WEB CONTENT SCREENER
PROJECT REPORT

Submitted in partial fulfillment of the requirements

P-t176

Jor the award of the degree of

BACHELOR OF ENGINEERING IN
INFORMATION TECHNOLOGY

OF THE BHARATHIAR UNIVERSITY, COIMBATORE

Submitted by
B.ANANTH (0027S0062)
A.ARUN PRAKASH (0027S0067)
A.SATISH KUMAR (00275001 02)

Under the valuable Guidance of

Ms.N. Rajathi , B.E.,
% SENIOR LECTURER, IT DEPARTMENT
[

MARCH 2004
Department of Information Technology

Kumaraguru College of Technology

(Affiliated to Bharathiar University)
COIMBATORE - 641 006

KUMARAGURU COLLEGE OF TECHNOLOGY
(Affiliated to Bharathiar University) -“w
COIMBATORE - 641 006, TAMILNADU, INDIA

Approved by AICTE, New Delhi - Accredited by NBA

st

Department of Information Technology

CERTIFICATE

This is to certify that the project entitled

“WEB CONTENT SCREENER?”

has been submitted by
B.Ananth, A.Arun Prakash and A.Satish Kumar

in partial fulfillment of the requirements Jor the award of the degree of
Bachelor of Engineering Information Technology of the
Bharathiar University, Coimbatore — 641 046 during the academic year 2003-2004

S WEN

9
Head of the Department

Project Guide

Submitted for the university examination heldon 7/,]2 loy

Qg ol Q1)l A

Z /249
7 MU/\J— “‘/‘/J

Internal Examiner External Examiner

Declaration

B.ANANTH 002750062
A.ARUN PRAKASH 002750092
SATHISH. A KUMAR 00275001 03

declare that the project entitled “WEB CONTENT SCREENER” is done by
us and to the best of our knowledge. A similar work has not been submitted earlier to

the Bharathiar University or any other institution, for fulfillment of the requirement of
the course study.

This project report is submitted on the partial fulfillment of the
requirement for the award of the degree of Bachelor of Engineering in Information
Technology from Bharathiar University.

B-Ananth
Place: Coimbatore. [B.ANANTH]

[A.ARUNPRAKASH]

W

[SATHISH.A. KUMAR]

Project Guided by

e

Senior Lecturer Miss. N. Rajathi

ACKNOWLED GEMENT

ACKNOWLEDGEMENT

We are greatly indebted to our revered Principal Dr.K.K.Padmanabhan,

Ph.D., who has been the motivating force behind all our deeds.

We eamnestly express our sincere thanks to our beloved Head of the
Department Prof, Dr.S.Thangasamy, Ph.D., for his immense encouragement and

help and for being our source of inspiration all through our course of study.

We are much obliged to express our sincere thanks and gratitude to our
beloved guide Senior Lecturer Ms.N.Rajathi., B.E., for her valuable suggestions,
construction criticisms and encouragement which has enabled us to complete our

project successfully.

We gratefully thank our Project Coordinator Mrs.S.Devaki., B.E.,M.S. and
our Class Advisor Miss P.Sudha, B.E., for extending their most appreciative and

timely help to us.

We also thank all the staff members of the Department of Information

Technology for all their ¢ncouragement and moral support.

We also extend our heartiest thanks to all our friends for their continuous help

and encouragement throughout the course of study.

SYNOPSIS

SYNOPSIS

Our Project entitled “‘WEB CONTENT SCREENER’ aims at controlling
Internet access policies tailored to the specific needs of the user. This software
provides comprehensive web page filtering based on keywords,url and filetypes
such as cookies. This software also removes certain content displayed in a page
which includes images, popup windows, ads and banners which are quite
annoying to the web users.

The content screener software can be customized to add or remove urls,
keywords and strings to be searched for blocking ads and banners. For each
feature we maintain an individual access list which can be updated whenever
required. Thus this software acts as an application gateway thereby

allowing/restricting web access to the users.

CONTENTS

CONTENTS

1. Introduction
2. Software Requirement Specifications
2.1 Purpose
2.2 General Requirements
2.3 Specific Requirements
3. Web Content Screener Architecture
4. Implementation Details
4.1 Url Blocking
4.2 Keyword Blocking
4.3 Ads and Banners Blocking
4.4 Cookie Blocking
4.5 Popup Window Blocking
4.6 Image Blocking
5. Testing
5.1 Unit Testing
5.2 Integration Testing
6. Future Enhancements
7. Conclusion
8. References
9. Appendix
9.1 Sample Code
9.2 Sample Output

01
03
04
04
04
05
10
13
14
14
14
15
15
16
17
18
19
21
23
25
26
34

INITRODUCTION

INTRODUCTION

Web is a repository of information both technical and general which can be
shared between users. Internet has witnessed vast scientific advancements right from
its inception. People have started using it to a very great extent. It has now become an
indispensable part of today’s modern life. The web pages that we see these days are
dynamic, hence changing their content in minutes. They contain attractive elements
like images, multimedia content etc. But there are certain websites which contain
unethical content which should not be viewed by certain category of people and those
which may take up the resources of the computer resulting in slow access to web
pages. Thus we have recognized the need to develop a software which allows/blocks

web content pertaining to the needs of the user.

The ‘WEB CONTENT SCREENER’ that we have developed will act more
or less like a firewall since it allows or blocks traffic based on some rules defined by
the user. There are several classifications of firewalls depending on which layer of the
OSI model the firewall works. This software comes under the classification of an
application gateway since it analyses the data at the HTTP (a protocol working at the

application layer) level bringing context information into the decision process.

An application gateway usually works by breaking the client/server model.
Every client/server communication requires two connections: one from the client to
the application gateway and the other from the application gateway to the server. Thus

an application gateway has more control over the context of communication.

There are several commercial firewalls available in the market for both Linux
and Windows. Linux by itself has a firewall called iptable which is a packet filter.
But there is no software which does web content screening explicitly for Linux as
such. That’s why we ended up in developing a HTTP gateway which is very easy to

use and has a good scope for future enhancements.

SOFTWARE REQUIREMENT
SPECIFICATIONS

Software Requirement Specifications

2.1 Purpose:
Our project “WEB CONTENT SCREENER?” aims at controlling
web access policies tailored to the needs of the user. This application provides

comprehensive web page filtering based on content and file types.
2.2 General Description:

2.2.1 Product Perspective :
Linux does not have a web content screening software as such.This
resulted in the need to develop this application which acts at the application layer and

blocks traffic depending on the contents of the web pages.

2.2.2 User Characteristics:
The user should have a basic knowledge of the working environment
in Linux. The user must also know how to configure the browser to connect to

a proxy.

2.3 Specific Requirements:

2.3.1 Functional Requirements:

2.3.1.1 Introduction

The basic function of this application is to block web pages or
its contents depending on the configuration set by the user.The user has
provisions to enable/disable a feature.There is a need for a HTTP

proxy to enable this application to work.

2.3.1.2 List of Inputs:
® Feature to be blocked/allowed

® Access list strings

2.3.2 Design Constraints:

2.3.2.1 Software Requirements:
The application we have designed requires the following
software
1) Red Hat Linux 7.0 or higher
2) Squid Proxy
3) Gnu C compiler
4) A Browser with proxy support.

2.3.2.2 User Interface:
Since the application is to be developed in c, the user interface
will only be a command prompt. All the options that are given will be

enabled using only commands.

WEB CONTENT
SCREENER ARCHITECTURE

WEB CONTENT SCREENER
ARCHITECTURE

The Architecture of the “‘WEB CONTENT SCREENER?’ application is
similar to that of an application gateway. The screener acts as a bridge between the
client browser and the proxy server intercepting all the requests sent by the browser

thereby having complete control over the requests sent by the browser.

First the browser is configured to redirect all the requests to the screener. The
screener waits for a request from the client browser. When a request arrives it is first

processed. There are two possibilities that can occur after processing the request.

1) If there are undeniable contents in the request, we make a connection
with the proxy server requesting it to fetch the page from the web server.The
fetched pageis then scanned for any contents that has been requested to
be blocked by the user. If found those contents are blocked or else the

requested pageis sent back to the client browser.

ii) If the browser request has undesirable contents, then we send a
negative reply for the corresponding request from the client browser that the

requested content cannot be fetched.

By this process we provide a complete control over the context of the
communication. Only limited amount of contents are getting downloaded, so
the bandwidth and time gets saved.

The whole process is done in three steps:

1. Request Parsing
2. Content Parsing

3. Returning screened Page

At the end of these three steps the client browser can get a denied page or the

requested page. Now let us see these three steps in detail

1. Request Parsing:

The client browser makes a request to the screener which checks
therequest for any URL match from the list provided by the user. If there is a URL
has been found in the list then the custom page is sent. If there is no match then the

browser request is then sent to the proxy server for further processing.

Sent Sent r—ﬁ
hitp to to
request Web
Browser Content Http Web
Screener Proxy Server
0
Header
& Body

2. Content Parsing:

Once the web page is returned by the proxy server, the contents are subjected
to comprehensive filtering mechanisms which search for keywords, images,

advertisements, banners, popup windows & cookies. If necessary they are filtered.

Returns
html file

)

Web
Content
Screener

Web
Server

Hitp ¢——
Proxy

Browser

!

3. Returning screened Page:

The filtered page or the custom page is sent back to the web browser.

Web Web

Browser Content Http (g] Server
<:{ Screener Proxy

Returns

screened

htm! file

or

Blocked
Page

IMPLEMENTATION DETAILS

10

IMPLEMENTATION DETAILS

We have implemented the ‘WEB CONTENT SCREENER’ software in
LINUX environment. The following features have been implemented in this

application.

Url Blocking

Keyword Blocking

Ads and Banners Blocking
Cookies Blocking

Popup Window Blocking
Image Blocking

V V.V V V VvV

We maintain flags for each feature and store its values in a configuration file
called “firewall.con’. When we start the application this file is read and according
to the flag values screening is performed. All the features listed above need
some form of word searching .So we have implemented an efficient string search
algorithm called ‘Boyer-Moore’ algorithm and use it wherever required. The
modules keyword blocking, ads and banners blocking and url blocking make use
of an access list each, which contains the strings to be searched for. We can add
or remove strings from the access list, display them as and when required. Each
feature has been implemented as a separate module and finally they are integrated into
the application. Now let us see the implementation of the word search algorithm

followed by the implementation of each feature.

Word Search Algorithm:

The below shown figure represents the obvious method involved in a
normal string searching routine. The technique involved here is that the first character
of the search string is matched with every character in the buffer until a match is
found and when it is found the rest of the characters are compared in succession until

the length of the search string. The disadvantage with this method as seen from the

11

figure is that whenever a non-match is found we can only skip one character at a time
to start the next

Comparison and this is effectively solved in the next method

QEEg] AW

The next technique is called Boyer Moore’s String searching algorithm named
after its author wherein instead of checking for a match of the first character we
search for a match of the last character because of which we get a chance of skipping
the search string’s length ahead to start the next comparison .This is shown in the
following figure, at first the last character ‘F’ in this case is searched with it’s
counterpart in the buffer and as it is a mismatch and we know that there cannot be any
overlapping matches ,we now skip three characters ahead and go to ‘E’ in the buffer

instead of just skipping one as before.

mg

QTEg] Q>

Inter-block search:

There is a hidden problem in both the methods, a situation where the String to
be found is partially located in the buffer already in the memory and the rest resides in
the portion to be loaded next in to the memory .This problem can be solved by
copying the last n-1 characters from the buffer to starting of the buffer itself. The next
block is now appended to these n-1 characters in the buffer and thus the partial

12

characters are not lost in the subsequent searches. Here ‘n’ is the length of the search

string.

Start of search

n-1 characters of the previous | Start of the Actual n-1 characters of

buffer. buffer the present buffer

Even in the worst case this algorithm proves to be as good as the normal
sequential string search algorithm. Thus the searching part has been effectively

optimized.

Features:

4.1 Url Blocking:

When a request is received from the client browser it is checked against the
list of URLs got from the ‘url.al’ access list that has been supplied by the user to be
blocked. If a match is found in the request then a default web page is sent to the
browser stating that the requested URL has been blocked by the user. If no match is
found then the request is sent to the proxy server for further processing.

The user has provision to add new URLSs that are to be blocked or can delete
an already existing URL from the access list or just view the URLs in the access list
for reference. The user also has provision to enable or disable the URL blocking

module.

13

4.2 Keyword blocking:

Once the web page is received from the proxy server it is written into a file.
This file is then searched for all the words present in the access list file ‘word.al’. We
read the words from the access list one by one and then the word is searched in the
file. This module makes use of the Boyer-Moore search algorithm. If a match occurs
then the custom page which says that the web page has been blocked is sent. If none
of the words available in the access list are found in the file, the fetched page is sent
to the browser and the current connection is closed.

The user has provision to add new words that are to be blocked or can delete
an already existing word from the access list or just view the words in the access list
for reference. The user also has provision to enable or disable the word blocking

module.

4.3 Ads and Banners Blocking:

The web page that has been stored in the file is searched for any advertisement
or banner extension. The user defined extensions are stored in the access list called
‘ads.al’. First all the ‘img’ tags in the file are fetched and then in each img tag the
extensions available in the access list are searched . If there is a match it is replaced
by the string ‘ABLOCKED’ and the modified file is sent to the browser. If none of
the strings match, the original html file is sent to the browser.

The user has provision to add new ad /banmer extensions that are to be blocked
or can delete an already existing ad/banner extension from the access list or just view
the add/banner extensions in the access list for reference. The user also has provision

to enable or disable the ad/banner blocking module.

4.4 Cookie Blocking:

Cookies are a general mechanism which server side connections can use to
both store and retrieve information on the client side of the connection. They take up
space in the hard disk. Hence we provide cookie blocking feature. This is implemented
as follows. The web page that has been stored in a file is searched for the header
called Set-Cookie. This header is usually sent to the browser to set a cookie. It

contains the following fields.

14

a) Name
b) Path
d) Domain
e) Expires
e) Secure
When this header is deleted , the web page does not store these values thus blocking

the cookie.There is provision to enable/disable this feature.

4.5 Popup Window Blocking:

Popup windows are additional windows that come along with a web page in
order to display advertisements. For some users it is annoying. They are also a waste
of system resources as the web page takes time to get loaded. To avoid these
discomforts, the user can block popup windows by enabling the popup block flag.
When this flag is set the web page is searched for any popup window scripts. Popup
window is displayed by using a function called ‘window.open’ or ‘open’ function
available in java script. If it is found it is removed and the resultant page is sent
to the browser, else the original page is sent to the subsequent modules for further
processing. The user has provision to enable or disable the popup window block

module by setting a flagin the configuration file.

4.6 Image Blocking:

The web pages that we see these days contain lot of images. Images provide
more information than the textual contents. But they consume lot of bandwidth and
it takes time to fetch the images to get it displayed. So those users who Jjust want the
textual contents to be displayed on a page can disable the images thus saving lot of
time and bandwidth.

This module searches for any ‘img’ tag in the web page which are replaced
by a special tag ‘BLOCKED’ which disables all the subsequent image requests from
the browser. Thus no images are displayed. The user also has the provision to enable

or disable this module by setting a flag for image blocking in the configuration file.

15

TESTING

16

TESTING

The features that have been implemented in the software are independantly tested and

then integrated into the application

5.1 Unit Testing:

Keyword Blocking:

This module is tested by sending a sample html file which contains the word
in the access list as input to this function. If the word search succeeds, the custom
page is sent to the browser which is verified by seeing the contents of the browser. In
the event of a failure the original page is sent back to the browser which is verified by

observing the original page being fetched in the browser.

Ads and Banners Blocking:

This module is tested by sending a sample htm] file as input to this function
which contains the ad/banner extension in the ‘img’ tag which matches the link in the
access list. Verification is done by observing the output in the browser which contains

the string ‘ABLOCKED” in the place of the extension in the htm] page.

Popup Window Blocking:

This module is tested by supplying a html file with a popup window as input.
An output file is generated without the popup window which is checked by opening
the html file in the browser. Verification is done by observing that no popup window

is displayed now.

Cookie Blocking:

First we fetch a page using direct internet connection and see whether a cookie
has reached the browser. Now we delete the cookie. Now we again fetch the same
page using our application with the cookie block flag set. Verification is done by

observing that the same cookie entry is not found again.

17

Image Blocking:
This module is tested by sending a sample html file which contains the ‘img’
tag as input to this function. Verification is done by observing the output in the

browser which contains the string ‘BLOCKED? in the place of all the img tags.

Url Blocking:

To test this module we fetch a page whose URL matches that available in the
access list. If the browser has now received the custom block page it means that the

url blocking feature has been verified.

5.2 Integration Testing:

After testing the modules individually we integrated them into the application
and then we conducted a series of tests to verify the correctness of the application.

Thus we ended up in a flawless application.

18

FUTURE ENHANCEMENTS

19

FUTURE ENHANCEMENTS

The following enhancements are possible to the following application.

> Adding a GUI to the existing application to make it more user friendly.
> Adding email spam blocking feature.

» Multiple Operating system support.
> Adding MIME type blocking feature.

20

CONCLUSION

21

CONCLUSION

Thus the ‘WEB CONTENT SCREENER’ application helps the user control
web access policies tailored to his/her needs. Though it requires the user to have a
basic knowledge of Linux it has an easy user defined command prompt interface. We
also provide a help file to the user in case he/she wants to know how to use the
application and to configure it.

This application finds use in web browsing centres where they want to
restrict the users from viewing unethical sites. It can also be used in educational
institutes, home etc. Thus the objective of developing a HTTP gateway which can be
customized according to the needs of the user to block/allow web pages has been

successfully achieved.

22

REFERENCES

23

REFERENCES

Richard W Stevens, “TCP/IP Illustrated”, Volume III, Prentice Hall of India
Private Limited, March 2003, Fourth Edition.

Andrew S Tanenbaum, “Computer Networks”, Pearson Education, Inc.,
2003 Fourth Edition.

Richard W Stevens, “UNIX Network Programming”, Prentice Hall of India
Private Limited, October 2002, Second Edition.

Robert L Ziegler, “Linux Firewalls”, Techmedia Publications, 2000, First
Edition.

Jeff Frentzen & Henry Sobotka, “Java Script Annotated Archives”, Tata
Mc-GrawHill publication, 1999 Edition.

Dennis M Ritchie, “The C Programming Language”, Prentice Hall of India
Private Limited, June 1999, Second Edition.

www.cookiecenter.com

www.squid.org

24

APPENDIX

25

APPENDIX
9.1 Sample Code:

#include<stdio.h>
#include<string. h>
#include<sys/socket.h>
#include "algo.c"

#define MAXDATASIZE 4096

char * extracturl(char *block)
{

char *url;

url=strtok(block," ");
url=strtok(NULL," ");

return url;

}

void sendcustompage(int fd,char *filename)
{
FILE *fp;
char c;
if((fp=fopen(ﬁ1ename,"r"))==NULL)
{

printf("Error Opening file");
exit(1);

}

while((c=fgetc(fp))!=EOF)
send(fd,&c,1,0);

fclose(fp);

shutdown(fd, SHUT RDWR);

int url_block(int fd,char *block.int bsize,char *pattern,int psize,int option)

{

FILE *fp;
char wordinfile[80];
char filename[30];
int status=0;
unsigned char *k="";
if(option==1)
strepy(filename,"url.al");
else
strepy(filename, "banner.al");
if((fp=fopen(ﬁlename,"r"))==NULL)
{

printf("File creation error\n");

26

}
while(fgets(wordinﬁle,80,11))!=NULL)
{

k=ﬁndstring(pattern,psize,wordinﬁle,(strlen(wordinﬁle)—1));
printf("k=%s\n" k);

if(k!=NULL)
{
status=1;

sendcustompage(fd,"return.txt");

else
continue;

}
fclose(fp);
return (status);

int popup_block(char *filename)

FILE *fp,*tmp;

char *block, *patte ="open(",*var,c,*test,*command=(char *)malloc(40);
unsigned int bsize,psize,pos=0;

int pattern_count,ﬁlesizeread=0,length,status=0,count=0
ﬁ)=fopen(ﬁlename,"r");

tmp=fopen("popup.h ""w");

//strepy(pattern,” is ");

2

printf("\n\n Entered Popup Block\n\n");
length=strlen(pattern);

pattern_count=length;

test=(char *)malloc(15 0);
va1=(char*)malloc(length+1);

block=(char *)malloc(MAXDATASIZEHength);

memset(block,0,length);
do
{

count=0;

filesizeread=0;
while((c=fgetc(fp))! =EOF)
{

*(block+ﬁ1esizeread+length)=c;
if(filesizeread<=(MAXDATASIZE- 1))
filesizeread++;
else
break;
}

if((test=ﬁndstring(block,ﬁ1esizeread+Iength,pattern,length)) '=NULL)
{

while(*(test+pos)!="))
{

27

*(test+pos)="";
pos++;
}*(test+pos)="";
printf("\n\npopup window Blocked\n\n");
pos=0;
}
while(count<=filesizeread)
{
fputc(*(block+count+length),tmp);
count++;

}

while(pattern_count)

{
var[length—pattern_count]=block[ﬁlesizeread+length-
pattern_count];
pattern_count--;

}

*(var+1)="0";

strcpy(block,var);

}while(filesizeread==MAXDATASIZE);
fclose(fp);

fclose(tmp);

sprintf(command,"mv popup.htm %s",filename);
system(command);

remove("popup.htm");

printf("tmp removed\n");

return 1;

int word_block(char *accesslist,char *html,int new_fd)
{
FILE *p1;char *wordinfile;
pl=fopen(accesslist,"r'");
int status=0;
/Iwhile(fgets(wordinfile,80,p1)!=NULL)
while(fscanf(p1,"%s",wordinfile)!=EOF)
{
printf("word :%s\n",wordinfile);
status=wordsearch(html,wordinfile);

if(status==1)

{

printf("status=1 inside word block");
sendcustompage(new_fd,"return.txt");
break;

}

else continue;

}
fclose(pl);
return status;

28

}

int wordsearch(char *filename,char *searchstring)

{

}

FILE *fp;
char *block,*pattern=searchstring, *var,c, *test;
unsigned int bsize,psize;
int pattern_count, filesizeread=0,length,status=0,count=0;
fp=fopen(filename,"r");
length=(strlen(pattern));
pattern_count=length;
var=(char*)malloc(length+1);
block=(char *)malloc(MAXDATASIZE+length);
memset(block,0,length);
do
{
filesizeread=0;
while((c=fgetc(fp))!=EOF)
{

*(block+filesizeread+length)=c;

if(ﬁlesizeread<=(MAXDATASIZE-1))
filesizeread++;

else

break;

}
printf{"%d\n %d\n",++count, filesizeread);

if((test=ﬁndstn'ng(block,ﬁlesizeread+length,pattern,length))=NULL);

else

{
status=1;
printf("\n\n Word Found\n\n");
break;

}

while(pattern_count)

{
Var[length-pattem_count]=block[ﬁ1esizeread+1ength—
pattern_count];
pattern_count--;

}

*(var+1)="\0";

strcpy(block,var);

}while(ﬁlesizeread=MAXDATASIZE);
printf{("status=1 after word search\n");
free(block);

free(var);

return status;

int image_block(char *filename)

FILE *fp,*tmp;

29

Char *block,*pattem="<img",*patteml="<IMG",*Var,c;
Char *test,*replace="[BLOCKED]<AD ",*command;
int pos=0;

unsigned int bsize,psize;

int pattern_count,ﬁlesizeread=0,length,status=0,count=0;
fp=fopen(filename,"r");

tmp=fopen("image.htm","w");

printf("\n\n\n\nENtered Image Blocking\n\n\n");
length=strlen(pattern);

pattern_count=length;

test=(char *)malloc(150);

va1=(char*)ma1100(length+1);

block=(char *)malloc(MAXDATASIZE+1ength);

memset(block,0,length);
do
{

count=0;

filesizeread=0;
whjle((c=fgetc(fp))!=EOF)
{

*(block+ﬁ1esizeread+length)=c;
if(ﬁlesizeread<=(MAXDATASIZE-1))
filesizeread++;
else
break;

}

while((testfﬁndstring(block,ﬁ1esizeread+length,pattern,length))!=NULL |
(test=ﬁndstring(block,ﬁlesizeread+length,pattem1 length))!=NULL)

{

while(*(replace+pos)!=')
(test+pos)=(replace+pos);
pos++;

} *(test+pos)="";

pos=0;

}

while(count<=ﬁlesizeread)

{
ﬁ)utc(*(block+count+length),tmp);
count++;

}

while(pattern_count)

{
var[length—pattern_count]=block[ﬁlesizeread+length-
pattern_count];
pattern_count--;

}

*(vart1)="0";

strcpy(block, var);

30

}while(filesizeread==MAXDATASIZE);

fcloseall();

sprintf(command,"mv image.htm %s",filename);
system(command);

remove("image.htm");

return 1;

void cookie block(char *filename)

{

FILE *fp,*fpl;

char *pattern="Set-Cookie",*command=(char *)malloc(20);
char line[80];

int bsize;

fp=fopen(filename,"r");
if{(fp1=fopen("cookie.htm","w"))==NULL)

{
printf("could not create file\n");
return,;
3
printf("block entered\n");
while(fgets(line,80,fp)!=NULL)
{
if(findstring(line,strlen(line),pattern,10)!=NULL)
{
printf("cookie header found\n");
continue;
}
else
fputs(line,fp1);
}
fputs("\n",fp1);
fclose(fp);
fclose(fpl);
sprintf(command,"mv cookie.htm %s",filename);
system(command);

remove("cookie.htm");

int ad_block(char *filename,char *accesslist)
{
FILE *fp,*p1,*p2;
char *block,*pattern="<img ", *pattern1="<IMG
".c,*replace="[ABLOCKED]<AD ",*adword=(char *)malloc(60),*command,
char *test=(char *)malloc(150);
int bsize=0,pos=0,pos1=0,count=0,i=0;
char *ad=(char *)malloc(150);
char *tmp;
if((fp=fopen(filename,"r"))==NULL)
{
printf("could not open mod file\n");

31

}
if((p1=fopen(accesslist,"r"))==NULL)

{
printf("could not open accesslist\n");
}
if((p2=fopen("ad.htm","a+"))==NULL)
{
printf("could not open adtempdir\n");
}
while(fgetc(fp)!=EOF)
{
bsize++;
}
rewind(fp);
if((block=(char *)malloc(bsize))==NULL)
{

printf("could not allocate memory\n");
}
while((c=fgetc(fp))!=EOF)
{

*(block+i)=c;

it+;
}
*(block+1)="0";
whjle(((test=ﬁndstring(block,bsize,pattem,5))!=NULL) l|
(test=findstring(block,bsize,pattern1,5)) '=NULL)

{
while(*(test+pos)!=">")
(ad+pos)=(test+pos);
pos++;

}
*(ad+pos)=">";
*(ad+pos+1)="0";

while(fscanf(p1,"%s",adword)!=EOF)

if(findstring(ad,pos+1 ,adword,strlen(adword))!=NULL)
while(*(replace+pos1)!="")

(test+pos1)=(replace+posl);

posl++;
}
pos1=0;
break;
}

}

for(count=0;count<((test+pos)-block);count++)

32

{

}

rewind(pl);
memset(ad,0,150);
bsize=bsize-(test+pos+1-block);
printf("%d\n" test+pos-block);
block=test+pos+1;
tmp=test;
pos=0;

fputc(*(block+count),p2);

while(*tmp)

{
fputc(*tmp++,p2);

}
free(block);
free(test);
fclose(fp);
fclose(pl);
fclose(p2);
sprintf(command,"mv ad.htm %s",filename);
system(command);
remove("ad.htm");
return O;

}

33

9.2 Sample Output:

Custom Block Page:

34

Image Block Page:

35

