SIMULATION OF STARFISH:
STABLE AND TAMPER
RESISTANT FILE-SHARING

p-ti5
PROJECT REPORT

Submitted in partial fulfillment of the
Requirement for the award of the degree of
Bachelor of Engineering
In
Computer Science
of
Bharathiar University, Coimbatore.

Submitted by
Vijayalakshmi. J
0027K0210

Under the expert Guidance of
Mrs. J. Cynthia, M.E.,
Lecturer,

&)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,
KUMARAGURU COLLEGE OF TECHNOLOGY,
COIMBATORE — 641 006.

MARCH 2004.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY
(Affiliated to Bharathiar University, Coimbatore)

CERTICICATE
This is to certify that the project entitled
SIMULATION OF STARFISH:
STABLE AND TAMPER
RESISTANT FILE-SHARING

has been done by

Vijayalakshmi. J
0027K0210

and submitted in partial fulfillment of the Requirement
for the award of the degree of

Bachelor of Engineering
In
Computer Science
of

Bharathiar University, Coimbatore. J/E/

g* JL ———y ”_1/ [01 0)
v 0
Professor & Head of the department Guide
(Prof. S. THANGASAMY) (Mrs. J. Cynthia)

Certified that the candidate was examined by us in the project work

Viva voce examination held on 23.3.04

©. dNWO&NV{Aw;p]‘OL) /d\(j azl”

i
Internal Examiner /7 External Examiner

Declaration

DECLARATION

Vijayalakshmi. J 0027K0210

declare that the project entitied "SIMULATION OF STARFISH:
STABLE AND TAMPER RESISTANT FILE-SHARING", has been done by
me and to the best of my knowledge, a similar work has not been submitted
to the Bharathiar University or any other institution, for fulfiliment of the

requirements of the course study.

This report is submitted on the partial fulfillment of -the
requirements for all awards of degree of Bachelor of Computer Science and

Engineering of Bharathiar University.

Place: Covmbatong $v&"}‘a,ydmw
J. Vijayalakshmi
Date: 22-3-0L

/.

[Cut-'a&o{ ég/:‘ MM:TC&[MW&NE *7J

Acknowledgments

ACKNOWLEDGMENTS

The exhilaration achieved upon the successful compietion of any task
should be definitely shared with the people behind the venture. This project is
an amalgam of study and experience of many people without whose help this
project would not have taken shape.

At the outset, | take this opportunity to thank the management of my
college for having provided us excellent facilities to work with. | also wish to
express my deep gratitude to our Principal Dr. K. K. Padmanabhan,
B.Sc.,(Engg), M.Tech., Ph.D., for ushering us in the path to triumph.

| am always thankful to our beloved Professor and the Head of the
Department, Prof. S. Thangasamy B.E.(HONS)., whose consistent support
and enthusiastic involvement helped us a great deal.

| am greatly indebted to my beloved guide Mrs. J. Cynthia, M.E,,
Lecturer, Department of Computer Science and Engineering for her excellent
guidance and timely support during the course of this project. As a token of
my esteem and gratitude, | honor her for her assistance towards this cause.

| also thank my project coordinator Ms. S. Chandrakala M.E., and my
beloved class advisor Ms. Hema Guptha B.E., for their invaluable assistance.

| also feel elated in manifesting my deep sense of gratitude to all the
staff and lab technicians of the Department of Computer Science and
Engineering.

| am profoundly grateful to my Parents for their enthusiasm,
encouragement, loving support, and motivation. | especially thank my elder
brother without whose invaluable support and guidance at critical junctures,
this project would not have been a success. | also thank my younger brother
for his constructive criticism.

Lastly, | thank all my friends, for contributing useful comments and
technical information as and when needed.

__ Synopsis

SYNOPSIS

Recently, work on Peer-to-Peer file sharing systems has multiplied, both in
industry [1-3] and in academia [4-6]. This work has fundamentally altered the
way in which popular data, especially multimedia data, has been accessed on
the Internet. Along with the initial applications of file-sharing, there have also
been new applications in file storage [4,5], which promise an always-on,
global scale file storage facility using a potentially unlimited amount of
storage. | propose a new file-sharing project called "Simulation of
STARFISH: Stable and TAmper Resistant Flle SHaring”. STARFISH uses
techniques from erasure coding theory to construct a file-sharing system with

the following desirable properties:

RELIABILITY:

Nodes in P2p systems cannot be relied on to be always connected to the
internet, or even if they do, to execute data access requests correctly. |
propose to use erasure correcting codes, or in general error-correcting codes
to build a reliable data sharing system that can function correctly even when a

subset of providers crash or misbehave.

CONCURRENCY:

Reliable storage systems should permit concurrent access by multiple clients
~ efficiently. Also fully de-centralized systems build over P2P systems should
do so without centralized mechanisms like lock servers etc. | propose the use
of concurrent write primitives in building a highly efficient file sharing system

that can handle concurrent accesses in a fully distributed manner.

For this, we can use a simple parity code scheme. There are two data disks
and one parity disk. The Client module has two commands: read and write
and we start up the client to read from and write to disks. Clients write blocks
to data disks and update the parity. If a disk fails, it can be recovered using
the other data disk and the parity disk.

Contents

CONTENTS

1. Introduction

1.1 Existing system and its limitations

1.2 Proposed system and its advantages

2. Literature Survey

3. System Requirements Analysis
3.1 Product definition
3.2 Project Plan

4. Software Requirements Specification
4.1 Purpose
4.2 Scope
4.3 Product overview and summary
4.4 Development and operating environment
4.5 External interfaces and data flow specifications
4.6 Functional Specifications
4.6 Exception handling
4.7 Product Optimization

5. System Design

5.1 Input Design
5.2 Output Design

5.3 Process Design

6. System testing
7.1 Testing objectives
7.2 Levels of testing

\'

© 0 o 0 o

10
12
12

13
13
13
13

18
18
18

7. Future Enhancements

8. Conclusion

9. References

10. Appendices

10.1 Sample source code

10.2 Sample output

20

21

22

23

23
40

Introduction

1. INTRODUCTION

Distributed file-sharing applications, like the Gnutella [1] network, are starting
to revolutionize the way users access media on the Internet. This project
"SIMULATION OF STARFISH: Stable and Tamper Resistant File-
Sharing" proposes the simulation of the design and implementation of a
scalable and fault-tolerant file-sharing system built using ideas from Error-

correcting coding theory.

A (n, k) erasure correcting code takes k data blocks and encodes it into n
encoded blocks, out of which any k encoded blocks suffice to recover the
original data blocks. Thus, these codes can be used to implement storage
applications that can recover from the loss of some of its storage units. The
flexibility of such an approach also promises higher performance by allowing
clients to load-balance requests between muitiple storage units. Through
analysis and experimentation, | aim to demonstrate the advantages of the

erasure-code-based approach over traditional file-sharing techniques.

1.1 Existing System and its Limitations

Large enterprise storage systems increasingly employ disks that attach to a
network rather than to a single node. This means the disks can be accessed
by multiple nodes in the network, which provides added flexibility and fault
tolerance. Erasure codes provide an efficient way to encode data into multiple
fragments, such that if some fragments are lost, the original data can still be
recovered. If each fragment is stored in a separate disk, then a limited

number of disk failures will not result in loss of information.

When multiple nodes can access the disks simultaneously, a problem arises:
concurrent updates to the erasure code may result in inconsistencies. For

example, suppose that data a and b are stored on four sectors on different

disks, each containing a, b, a+b and a-b respectively, represented as (a, b,
a+b, a-b). This is an erasure code where any two of the four sectors can be
used to reconstruct a and b.Now suppose that a node p1 wants to change a
to ¢ while a node p2 wants to change b to d. If p1 and p2 concurrently write
the new sectors, then the interleaving of writes may leave the system in an

inconsistent state, like (c, d, ctb, a-d).

Previous solutions to this problem, are based on locks or two-phase commit
protocols. These solutions are quite inefficient in terms of time and messages:
with locks, nodes need to acquire and release a lock for each update,
whereas with two-phase commit protocols, nodes need to contact disks twice
for each update. In a shared memory system, the broad idea of implementing
objects that do not fail from objects that may fail has been an interesting area
of study, analysis and research.

1.2 Proposed system and its advantages

The goal is to provide a solution that avoids these expensive synchronization
mechanisms most of the time. Furthermore, we want to tolerate node failures,
that we can implement with cheap commodity parts, rather than expensive

and complex fault-tolerant hardware.

Finally, we want a comprehensive solution that not just tolerates failures, but
also allows online recovery of nodes and disks. The proposed scheme is
quite different because the Clients share all disks, the Clients do not talk to
each other (they only talk to the shared disk objects), and they do not require
non-volatile memory or synchronized clocks. The work in [3] proposes to use
locks or two-phase commit to coordinate every concurrent write. The
proposed scheme avoids using locks or two-phase commit in the common

case.

Literature Survey

2. LITERATURE SURVEY

The Literature survey for this project has been done in the area of Erasure
correcting codes in general and on X-codes in detail. Erasure codes have
been in existence for decades and they have been studied in detail for their

possible uses in the areas of distributed storage and communication.

Recall how erasure code based schemes work: A (n, k) erasure correcting
code can take k data blocks and encode it into n encoded blocks, out of which
any k encoded blocks suffice to recover the original data blocks. Thus, these
codes can be used to implement storage applications that can recover from
the loss of some of its storage units. This project has been inspired by a few

tutorials and papers on the above-mentioned areas.

[L. Xu et al. 1999] discusses the new class of MDS code, the X-Code. The X-
codes are of minimum column distance 3, namely they can correct either one
column error or two column erasures. The key novelty in X-code is that it has
a simple geometrical construction which achieves encoding/update optimal
complexity i.e., A change’ in any single information bit affects exactly two
parity bits. The key idea is that all parity symbols are placed in rows rather

than columns.

A common property of this code is that the encoding and decoding
procedures use only simple XOR and cyclic shift operations, and thus are
more efficient than Reed-Solomon codes in terms of computational
complexity. The two parity rows are calculated by computing the parities
along the two diagonals of slope +1 and -1.In an array code-based fault-
tolerant storage scheme, since each column represents a disk, this also
means that the parity blocks are distributed evenly over all the disks, resulting

in balanced disk access during parity updates.

System

Requirements
Analysis

3. System Requirement Analysis

System study is an activity that encompasses most of the tasks that we have

collectively called computer system engineering. System study is conducted

with the following objectives:

Identify the needs.

» Evaluate the system concept for feasibility.

» Perform economic and technical analysis.

» Allocate function to hardware, software, people and other system

elements.

= Create a system definition that forms the foundation for all subsequent

engineering works.

3.1 Product definition

To summarize, the contributions of the project are the following:

The design of a loosely coupled distributed file sharing system
based on erasure codes, where disks are supplemented with very
simple functionality like swap and add operations.

An algorithm for writing and reading data that maintains
consistency.

A simple and efficient code that the Disk executes when it receives
a swap or a A-Write request from the client.

Simulation of the design and implementation of STARFISH, done
using the Java™ Programming language.

Generalizing regular registers as the correctness condition of the
algorithm.

Proving correctness of the algorithm and analyzing its resiliency to

failures.

Software

Q{efluirements
Specification

4. SOFTWARE REQUIREMENTS SPECIFICATION

4.1 Purpose:

The purpose of this project is to design a distributed and fault tolerant file
sharing system based on Erasure correcting codes. The primary concerns are
that the developed system is reliable and supports concurrent access. To

illustrate the same, a simulation program in Java is also desired.

4.2 Scope:

The key attribute in the scope of the developed system is the level of fault
tolerance. As such, this system supports concurrent access by multiple clients
and can withstand one disk failure. When more than one disks fail, the data
cannot be reconstructed. This can be circumvented by using a (5,3) code

because the model and the erasure code used are scalable.

4.3 Product overview and summary:

My product provides a reliable, robust and efficient means of distributed file-
sharing. The project basically involves the usage of erasure correcting codes

for reliability and concufrency in distributed file-sharing systems.

| use a simple parity code scheme that can withstand the loss of one storage
unit, here, a disk. The client reads and writes to the data and parity disks and
the manager is used for initialization, nuking and recovery of disks. When a
disk fails, it can be recovered using the other data disk and the parity disk.
The disks are Daemons that sit around and service the client's read and write
requests, while the Client is a standalone program. The client communicates

its requests and receives the responses through the Communication module.

4.4 Development and Operating Environment:

The development environment gives the minimum hardware and software

requirements that come with most PCs, by default.

4.4.1 Hardware Specification:

Processor Pentium [lI
RAM - 128 MB
Hard Disk 8 GB
Floppy Drive 1.44 MB
Monitor 14” Monitor

4.4.2 Software Specification:

Operating System Windows 98
Programming Java on multiple platforms
Language

4.5 External interfaces and Dataflow:

The input for the data and parity disks is given as command line arguments at
the DOS prompt or through the GUI provided. The output for the System is
the data and parity disk files that are created automatically.

Data flow diagram for writing to a disk

Communicate
request to
appropriate disk

INPUT FROM
CLIENT: DISK NO.,
OPERATION, DATA
BLOCK NO,VALUE
TO BE WRITTEN

PROCESS

\ 4

Write data and
parity disks

OUTPUT : NEW DATA
AND PARITY IN
APPROPRIATE DISKS

10

4.6 Functional specifications:

The description of the modules is as follows:

= Disk module

* Client Module

= Erasure Code Module

= Manager Module

» The communication Module

= GUI Module
The Client is a standalone program that is called for each operation, whereas
the Disk is a Daemon that sits around and services requests. The manager is
included in the Client program itself. The Communication between the Client
and the Disks is managed by the Communication module and the operations

such as XOR are performed by the Erasure Code module.

4.6.1 Disk Module:

The Disk is a daemon that will sit around and service requests. We can use a
simple parity code with two data disks and one parity disk. Clients write
blocks to data disks and update the parity. When any one disk crashes, the
parity is used to recover the data. The write command will use swap and add
to update the disk. It will also respond to requests for swap and add from
clients. After a disk is nuked, we should call the manager again with the

recover command. Then the disk will start servicing requests again.

4.6.2 Client Module:

There is a client process which has two commands: read and write to read
from and write to disks. Only if the Disk Daemons are started, can the client
communicate with the disks. The client requests are communicated to the
disk and the disk responds appropriately. Once a disk is nuked, Clients will

not be able to read/write to them until the recover command is used.

11

4.6.3 Erasure Code Module:

It is responsible for operations on blocks like addition, subtraction etc., It will
do just an XOR for parity, but for other codes like Reed-Solomon, it will be
more complex.

4.6.4 Manager Module:

The manager has three commands:

= jnit
* nuke
= recover.

init initializes a disk with empty blocks.

nuke "nukes" a disk, i.e. it simulates a condition where the disk crashes and
won't respond to requests

recover recovers a disk from the redundant data.

The manager will initiate a recovery when a disk crashes. When the manager

finishes recovery, the data on disk will be restored.

4.6.5 The Communication Module:

This module, as already said, is used for initiating the communication
between the client and the disks. The Client requests are sent to the disk and
processed and the appropriate action is taken depending on the request. The
response is given to the client indicating the success or failure of the
operation, as the case may be.

4.6.6 The GUI Module:

In this module, an appropriate Graphical User Interface(GUI) is provided
which makes the product easy to use and operate. All the options are given in

a very simple and easy-to-use format, from which the user can choose.

12

4.7 Exception handling:

The package can handle only text. If any other type of input is used a warning
message will be displayed. The usage of each module is also displayed when

the user fails to provide some of the arguments.

4.8 Product Optimization:

The product can be optimized by providing adequate security mechanisms,
authentication and authorization. The Product can also be optimized by using

the latest version of all hardware and software components in this project.

It is easily seen that the above mentioned system can be generalized to use
error-correcting codes, like the popular Reed-Solomon codes. An (n, k, d)
error-correcting code takes k data symbols and constructs n encoded
symbols with minimum distance of d. Such a code with minimum distance d is
capable of recovering from up to (d-1)/2 erroneous symbols. Such codes may
be used to extend STARFISH to the case of untrustworthy providers who
intend to maliciously corrupt file system data. A variant of STARFISH
implemented using a (n, k, d) error-correcting code can recover from up to (d-

1)/2 malicious nodes.

System Design

13

5. System Design

5.1 INPUT DESIGN:

Reliable input design ensures accurate output from the system. The system

to be designed is configured to receive the following data:

The program to be invoked (client or disk etc.,)

The Operation to be done (Read, write, recover etc.,)
The Disk that is to be operated on (Disk1,Disk2 etc.,)
The Block number that's is to be read from or written to

The value to be written in case of write command

Care is taken to ensure that the inputs to the system are interactive and user

friendly.

5.2 OUTPUT DESIGN:

Outputs from the system are required to communicate the result to the end

user and to the client. The outputs of the system are the following:

The Request/Response dialogues between the Client and the Disk
Daemons.

The creation, and initialization to null, of disks on startup.

The Value stored in the block of a disk in case of a read request to
that block of that disk, from the client.

The Data blocks are stored in the data disk files Disk1 and Disk2
and the Parity Blocks, stores in the Parity Disk File Disk3.

The recovered file in case of recovery.

Appropriate error messages to users.

5.3 PROCESS DESIGN:

In this section, we provide background on providing fault-tolerant distributed

storage using a class of erasure codes called array codes [7].

14

Array codes are two-dimensional codes in which parities are calculated along
lines of different slopes. The parity blocks in array codes, in contrast with
encoded blocks in general MDS codes, are calculated by bitwise XOR
operation on data blocks. Hence array codes have low computational

complexity.

Array are suitable for recovery from column erasures- erasures in which all
symbols from one or more columns are lost. Thus they are useful in
distributed storage schemes because in practice, when a disk fails, all blocks
in it are lost. Array codes can be used in fault-tolerant storage by treating

each column as a disk, and each cell in a column as one block in the disk .

An (n, k) MDS array code adds (n-k) parity columns to k data columns in a
way that any k columns suffice to recover the original data columns. A fault-
tolerant storage system implemented using an (n, k) MDS array code can
recover from k simultaneous disk failures. A useful measure of the complexity
of an array code is its update complexity, which is the number of parity
symbols that must be updated when a data symbol is written. Array codes
with optimal update complexity are clearly desirable in read/write distributed

storage applications.

X-code: An Array Code with Optimal Encoding

As already illustrated, the X-code [L.Xu et al. 1999] is an (n,n-2) MDS array
code with optimal update complexity: updating a data symbol requires
updating exactly two parity.symbols. Thus the X-code can be used to
implement a fault-tolerant distributed storage system that can tolerate two
simultaneous disk failures. The novel feature of the X-code is that it has parity
rows, not columns. The two parity rows are calculated by computing the
parities along the two diagohals of slope +1 and -1. In an array code-based

fault-tolerant storage scheme, since each column represents a disk, this also

15

means that the parity blocks are distributed evenly over all the disks, resulting
in balanced disk access during parity updates.

The following algorithm may be used for the writes by the client program that

is consistent but fails in the presence of concurrency.

Algorithm 1 Write algorithm executed by client, which is con-
sistent but fails in the presence of concurrency.

1 procedure client-write (§; Xnew)

Xoid = invoke {disk(i), READ,{)

invoke (disk(d), WRITE, §, Xnew)

+ foreach (i, j) € Edo

3 Eog = invoke {disk{4), READ, J)

6 Frew = Foig + Wij % f X new - Xotd)
7 invoke {disk({j), WRITE, J, Prew)

s procedure invoke {dest, type,...)

s send {type, ...) to dest

w o wait until receive resull from desi
1 return resuilt

NN O

Theorem 1 The write algorithm (Algorithm 1) is consistent.

Proof sketch: As the contents of a data block X x changes from X ¢1qt0 X new, it
is clear that to keep consistency a parity block X j needs to be updated by
subtracting W i*X o1q @and adding W *X new. This is exactly what the algorithm

does.

PRIMITIVES FOR SUPPORTING CONCURRENT ACCESS

In this section, | show how to implement the write procedure (Algorithm 1) in a
way that consistency is maintained when muitiple clients execute it
concurrently on data blocks with a shared parity block. To illustrate this
problem, consider a system with one parity disk where two clients A and B
and perform the write algorithm (Algorithm 1) as follows: Assume A and B

both write to a data block, but then write to the corresponding parity block in

16

the reverse order. The parity in this case clearly becomes inconsistent with

the data and the system is said to fail under concurrent access.

Existing solutions use locks or two-phase commits to make the write atomic
and mutually exclusive. However these mechanisms are rather expensive
and the cost needs to be paid for every write, even though only a few of them

may conflict with each other.

The proposal for STARFISH is based on the two new atomic write primitives
introduced in : the SWAP and the -WRITE which are described in Algorithm
3. Intuitively, when the disk receives a SWAP request, it writes the new data
and returns the old one. And when a disk receives a -WRITE request, it
replaces the old data with new data added with the old data.

In both cases, it is important that these requests be executed atomically.
However, this is easy to achieve since the requests are processed locally at a
single disk. Given the availability of SWAP and -WRITE at the disk, a client
can write a block and update its parity through Algorithm 2, which works as
follows: The client first uses the SWAP request to write the new data and get
the old data. The disk then computes the value that needs to be added to
each parity block, and then uses the -WRITE request.

The following is the improved write algorithm that is consistent even under

concurrent access.

Algorithm 2 Improved write algorithm executed by client,
which is correct even under concurrent execution.
1 procedure client-write (i, Xnew)
X, 1q € invoke (disk(d), SWAP, & Xpew)
for each (i, /) € B do
A = Wij % (Xnew — Xo1a)
imvoke {disk(f), A-WRITE, j, A)

W e e b2

17

The code executed by the disk is as illustrated below:

Algorithm 3 Code executed by the disk when it receives a
SWAP or A-WRITE request.
upon receive (SWAP, i, Xnew) from dlient do

Xﬂ?d - read (Xi}

write (Xi X nﬂwj

send X 4 to clieri

EY A

el

upon receive {A-WRITE, §,/A) from client do
Xoid = read (X5)

v write (X3, Xo1a + A)

s send OK to client

=

The benefit of these simple algorithms are that multiple clients can run it
concurrently, and the resulting parity blocks will be consistent regardiess of
how the execution interleaves. This is accomplished without expensive
synchronization mechanisms like locks and two-phase commits.

Example

Consider a storage system that implements fault-tolerance using the (5,3) X-
code. For simplicity, assume all blocks are 4-bit values. Here the + and -
operators are both the bitwise binary XOR operators. Let the data blocks take
on the values a=0000,b=0001,0=1110, so that the two parities that depend on
a are a+g+m=1010 and a+j+n=0100. Now lets assume that the clients A and
B want to concurrently write the value 1111 and 0101 to block a, and also,
without loss of generality, that A's swap executes first. Now, A's swap returns
the Value 0000 and writes 1111 to a, leading A to calculate as 1111-
0000=1111. B’s swap will return the value that A just wrote, i.e., 1111 and
write 0101 to disk, leading B to calculate its as 0101-1111=1010. Now the
disk will receive two -WRITE requests with =1111 and =1010.

Thus the final parity values after both writes complete, are

a+g+m € a+g+m+1111+1010=1111 and

a+g+n € a+g+n+1111+1010=0001, which are consistent with the data values
a=0101, g=0110, m=1100, j=1001, n=1101.

System Testing

i8

6. SYSTEM TESTING

Testing is an important activity in the software lifecycle and is used to verify
that the system being built is correct and consistent. Its performed with the
intention of finding the defects and faults in the system. Testing is however
not restricted to being performed after the development phase. This is to be
carried out in parallel with all stages of system development, starting with

requirements specification.

Testing results once gathered and evaluated, provide an indication of the
software quality and reliability and serves as a basis for design modification if
required. System Testing is the process of checking whether the developed
system is working according to the original objectives and requirements. The
system should be tested experimentally with test data so as to ensure that it
works according to the requirements specification. When the system is found

working, we test it with actual data and evaluate its performance.

6.1 Testing Objectives:

The testing objectives of this project are summarized as follows:
e To check if the system really does what it is expected to do.
e To check if the main requirements of the project are met.

e To test how the system handles erroneous inputs

6.2 Levels of Testing:

The Software functionality tests and the testing procedures that have been
used for this project are as follows:

= Unit Testing

» |ntegration Testing

= Qutput Testing

19

Unit Testing:

Unit testing has been carried out to verify and uncover errors within the
boundary of the smallest unit or a module. In this testing step, each module
was found to be working satisfactory as per the expected output of the
module. In the package development, each module is tested separately after
it has been completed and checked with valid data. The 6 logical modules of

the project are checked separately and subtle bugs are found and removed.

Integration Testing:

Integration Testing address the issues associated with the dual problems of

verification and program construction. After the software has been integrated
a set of higher-order tests are conducted. The main objective in this testing
process is to take unit-tested modules and build a program structure that has
been dictated by design. In this project the collective working of the project
and their interconnection structures are verified. Problems in linking the

modules are discovered and appropriate corrections have been made.

Output Testing:

Although each output test has a different purpose, all the work should be
verified so that all system elements have been properly integrated and
perform their allocated functions. All possible kinds of inputs have given to all
the modules and the outputs have been verified. Errors and Exceptions are
handied by the system and an appropriate output is displayed for such cases

and a suitable action is taken.

Future
Enhancements

Conclusion

21

8. Conclusion

Fault-tolerance and concurrency two important issues in distributed storage.
In this project, | proposed methods for constructing a fault-tolerant distributed
storage system capable of supporting concurrent access. Using a novel and
efficient erasure code , | showed how to construct distributed storage capable
of recovery from any one disk failure, which can also be scaled to recover

from two simultaneous disk failures.

Writes to a data block in fault-tolerant storage involves attendant writes to
parity blocks, and correct operation under concurrent access requires co-
ordination between multiple independent agents, usually through expensive

concurrency control procedures like locks on every write operation.

| have taken an alternate approach by introducing two write primitives, SWAP
and -WRITE : each write operation, when implemented as a sequence of a
SWAP followed by one or more -WRITEs , is serializable and may be
executed concurrently on the same parity group by multiple clients.
Synchronization mechanisms like locks or two-phase commits are avoided
most of the time. When all concurrent clients complete their writes, the parity

group is guaranteed to be consistent.

Q{eierences

Appendices

10. Appendices

10.1 Sample source code

Client. Java

/* This client program is a standalone program and is used to read from and
write to working disks. It communicates read/write requests to the Disk
program through the request program and receives responses from the disk
through the response program. It also performs the managing functions such
as initialization of disks, recovery of disks, etc., */

import java.io.*;
import java.net.”;
import java.util.”;

/*Creating the disk properties file */
public class Client {

private Properties diskProperties;
int disks, blocks, blocksize;

public Client(Properties diskProperties) {
this.diskProperties = diskProperties;
blocksize =
Integer.parselnt(diskProperties.getProperty(“bIocksize"));
disks = Integer.parselnt(diskProperties.getProperty("disks"));
blocks = Integer.parselnt(diskProperties.getProperty("bIocks“));

private Socket getSocket(String disk) throws IOException {
return new
Socket(lnetAddress.getByName(diskProperties.getProperty(disk+".address"))
, Integer.parselnt(diskProperties.getProperty(disk+“.port")));

}

I*Apply XOR*/
public void applyxor(byte[] old, byte[] delta) {
for (int i = 0; i < blocksize; i++) {
old[i] = (byte)(((int)old[il)*((int)delta[i]) & Oxf);
}

}

/*Represent as 32-bit blocks™/
public bytef] blockify(String str) {
byte[] val = new byte[blocksize];

24

byte[] content = str.getBytes();

for (inti = 0; i < content.length; i++)
val[i] = contenti];

for (int i = content.length; i < blocksize; i++)
val[i] = 0;

return val;

/*Servicing read operation */
public Response doRead(String disk, int block) throws IOException,
ClassNotFoundException {
Socket s = getSocket(disk);
new ObjectOutputStream(s.getOutputStream()).writeObject(new
Request(Request.READ, block, null));
return (Response) new
ObjectinputStream(s.getinputStream()).readObject();

}

[*Performing swap request */
public Response doSwap(String disk, int block, byte[] value) throws
|OException, ClassNotFoundException {
Socket s = getSocket(disk);
new ObjectOutputStream(s.getOutputStream()).writeObject(new
Request(Request. SWAP, block, value));
return (Response) new
ObjectinputStream(s.getinputStream()).readObject();

}

/* Performing Add operation */
public Response doAdd(String disk, int block, byte[] value) throws
|OException, ClassNotFoundException {
Socket s = getSocket(disk);
new ObjectOutputStream(s.getOutputStream()).writeObject(new
Request(Request.ADD, block, value));
return (Response) new
ObjectinputStream(s.getinputStream()).readObject();

}

[*Initialization of Disks */
public Response dolnit(String disk) throws IOException,
ClassNotFoundException{
Socket s = getSocket(disk);

25

new ObjectOutputStream(s.getOutputStream()).writeObject(new
Request(Request.INIT, 0, null));

return (Response) new
ObijectinputStream(s.getinputStream()).readObject();

}

/*Responding to read/writes to nuked disks */
public Response doNuke(String disk) throws IOException,
ClassNotFoundException{
Socket s = getSocket(disk);
new ObjectOutputStream(s.getOutputStream()).writeObject(new
Request(Request.NUKE, 0, null));
return (Response) new
ObijectinputStream(s.getinputStream()).readObject();

}

/*Recovering nuked Disks */
public Response doRecover(String disk) throws |OException,
ClassNotFoundException {
Socket[] socks = new Socket[disks];
ObjectOutputStream[] oo = new ObjectOutputStream[disks];
ObjectinputStream(] io = new ObjectinputStream[disks];

int culprit=0;
Response res = null;

for (inti = 0; i < disks; i++) {
String diskname = "disk" + (i+1);
System.out.printin(disk + "<=>" + diskname);
if (disk.equals(diskname)) {
System.out.printin("culprit is :"+diskname);
culprit=i;
break;

}
socks[culprit] = getSocket(disk);

System.out.printin("Culprit: " + culprit);
for (int j = 0; j < blocks; j++) {
System.out.printin("Recovering block: " + j);
byte[] sum = new byte[blocksize];
for (inti = 0; i < disks; i++) {
System.out.printin("Reading from disk: " + i)
if (i==culprit)

continue;
String diskname = "disk" + (i+1);
if (socks]i] == null)
socks]i] = getSocket(diskname);

if (oo[i] == null)
00[i] = new
ObjectOutputStream(socksli].getOutputStream());

ool[i].writeObject(new Request(Request.READ, |,
null));
if (io[i] == null)
io[i] = new
ObjectInputStream(socks[i].getInputStream());
res = (Response) io[i].readObject();
if (res.status != Response.OK) {
System.err.printin("Too many disks
crashed...giving up!");
System.exit(1);
}

applyxor(sum, res.value),

}

if (oo[culprit] == null)
oo[culprit] = new
ObjectOutputStream(socks[cuIprit].getOutputStream());

oo[culprit].writeObject(new Request(Request WRITE, j,
sum));

if (io[culprit] == null)
io[culprit] = new
ObjectinputStream(socks[culprit].getinputStream());

res = (Response) io[culprit].readObject();
if (res.status = Response.OK) {
System.err.printin("Too many disks
crashed...giving up!");

}

System.exit(1);
}

oo[culprit].writeObject(new Request(Request. RECOVER, O,
null));

res = (Response) io[culprit].readObject();

if (res.status != Response.OK) {

26

27

System.err.printin("Too many disks crashed...giving up!");

System.exit(1);
}

return res;

/*Printing appropriate output to user */
public String printBytes(byte[] value) {
int columns=32, column=0;

StringWriter out = new StringWriter();

for (inti = 0; i < value.length; i++) {
int b = (int) valuefi];
char ¢ = (char) b;

if (b >= 0x20 && b < 0x7e)
out.write((int)c);
else
out.write("\\" + Integer.toHexString(b));

if (column++ >= 32) {
out.write("\n");
column=0;

}

out.write("\n");
return out.toString();

Disk. Java

/* The Disk is a daemon that will sit around and service requests. We use a
simple parity code with two data disks and
read/write requests from clients and also to requests for swap and ad
write command will use swap and add to update the disk. When a disk is
nuked, it won't respond to read/write requests from clients. We should call the
manager again with the recover command. Then the disk will start servicing

requests again. */

import java.net.”;
import java.io.”;
import java.util.*;

public class Disk implements Runnable

{

private static Properties diskProperties;

public static final int LIVE=1;
public static final int NUKED=0;

static int blocksize, blocks; //bytes
static int status;
static RandomAccessFile file;

private Socket s;
private ObjectinputStream in = null;
private ObjectOutputStream out = null;

/* Starting a thread for each disk */

public Disk(Socket s) throws IOException {
this.s = s;
new Thread(this).start();

/*Processing and doing the read operation on the specified block */
private byte[] read(int block) throws |OException {

int position = block*blocksize;

byte[] val = new byte[blocksize];

file.seek(position);

file.read(val);

return val,

one parity disk. It will respond to
d. The

/* Doing the swap operation */
private byte[] swap(int block, byte[] value) throws IOException {
int position = block*blocksize;
byte[] old = new byte[blocksize];
file.seek(position);
file.read(old);
file.seek(position);
file.write(value);
return old;

/* function to apply XOR */
private void applyxor(byte[] old, byte[] delta) {
for (inti = 0; i < old.length; i++) {
old[i] = (byte)(((int)old[i])*((int)delta[i]) & Oxff);
}

/* Doing the add operation */

private void add(int block, byte[] delta) throws IOException {
int position = block*blocksize;
byte[] old = new byte[blocksize];

file.seek(position);
file.read(old);

applyxor(old, delta);

file.seek(position);
file.write(old);

/* Servicing init operation and Initialization of disks to null */
private void init() throws I0Exception {
byte[] zeros = new byte[blocksize];
for (int i = 0; i < blocks; i++) {
int position = i*blocksize;
file.seek(position);
file.write(zeros);

}
this.status = LIVE;

29

30

/*Servicing write requests */

private void write(int block, byte[] value) throws IOException {
int position = biock*blocksize;
file.seek(position);
file.write(value);

/* Realizing disk failure condition by setting flag */
public void nuke() {

this.status = NUKED;
}

/*Acknowledging Recovery of nuked disks */
public void recover() {

this.status = LIVE;
¥

/* Processing each client request */
public void run() {

try{
while (true) {
Request req = null;
Response res = null;

if (in == null)
in = new
ObjectlnputStream(s.getInputStream());

req = (Request) in.readObject();
if (status == NUKED && (req.type ==
Request.READ || req.type == Request.SWAP || req.type == Request.ADD)) {
res = new Response(Response.ERROR,
null);
} else {
switch(req.type) {
case Request.READ:
byte[j val = read(req.block);
res = new
Response(Response.OK, val);
break;
case Request.SWAP:
byte[] old = swap(req.block,
reqg.value);

31

res = new
Response(Response.OK, old);
break;
case Request.ADD:
add(req.block, req.value);
res = new
Response(Response.OK, null);
break;
case Request.INIT:
init();
res = new
Response(Response.OK, null);
break;
case Request.NUKE:
nuke();
res = new
Response(Response.OK, null);
break;
case Request.WRITE:
write(reqg.block, req.value);

res = new
Response(Response.OK, null);
break;
case Request.RECOVER:
recover();
res = new
Response(Response.OK, null);
break;
}
}
if (out == null)
out = new
ObjectOutputStream(s.getOutputStream());
out.writeObject(res);

}
} catch (I0Exception e) {
J/System.out.printin("Error processing request..."+

e);
} catch (ClassNotFoundException e){
//1System.out.printin("Error processing request..."+
e);
}
try {

s.close();
} catch (IOException e) {

32

/* Handling wrong no. of inputs by printing Usage */
public static void printUsage() {
System.out.printin("Usage: java Disk diskname");
System.out.print("diskname: one of ");
int disks = Integer.parselnt(diskProperties.getProperty("disks")),
blocks = lnteger.parselnt(diskProperties.getProperty("blocks"));
for (int i=0; i < disks; i++)
System.out.print("disk" + (i+1) +" ")
System.out.printin();

/* The main function */
public static void main(String[] args) throws |OException {

diskProperties = new Properties();
diskProperties.load(new FilelnputStream("disk.properties"));

if (args.length < 1) {
printUsage(),
System.exit(1);
}

String disk = args[0];

String filename = diskProperties.getProperty(disk+".fi|ename");

String address = diskProperties.getProperty(disk+".address“);

int port =
Integer.parselnt(diskProperties.getProperty(disk+“.port"));

status = LIVE;

blocksize =
Integer.parselnt(diskProperties.getProperty(“blocksize"));

blocks = Integer.parselnt(diskProperties.getProperty("blocks"));

System.out.printin("Starting with address:"+address+"
port:"+port + " file:" + filename);

try {
file = new RandomAccessFile(new File(filename), "rw");
} catch (I0Exception e) {
System.err.printin("Cannot access file:" + filename + e);
System.exit(1);

}

ServerSocket ss = null;
try {
ss = new ServerSocket(port);
} catch (IOException e) {
System.err.printin("Unable to spawn server socket,
terminating...");

}

while (true) {
new Disk(ss.accept());
}

System.exit(1);

34

ClientGUL. Java

/*This program creates a Graphical User Interface (GUI) for the project and
hides the implementation details and the programming environment from the
user using swing. */

import java.net.”;

import java.io.”;

import java.util. Hashtable;
import java.awt.”;

import java.awt.event.”;
import javax.swing.”;
import javax.swing.border.”;
import javax.swing.event.”;
import java.util.*;

import java.net.”;

import java.io.”;

import java.text.”;

public class ClientGUI implements ListSelectionListener, ActionListener {

private Client client;
private Properties diskProperties;

private JList list;
private JPanel wholePanel;
private JTabbedPane tabbedPane;

private JButton initButton, nukeButton, recoverButton, readButton,
writeButton;
private JTextField blockField, valueField;

private JPanel mainPanel;
private JTextArea introText;

private String mainintro="",;

public ClientGUI(Client client, Properties diskProperties) {
this.client = client;
this.diskProperties = diskProperties;

int ndisks =
Integer.parse|nt(diskProperties.getProperty("disks“));
String[] disks = new String[ndisks];
for (inti = 1; i <= ndisks; i++)
disks[i-1] = "disk" + i;

list = new JList(disks);
Iist.setSeIectionMode(ListSelectionModeI.SINGLE_SELECTION);
list.addListSelectionListener(this);
JScrollPane listScroliPane = new JScrollPane(list);

mainPanel = new JPanel();
mainPanel.setLayout(new BoxLayout(mainPanel,
BoxLayout.Y_AXIS));

introText = new JTextArea(7, 26);

Border emptyBorder = BorderFactory.createEmptyBorder();
introText.setBorder(emptyBorder);

JScroliPane introPanel = new JScrollPane(introText);
introText.setLineWrap(true);
introText.setWrapStyleWord(true);
introText.setEditable(false);

mainPanel.add(introPanel);

initButton = new JButton("Initialize");
initButton.setEnabled(false);
initButton.addActionListener(this);

nukeButton = new JButton("Nuke");
nukeButton.setEnabled(false);
nukeButton.addActionListener(this);

recoverButton = new JButton("Recover”);
recoverButton.setEnabled(false);
recoverButton.addActionListener(this);

JPanel bpanel1 = new JPanel(new FlowLayout());
bpanel1.add(initButton);
bpanel1.add(nukeButton);
bpanel1.add(recoverButton);

blockField = new JTextField();
blockField.setColumns(3);
blockField.addActionListener(this);

readButton = new JButton("Read");
readButton.setEnabled(false);
readButton.addActionListener(this);

valueField = new JTextField();
valueField.setEnabled(false);
valueField.setColumns(40);

valueField.addActionListener(this);

writeButton = new JButton("Write");
writeButton.setEnabled(false);
writeButton.addActionListener(this);

JPanel bpanel2 = new JPanel(new FlowLayout());
bpanel2.add(new JLabel("Block™));
bpanel2.add(blockField);
bpanel2.add(readButton);
bpanel2.add(valueField);
bpanel2.add(writeButton);

JPanel panel = new JPanel(new BorderLayout());
panel.add(mainPanel, "North");
panel.add(bpanel1, "Center");
panel.add(bpanel2, "South");

JPanel vobPanel = new JPanel();
vobPanel.setLayout(new BoxLayout(vobPanel,
BoxLayout.X_AXIS));
vobPanel.add(listScrollPane);
vobPanel.add(panel);

tabbedPane = new JTabbedPane();
tabbedPane.addTab("Client GUI", vobPanel);
tabbedPane.setSelectedindex(0);

wholePanel = new JPanel();
wholePanel.setLayout(new GridLayout(1, 1));
wholePanel.add(tabbedPane);

}

public JPanel getPanel() {
return wholePanel;
}

public void valueChanged(ListSelectionEvent e){
if (e.getValuelsAdjusting())
return;

JList theList = (JList)e.getSource();
if (theList.isSeIectionEmpty()) {
clearlnputs();
} else {
int index = theList.getSelectedindex();
introText.setText(mainintro);

37

introText.setCaretPosition(0);
enablelnputs();

private void clearinputs() {
list.clearSelection();
initButton.setEnabled(false);
nukeButton.setEnabled(false);
recoverButton.setEnabled(false);
blockField.setText(™);
blockField.setEnabled(false);
readButton.setEnabled(false);
valueField.setText("™);
valueField.setEnabled(false);
writeButton.setEnabled(false);

}

private void enablelnputs() {
initButton.setEnabled(true);
nukeButton.setEnabled(true);
recoverButton.setEnabled(true);
blockField.setText(");
blockField.setEnabled(true);
readButton.setEnabled(true);
valueField.setText("™);
valueField.setEnabled(true);
writeButton.setEnabled(true);

}

public void actionPerformed(ActionEvent e) {
if (e.getSource() instanceof JButton) {
JButton butt = (JButton)e.getSource();
String disk = (String)list.getSelectedValue();

try {
if (butt:equals(initButton)) {
introText.append("Initialize disk:" + disk +
"n");

Response res = client.dolnit(disk);

if (res.status == Response.OK) {
introText.append("Disk said OK\n");

} else {
introText.append("Disk is nuked!\n");

}
} else if (butt.equals(nukeButton)) {
introText.append("Nuke disk:" + disk + "\n");

38

Response res = client.doNuke(disk);
if (res.status == Response.OK) {
introText.append("Disk said OK\n");
} else {
introText.append("Disk is nuked!\n");
}

} else if (butt.equals(recoverButton)) {
introText.append("Recover disk:" + disk +
"),
Response res = client.doRecover(disk);
if (res.status == Response.OK) {
introText.append("Disk said OK\n");
} else {
introText.append("Disk is nuked!\n");
}

} else if (butt.equals(readButton)) {

int block =
Integer.parseint(blockField.getText());

introText.append("Read disk:" + disk + ",
block:" + block + "\n");

Response res = client.doRead(disk, block);

if (res.status == Response.OK) {

introText.append("Disk returned the

following value:\n");

introText.append(client.printBytes(res.value));
} else {
introText.append("Disk is nuked/\n");

}
} else if (butt.equals(writeButton)) {

int block =
Integer.parselnt(blockField.getText());

String valuestr = valueField.getText();

introText.append("Write disk:" + disk + ",
block:" + block + ", value:" + valuestr + "\n");

byte[] value = client.blockify(valuestr);

‘Response res = client.doSwap(disk, block,
value);
if (res.status == Response.OK) {

introText.append("Disk said OK\n");

client.applyxor(value, res.value);

String parity =
diskProperties.getProperty("paritydisk”); .
res = client.doAdd(parity, block,
value);

if (res.status == Response.OK) {

39

introText.append("Parity disk
said OK\n");
} else {
introText.append("Parity disk
is nuked\n");
}
} else {
introText.append("Disk is nuked!\n");
}

}

} catch (IOException ioex) {
System.err.printin(ioex);

} catch (ClassNotFoundException cnfex) {
System.err.printin(cnfex);

clearlnputs();

public static void main(String([] args) throws |0OException,
ClassNotFoundException {

Properties diskProperties = new Properties();
diskProperties.load(new FilelnputStream("disk.properties"));
Client client = new Client(diskProperties);

JFrame frame = new JFrame("STARFISH GUI");
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {System.exit(0);}
M

ClientGUI clientGUI = new ClientGUI(client, diskProperties);
frame.getContentPane().add(cIientGUI.getPaneI());
frame.pack();

frame.setResizable(false);
frame.setVisible(true);

10.2 Sample output (at the command prompt)

Invoking the Disk Daemons-Disk1, Disk2, Disk3:

C:\Project>javac Disk.java

C:\Project>java Disk
Usage: java Disk diskname
diskname: one of disk1 disk2 disk3

C:\Project>java Disk disk1
Starting with address:localhost port:1234 file:disk

C:\Project>java Disk disk2
Starting with address:localhost port:2345 file:disk2

C:\Project>java Disk disk3
Starting with address:localhost port:3456 file:disk3

Running and using the Client Program:

C:\Project>javac Client.java

C:\Project>java Client

Usage: java Client diskname operation block [value]

diskname: one of disk1 disk2 disk3

operation: one of read write init nuke recover

block (in the case of read/write): from 0 to 99

value (in the case of write): any string (use double quotes if spaces present)

C:\Project>java Client disk1 init
Disk said OK

C:\Project>java Client disk2 init
Disk said OK

C:\Project>java Client disk3 init
Disk said OK

C:\Project>java Client disk1 write 11 100
Disk said OK
Parity disk said OK

C:\Project>java Client disk2 write 11 111
Disk said OK
Parity disk said OK

40

C:\Project>java Client disk1 read 11

Disk said OK
10000000000000000000000000
0000O0O

C:\Project>java Client disk2 read 11

Disk said OK
11100000000000000000000000
000000

C:\Project>java Client disk3 read 11

Disk said OK
01100000000000000000000000
000000

C:\Project>java Client disk1 nuke
Disk said OK

C:\Project>java Client disk1 read 11
Disk is nuked!

C:\Project>java Client disk1 recover
disk1<=>disk1
culprit is :disk1
Recovering block: 0
Reading from disk: O
Reading from disk: 1
Reading from disk: 2
Recovering block: 1
Reading from disk: 0
Reading from disk: 1
Reading from disk: 2
Recovering block: 2
Reading from disk: O
Reading from disk: 1
Reading from disk: 2
Recovering block: 3
Reading from disk: 0
Reading from disk: 1
Recovering block: 3
Reading from disk: O
Reading from disk: 1
Reading from disk: 2
Reading from disk: 2
Recovering block: 3
Reading from disk: O
Reading from disk: 1

41

Reading from disk: 2

Recovering block: 99
Reading from disk: O
Reading from disk: 1
Reading from disk: 2
Disk said OK

C:\Project>java Client disk1 read 11

Disk said OK
10000000000000000000000000
000000

C:\Project>

42

