteem and gratitude, we honor him for his assistance towards this
cause.

We also thank our project coordinator Mrs. S. Devakj M.S., and our
beloved class advisor Ms. P. Sudha B.E., for their invaluable assistance.

We also feel elated in manifesting our deep sense of gratitude to all the
staff and lab technicians in the Department of Computer Science and

Engineering.

We feel proud to pay our respectful thanks to our Parents for their
enthusiasm and encouragement and also we thank our friends who have

associated themselves to bring out this project successfully.

SYNOPSIS

Handwriting Recognition System is developed to recognize and to convert

non-cursive handwritten text into electronic form for word processing purpose.

Here the input is given as an image file that contains the text to be
recognized. The system processes this image to extract the characters in it,
recognizes the characters and writes them in to a text file. Various graphical
transformations such as scaling, translation, and cropping are used to process

the image files.

Already existing systems have too many constraints which have been tried
to overcome in this system. Pattern Recognition is the area which is of prime
importance to researchers now and in this system we have implemented

research algorithms in this area to recognize the characters.

CONTENTS

introduction

1. Existing System and Limitations
2. Proposed System and Advantages

1
1
System Requirement Analysis
2.1. Product Definition
Software Requirements Specification
3.1. Introduction
3.2. General Description
3.3. Functional Requirements
3.4. External Interface Requirements
3.5. Design Constraints
System Design Specification

4.1. Overall Design

4.2. Design Diagram

4.3. The Extraction Algorithm

4.4. The Comparison Algorithm

4.5. The Matching Algorithm
Product Testing

5.1. Unit Testing

5.2. Integrity Testing

5.3. Output Testing
Future Enhancements
Conclusion
References

Annexure

9.1. Source Code

~ [3,]

- . (O
NN

15
15
16
21
22
24
25
25
26
27
29
31
33

34

1.1.

1.2,

1. Introduction

Pattern Recognition is one area into which tremendous amount of
research has gone in. We in this project have aimed at producing a Handwriting
Recognition System by using these researches, which would recognize and
convert handwritten text into electronic text which could be manipulated on the
computer. This is an effort to produce a Handwriting Recognition System that
would produce better results than those which currently exist.

Existing system and limitations

The limitation of the existing systems is that input can be given as
character in specific area of the input form called as grids. Also characters in
specific areas need to be of fixed size. These constraints make the system all the

more difficult for the user to use it.

Proposed system and advantages

Our software lets the user to give characters at any point in the image also
only specifying an upper limit on the size of the character. Also the minor
constraint is that there is a finite gap between two letters. These limited
constraints make the system all the more effective and opens new doors in this
fixed field of character recognition.

2. System Requirement Analysis

2.1. Product Definition

Handwriting Recognition System extracts and recognizes
handwritten text and then writes them into a text file for effective word processing
purpose. Here the input is taken in the form of an image file that contains the
text. The letters of the text are then taken into individual image file. Research
algorithm is used on these image files to find the appropriate character. The

recognized characters are then written into a text file.

3. Software Requirements Specification

3.1. Introduction
3.1.1. Purpose

The purpose of this system is to convert non-cursive handwritten text into
editable form (a text file). The input is taken in the form of an image file that
represents the scanned form of text written on a paper. The letters are then split
and then processed to find what letter their pattern matches and then write the
letter in a text file. This project is aimed at easy conversion of text from the paper
into electronic form. If successful this project will stay as a harbinger to the

projects that are done to minimize the manual work in converting hardcopies of

text in to softcopies.

3.1.2. Scope

The handwriting recognition system, when completed will be useful for any user
who would need to convert text on paper into electronic form. To enable thls the

project incorporates the following features:

A easy to use Graphical User Interface.

A robust system that could recognize and convert handwriting of various forms.

3.1.3. Definitions, Acronyms and Abbreviations

Bmp image Bitmap image.

GUI Graphical User Interface.

SDD Software Design Description.

SRS Software Requirements Specification.

Scanning The process of traversing each pixel of the image to find its value.

Scaling The process of altering the size of a graphical entity without deforming
it.

Translation The process of repositioning an entity along a straight line path

from one coordinate location to another.

3.2. General description

3.2.1. Product Perspective

The main feature of this project will be the implementation of research
algorithms to recognize and convert handwritten text into electronic form. These
algorithms will be capable of recognizing the letters of various forms that maybe

influenced by the inherent handwriting qualities of each user.

3.2.2. Product Functions

The function of this system is to scan the image file (bitmap form) given as the
input by the user perform various graphical operations on the image file such as
cropping, translation and scaling to split the individual letters of the file. Then the
research algorithms help in recognizing each letter of the file and then the output
is produced into a text file that will contain the text that is present in the initial

bitmap file

3.2.3. User Characteristics

The user need not be familiar with any programming languages. He should be

able to give the input in the form of a bitmap form and have sufficient knowledge
to use the GUI.

3.2.4. General Constraints

The basic constraint is that the user should enter a valid bitmap file of size 64x64
resolution for the system, which is the image size capable of being handled by
the system.

The other important constraint is that the user enters input without cursive
writing. The system uses the gaps between the letters to recognize them and
hence cursive writing may not be suitable for the system to process.

3.2.5. Assumptions and Dependencies

The user can competently read and follow the GUI’s instructions.

The user enters the image file in which the letters are in English language and
are well defined. Half letters and crooked writing may be processed incorrectly.

3.3. Functional Requirements

3.3.1. Functional Requirements-1

3.3.1.1. Introduction

This module splits the letters of the image file and writes each of the letters into
individual image files for further processing.

3.3.1.2. Inputs

Image file with the text to be converted, in bitmap form with resolution 64x64.

3.3.1.3. Processing

Various graphical functions like scaling, translation and cropping form the core of
this module. The bitmap image is scanned to detect the edges of the letters and
then the detected letter is cropped to and translated to the top of the page. It is
then scaled after being written into a new bitmap file to the size 64x64.

3.3.1.4. Outputs

Images files with individual letters in the previous file, in bitmap form with
resolution 64x64.

3.3.2. Functional Requirements-2

3.3.2.1. Introduction

This module is designed to process the individual letters to compare them and

recognize them.

3.3.2.2. Inputs

Image files that contain that contain the individual letters of the text.

3.3.2.3. Processing

The image file is scanned by drawing lines and the number of intersections with
the letter are found. Then the lines are tilted by 1 degree and again the scanning
is performed to find the number of intersections until the line is tilted for 180

degrees. The number of intersections for each angle of the line is stored in a text
file.

3.3.2.4. Outputs

A text file that contains the number of intersections of each letter for various

angles of the line.

3.3.3. Functional Requirements-3

3.3.3.1. Introduction

This module is to recognize the letters using the information from the previous
module and to write the letter in to the output text file.

3.3.3.2. Inputs

A text file that contains the number of intersections of each letter for various
angles of the line.

3.3.3.3. Processing

The information of the number of intersections of a given letter for various angles

of the line is compared with the previously stored values for each letter. The
letters that match the most are appended in to a text file.

3.3.3.4. Outputs

A text file that contains the final recognized letters.

3.4. External Interface Requirements
3.4.1. User Interface

The user interface is a GUI that will enable the user to enter a image file as the

input (location of the file). A button is provided for the user to prompt the system
to convert the bitmap image in to text file.

3.4.2. S/W Interfaces

A database is used to store the information for each letter in the English
grammar. The system accesses this information to match the patter for any

particular letter. The software interface provides access to this database.

3.5. Design Constraints
3.5.1. H/W Limitations

The minimum hardware requirements for this system are

Pentium Il Processor
128 MB RAM

10 GB Hard Disk

104 keys keyboard

3.5.2. Fault Tolerance and Reliability

The system developed will be able to scan and recognize bitmap images that
contain well-defined letters of the English grammar. Letters that are not complete

or crooked may not be recognized properly and may be reproduced improperly.

4. System Design Specification

4. System Design Specification

4.1. Overall Design:

Our system implements algorithms to extract the characters from the image
file, to recognize them and to write them into text file. The extraction algorithm
splits the letters from the input bitmap file that contains the whole of the text and
then writes each character into an individual image file. Edge detection technique
is used in this module to extract the characters. These characters are then
scaled into a standard size. Basic graphic transformations such as scaling and
translation are used in this extraction module.

In the next module which is the recognition algorithm, the standard size image
files that were formed in the previous stage are processed using research
algorithms. This algorithm draws lines through the individual image files at
various angles. The number of intersections of, these lines with the character are
determined. These are then compared with those of the standard images stored
previously. The character that matches the most (the one with the minimum

difference) is written into the text file.

4.2. Design Diagram:

Comparison
Algorithm

Image) Image files
file that Extraction with the
contains) Algorithm individual
the text. characters
of the text.
Text file -
with the Matching
characters. Algorithm

4.3. The Extraction Algorithm:

This section explains in detail the extraction algorithm. This is the very first
phase of the system’s function. The input given here is a bitmap file of any size.
This bitmap file contains the text to be recognized. The letters can be present
anywhere in the file. These can be letters of the English alphabet and have to be

in proportionate size. Cursive writing cannot be recognized and hence the letters

should have a finite distance between each other.

Number of
intersections
for each
character for
specific
angles.

Sample Input File

Each pixel position in the input bitmap file is scanned and its RGB value if
checked. The first pixel that is a black pixel is identified. This point is copied into
a new image file. The color of this pixel is changed (grey) in the source file. This
point is called the edge of the character. From this point a few pixels to the left
and top are traced back. Now the new point lays a few pixels to the left and top of
the pixel whose color was changed. This point is considered as the first pixel
now. Starting from this pixel horizontal scan is started. The maximum pixel that is
scanned lies n pixels away horizontally and vertically. Here n is the maximum
size of the character. For instance if n is 64 then the maximum character size can
be 64x64. Again each pixel's RGB value is determined.

srn_ll:E

Red pixel shows the edge of the character, while the pink pixels form the
rectangle which will be scanned for continuous pixels to extract the
character.

The first black pixel is identified. Now the 8 pixels that surround the current
black pixel are checked. If there is any grey pixel then it means that the pixels are
continuous and are a part of a single character. The black pixel is then copied in
to the new image file and its color in the source file is changed (to grey).

smile

Fheon vt trrrnes 1200 mrarn bt e rvodorvrn fon odmdommbrnnd smnmod vt Fom o aeonn b

The scan is again started from the next pixel and continued till the end of the
rectangle under consideration is reached. Each black pixel with a grey pixel in its
surrounding 8 pixels is transferred in to the new image file and its color in the

source file is changed. This is called a pass.

smile

The source image after a pass.

The next pass is started from the bottom of the rectangle and continued till
the top (bottom up scanning). The letter can be extracted in these two passes
and when the two passes are over, all the grey pixels in the source image that
belong to the character are converted into white. Therefore a character extracted

will not be present in the source file.

The source image file after a character is extracted.

The process is started from the beginning and continued till no more black
pixels are found in the source file. Thus all the characters are extracted and
saved in individual image files. The size of the image in the source file and the

file in which it is written into are the same.

L o/ M B . B Y Y Y . D T T

The next phase in the extraction algorithm is scaling. The individual image
files are opened and the pixels are scanned. The minimum and maximum x and
y positions of nonwhite pixels are determined. Then with those as the vertices,
the rectangle formed is scaled into a standard size (64x64). The scaled rectangle
is saved as a new image file. This process is done for all the character images

formed in the previous stage.

The extracted character image after scaling.

By the edge detection technique the tallest character is recognized first and
hence the first image will be that of the tallest character. Based on the x value of
these characters in the source file, the individual character image files are
renamed so that they occur in the order they were written.

4.4. The Comparison Algorithm:

In this phase each character image formed in the previous phase is
processed by using research algorithms to recognize a given character. Lines
are drawn across the character image files and the number of intersections for

various angles is determined.

Each character image file formed in the previous phase is processed here.
Once an image file is opened, lines starting at 0 degrees (horizontal) are drawn.
Here drawing lines refers to scanning the pixels from the start of the image till the
end in any particular angle. Initially the image is scanned horizontally and the
number of pixels that form the character is determined. This is the number of
intersection points for 0 degrees. Now the line is tilted bv 5 dearees and aqain

the number of intersection points is determined. Similarly the number of
intersection points for every 5 degree tilt is determined for a total tilt of 180
degrees of the line. To find the next point in a given line the equation Y = m X +
C is used, where ‘m’ is the slope of the line. ‘m’ is found out by using the tilt in
angle with the normal. Thus the number of intersection points for 0, 5, 10, 15,....
,180 degrees are found. The lines are tilted only by 45 degrees, but changing the
x and y coordinates results in an effective tilt of the scanning lines by 180
degrees.

1§ 2
—_—

e —

Figure shows the scanning lines at 0 degrees and the intersection points.

Similarly for every 5 degrees the scanning lines are considered and the
number of intersection points is determined.

W\
\

Figure shows the scanning lines at ‘n’ degrees and the intersection points

The output of this phase is the number of intersection points for every 5
degree scanning lines for all the character image files.

4.5. The matching algorithm:

In this algorithm the characters in the image files are deduced. This algorithm
compares the number of intersection points of the current character with that of
previously stored values of all standard character images. The character that has

the least difference is selected and is written in to the text file.

Here the number of intersection points for every 5 degrees of the current
character image is subtracted from the corresponding values of angles of the
previously stored character images. The differences for each angle are added for
each character. The character that has the minimum cumulative difference is
chosen and is written in to the text file. This procedure is repeated for all the

characters from the image file given as input.

5. Product Testing

5. Product Testing

Here, the various test strategies adopted in testing this system are
outlined. The strategies include Unit Testing, Integrity Testing, Sub-System
Testing and System Testing.

5.1. Unit Testing

In this testing step, each module was found to be working satisfactory as
per the expected output of the module. In the package development, each
module was tested separately after it had been completed and checked with valid
data. Unit testing exercises specific paths in the modules control structure to
ensure complete coverage and maximum error detection.

The extraction module takes input as the bitmap file that contains the text
and produces images files of individual characters of 64x64 sizes as output. The
comparison module takes each of these individual image files processes them by
drawing scanning lines at various angles and produces the number of
intersections for each angle as the output. The matching algorithm compares this
intersection data to compare with those of previously stored image files and
produces output as a text file containing the characters recognized. Each module

was given its specific input and its output was found to be correct.
5.2. Integrity Testing

The individual modules are integrated to form the complete system. This
system is then tested to find if the output of each module reaches the next
module correctly. Various errors such as accessing of non-existing files were
detected and corrected. A status field was included to let the user to know the
current status of the system (which module of the system is being executed).

5.3. Output Testing

Here various inputs are given to the system and the output is checked.
The handwriting of different users may be different and the system was
enhanced so that each user can configure his handwriting into the system before

using it. This way the system was made more effective in recognizing the
handwriting of different users.

6. Future Enhancements

6. Future Enhancements

This project could be in future extended to recognize cursive writing and the
input could be directly given in paper form which can be scanned and converted
into bitmap file. Further enhancements can be made such that the system
becomes less sensitive to discrepancies in writing of various users. Also this
system could be extended to a shorthand recognition system wherein the
shorthand symbols could be recognized their corresponding meanings looked up

in the dictionary and written in to the text file.

7. Conclusion

7. Conclusion

This system developed has been able to extract and recognize characters at
a very good standard. The system’s performance has been very impressive and
further enhancements when considered, shows promise of an effective
handwriting recognition system that could be of immense use to anyone who
wishes to edit handwritten text electronically. Also the system could be changed

a bit to support shorthand recognition.

The techniques applied in the design of the programs provide a scope for
expansion and implementation of changes, which may be required in future, all
programs have been tested and have found to execute correctly. All the

programs have been documented and can be easily understood.

8. References

8.1. Kwok-Wai Cheung, Dit-Yan Yeung, Roland T. Chin, Bidirectional Deformable
Matching With Application to handwritten Character Extraction, 2002.

8.2. Burton Harvey, Simon Robinson, Julian Templeman, Karli Watson,
Programming C#, Shroff Publishers and Distributors, 2000, First Edition.

8.3. Matt Telles, C# Black Book, Dreamtech Press, 2002, First Edition.

8.4. www.citeseer.com

9.1.

9. Annexure

Source Code

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

using System.Drawing .Imaging ;

using System.|O;

namespace mybitmap
{
I/l <summary>
[/l Summary description for Form1.
Il <Ilsummary>
public class Form1 : System.Windows.Forms.Form
{
double xmin=1000, ymin=1000, xmax=0, ymax=0;

double minx1,maxx1,miny1,maxy1;

Bitmap bmp11;
Bitmap bm1;
Bitmap bm2;

StreamWriter sri=new StreamWriter("c:\\images\\output.txt" false)

String strpath;
Graphics gra,grai;

-

Color col=new Color();

int i=0,j=0, m_x, m_y, m_i, m_j, m_offset, m_minusx, m_minusy,

m_plusx, m_plusy,cnt=0;

call

public int x=0,y=0;

public int[][] pts=new int [60][];

int [] pts1=new int[36];

int mindif,curdif,foundindex;

private System.Windows.Forms.Label label1;

private System.Windows.Forms.Button button1;

private System.Windows.Forms.TextBox t_filename;
private System.Windows.Forms.Label status;

private System.Windows.Forms.MainMenu mainMenu1:
private System.Windows.Forms.Label label2:

/Il <summary>

/Il Required designer variable.

Il </summary>

private System.ComponentModel.Container components = null:;

3

public Form1()

{
/1
/I Required for Windows Form Designer support
1

InitializeComponent();

I

// TODO: Add any constructor code after InitializeComponent

1

for (int i=0;i<60;i++)
pts[i]=new int[36];

for(int i=0;i<60;i++)

{

Farfivad temfYel DIy 4)

pts[i][j]=0;
}
for (int i=0;i<36;i++)
pts1[i]=0;

/Il <summary>
/Il Clean up any resources being used.
/Il <Isummary>

protected override void Dispose(bool disposing)

{
if(disposing)
{
if (components != null)
{
components.Dispose();
}
!
base.Dispose(disposing);
}

#region Windows Form Designer generated code

Il <summary>

/Il Required method for Designer support - do not modify

/Il the contents of this method with the code editor.

Il </lsummary>

private void InitializeComponent()

{
this.t_filename = new System.Windows.Forms.TextBox();
this.label1 = new System.Windows.Forms.Label();
this.button1 = new System.Windows.Forms.Button():
this.status = new System.Windows.Forms.Label();

this.mainMenu1 = new System.Windows.Forms.MainMenu();

Fy L DN T V. . " “ m s o I

this.SuspendLayout();

1

// t_filename

1

this.t_filename.Location = new System.Drawing.Point(136, 40);

this.t_filename.Name ="t _filename":

this.t_filename.Size = new System.Drawing.Size(144, 20);

this.t_filename.TabIndex = 0;

this.t_filename.Text = "c:\\samp.bmp";

1/

/' Nabel1

1

this.label1.Location = new System.Drawing.Point(8, 40);

this.label1.Name = "label1";

this.label1.Size = new System.Drawing.Size(1 12, 24);

this.label1.TabIndex = 1:

this.label1.Text = "File Name™:

1

/1 button1

1

this.button1.Location = new System.Drawing.Point(88, 80);

this.button1.Name = "button1":

this.button1.Size = new System.Drawing.Size(112, 32);

this.button1.TabIndex = 2:

this.button1.Text = "Extract":

this.button1.Click += new
System.EventHandIer(this.button1_C|ick);

I

// status

1

this.status.Location = new System.Drawing.Point(88, 136);

this.status.Name = "status":

this.status.Size = new System.Drawing.Size(112, 24);

thic cetatiic TahlnAay — 9.

this.status. Text = "Halted":

1

// label2

1

this.label2.Location = new System.Drawing.Point(96, 192);
this.label2.Name = "label2":

this.label2.Size = new System.Drawing.Size(88, 24);
this.label2.TabIndex = 4;

i/

/l Form1

I

this.AutoScaleBaseSize = new System.Drawing.Size(S, 13);
this.ClientSize = new System.Drawing.Size(336, 266);
this.Controls.Add(this.label2);
this.Controls.Add(this.status);
this.Controls.Add(this.button1);
this.ControIs.Add(this.Iabel1);
this.Controls.Add(this.t_fiIename);

this.Menu = this.mainMenu1:

this.Name = "Form1";

this.Text = "Form1";

this.ResumeLayout(false);

}

#endregion

/Il <summary>

/Il The main entry point for the application.
Il </summary>

[STAThread]

static void Main()

{

Application.Run(new Form1 0);

private void button1_Click(object sender, System.EventArgs e)
{
status.Text ="Extracting...":
status.Update ();
bmp11=new Bitmap (t_filename.Text);
bm1=new Bitmap (bmp11.Width ,bmp11.Width)
gra=Graphics.Fromlmage(bm1);
bm2=new Bitmap (bmp11.Width ,bmp11.Height);
gra1=Graphics.Fromimage (bm2);
for(int t1=0;t1<bmp11.Width H1++)

{
for(int t2=0;t2<bmp11 Height ;t2++)
{
col=bmp11.GetPixel (1 12);
bm2.SetPixel (1,t2,col):;
}
}

bm2.Save("C:\\images\\notrecg.bm p");

try
{
getxy();
bm1.Save ("c:\images\\sam1 .bmp");
bm2.Save ("c:\\images\\notrecg.bmp");
gra.Dispose ();
bm1.Dispose ();
bm2.Dispose ();
gral.Dispose ();
bmp11.Dispose ();

PaYRY PN Y Py L R Y

cnt--;
/Nabel1.Text ="Number of Characters Extracted : "+
cnt. ToString();
/Nabel2. Text =[.ToString () ;
}
status.Text ="Scaling....";
status.Update ();
for (int count=1 ;count<=cnt;count++)
{
bm2=new Bitmap (64,64);
bm1= new Bitmap ("c:\\images\\"+count.ToString
()+"out.obmp");

Color col;
for (i=1:i<bm1 Width;i++)
{
for(j=1;j<bm1 .Height;j++)
{
col=bm1.GetPixel (i,j);
if((col.R!=255)|l(col.B!=255)||(col.G!=255))
{
minx1=i;
goto label1;
}
}
}
label1:
Color col1;
for (i=bm1.Width-1 Ji>0;i--)
{

v (il d Ll Lot 4 = o

col1=bm1.GetPixel (i,j);

if((col1.RI=255)]|(col1.BI=255)]|(col1.GI=255))

{
maxx1=i;
goto label?2;
}
}
}
label2:
Color col2;
for (i=1;i<bm1 -Height;i++)
{

for(i=1;j<bm1.Width;j++)
{
col2=bm1.GetPixel G,i);

if((col2.R1=255)]|(col2.B1=255)||(col2.GI=255))

{
miny1=j;
goto label3;
}
}
}
label3:
Color col3;
for (i=bm1.Height-1 ;i>0;i--)
{

for(j=bm1.Width-1 J>0;5j--)
{
col3=bm1.GetPixel g.i);

Ol RI=OEEN I/ AndD DIyt r o o

maxy1=i;

goto label4;

}
label4:

double scalex=64.0/(double)(maxx1-minx1),

scaley=64.0/(double)(maxy1 -miny1), scale;

if (scalex<scaley) scale=scalex; else scale=scaley;

int neww=(int)(bm1 -Width*scale),

newh=(int)(bm1 .Height*scale);

Rectangle expansionRect=new Rectangle ((int)(-

minx1*scale), (int)(-miny1 *scale), neww, newh);

(+".bmp");

Graphics myGraphics=Graphics.Fromlmage (bm2);
myGraphics.Drawlmage(bm1, expansionRect);

bm2.Save ("c:\\images\\alpha"+count.ToString

try

{
bm1.Dispose();
bm2.Dispose();
myGraphics.Dispose();

}

catch(Exception e1)

{

}

status.Text ="Finished":

| RN . B Y S T R T

double rad:
int flg=0;
StreamWriter sr=new

StreamWriter("C:\\images\\refinfo.txt",false);

Color cl;
Bitmap bp;
for (int ct=1;ct<=52;ct++)
{
status.Text ="Extracting From Reference: "+ct.ToString
(;
status.Update ();
bp= new Bitmap("C:\\images\\reference\\"+ct.ToString
()+".bmp" false);
x=0;y=0;
int ref1=0:;
for(int deg=0;deg<=45;deg+=5)
{
rad=Math.Tan(Convert. ToDouble(
(Convert.ToDouble(deg))*((22.0/7.0)/180.0)));

for(int i=-63;i<63;i+=4)

{
x=0;
for(int j=0;j<63;j++)
{

X=x+1;

y=Convert.Tolnt32(rad*Convert.ToDoubIe(x)+i);
if(y>=0 && y<=63 && x<=63 &&
x>=0)

if(cl.R>250 && cl.G<50 &&

cl.B<50)
{
if(flg==0)
{
pts[ct][ref1]=pts[ct][ref1]+1;
flg=1;
}
}
else flg=0;
}
else break;
}
}
/191 to 180
for(int i=-63;i<63;i+=4)
{
x=0;

for(int j=0;j<63;j++)
{

X=x+1;

y=Convert.Tolnt32(rad*Convert.ToDouble(x)+i)

if(y>=0 && y<=63 && x<=63 &&
x>=0)

cl=bp.GetPixel(y,63-x);

if(cl.R>250 && cl.G<50 &&

cl.B<50)
{
if(flg==0)
{
pts[ct][35-
ref1]=pts[ct][35-ref1]+1;
flg=1;
}
}
else flg=0;
¥
else break;

}

/* the other angle */

for(int i=-63;i<63;i+=4)

{
x=0;
for(int j=0;j<63;j++)
{

X=x+1;

y=Convert.ToInt32(rad*Convert.ToDouble(x)+i);
if(y>=0 && y<=63 && x<=63 &&
x>=0)

cl=bp.GetPixel(x,y);
if(cl.R>250 && cl.B<50 &&
cl.G<50)

ptsfct][17-
ref1]=pts[ct][17-ref1]+1;
fig=1;
b
}
else flg=0;
}
else break;

}
/191-180

for(int i=0;i<63;i+=4)

{
x=0;
for(int j=0;j<63;j++)
{

X=x+1;

y=Convert.Tolnt32(rad*Convert.ToDouble(x)+i);
if(y>=0 && y<=63 && x<=63 &&

x>=0)

cl=bp.GetPixel(63-x,y);
if(cl.R>250 && cl.G<50 &&
cl.B<50)

if(flg==0)
{

pts[ct][35-
17+ref1]=pts[ct][35-17+ref1]+1;

flg=1;
}
ki
else flg=0;
ki
else break;
}
}
ref1+=1;

}

bt[0]=Convert. ToByte('a');
bt[1]=Convert. ToByte("");
sr.Write(ct. ToString ()+"::");
for(int i=0;i<=35;i++)

{
sr.Write((i+1)*5);
sr.Write(":");
sr.Write(pts[ct][i]);
sr.Write("; ");

}

sr.WriteLine(" ");
sr.Flush();
bp.Dispose ();

}

status.Text ="Finished";

sr.Close ();

/lalphabets of the text

sr=new StreamWriter("C:\\images\\datainfo.txt",false);

v fivid bt o b e e ke L s o n

status.Text ="Etracting From Input: "+ct.ToString ();
status.Update ();
bp= new Bitmap("C:\\images\\alpha"+ct.ToString
()+".bmp" false);
x=0;y=0;
int ref1=0;
for (int i=1 JI<=26;i++)
pts1[i]=0;
for(int deg=0;deg<=45;deg+=5)
{
rad=Math.Tan(Convert.ToDoubIe(
(Convert.ToDouble(deg))*((22.0/7.0)/1 80.0)));

for(int i=-63;i<63;i+=4)

{
x=0;
for(int j=0;j<63;j++)
{

X=x+1;

y=Convert.ToInt32(rad*Convert.ToDouble(x)+i);
if(y>=0 && y<=63 && x<=63 &&

x>=0)
{
cl=bp.GetPixel(y,x);
if(cl.R>250 && cl.G<50 &&
cl.B<50)
{
if(flg==0)
{

Nnic1lrafil—rntaAlr~£E4AT 1 4.

flg=1;

}
else flg=0;
}

else break:

1191 to 180

for(int i=-63;i<63;i+=4)

{
x=0;
for(intj=0;j<63;j++)
{

X=X+1;

y=Convert.Tolnt32(rad*Convert.ToDouble(x)+i);
if(y>=0 && y<=63 && x<=63 &&

x>=0)
{
cl=bp.GetPixel(y,63-x);
if(cl.R>250 && cl.G<50 &&
cl.B<50)
{
if(flg==0)
{
pts1[35-

ref1]=pts1[35-ref1]+1;

}

else flg=0;
}
else break;

}

/* the other angle */

for(int i=-63;i<63;i+=4)

{
x=0;
for(int j=0;j<63;j++)
{

X=x+1;

y=Convert.Tolnt32(rad*Convert. ToDouble(x)+i);
if(y>=0 && y<=63 && x<=63 &&

x>=0)
{
cl=bp.GetPixel(x,y);
if(cl.R>250 && cl.B<50 &&
cl.G<50)
{
if(flg==0)
{
pts1[17-
ref1]=pts1[17-ref1]+1;
flg=1;
}
}

else flg=0;

else break;

}
/1 91-180

for(int i=0;i<63;i+=4)

{
x=0;
for(int j=0;j<63;j++)
{

X=x+1;

y=Convert.Tolnt32(rad*Convert. ToDouble(x)+i);
if(y>=0 && y<=63 && x<=63 &&

x>=0)
{
cl=bp.GetPixel(63-x,y);
if(cl.R>250 && cl.G<50 &&
cl.B<50)
{
if(flg==0)
{
pts1[35-
17+ref1]=pts1[35-17+ref1]+1;
flg=1;
}
}
eise flg=0;
}

else break:

}
ref1+=1;
}
bt[0]=Convert. ToByte('a');
bt[1]=Convert. ToByte(':");
sr.Write(ct. ToString ()+"::");
curdif=0;
for(int i=0;i<=35;i++)
{
sr.Write((i+1)*5);
sr.Write(":");

sr.Write(pts1[i]);
sr.Write("; ");
}
sr.WriteLine(" ");
sr.Flush();
bp.Dispose ();
int k;
mindif=0;
for (k=1;k<=52;k++)
{
curdif=0;
for(int i=0;i<=35;i++)
{
int temp=pts[Kk][i]-pts1]i];
if (temp>0)
curdif=curdif+temp;
else

curdif=curdif-temp;

if (k==1)

foundindex=k;

}
if (curdif<mindif)
{
foundindex=k;
mindif=curdif;
}

}
label2.Text =label2. Text+" " +foundindex.ToString ()

string c;
switch(foundindex)
{
case 1:
case 27:
sr1.Write("a");
break;
case 2:
case 28:
sr1.Write("b");
break;
case 3:
case 29:
sr1.Write("c");
break;
case 4.
case 30:
sr1.Write("d");
break;
case 5:
case 31:
sr1.Write("e");
break;

P o Y

’

case 32:
sr1.Write("f");
break;

case 7:

case 33:
sr1.Write("g");
break;

case 8:

case 34:
sr1.Write("h");
break;

case 9:

case 35:
sr1.Write("i");
break;

case 10:

case 36:
sr1.Write("j");
break;

case 11:

case 37:
sr1.Write("k");
break;

case 12:

case 38:
sr1.Write("Il");
break;

case 13:

case 39:
sr1.Write("m");
break;

case 14:

case 40:

break;

case 15:

case 41:
sr1.Write("o");
break;

case 16:

case 42:
sr1.Write("p");
break;

case 17:

case 43:
sr1.Write("q");
break;

case 18:

case 44:
sr1.Write("r");
break;

case 19:

case 45;
sr1.Write("s");
break;

case 20:

case 46:
sr1.Write("t");
break;

case 21:

case 47:
sr1.Write("u");
break;

case 22:

case 48:
sr1.Write("v");
break;

PR & 1o N

case 49:
sr1.Write("w");
break;

case 24:

case 50:
sr1.Write("x");
break;

case 25:

case 51:
sr1.Write("y");
break;

case 26:

case 52:
sr1.Write("z");

break;

for (int t=0;t<36;t++)
pts1[t]=0;

/Isr1.WriteLine(" ");
sr1.Flush();

private bool getpt()
{

strpath=null;
strpath+="c:\images\\" + cnt.ToString () + "out.bmp";
bm1.Save (strpath);

~rntLi

gra.Clear (Color.White);

bm2.Save ("c:\\images\\notrecg.bmp");

col=bm2.GetPixel (i,j);

while((j < bm2.Height) && ((col.R 1=0) || (col.G !=0) || (col.B

{
i++;
if (i==bm2.Width)
{ j++;1=0; }
col=bm2.GetPixel (i j);
}
if (==bm2.Height) return false;
else
{
minmax(i, j);
return true;
}

private void minmax(int x, int y)

{
if (x<xmin) xmin=x;
if (x>xmax) xmax=x;
if (y<ymin) ymin=y;
if (y>ymax) ymax=y;
}

private bool checkall(int x, int y)
{
bool flag=false;
Color colt=new Color();
for (int p=-m_offset; p<=m_offset; p++)

for (int g=-m_offset; g<=m_offset; q++)

colt=bm1.GetPixel (p+x,q+y);
if ((colt.R==255)&&(colt.G==O)&&(co|t.B==O))

{
flag=true;
}
}
}
return flag;
}
private void getxy()
{
I/ constants
m_offset=4; /I checks for x* pixels
m_minusx=10; // range i-x
m_minusy=10; // range i-y
m_plusx=50; // range i+x
m_plusy=50; /l range i+y

while (getpt())
{
first=true;
for (int z=0; z<2; z++)
{
m_x=minx(); m_y=miny();

m_i=mini(); m_j=minj();

pass1();
pass2();

private void pass1()

{

lIpass2();

for (int m=m_x; m<m_j; m++)

for (int I=m_y; I<m_j;l++)

{

m_y+m_offset,Color.Red);

m_y+m_offset))

m_y+m_offset,Color.Red);

col=bm2.GetPixel (m,D);
if((col.R!=255)||(coI.G!=255)|l(coI.B!=255))

{

if (first)

{

else

bm1.SetPixel (m-m_x+m_offset,I-

bm2.SetPixel (m,|,Color.White)

first=false;

if (checkall(m-m_x+m_offset |-

minmax(m,);

bm1.SetPixel (m-m_x+m_offset |-

bm2.SetPixel (m,l,Color.White);

private void pass2()
{
for (int m=m_i; m>m_x; m--)
for (int I=m_j; I>m_x;l--)
{
col=bm2.GetPixel (m,!);
if((col.R1=255)||(col.G!=255)||(col.BI=255))

{
if (checkall(m-m_x+m_offset, |-
m_y+m_offset))
{
bm1.SetPixel (m-m_x+m_offset,|-
m_y+m_offset,Color.Red);
bm2.SetPixel (m,l,Color.White);
}
}

private int mini()

{
if ((i+m_plusx)< bm2.Height)
return (i+m_plusx);
else
return bm2.Height ;
}

private int minj()

{
if ((j+m_plusy)< bm2.Width)

Y

PR Y I

else

return bm2.Width ;

private int minx()

{
if ((i-m_minusx)>0)
return (i-m_minusx);
else
return O ;
}

private int miny()

{
if ((-m_minusx)>0)
return (j-m_minusx);
else
return O ;

