VIRTUAL NETWORK COMPUTING

Project Report P, ”?7

Submitted in partial fulfillment of the
Requirement for the award of the degree of the

Bachelor of Computer Science and Engineering of
Bharathiar University, Coimbatore.

Submitted by

P.Saravana kumar S.Sasidharan
0027K0199 0027K0200

Under the guidance of

Mrs. V. Vanitha M.E.,
Senior Lecturer

)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY,
COIMBATORE - 641006.

MARCH 2004.

CERTIFICATE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

)

KUMARAGURU COLLEGE OF TECHNOLOGY
(Affiliated to Bharathiar University, Coimbatore)

MAMAGEMENT SERVKCE,

CERTIFICATE
This is to certify that the project entitled

VIRTUAL NETWORK COMPUTING

Is done by

P.Saravana Kumar ; . S.Sasidharan
0027K0199 S 0027K0200

And submitted in partial fulfillment of the
Requirement for the award of the degree of the

Bachelor of Computer Science and Engineering of
Bharathiar University, Coimbatore.

A\

<\,//‘/r N| “5(
S JL@-—M’ 7(I~ -
lProfessor & Head of the department Project Guide
| (Dr.S.THANGASAMY) (Mrs.V.VANITHA)

Certified that the candidates were examined by us in the project work
Viva voce examination held on _9x -2 »QDOZ}

. ‘ //']

23 3/ 109

Internal Examiner External Exammer

n

\
z 57 ’

DECLARATION

Declaration

We,
| P.Saravana kumar 0027K0199
S.Sasisharan 0027K0200

L declare that the project entitled “Virtual Network Computing” is done
; by us and to the best of our knowledge, a similar work has not been submitted

| earlier to the Bharathiar University or any other institution, for fulfillment of the
| requirement of the course study.

' This project report is submitted on the partial fulfilment of the
} requirement for all awards of the degree of Bachelor of Computer Science and
. Engineering of Bharathiar University.

NAME REGISTER NUMBER SIGNATURE
P.Saravana kumar 0027k0199 W
S.Sasidharan 0027k0200 o« ajjclim

Countersigned: \N\ \\}2/1/ Lo
V-t

Staff in charge: Mrs.V.Vanitha M.E,
Senior Lecturer,
Department of Computer Science & Engineering,
Kumaraguru college of Technology,
Coimbatore.

Place: Coimbatore.
Date: 9% -3 -9p 04

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

The exhilaration achieved upon the successful completion of any task
should be definitely shared with the people behind the venture. This project is an

amalgam of study and experience of many people without whose help this
broject would not have taken shape.

At the onset, | take this opportunity to thank the management of my
bollege for having provided us excellent facilities to work with. | express my deep
bratitude to our Principal Dr.K.K.Padmanabhan B.Sc (Engg), M.Tech. for
|tushering us in the path of triumph.

i I am always thankful to our beloved Professor and the Head of the
[Pepartment, Prof.S.Thangasamy B.E.(HONS)., whose consistent support and
e}nthusiastic involvement helped us a great deal.

% I 'am greatly indebted to my beloved guide Mrs.V.Vanitha M.E., Senior
Llecturer, Department of Computer Science and Engineering for her excellent
giuidance and timely support during the course of this project. As a token of my

e%teem and gratitude, | honor her for her assistance towards this cause.

_ | also thank my project coordinator Mrs.D.Chandrakala M.E., Senior
L%cturer and my beloved class advisor Mrs.M.S.Hema B.E., for their invaluable
assistance.

‘ I also feel elated in manifesting my deep sense of gratitude to all the staff
ar}nd lab technicians in the Department of Computer Science and Engineering.

| I feel proud to pay my respectful thanks to my Parents for their enthusiasm
arid eéncouragement and also | thank my friends who have associated
thémselves to bring out this project successfully.

SYNOPSIS

SYNOPSIS

Virtual Network Computing is a remote display system which allows
you to view a computing ‘desktop’ environment not only on the machine it
is running, but from anywhere on the network. It provides cross-platform
remote control over other computer sessions.

Features of the system include the ability for several users to remotely
access the same desktop simultaneously - if one of them moves the
mouse, starts a program or presses a key, the displays of all the other
viewers will also change. You can set your desktop to read-only (i.e., the
remote user can view it but not do anything with the mouse or keyboard).

Two main modules involved in the systems are
1. Server

2. Viewer

Server runs on a system whose desktop has to be captured. Viewer
runs on a system from where remote system has to be controlled.

Function of the Server is to accept the request from clients and after
authentication, it captures the desktop image of the system where server
is running, convert it to array of pixels and transfer it to viewer. Whereas
viewer reproduce the desktop image from the received pixels. When any
key or mouse event occurs on the frame where desktop image is
reproduced, it is captured and sent to server. Server handles these events
and reflects it on the desktop. Then server sends updated desktop image

to the client.

RFB (remote frame buffer) protocol is used which is a simple protocol
for remote access to graphical user interfaces. Because it works at the
framebuffer level it is applicable to all windowing systems and

applications.

CONTENTS

CONTENTS

Introduction
1.1 Existing System & Limitations
1.2 Proposed System & Advantages

Software Requirement & Analysis
2.1 Product Definition
2.2 Project Plan

Software Requirement Specification

3.1 Purpose

3.2 Scope

3.3 Product Overview and Summary

3.4 Development & Operating Environment
3.5 External interfaces & data flow

3.6 Functional Specifications

3.7 Exception Handling

3.8 Optimization and Future Enhancement

Implementation of the Proposed System
System design

5.1 Input design

9.2 Output design

System Testing

Future Enhancements

Conclusion

Bibliography

Annexure

10.1 Sample Code
10.2 Output Screens

11

15

17

19

21

23

25

INTRODUCTION

1. INTRODUCTION

Our project deals with the capturing of remote system desktop in a
network and performs operations on the remote desktop. Here RFB protocol is

used which is a simple protocol for remote access to graphical user interfaces.

Encoding process is used to improve the performance. Authentication
brocess, server and client initialization are carried out. It involves handshaking
hwessages like pixel format to be used and frame buffer size.

1.1 Existing system and limitations:

There are number of VNG Systems which provide remote desktop access
in a network but provides it only on machines running in same platform.

1.2 Proposed system and advantages:

i

The ultimate solution for the above problems is to code the entire image
processing functions using high-level languages as individual modules and to
use them as and when needed. This will provide the following advantages.

* lItis small and simple. Server or a Viewer program can be run directly
from a floppy. There is no installation needed.

; e ltis truly platform-independent. A desktop running on a Linux machine
may be displayed on a PC running in windows. The simplicity of the
protocol makes it easy to port to new platforms. We have a Java
viewer, which will run in any Java-capable browser.

e |t is sharable. One desktop can be displayed and used by several
viewers at once.

| SOFTWARE
: REQUI REMENT ANALYSIS

2. SOFTWARE REQUIREMENT ANALYSIS

System study is an activity that encompasses most of the tasks that we
have collectively called computer system engineering. System study is

conducted with the following objectives.

k > Identify the needs.

> Evaluate the system concept for feasibility.
> Perform economic and technical analysis.

> Allocate function to hardware, software, people and other system
elements.

‘ > Create a system definition that forms the foundation for all
‘ subsequent engineering works.

ﬁ.1 Product Definition:
!

VNC is a remote display system used to view remote desktop on the
n}etwork. It provides cross-platform remote desktop access. It consist of two
stction‘s namely server and viewer. Once viewer is connected to server, it is

p
tr'Je server. More than one client can view same desktop simuitaneously.

ssible to open any application, save files and any operation using viewer on

§

2.‘2 Project plan:

The project mainly aims at developing system to provide cross-platform

reli'note desktop access in a network. A request is made from viewer for

co}\nection which includes authentication process. Then desktop image is

captured, converted to pixels and sent to the viewer. In the same time, any
mouse or key event occurred in client side must be captured and sent to the

server along with its state. These events are appropriately reflected in server
side.

SOFTWARE
REQUIREMENT
SPECIFICATION

3. SOFTWARE REQUIREMENT SPECIFICATION

3.1 Purpose:

i
;

, The primary purpose of the Software Requirements Specification
{SRS) is to document the previously agreed to functionality, external interfaces,
#attnbutes and the performance of the VIRTUAL NETWORK COMPUTING. This
jf‘pecmcatlon is the primary document upon which all of the subsequent design
#source code, and test plan will be based.

32 Scope:

| The scope of this document, Software Requirement Specification
(SRS) is to describe the requirements definition effort The SRS documentation
for Virtual Network Computing describes the functlons external interfaces,

ttnbutes and performance issues specified in the product definition.

:ﬂ.3 Product overview and summary:

My product provides a reliable, robust and efficient means of
c ptunng remote desktop. The project basically involves server program which
Captures desktop image, transfers it to viewer where it is reproduced. Viewer also
has to send key and mouse events to server where it is reflected. Viewer always
reéquest updated desktop image.

3.4 Development and Operating Environment:

The development environment gives the minimum hardware and
software requirements.

Hardware Specification:
Processor — Pentium IlI
RAM - 64 MB
Hard Disk — 10 GB
Floppy Drive — 1.44 MB
Monitor — 14 Monitor
Software Specification:
; Operating System — Windows 98, Linux.

| Platform — Java

|
4.5 External interfaces and Dataflow:
; The external interface includes frame to receive password in

\/1iewer part where as in server side a user input is obtained for the master

p}assword and a option to give the desktop a read only or full access.

Master password

4«— VNCServer

Password verify

Password ok Pixels

Update request A

| .
[VNCViewer : —>

Buffer update

Updated pixels

3.6 Functional specifications:

The description of the modules is as follows:

3.6.1. Authentication — password received from viewer is checked against
master password for security purpose and to avoid any malicious act. If the
password provided is correct, then client request are processed or else the

connection is disconnected.

{
{
i

-6.2. Encoding process — Encoding handled is Raw encoding type.
n Raw encoding, pixel values in left-to-right scan line order are send to the
\}iewer.

:#.6.3. Client messages:

rameBufferUpdate - Notifies the server that the client is interested in the area

the frame buffer specified by x-position, y-position, width and height. The

Server usually responds to a FramebuﬁerUpdateRequest by sending a
| amebufferUpdate.

]
|

YEvent - when any key is pressed, ‘keysym’ values and state of the key is
send to the server where appropriate event is generated. Modifier keys such as
Control and Alt should be taken as modifying the interpretation of other keysyms.
Note that there are no keysyms for ASCI| control characters such as ctrl-a -
these should be generated by viewers sending a Control press followed by an 'a’
pr{ess.

P ‘inter Event - Indicates eijther pointer movement or g pointer button press or
re[ILase. The pointer location and button mask is send to the server where
appropriate action is generated.

3.6.4. Desktop capturing — whenever framebufferupdate request is received
from viewer, this module is invoked. Here desktop image is captured and its pixel

values are retrieved and selected encoding process is used. Then the pixel
values are sent to the viewer.

t3.6.5. Event Handling - This function handles mouse and key events occurred in
he client side. In case of key event, key code and state of the key is received,
ccording to which appropriate action is performed. Similarly mouse actions are
;j)erformed according to state of the mouse button received.

3.7 Exception handling:

When wrong password is provided then appropriate warning
ressage will be displayed during authentication. During connection, host name
nd port number send as a arguments in a viewer section must be g valid
Else connection refused message will be displayed.

=3

o))

one.

10

IMPLEMENTATION
OF PROPOSED SYSTEM

11

4. IMPLEMENTATION OF PROPOSED SYSTEM

4.1 Initialization:

: Initial interaction between the RFB client and server involves a
}negotiation of the pixel format with which pixel data will be sent.

4.2 Pixel Format:

t
!

|
|

[Pixel format refers to the representation of individual colours by pixel
{/alues. The most common pixel formats are 24-bit or 16-bit “true colour”, where
li)it-fields within the pixel value translate directly to red, green and biye intensities

a‘and 8-bit “colour map” where an arbitrary mapping can be used to translate from
pixel values to the RGB intensities.

Server-pixel-format specifies the server's naturai pixel format. This pixel
format will be used unless the client requests a different format using the
etPixelFormat message.

w

Bits-per-pixel is the number of bits used for each pixel value on the wire.
This must be greater than or equal to the depth which is the number of useful bits

in the pixel value. Big-endian-flag is non-zero (true) if multi-byte pixels are
interpreted as big endian.

If true-colour-flag is non-zero (true) then the last six items specify how to
extract the red, green and blue intensities from the pixel value. Red-max is the
maximum red value. Red-shift is the number of shifts needed to get the red value
inja pixel to the least significant bit. Green-max, green-shift and blue-max, blue-

shift are similar for green and blue.
i

12

Setpixelformat sets the format in which pixel values should be sent in
FramebufferUpdate messages. If the client does not send a SetPixelFormat

message then the server sends pixel values in its natural format as specified in
the Serverlnitialisation message.

#.3 Framebufferupdate:

The server usually responds to a FramebufferUpdateRequest by sending
) FramebufferUpdate. Here server captures desktop image using

Q)

(o)

reatescreencapture () and pixel values are retrieved using PixelGrabber class.
'hen these pixel values are transferred to viewer where color component of pixel

lalues are obtained. These are displayed on the frame to show desktop image.

—

<

4.4 Event Handling:

!
|

A key press or release events are captured. Down-flag variable is non-
ztro (true) if the key is now pressed, zero (false) if it is now released. The key
itself is specified using the “keysym” values. For most ordinary keys, the
“Keysym” is the same as the corresponding ASCII value. In the server side,
according to state of the key keypress () or keyrelease () functions are invoked to

perform appropriate key event. “keysym” values of Some common keys are
Backspace — 0xff08

Tab — 0xff09

Escape — Oxff1b
Page Up — 0xff55

E Page Down — 0xff56
F1 — Oxffbe .

Shift (left) — Oxffe1
Alt (left) — Oxffe9
Control (left) — Oxffe3

i

13

A pointer event indicates either pointer movement or a pointer button

press or release. The pointer location (x-position, y-position), and the current

state of button are passed to server where mousepress () or mousereleas

e () are
invoked.

14

SYSTEM DESIGN

15

5. SYSTEM DESIGN

The system design phase is an interesting phase. It provides the
way the information is to be fed and how the output is to be obtained. The design
goes through logical and physical stages of development. Logical stage involves
Zpreparing the input and output preparation of the system. The physical stage
details the hardware and the system implementations.

9.1 Input Design:

The input in the viewer module are host name and port number as
la command line argument, to which the client should be connected. Then in the
iauthentication part, password must be provided in the frame displayed.

52 Output Design:
i The output of this project is an image of the desktop displayed in a
f}ame. When any key or mouse event happens in frame, it is send to the server
\/}E/here these actions are performed and the updated image is send back to the
v+iewer. Output frame consist of a button named “disconnect” using which client

| .
gets disconnected.

16

SYSTEM TESTING

17

6. SYSTEM TESTING

Testing is an activity to verify that a correct system is being built

and is berformed with the intent of finding faults in the system. Testing is an
}activity, however not restricted to being performed after the development phase
is complete. But this is to be carried out in parallel with all stages of system
idevelopment, starting with requirement specification. Testing results once
pathered and evaluated, provide a qualitative indication of software quality and
feliability and serve as a basis for design modification if required.

System Testing is a process of checking whether the development

s%ystem is working according to the original objectives and requirements. The
é:,ystem should be tested experimentally with test data so as to ensure that the
éystem works according to the required specification. When the system is found

vi/orking, test it with actual data and check performance.

| Here, initially working of Authentication process is checked by
gffving valid and invalid password and looking for warning messages when invalid

pbssword is given.

: After successful authentication, desktop image is captured from
s{érver. To check whether updated desktop image keep coming from server for
ef?ch update request, various activities like minimizing windows, opening any
a¢>plication are done on the server. These changes must be reflected on viewer
side.

Any key or mouse action is performed on the desktop captured on
viéwer and look for those actions to be reflected on the server system, in order to
vefrify that ensure that each key or mouse event message from the client side is
co}rectly transferred and handled by server.

18

FUTURE ENHANCEMENTS

19

7. FUTURE ENHANCEMENTS

Virtual Network Computing provides various features like using remote
system’s resource and acts as a monitoring system. It provides cross-platform
remote desktop access in a network.

In this project, encryption can be used in the authentication process. In
prder to increase the security further, all the data transferred between server and
Fllent can be encrypted using suitable encryption techniques.

CopyRect and RRE encoding can be used to improve the performance.

Performance can also be improved by compressing the desktop image data. It
nTeduces time consumption in the transfer.

20

CONCLUSION

21

8. CONCLUSION

The complete design and development of the system “VIRTUAL
NETWORK COMPUTING” is presented in this dissertation. The system has
pser-friendly features. It is possible for any user to use this system.

The programming techniques used in the design of the system
brovide a scope for further expansion and implementation of any changes, which
fnay occur in the future. The system has been tested by connection with many
{system and they provide satisfactory performance.

‘ This system is developed with the specifications and abiding by the
éxisting rules and regulations of the company.

| Since the requirements of any organization and their standards are

cihanging day to day the system has been designed in such a way that its scope
z%nd boundaries could be expanded in future with little modification. As a further
einhancement this system can be integrated with any other system.

This system has been developed using JAVA. The main aim behind

tHe development of this system is to provide cross-platform remote desktop
a{:cess in a network.

22

BIBLIOGRAPHY

23

9. BIBLIOGRAPHY

e Herbert Schildt, “Java 2: The Complete Reference”, Tata McGraw
Hill Edition, 2002, 5th Edition.

Websites visited :

* Www.search.cpan.org visited on 30 November, 2003.

* www.realvnc.org visited on 19 December, 2003

* www.developvnc.org visited on 13" January, 2004.

* www.rfbproto.org visited on 19t January, 2004.

24

25

ANNEXURE

10. ANNEXURE

10.1 Sample Code:
10.1.1 viewer code:

‘import java.awt.*;
import java.io.*;

bublic class vncviewer extends java.applet.Applet

|
t

implements java.lang.Runnable

boolean inAnApplet = true:

public static void main(String[] argv) {
vneviewer v = new vncviewer();
v.mainArgs = argv;
v.inAnApplet = false:

- v.f=new Frame("VNC");
~ v.fadd("Center", v);

i
!
i

|

!
i
1
i
;
i
3
!
i
!

)
u

- v.init();

v.start();

blic void init() {

readParameters();

options = new optionsFrame(this);
rfbThread = new Thread(this);
rfbThread.start();

public void run() {

| gridbag = new GridBagLayout();
setLayout(gridbag);

| disconnectButton = new Button("Disconnect");

disconnectButton.disable();
buttonPanel.add(disconnectButton);

oty

; doProtocoIInitialisation();

- vncCanvas vc = new vncCanvas(this);

gbc.weightx = 1.0;

gbc.weighty = 1.0;

‘ gridbag.setConstraints(vc,gbc);

- add(ve);

disconnectButton.enable();

- ve.processNormalProtocol();

26

} catch (Exception e) {
e.printStackTrace();
fatalError(e.toString()); }

. void doProtocollnitialisation() throws I0Exception {
~ System.out.printin("sending client init");
rfb.writeClientlnit();
- rfb.readServerlnit();
System.out.printin("Desktop name is " + rfb.desktopName);
1 System.out.printin("Desktop size is " + rfb.framebufferWidth + " x " +
rfb.framebufferHeight);
setEncodings();

)
iThread to reproduce image and handle I/O events:
public void processNormalProtocol() throws IOException {

rfb.writeFramebufferUpdateRequest(0, 0, rfb.framebufferWidth,
rfb.framebufferHeight, false);

sg = getGraphics();

needToResetClip = false;
while (true) {
int msgType = rfb.readServerMessageType();

switch (msgType) {
case rfbProto.FramebufferUpdate;
rfb.readFramebufferUpdate();

for (inti= 0, i < rfb.updateNRects; i++) {
rfb.readFramebufferUpdateRectHdr();

if (needToResetClip &&
(rfb.updateRectEncoding != rfbProto.EncodingRaw)) {
try {
sg.setClip(0, 0, rfb.framebufferWidth, rfb.framebufferHeight);
pig.setClip(0, 0, rfb.framebufferWidth, rfb.framebufferHeight);
} catch (NoSuchMethodError e) {

}

needToResetClip = false;

}

27

case rfbProto.EncodingRaw:
drawRawRect(rfb.updateRectX, rfb.updateRectY,
rfb.updateRectw, rfb.updateRectH);
break;

rfb.updateRectEncoding);

}
rfb.writeFramebufferUpdateRequest(O, 0, rfb.framebufferWidth,

rfb.framebufferHeight, true);
break;

default:
throw new |OException("Unknown RFB message type " + msgType);
)
)
)

. void drawRawRect(int x, int y, int w, int h) throws IOException {
- f (v.options.drawEachPierForRawRects) {
for(intj=vy;j<(y+h);j++){
| for (intk = x; k < (x + w); k++) {
: int pixel = rfb.is.read();
E sg.setColor(colors[pixel]);
sg fillRect(k, j, 1, 1);
pig.setColor(colorspixel]);
pig.fillRect(k, j, 1, 1);
}
}

. return;

B

for (intj =y; j< (y+ h); j++) {

rfb.is.readFully(pixels, j * rfb.framebufferWidth + X, W);
)

. amis.newPixels(x, y, w, h);

try {

- sg.setClip(x, y, w, h);
pig.setClip(x, y, w, h);
needToResetClip = true;

28

} catch (NoSuchMethodError e) {
sg2 = sg.create();
sg.clipRect(x, y, w, h);
pig2 = pig.create();
pig.clipRect(x, y, w, h);

sg.drawlmage(rawPixelslmage, 0, 0, this);
pig.drawlmage(rawPixelslmage, 0, 0, this);

if (sg2 != null) {
sg.dispose(); // reclaims resources more quickly
sg = sg2;
sg2 = null;
pig.dispose();
pig = pig2;
pig2 = null;

public boolean handleEvent(Event evt) {
if ((rfb != null) && rfb.inNormalProtocol) {

try {

switch (evt.id) {

case Event MOUSE_MOVE:

case Event. MOUSE_DOWN:

case Event. MOUSE_DRAG:

case Event. MOUSE_UP:

if (v.gotFocus) {
requestFocus();

rfb.writePointerEvent(evt);
break;
case Event KEY PRESS:
case Event.KEY RELEASE:
case Event. KEY_ACTION:
case Event KEY_ACTION_RELEASE:
rfb.writeKeyEvent(evt);
break;

} catch (Exception e) {
e.printStackTrace();

}

return true;

}

29

10.1.2 server code :

package vnc;
import rfb.server.*:
import java.util.*;

public class VNCHost

{

public static void main(String args[])

{
String key, serverClassName, displayName, password = null,
restrictedTo = null, noPasswordFor = null;
Class serverClass:
int display, width, height;
display=50;
height=600;
width=800;
displayName=new String("Robot");
serverClassName=new String("vnc.awt.VNCRobot");
try
{

serverClass = Class.forName(serverClassName)
new RFBHost(display, displayName, serverCiass, width,
{ height, new DefaultRFBAuthenticator(password,
? restrictedTo, noPasswordFor));
}
catch(Exception e)
System.out.println(e);

}

}

}

Thread to handle Client Messages

ublic void run()

FH"U

try

{
writeProtocolVersionMsg();
readProtocolVersionMsg();
if(!authenticator.authenticate(this))

30

throw new Throwable();
readClientlnit();
initServer();
writeServerlnit();

while(true)

intb = input.readUnsignedByte();
switch(b)

case rfb.FrameBufferUpdateRequest:
readFrameBufferUpdateRequest();
if(isLocal)

Thread.sleep(200);

break;

case rfb.KeyEvent:
readKeyEvent();
break;

case rfb.PointerEvent:
readPointerEvent();

break;
default:
| System.err.printin(b);
| }
; }
| }
! catch(Throwable x)
| {
| }
}
[besktop Capturing

|

ﬁackage vnc.awt;

import rfb.*;
import rfb.server.*:
import java.io.*;

import java.awt.*;

i port java.awt.image.*;
import java.awt.event.*:

prlic class VNCRobot extends Component implements RFBServer
{

31

public VNCRobot(int display, String displayName, int width, int height)

{
this.displayName = displayName;
device = GraphicsEnvironment .getLocalGraphicsEnvironment().
getDefaultScreenDevice();
try
{
robot = new Robot(device)
}
catch(AWTException x)
{
}
}
public int getFrameBufferWidth(RFBClient client)
{
return device.getDefaultConfiguration().getBounds().width;
}
public int getFrameBufferHeight(RFBClient client)
{
return device.getDefaultConfiguration().getBounds().height;
}

o

ublic void setPixelFormat(RFBClient client, PixelFormat pixelFormat) throws
OException

pixelFormat.setDirectCoIorModel((DirectCoIorModel)
Toolkit.getDefauItTooIkit().getColorModel());

public void frameBufferUpdateRequest(RFBClient client, boolean incremental,
intx, inty, intw, int h) throws |OException

if(incremental)
return;

Bufferedimage image = robot.createScreenCapture(new Rectangle(x, y,
| w,h));

Rectr = Rect.encode(client.getPreferredEncoding(),
client.getPixelFormat(), image, x, y, w, h);

Rect[] rects = {r};

32

try

{
client.writeFrameBufferUpdate(rects);
}
catch(|OException xx)
{
xx.printStackTrace();
}

}

lpublic void keyEvent(RFBClient client, boolean down, int key) throws
IOException

{
t
l int[] vk = new int[2];
‘ keysym.toVKall(key, vk);
| if(vk[0] 1= KeyEvent.VK_UNDEFINED)
| {
if(down)
robot.keyPress(vk[0])
else
: robot.keyRelease(vKk[O]);
}
}

i
i

ublic void pointerEvent(RFBClient client, int buttonMask, int X, inty) throws
OException

int newMouseModifiers = 0;
if((buttonMask & rfb.Button1Mask)!1=0)

newMouseModifiers |= MouseEvent.BUTTON1_MASK;
if((buttonMask & rfb.Button2Mask) 1= 0)

newMouseModifiers |= MouseEvent.BUTTONZ_MASK;
if((buttonMask & rfb.Button3Mask)!=0)

newMouseModifiers |= MouseEvent.BUTTON3_MASK;
if(newMouseModifiers != mouseModifiers)

{
if(mouseModifiers == 0)
{
robot.keyPress(newMouseModifiers);
}
else
{
robot.keyRelease(newMouseModifiers):
}

mouseModifiers = newMouseModifiers:

33

}

robot.mouseMove(X, ¥);

}

private String displayName:
private GraphicsDevice device;
private Robot robot;

private int mouseModifiers = 0;

34

10.2 OUTPUT SCREENS :

10.2.1 VNCSERVER :

35

10.2.2 VNCVIEWER :

i port 5950

VNC Authentication

Password:]

36

10.2.3 WINDOWS TO WINDOWS DESKTOP CAPTURING :

,Fﬂ‘e Edt View Favartes Tods Help

e‘sacl,{, 7 @ wﬁ }“@ Search %5 Folders ig;! :"” |

j Ardress ! E My Computer

Hard Disk Drives

@ Desktop
@ My DDcument; @ Local Disk {C:)
=N"3
B ¥ Local Disk (C:)
%@ Local Disk (D:)
S# 2kcseds on 'cseserver' (X:) @ Local Disk (D:)
2] 2 jdk1.4.0 on 'cseserver' (V1)
o E’ Contro! Panel
@ O My Network Places Network Drives
@ Recycle Bin

37

10.2.4 LINUX TO LINUX DESKTOP CAPTURING :

38

10.2.6 WINDOWS DESKTOP ON LINUX:

C:AWIHDOY ystem3Punnd.axe - jowa YHCHo:t

fjwer host 90.0.1.113 ¢

jltype virtualBinding
e VirtualBinding
firtualBinding
type VirtualBinding
type VirtualBinding
to type VirtualBindi

ter" to type Virtualj

i STCHEn t1e)
iDesktop name is robot
iDesktop size is 800 x 600

40

