MOBILE COMPUTING
WITH
VIRTUAL NETWORK ADDRESS TRANSLATION

PROJECT REPORT

Submitted in partial fulfillment of the requirements W O
for the award of the degree of ? —~ % L

BACHELOR OF ENGINEERING IN
COMPUTER SCIENCE AND ENGINEERING

OF THE BHARATHIAR UNIVERSITY, COIMBATORE

Submitted by

K. RAJESH (0027K0193)
B. JEEVAKA PRABU (0027K0172)

Under the Guidance of

Mr.M.NAGESHWARA GUPTHA, B.E.,
LECTURER, CSE DEPARTMENT

MARCH 2004

Department of Computer Science and Engineering

Kumaraguru College of Technology

(Affiliated to Bharathiar University)
COIMBATORE — 641 0606

KUMARAGURU COLLEGE OF TECHNOLOGY ﬁ
(Affiliated to Bharathiar University) MMM

COIMBATORE - 641 006, TAMIL NADU, INDIA
Approved by AICTE, New Delhi - Accredited by NBA 150 9001

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the project entitled
“MOBILE COMPUTING WITH VIRTUAL NETWORK ADDRESS TRANSLATION"
has been submitted by

K. RAJESH and B. JEEVAKA PRABU

in partial fulfillment of the requirements for the award of the degree of
Bachelor of Engineering in Computer Science and Engineering of the

Bharathiar University, Coimbatore — 641 046 during the academic year 2003-2004

. ‘1/”(:‘/‘4
*"/"’jj ; P o ‘;’L‘ - ~\~‘d

A e—"1 7,
g’ ‘(L ’j A g s ’,}‘v« V'A ‘; ;; 5“’ 1/ w,:‘?

< ce) o 4 B

U T .
kS
Head of the Department Project Guide

) o)
Submitted for the university examination held on A3 j 3 il A

D - vl —

Internal Examiner External Examiner

Mobile Computing With YHAT

¥Whereever UU Go. Stay Connected!!

ACKNOWLED GEMENT

ACKNOWLEDGEMENT

We are greatly indebted to our revered Principal Dr.K.K.Padmanabhan, Ph.D.,

Who has been the motivating force behind all our deeds.

We eamestly express our sincere thanks to our beloved Head of the Department
Prof. Dr.S.Thangasamy, Ph.D., for his immense encouragement and help and for being

our source of inspiration all through our course of study.

We are much obliged to express our sincere thanks and gratitude to our beloved
guide Lecturer Mr.M.Nageswara Gupta, B.E. for his valuable suggestions,
construction criticisms and encouragement which has enables us to complete our project

successfully.

We gratefully thank Lecturers Mrs.D.Chandrakala, M.E., and Mrs.M.S. Hema.

B.E., for extending their most appreciative and timely help to us.

We also thank all staff members of the Department of Computer Science and

Engineering for all their encouragement and moral support.

We also extend our heartiest thanks to all our friends for their continuous help and

encouragement throughout the course of study.

SYNOPSIS

This project work entitled “Mobile Computing with Virtual Network Address
Translation (MC-VNAT)” is a novel architecture that allows transparent migration cf
end-to-end live network connections (i.e. the communicating host can move to any other
network and get new IP address without shutting down the existing network
connections). VNAT virtualizes network connections perceived by transport protocols sc
that identification of network connections is decoupled from stationary hosts. Suck
virtual connections are then remapped into physical connections to be carried ¢n the

physical network using network address translation.

VNAT requires no modification to existing applications, operating systeras, cr
protocol stacks. Furthermore, it is fully compatible with the existing communicatior
infrastructure; virtual and normal connections can coexist without interfering each other

VNAT functions entirely within end systems and requires no third party services.

Mobile Computing With VNAT

Whereever U Go., Stay Connectedli|

CONTENTS

N

10.
11.
12.
13.
14.

15

CONTENTS

Introduction
Existing Systems
VNAT Architecture
Connection Virtualization
Connection Translation
Connection Migration
Implementation Details
7.1. Kernel Timer Tuning
7.2. Virtual Address Manipulation
7.3. Network Address Translation
7.4. VNAT Peer
Other Architectural Issues
Incremental Usability
Example Migration Scenario
Scope for Enhancement
Testing
Conclusion

References

. Appendix

34

HMobile Computing With ¥HNAT

¥Yhereever U Go, Stay Connectedl!|

INTRODUCTION

1.INTRODUCTION

Mobile computing is a coming reality, fueled in part by continuing advances in
wireless transmission technologies and handheld computing devices. As systems are
getting networked increasingly, mobility in data networks is becoming a growing

necessity.

Examples of this demand include laptop users who would like to roam around the
network without losing their existing connections, system administrators of neiwork
service providers who would like to move running server processes from one machine tc
another due to maintenance or load balancing requirements without service disruptior;,
and scientific users who would like to move their long-running distributed computations
off to another machine due to faulty processor or power failure without having to resta:

the computation all over again.

However, data networks today offer very limited support for mobility among
communicating devices. One cannot move either end of a live network connectior

without severing the connection.

The lack of system support for mobile data communication today is due to the fac:
that the current de facto worldwide data network protocol standards, the Internet Protoco’
(IP) suite, were designed with the assumption that devices attached to the .netwok are
stationary. In addition, higher layer protocols such as TCP/UDP inherit this assumption:
The key problem is that network connection properties are shared among many er tities

across network protocols, transport protocols, and applications.

For example, TCP/UDP uses IP addresses to identify its connection endpoints;

and applications use sockets, which are typically bound to 1P addresses and TCP/UDP

port numbers, for their network I/0. Clearly, such information sharing makes it very
difficult to change the network protocol endpoints without disrupting the transport
protocols and/or the applications. A large amount of research has been conductec in an
effort to overcome this deficiency; However, previous approaches either require changes
to network or transport layer protocols, or suffer from substantial performance penalties

which limit their deployment.

To effectively support efficient transparent migration of end-to-end live network
connections without any changes to existing network protocols, Virtual Network Address
Translation (VNAT) can be used. VNAT is a novel Mobile Computing architecture that
enables connection mobility for a spectrum of computation units, ranging from a singie
process to the entire host. VNAT utilizes three key mechanisms to enable transparent livz
connection mobility: connection virtualization, connection translation, and conrection

migration.

VNAT connection virtualization virtualizes end-to-end transport conrection
identification by using virtual endpoints rather than physical endpoints (e.g., IP addresses
and port numbers). As a result, connection identifications no longer depend on lower
layer network endpoints and are no longer affected by the movement of networs

endpoints.

VNAT connection translation translates virtualized connection identifications into
physical connection identifications to be carried on the physical network. As connections
migrate across the network, their virtual identifications never change. Instead, they arc
mapped into appropriate physical identifications according to the endpoints’ attachmert

to the physical network.

VNAT connection migration keeps states and uses protocols to automate tasks for

connection migration such as keeping connection alive, establishing a security key.

locating the migrated endpoint(s), and updating virtual-physical endpoints mappings.

VNAT is fully compatible with and does not require any modifications to existing
networking protocols, operating systems, or applications. It can be incrementally
deployed and operates entirely within communicating end systems without any reliance
on third party services or proxies. VNAT assumes no specific transport protoco.
semantics and therefore can be easily adapted to any transport protocol. It also supports
both client and server mobility and does not put any restriction on the mobility scope. We

have implemented VNAT as an application in Linux Kernel 2.4.

HMobile Computing With VNAT

Whereever U Go, Stay Connectedl |

EXISTING SYSTEMS

2.EXISTING SYSTEMS

A variety of approaches have been taken in previous work in providing
communication mobility in current (IP) data networks. These approaches can be loosely

classified as

» Network layer mobility mechanisms

» Transport layer mobility mechanisms
» Proxy-based mechanisms and
>

Socket library wrapper mechanisms
Mobile IP:

Mobile IP is the most well-known network layer mobility mechanism. Mob:le IP
allows a host to move freely across the Internet without having to change its assigned
“home” IP address. As a result, the movement of the host is transparent to layers zabove
network layer. However, Mobile IP only provides communication mobility at the
granularity of an entire host. It does not provide finer granularity mobility of individuai
end-to-end connection between two applications because network protocols are

indifferent to higher layer “connections”.

Unlike VNAT, Mobile IP uses a residual home agent that is a single point of
failure and causes “triangle routing” where traffic destined to a mobile host must zll gc
through its home agent when the mobile node is away from its home. Triangle routing
incurs high traffic delay and wastes network resources. Although it can be alleviated by
routing optimization, this solution requires additional changes to the non-migrating

nodes.

VNAT incurs almost no overhead for new connections started after migration; Mobile 1P
incurs tunneling overhead for all traffic between the mobile node and the non-migrating
node. Unlike VNAT, Mobile IP requires network layer protocol and infrastructure

changes that are costly and make it very difficult to deploy.

Migrate:

Migrate is a transport layer mobility architecture that allows migration of
individual end-to-end connections between two applications. Since traditional transport
protocols are not built with mobility in mind, Migrate introduces a new TCP option to
support suspending and resuming TCP connections. Migrate does not support migratior.
of TCP connections for which both endpoints move simultaneously. Unlike VNAT.
Migrate is TCP-specific and requires transport layer protocol changes which make

difficult to deploy.

> Mobile IP and Migrate also provide mechanisms for mobile host location.
Mobile IP uses the notion of home and foreign agents to also provide
mobile host location technologies. Migrate, uses dynamic DNS updates.
But VNAT focuses on the “tracking” (preserving an end-to-enc
connection once it is established) aspect of connection mobility whilz
being compatible with and taking advantage of existing mobile host

location technologies, such as those used in Mobile IP and Migrate.

MSOCKS:

MSOCKS is a proxy-based mobility architecture based on the TCP Splice

technique. Essentially, a single TCP connection between a mobile client and a stationary

server is spliced by a proxy in the middle into two separate TCP connections. The proxv
handles the disconnecting and reconnecting of the client-proxy half of the TCP
connection when the mobile client moves and makes the single TCP connection betweern:
the mobile client and the stationary server appear to be intact.

Due to its reliance on TCP Splice, MSOCKS assumes TCP as the transport
protocol. MSOCKS is designed to allow client mobility only; and the mobility is usualiv
confined within the subnet for which the proxy is acting as the gateway. The use of &

proxy avoids transport protocol changes but can limit scalability and performance.

Mobile Computing With VHAT

Wherecever U Go. Stay Connected! |

VNAT ARCHITECTURE

3.VNAT ARCHITECTURE

The VNAT architecture is based on the surprisingly simple idea of introducing a
virtual address to identify a connection endpoint. In current IP networks, it is impossible
to keep end-to-end transport connections alive when one or both connection endpoints
move because physical network protocol endpoints are used by transport protocol to

identify its connections.

VNAT uses virtual addresses to break this tie between the transport protocol and
network protocol by virtualizing the transport endpoint identification. Once the transport
endpoint identification is made independent of network endpoint identification, the

lifetime of a transport connection is no longer limited by changes in network endpoints.

The VNAT architecture can be decomposed into three components, as shown
figure.
» Connection Virtualization
» Connection Translation

» Connection Migration

VNAT connection virtualization is the mechanism used to allow virtual rather
than physical addresses to be used for the connection endpoints. VNAT connection
translation is the mechanism used to maintain proper association and mapping between
the virtual and the physical identifications because only real network endpoints can e
used on the physical netWork to carry packets. VNAT connection migration facilitates the
automation of securing the migrating connection, keeping alive connections during

migration, and updating virtual-physical address mapping after migration.

These components can be implemented in a single module that is simply

downloaded, installed and executed on end systems without any need to mod:fy cor

reconfigure the network infrastructure.

PROCESS PROCESS

L !

~... | PROCESS

i

Socket Layer

Transport Layer

@

[
~

NIC Device Driver

VNAT ARCHITECTURE

Mobile Computing With VNAT

Whereever U Go, Stay Connected!!

CONNECTION VIRTUALIZATION

4.CONNECTION VIRTUALIZATION

The function of VNAT connection virtualization is to virtualize the endpoints
used by the transport protocol to identify its end-to-end connections. An endpoint is
virtualized by identifying it with a virtual identification, which is a fictiticus
identification not tied to any real physical endpoint. We refer to an end-to-end transport
connection identified by a pair of virtual endpoint identifications as a virtual conrection,
while a connection identified by a pair of physical endpoint identifications a physical
connection. In VNAT, virtual endpoint identifications do not change during the lifetime
of a virtual connection, even if the physical endpoints of the underlying physicai
connection change. Since a virtual connection is not tied to specific physical endpoints. it
can be moved freely among physical endpoints without changing its virtual endpoin:

identifications.

Depending on the specific transport protocol, a virtual identification may take
different forms. For example, with TCP/UDP, a virtual identification is the combinaticn
of a network IP address and a transport port number, both of which are virtualized oy
VNAT. Throughout the paper, we use the generic term “virtual address” to refer tc z
virtual identification of a combined virtual IP address and virtual port number. However,
we left out the virtual port number for simplicity. The same holds for the term “paysical

address”, which is the combination of a physical IP address and a physical port nuraber.

VNAT connection virtualization provides a simpler approach than previous
mobility approaches such as proxy based mechanisms and socket library wrappers. Ail
VNAT does is to convince TCP to use virtual IP addresses and ports rather than paysicai
IP addresses and ports for connection identification. TCP treats a virtual connection
exactly the same as any other physical connections. In fact, TCP does not even know the
connection is virtualized. All TCP semantics apply equally to the packet flow on a virtual

connection. Also note that the virtualization is done completely transparently to both the

application and the transport protocol and requires no modification to either party. Unlike
previous approaches that strive to hide physical IP address changes from applications
when connections migrate, the philosophy behind VNAT is to avoid such transport layer

changes in the first place.

Although theoretically the virtual addresses can be anything that is accepted by
the transport protocol, careful selection of the virtual addresses can greatly simplify the
system. Since both parties to a connection must be aware of the same virtual address pair,
there needs to be some way for each party to inform the other of its virtual address. If ar
arbitrary choice of virtual addresses is used, additional communication and delay will be
incurred for every connection so that both parties to a connection can learn the virtuz!
address chosen by the other side. This extra delay would be excessive if it was required
for all connections, especially for short-lived connections in wide-area networks that

never migrate,

The extra delay can be avoided by simply selecting the virtual addresses to be the
initial physical addresses associated with a connection. In this way, no extra
communication is required because the virtual addresses are essentially known
beforehand. In effect, VNAT treats all physical connections as initially “implicitly”
virtualized, with the virtual addresses for the connections being the same as the physical
addresses. When a connection endpoint moves to a different physical endpoint, the virtual
address for the endpoint does not change and is still the same as the initial phvsical

address, not the new physical address.

10

Mobile Computing With VNAT

Whereever U Go, Stay Connected!!

CONNECTION TRANSLATION

S.VNAT CONNECTION TRANSLATION

Once a TCP connection is virtualized, it is ready to be migrated anywhere without
paying any attention to the physical IP addresses to which the connection endpoints are
attached. But connection virtualization alone is not yet sufficient to allow packets to flow
over a virtual connection. VNAT connection translation makes it possible to
communicate over virtual connections by translating a set of virtual addresses associated
with virtual transport endpoints to and from a physical address associated with a physical
network endpoint. VNAT connection virtualization creates the virtual addresses while
VNAT connection translation maintains the proper association and mapping between tie

virtual addresses and the physical network addresses.

VNAT connection translation is done using well-known Network Address
Translation (NAT) technology, which is commonly used in the network layer todav.
However, instead of translating a set of “private” addresses on the LAN side to and from
a “public” address on the WAN side, VNAT uses NAT concept to translate between
virtual and physical addresses. Note that VNAT connection translation is doue
transparently below the transport protocol and therefore requires no modification to tie

transport protocol.

Using the initial physical addresses of a connection as its virtual addresses has
benefits for VNAT connection translation as well. Because the virtual and physical
addresses are the same for a connection that does not migrate, there is no need to perform
connection translation for connections that have not migrated. As a result, no translation
overhead will ever be imposed on a connection so long as it does not move. Connection
translation is only necessary for connections after they migrate, so only migrated

connections will incur any connection translation overhead.

12

{10.10.10.10,20.20.20.20}

Socket Connection
irtualization 3

Connection Socket
Virtualization

.................................. »
Connection IP 1P
translation
NAT {10.10.10.10, 20.20.20.20}
NIC {Virtual} l NIC * » NIC NIC {Virtual} ‘
1.1.1.1 10.10.10.10 20.20.20.20 2222
CONNECTION TRANSLATION

13

¥Yhereever U Go. Stay Connected! |

CONNECTION MIGRATION

6.CONNECTION MIGRATION

VNAT connection migration builds on VNAT connection virtualization anc
translation to provide the mechanisms necessary to actually move a connection from one
machine to another. VNAT connection virtualization and translation make an end-to-enc
transport connection “migratable” (can be freely moved) and “alive” (packets can flow:
VNAT connection migration enables connections to be suspended at one location anc

resumed at another.

To suspend a connection, VNAT does not need to do anything at all. But i* does
provide optional functionality to establish a secret key for security protection and tc
activate mechanisms (called connection migration helpers) that keep the migrating
connection alive. To resume a suspended connection, VNAT verifies the securits
protection key if it is available, updates the appropriate virtual-physical endpoin:
mappings, and deactivates the connection migration helper. The various functions tha:

can be included in typical connection migration are described in the following secticns.

Suspending a connection:

VNAT is designed to work with a variety of mechanisms for suspending anc
migrating a connection endpoint. A connection endpoint may move when the hardware
associated with the connection moves its network location or when the process associatec
with the connection moves from one machine to another. For example, the connectior

endpoint may move because its host laptop is suspended, disconnected from the network:.

and moved and resumed in another place.

Alternatively, the endpoint may move with a process that has been moved via ar

operating system process migration mechanism. Yet another way in which a conneciior:

14

endpoint may move is to simply unplug the network cable of a host and move thz hos:.
VNAT simply needs to be notified of the event of suspending a connection. Because a
connection may be suspended and migrated without any notification as in the case of
unplugging the network cable of a host and moving it, VNAT is designed to provids
connection migration without any required processing or saving of state at the -ime =
connection is suspended. VNAT can perform all of its necessary processing for

connection migration when a connection is resumed.

However, VNAT can provide additional benefits if it is able to perform some

functions when a connection is suspended. The various functions may be,

> Establishing a protection key

After a connection endpoint migrates, it needs to inform the other endpoint o
update the virtual-physical address mapping for a virtual connection. This potentialiy
leaves the door open for a malicious process to “hijack” the network connecton of
another process. For example, the malicious process can send a fake update message to «
server, causing the server to map a virtual connection to a physical connection “hat s
destined to the malicious process. Thus traffic intended for the original process is no

being sent to the malicious process.

To address the problem of connection hijacking, VNAT provides the abi ity
protect each virtual-physical address mapping for a virtual connection by a secret kev
shared between the two endpoints. The key is established between the two endpo:nis &t
the time when a connection is suspended for migration. At the time of resuming ¢
migrated connection, exchange of virtual-physical address mapping update messages is

protected by the mutual authentication of the two endpoints through the secret kev.

15

» Keeping the connection alive

When one endpoint of a live network connection is suspended for migration, it
may be necessary to provide additional functionality at the non-migrating endpeint ir:
order to preserve the migrating connection. Both the transport protocol and the
application may have their own mechanism to keep alive what they perceive as =
“connection”. These mechanisms may need to be disabled if a connection is suspsndec
for a long time in order to preserve the connection beyond the timeout limit of these

mechanisms.

In order to keep the connection alive, the following techniques can be used,

> Change the timer limits to infinity
» Stop the protocol timer

> Suspend the migrating process, so that it doesn’t get kernel time

Resuming a Connection:

Resuming a connection is the reverse of suspending a connection. If a connection
endpoint is migrated by check pointing a process, the saved the process states are restored
and the process is restarted. If an entire host was suspended, the states of the entire host
are restored and the host is resumed. If it is just the network cable that was unpluggec.
one can simply just reconnect the network cable. VNAT simply needs to be notified after

the appropriate states have been restored but before the process or host is resumed.

> Verifying protection key

When only one endpoint of a connection migrates, it is trivial for the migrated

endpoint to find its peer because the existing connection states tell where its peer is. After

16

the migrated endpoints locate each other and before any virtual physical address mapping
update for virtual connections can happen, the two endpoints must verify, for every
virtual connection to be updated, the security protection key they established at the tire
when the connection was suspended. The exact process obviously depends on the
particular security mechanism in use. If no security protection key was established when
the connection was suspended and if VNAT is not configured to guarantee security, then

there is no security key to verify and the connection is simply resumed.
» Updating Virtual-Physical End point Mappings:

When a connection endpoint migrates to a new location, its virtual address stays
unchanged and therefore the virtual connection will stay intact. However, this virtuzl

address now has to be mapped to and from a new physical address for the continued flow

of packets over the virtual connection.

17

Computing With VNAT

Whereever U Go, Stay Connected! |

IMPLEMENTATION DETAILS

T7IMPLEMENTATION DETAILS

We have implemented VNAT as a user application which runs in Red Ha: Linux
9.0 (Kernel Version 2.4.20-8). The whole VNAT architecture is divided into the
following modules and then integrated to final application, so that changes can be easiiy

made. The different modules are

> Kernel Timer Tuning
> Virtual Address Manipulation
> Network Address Translation
o Source NAT
o Destination Nat
> VNAT Peer

7.1. Kernel Timer Tuning:

In order to keep the TCP connections alive during the roaming period, three
different techniques were discussed in the previous sections. Out of those three we have
chosen the timer modification technique. The three parameters in the Linux kernel whict:

governs the connection timeout declaration are
» netipv4.tcp_keepalive_time

> net.ipv4.tep_keepalive_probes
> net.ipvd.tcp_keepalive_intvl

1.1 Net.ipv4.tcp_keepalive time

This parameter specifies the delay after which the status of the connection has to

18

checked, when the packet loss exceeds a certain limit. The default value of this parameter
is 7200 Seconds (i.e. approximately after two hours). Suppose if the kernel observes
certain amount of packet loss, it will wait for two hours and then send a probe tc check
the presence of the connection. If the probe fails, then the connection will be declared

‘timed out’, after a certain number of probes as specified by the other two parameters.

So, in order to prevent this connection timeout during the roaming period, we
have to change the value of this parameter to a very large value which will count for

hours or days.

net.ipv4.tcp_keepalive_time = 7200 [2 hours]

To a value something like,

net.ipv4.tep_keepalive_time =999999 [12 days]

1.2 Net.ipv4.tcp_keepalive_probes

This parameter specifies the number of times the status of the connection has t0
be checked before confirming the ‘connection time out’. The default value cf this
parameter is 9 times. Thus by default the kernel will probe the connection status nire
times including the first probe sent after the period mentioned by the
net.ipv4.tcp_keepalive_time parameter. We have changed the value of this parameter to :.
very large value in addition to the change in net.ipv4.tcp_keepalive_time, so as to achievs

maximum roaming period.

net.ipv4.tcp_keepalive_probes = 9
To a value something like,
net.ipv4.tcp_keepalive_probes =999

19

1.3. Net.ipv4.tcp_keepalive_intvl
This parameter specifies the interval between the two status probes. The defauit

value of this parameter is 75 seconds. (i.e., kernel sends the status probes after delaying
the number of seconds mentioned by this parameter, as many times as specified
net.ipv4.tcp_keepalive_probes. We have changed the value of this parameter also, ia
addition to the above mentioned parameters.

net.ipv4.tcp_keepalive_intvl = 75

To a value something like,

net.ipv4.tcp_keepalive_intvl =999

» These parameters are modified with the help of the ‘sysctl’ system call.

1.4 ‘Timeout’ Declaration:

1.4.1 Default:

By default the total time for which the connection won’t be declared as ‘timeout’,

even after observing the packet loss is

Timeout =net.ipv4.tcp_keepalive_time + (net.ipv4.tcp_keepalive_probes

net.ipv4.tcp_keepalive_intvl)

=7200 + 9*75

= 2.5 Hours

20

1.4.2. Modified:

After modifying the value of these parameters we are able to achieve a very large
delay, for timeout declaration. Since in normal conditions this will was the system
resources and decrease the performance, the value of these parameters are restored to the

normal values once the connections are resumed.

Timeout =net.ipv4.tcp_keepalive_time + (net.ipv4.tcp_keepalive_probes

net.ipv4.tcp_keepalive_intvl)

=999999+999*999

= 23 days.
Thus we have tuned our VNAT application to achieve a roaming period of about
23 days. This can even be increased with the increase in the value of these xernei

parameters. But in normal situations this much lager roaming period is not necessar.

7.2. Virtual Address Manipulation:

This deals with the manipulation of the mappings between the virtual and the real
IP addresses. Suppose if the user is going to connect to a new system, he has to inform:

the VNAT peer about the IP address of the destination machine.

The VNAT peer will create a mapping in its database with the virtual address zs
the same as the real IP address for simplicity and once the IP address of an:
communicating machine changes, then the mapping will be altered with the new 17
address. The VNAT peer will immediately inform the destinations VNAT peer anc
inform its IP address, so that the remote machine also adds a map in its database. Thesc
mappings will be changed whenever any IP address changes and when there comes ¢

request from any other VNAT peer.

21

7.3. Network Address Translation:

The major implementation issue in the VNAT implementation is the network
address translation. Since the connections above the IP Layer are virtualized, the
addresses in the packets leaving the system should be changed to the real IP addresses, in
order to route the packets to the correct destinations. The network address translation has
two roles, one dealing with the source (SNAT) and the other dealing with the destinaticr:

address (DNAT).

The Network Address Translation in Linux is controlled by the kernel service
called ‘IP Table’ or ‘NAT Table’. NAT allows us to modify the source or destinaticr:
address or port of a packet, allow it to be redirected, or so that it appears to come from
another system. The most popular use of NAT is for IP Masquerading, where we have
LAN of systems using private IP addresses, which have network connectivity thrcugh =
gateway which performs NAT on their packets so that all connections appear, ai least i

the outside world, to have come from the gateway system.

The NAT table has three different chains, each of which is checked at a particular
position in the routing of a packet. The first is PREROUTING, whose rules are checkec
for a match before the system attempts to route the packet anywhere. PREROUTING i«
where we perform destination NAT, or DNAT. We can also perform DNAT within the
OUTPUT chain, which is for packets which originated locally, as they are never checkec
by PREROUTING. Finally we have POSTROUTING, which is the last chain checkzad for

a rule match, which is where source NAT, or SNAT is performed.

The source network address translation is performed by the roaming systsm ir
order to change the source IP address in each of the outgoing packet with the IP addres:
used to establish the connection, whereas the Destination network address translation i<
used by the static system in order to change the destination address destined for :

roaming host with the newly assigned IP address.

22

Client TCP

20.20.20.20_|

Routing

10,1010,

110.10.10.10

NETWORK ADDRESS TRANSLATION

23

7.4. VNAT Peer:

We have implemented the VNAT Peer service as an integration module of all the
above individual modules. The special thing about the peer’s implementation is that, peer
will act both as a server and also a client. This is achieved through the multithreading
concept in Linux. The server will run as a separate thread and the client will run as the

main program thread.

The client thread will does the work of interacting with the user and at the same
time communicate with the server thread in the other side, whereas the server thread will
run as a silent module receiving the data from the client and configuring the VNAT

database according to the information received.

24

Mobile Computing With VHNAT

Whereever U Go, Stay Connected!!

OTHER ARCHITECTURAL ISSUES

8.OTHER ARCHITECTURAL ISSUES

Support for Connectionless Protocols:

So far we have implicitly concentrated on connection-oriented transport protocol
(TCP) because the vast majority of network applications today are based on TCP. It is
also important to understand the relative merit in how to support connectionless transport
protocols such as UDP, as used in increasingly popular multimedia applications. Even
though there is no concept of a “connection” with connectionless transport protocois.
applications using these protocols often maintain by themselves some notion of a
“connection” at the application level; although the applications usually do not expect

either end of the “connection” to move.

Because the “connection” is maintained by the application itself rather than the
transport protocol, it is necessary to hide from the application the current physical host
location in order to virtualize such application-level ‘“connection” without ary
modification to the application. VNAT will hide from the application the fact that iis
location or its peer's location has changed. This is simply done by returning tie
unchanging virtual address to the application instead of the physical address; therefore

enable transparent migration of such UDP based “connections”.

VNAT is committed to be compatible with existing networking protocols a=c

therefore will not by default hide host location change from applications.

Moving Both the End Points Simultaneously:

The design of VNAT focuses on the common case of migrating one endpo:nt 0 2

connection at a time. We have not addressed the problem of migrating both endpoints of

a connection simultaneously, where the endpoints are migrated to different locations. To
do this, a mechanism would be needed for the two endpoints to inform each other their

new location if neither one is aware where the other party is migrating beforehand.

There are several potential solutions to the problem. For example, one approach
can use a well-known server that is consulted by both endpoints to find out the new
location of each other after migration. Another approach is for both endpoints to leave

new location states at their original location.

26

Mobile Computing With VMAT

Whereever U Go, Stay Connectedi!

INCREMENTAL USABILITY

9.INCREMENTAL USUABILITY

An important underlying design principle in VNAT is the idea of incrementai
usability. VNAT provides a core set of functions to support connection mobility, but i
also provides additional features which can be used incrementally. For instance.
developers and users do not need to do anything to allow existing applications to work

with VNAT without modification.

However, VNAT enables applications to provide richer functionality during
connection migration by providing interfaces and mechanisms to support application-
specific helper functions. Similarly, VNAT provides other functions that can te used
when a connection is suspended to improve security and performance, but these functions
are optional and need not be used to provide connection migration functionality. We

didn’t concentrate on these things during implementation.

VNAT also provides incremental usability in terms of deployment. Not oniy does
VNAT facilitate easy of deployment by not requiring changes to applications, operating
systems, or network protocols, but its architecture also facilitates deployment of iis
functions in an incremental fashion. VNAT can be locally installed on any susset of
systems to provide connection mobility within those systems. It does not neec to be
installed in an entire administrative domain to operate and is compatible with existing

network infrastructures.

Furthermore, not all aspects of the VNAT architecture need to be deployed when
not all of its functionality is required. For example, VNAT can be implemented as =
loadable kernel module or an application that does not even require a system to te
rebooted when VNAT is installed, which makes it easier to deploy on shared servers that
attempt to minimize downtime. Furthermore because of how it selects the initial virtual
address, VNAT can be used to provide connection mobility to connections that already

exist even before VNAT is installed.

Mobile Computing With VHNAT

¥Yhereever U Go, Stay Connected!!

EXAMPLE MIGRATION SCENARIO

10.EXAMPLE MIGRATION SCENARIO

Let’s now put all the pieces together and describe a typical migration scenario and

see how VNAT migrates a live network connection.

Assume a client on host 10.10.10.10 opens a TCP connection to a server on host
20.20.20.20. The connection is virtualized by VNAT and perceived by TCP on beth the
client and the server as {10.10.10.10, 20.20.20.20}. Note that here we are using the initial
physical addresses as the virtual addresses. In this example, we assume the ciient

migrates and it doesn’t matter whether a process or the whole client host migrates.

At the time of suspending the connection, the client will attempt to send &
message to establish the secret key between the client and the server. In addition, 2
connection migration helper may be activated on the server for the migrating connectior:.
Note that all of the above steps are optional and the suspension will work without any of

them, but with the drawback of not having the benefit of those VNAT functions.

At the time of resuming the connection, the client VNAT at the new locaticn wili
trivially locate the server location using the existing connection state. After verifying the
secret key, the client will update the server with its new physical address 30.30.30.3%.
And both the client and the server will start translating the virtual connection
{10.10.10.10, 20.20.20.20} to and from the physical connection {30.30.30.30,
20.20.20.20}. Note how the virtual connection {10.10.10.10, 20.20.20.20} perceived bv

the client TCP and the server TCP stays intact across the migration.

Either the client TCP or the server TCP is completely unaware of the change of
the underlying physical address of the client. So with the addition cost of translating =
virtual connection to and from a physical connection, VNAT will seamlessly migrate =

transport end-to-end connection regardless of where the client moves.

28

Client

TCP {10.10.10.10, 20.20.20.20}

-
‘e
‘e
‘e
- —
Yo S
., .
10.10.10.10 « v N
. { Server)
., ‘o, } /
« . S/
‘e ‘e
. .. T
., - I
., *e
« e
.
Ca. e
» L]
. e
» »
... -
‘e, A TCP
-~ *
- *
v, o
., t“
-,
“ Q. S —
- ~
.* ‘e
* ®
o »
R [
o o 20.20.20.20
Y 3
. *
3
*
-
*
*
*
P
*
A
*
"
*
*
.
“

{10.10.10.10, 20.20.20.20}

30.30.30.30 4

EXAMPLE MIGRATION SCENARIO

29

Mobile Computing With VHAT

wWhereever U Go, Stay Connected!!

SCOPE FOR ENHANCEMENT

11.SCOPE FOR ENHANCEMENT

We have implemented only the basic architectural model of the VNAT system.
We didn’t implement the helpers and other optional components. So adding the left out
things will itself serve as a separate project. We list out the possible extensions and

enhancements below.

Porting the VNAT from user space to kernel space as loadable kernel modules.
Support for migration of both the end points at the same time.
Establishing security mechanisms when suspending a connection.

Automating the connection virtualization capturing the system calls.

YV V. V V V

Process level migration in addition to the host level migration.

30

Mobile Computing With VNAT

¥hereever U Go, Stay Connected!!

TESTING

12.TESTING

Unit Testing:

We have tested each and every module independently in order to ensure the

correct data flow between the modules. The various code modules tested are

1. Kemel Parameters Modification
Here the kernel parameters were modified using our code and the modification

was ensured by checking the file in which these data are stored by the kernel.

2. Network Address Translation
We have ensured the correctness of the source and destination network address
translation by checking the rules added to the ‘iptables’, used by the kemel for doing

network address translation.

3. Virtual Address Manipulation
The code needed for virtual address manipulation were checked and ensured by

tracking the changes made in the database whenever a command is issued.

4. The Peer Service Module

This mainly includes the testing of the server and the client threads, which
operates on sockets. First the client and server were tested independently and then they
were put together into the peer. Finally the integrated module is ensured with the

correctness of data flow.

Integration Testing:

After testing each and every module independently we have started builcing the
final infrastructure, side by side by side we have conducted this integration testing in

order to ensure the correctness, which helped us to achieve the exact result we aimed at.

Mobile Computing With VNAT

wWhereever U Go, Stay Connectedl!!

CONCLUSION

13.CONCLUSION

We have implemented VNAT, a novel architecture that enables transparent
migration of live network connections associated with a spectrum of computation units.
VNAT is based on the simple idea of virtual addresses and employs connection
virtualization, translation, and migration to achieve its goals. VNAT supports migration
of live end-to-end transport connections when either one or both endpoints of the
connections migrate. VNAT provides incremental usability and does not require any
modification to existing applications, operating systems, or networking protocols, whici

enable the system to be more easily deployed and used.

With the rapid increase of distributed networked systems and ubiquitous mobils
computing devices, it is becoming a pressing need for developing new networking
functionality to support these systems. However, developing and deploying new
networking infrastructure is often a long and enduring process. We hope that our worx<
can give insight in how such new networking functionality can be developed and
deployed while allowing existing legacy applications to take advantage of the tremendous
benefits offered by the coming reality of ubiquitous mobile computing and

communication.

“Where ever you Go, Stay Connected.”

32

Mcbile Computing With YMNAT

¥Whereever U Go, Stay Connectedll

REFERENCES

14. REFERENCES

Douglas E Comer, “Internetworking with TCP/IP”, Volume I, Prentice Hall of
India Private Limited, March 2003, Fourth Edition.

Douglas E Comer, “Internetworking with TCP/IP”, Volume II, Prentice Hall
of India Private Limited, March 2003, Third Edition.

Andrew S Tanenbaum, “Computer Networks”, Pearson Education, Inc., 2003
Fourth Edition.

Richard W Stevens, “UNIX Network Programming”, Prentice Hall o7 Incia
Private Limited, October 2002, Second Edition.

Maurice J Bach, “The Design of the UNIX OS”, Prentice Hall of India Private
Limited, December 2000, Third Edition.

Brain W Kernighan, “The Unix Programming Environment”, Prentice Hall of
India Private Limited, December 1998, Second Edition.

Neil Matthew, “Beginning Linux Programming”, Wrox Press Ltd., December
1999, Second Edition.

Robert L Ziegler, “Linux Firewalls”, Techmedia Publications, 2000, First
Edition.

Dennis M Ritchie, “The C Programming Language”, Prentice Hall of India

Private Limited, June 1999, Second Edition.

Mobile Computing With VNAT

Whereever U Go., Stay Connectedl |

APPENDIX

SOURCE CODE

/* VNAT Peer Service Module (vserver.c)

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <unistd.h>

#include "virtualip.h"
#include "nat.h"
#include "tcptimer.h"

#define SUCCESS 0
#define ERROR 1

#define END_LINE 0x0
#define SERVER_PORT 1500
#define MAX MSG 100

extern char vhostip[25];
char shostip{25];
char shostip_old[25];

int read_line({();

int draw_line() ;

char *my ip address{();

char *my_old ip_address();
void *thread function{);

char message[] = "VNAT THREAD";

int sd, newSd, clilen;

struct sockaddr in cliAddr, servAddr;
char line [MAX MSG] ;

static int rcv_ptr=0;

static char rcv_msg[MAX MSG] ;
static int n;

int offset;

34

*/

int main ()

{
int res;
pthread t a thread;
void *thread result;

res = pthread create(&a_thread, NULL, thread function,

*)message) ;

if (res != 0)

{
perror ("Thread creation failed");
exit (EXIT FAILURE) ;

}

printf ("Waiting for thread to finish...\n");

R Initialize SNAT Table (DA 1)-------

init_snat_table () ;
set_timer(99999,9999,9999) ;

J A T Initialize SNAT Table (DA 1)-------
while (1)
{
[e Client Coding (DA 2) ------------
/*

Commands to send
1. suspend oldip
2. resume oldip newip
3. prepare dnat table

Commands to process

1. open
2. close
3. prepare snat table
4. down

*/

(void

___________ kd /

_________ 3 //

char cmnd[50]}, *cmnd split[10],msgl[50],msg2{50],dipl50] ;

int count=0,count_ref=0,choice=0, tmp;

draw_line()};

printf ("\n\t\t\t Mobile Computing With VNAT") ;
printf ("\n\t\t\t VNAT PEER SERVICE"Y) ;

draw _line () ;

printf ("\n\n>>> ");
gets (cmnd) ;

cmnd_split [count]=strtok (cmnd,") ;
count++;

while ((cmnd_split[count]=strtok (NULL," ")) != NULL) count+-;

count_ref=count;

if (Istrcmp (cmnd _split [0], "open")) choice =

else if (!strcmp(cmnd split[0],"close")) choice = 2;
else if (!strcmp(cmnd split 0], "suspend”)) choice = 3;

else if (!strcmp (cmnd split [C], "resume")) choice = 4;
else if (!strcmp(cmnd split[0],"down")) choice = 5;
switch (choice)
{
case 1: /* open */
if ((tmp = check dnat (cmnd split[1]))==1)
{
printf (" Info# alredy registered ip?):
getchar () ;
continue;

add_dnat(cmnd_split[l],cmnd~split[1]);
dnat (cmnd_split[1],cmnd_split(1],1);

sprintf (dip, "hname=%s", cnd_split [1]) ;
putenv (dip) ;

sprintf (msgl, "cmdl=%s", "open") ;

putenv (msgl) ;

sprintf (msg2, "cmd2=%s",my_ip address{());
putenv (msg2) ;

system("tcs S$hname Scmdl $cmd2") ;

printf (¢ Done "} ;
getchar () ;
continue;
case 2: /* close */
remove dnat (cmnd_split{1l]) ;
close_dnat (cmnd_split[1]);
break;
case 3: /* suspend */
continue;
case 4: /* resume */
{
FILE *address_file;
char msgli{50],msg2[50],msg3[50],dip[50];
char from file 1([25],from file 2[25] -

address file = fopen("dnat.df","r"!;

if (address file==NULL)

{

I

printf (" Error opening file
dnat.df") ;
return;

while (1 feof (address_file))

{

fscanf (address_file,"%$s",from_file 1) ;
fscanf (address _file,"%s",from file 2);

sprintf {(dip, "hname=%s",from file 1);

putenv (dip) ;
sprintf (msgl, "cmdl=%g", "resume’) :
putenv (msgl) ;

sprintf (msg2, "cmd2=%s" ,my old ip address());
putenv (msg2) ;

sprintf (msg3, "cnd3=%s",my_ip address(});
putenv (msg3) ;
system("tcs Shname $cmdl Scmd2

Scmd3 ") ;

}
printf (" Done ") ;
getchar () ;
fclose (address file);

1

continue;

case 5: /* down */

reset timer() ;

remove snat () ;

{
FILE *address file;
char msgl [50] ,msg2[50],dip[50];
char from file 1[25],from file 2[25];
address_file = fopen("dnat.df","r");
if (address file==NULL)
{

printf (" Error opening fi'e
dnat.df");
return;

}

while (! feof (address file))

{
fscanf (address_file,"$s",from file 1);

fscanf (address_file,"%$s",from file 2);
dnat (from file 1,from file 2,2 ;

}

printf (" Done ") :
getchar () ;

fclose(address file);

}

continue;
default:
printf (" %s : command not

found", cmnd split [0]);
continue;

Y Client Coding (DA 2) ~--------moommmmm e oo */

res = pthread_join(a_thread, &thread result);
if (res = 0)
{
perror ("Thread join failed");
exit (EXIT_ FAILURE) ;
}
printf ("Thread joined, it returned %s\n", (char *)thread result):
exit (EXIT_SUCCESS) ;

}

void *thread function/()
{
sd = socket (AF_INET, SOCK STREAM, 0} ;
if (sd<0)
{
perror ("cannot open socket ") ;
return ERROR;

}

servAddr.sin_family = AF_INET;
servAddr.sin_addr.s_addr = htonl (INADDR ANY) ;
servAddr.sin_port = htons (SERVER_ PORT) ;

if (bind(sd, (struct sockaddr *) &servAddr, sizeof (servAddr))<0)

{

perror ("cannot bind port ");
return ERROR;

}

listen(sd,5) ;

while (1)

{

int count ref=0, choice=0;

clilLen = sizeof (cliaddr) ;

newSd = accept(sd, (struct sockaddr *) &cliAddr, &clilLen! :
if (newSd<0)

{

perror ("cannot accept connection ") ;
return ERROR;

}

memset (line, 0x0,MAX MSG) ;
while (read_line (newSd, line) ! =ERROR}

A Server Coding (DA 3)---------=----«~-~-- */

char *cmd[10] ;

int count=0,tmp;

cmd [count]=strtok(line," ") ;
printf ("\n%s", cmd [count]) :

count++;

while ({(cmd [count]=strtok (NULL," ")) != NULL) count++;
count _ref = count;
memset (line, 0x0,MAX MSG) ;

/*
commands expected
1. open
-add dnat.df
-add_dnat
2. resume oldip newip
*/

if (!strcmp (cmd (0], "open")) choice=1;
else if (Istrcmp(cmd[0], "resume")) choice=2;

switch (choice)
{
case 1:/* open*/
if ((tmp = check dnat(cmd[1]))==1) break;
add _dnat (cmd[1],cmd [11);
dnat (cmd [1] ,cmd [1],1) ;
break;
case 2: /* resume */
dnat (cmd [1],cmd [1], 2} ;
dnat (cmd [1],cmd [2],1) ;
close_dnat (cmd[1]);
add_dnat (cmd [1],cmd [2]) ;

break;
default:
break;
}
R Server Coding (DA 3)--------------~-

__*/

int read_line(int newSd, char *line to_ return)

{
offset=0;

while (1)
{
if (rev_ptr==0)
{
memset (rcv_msg, 0x0, MAX MSG) ;
n = recv(newSd, rcv_msg, MAX MSG, 0);
if (n<0)

{

perror (" cannot receive data ") ;
return ERROR;

1

else if (n==0)

{
close (newsd) ;
return ERROR;

}

while (* (rcv_msg+rcv_ptr) !=END _LINE && rcv_ptr<n)
memcpy (line_to_return+offset,rov_msg+rcv _ptr,1);
offset++;
rev_ptr++;

}

if (rev_ptr==n-1)

{
*(line_to_return+offset)=END LINE;
rcv_ptr=0;
return ++offset;

}

if (rcv_ptr <n-1)

{

*(line_to_return+offset)=END LINE;
rev_ptr++;
return ++offset;

}

if (rev_ptr == n)

{
}

} /* while */

rcv_ptr = 0;

int init snat_ table()
{
FILE *file;
char shostipl[25];

system("hostname -i > myip.df");
file = fopen("myip.df","r");
fscanf (file,"%$s", shostip) ;
fclose(file) ;

snat (shostip, 1) ;
return;

int remove_ snat ()

{

FILE *file;
char shostip[25];

file = fopen("myip.df","r");
fscanf (file,"%s",shostip);
fclose(file);

snat (shostip,2);

}

char *my old ip address{)

{

FILE *file;

file = fopen("myip.df","r");
fscanf(file, "%s",shostip_ old) ;
fclose(file) ;

return shostip old;

}

int remove_ dnat (char *ip)

{
FILE *address file;
char from file 1[25],from_file 2[25];
address file = fopen("dnat.df","r");

if (address file==NULL)
{
printf (® Error opening file dnat.df");
return;
}
while (!feof (address file))
{
fscanf (address_file,"%s",from file 1);
fscanf (address_file,"%s",from file 2);
if (!strcmp (from_file 1,1ip))
dnat (from_file 1,from file 2,2);
}
fclose(address file);
return;

}

char *my ip address()

{

FILE *file;

system("hostname -i > myip cur.df");
file = fopen("myip cur.df","r");
fscanf (file, "%s", shostip) ;

fclose (file) ;

return shostip;

}

int draw_line ()

{
int 1=80;
printf ("\n") ;
while (i--)

{

printf("-m");

/* Client Module - Part of VNAT Peer (tcs.c) */

#include <sys/types.h>
#include <sys/socket.hs>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdio.h>
#include <unistd.h>

#define SERVER_PORT 1500
#define MAX MSG 100

char msgdata[150];

int main (int argc, char *argv[])
int sd, rc, i;
struct sockaddr_in localAddr, servAddr;
struct hostent *h;

h = gethostbyname (argv([1]);

if (h==NULL)

{
printf (v Error# unknown host '%s'\n",argv([1]);
exit (1) ;

}

servAddr.sin_family = h->h addrtype;

memcpy ((char *) &servAddr.sin_addr.s_addr, h->h addr list[0], h-
>h length) ;

servAddr.sin_port = htons (SERVER_PORT) ;

sd = socket (AF_INET, SOCK STREAM, 0) ;

if (sd<0)

{
perroxr (" Error# cannot open socket ");
exit (1) ;

}

localAddr.sin_family = AF INET;
localAddr.sin_addr.s_addr = htonl (INADDR ANY) ;
localAddr.sin_port = htons(0) ;

rc = bind(sd, (struct sockaddr *) &localdddr, sizeof (localAddr)) :
if (rc<0)
{
printf (" Error# cannot bind port TCP $ul\n",SERVER PORT) ;
perror ("exror ") ;
exit (1) ;

}

rc = connect {sd, (struct sockaddr *) &servAddr,
sizeof (sexrvAddr)) ;
if (rc<0)
perrox (" Error# cannot connect ") ;
exit (1) ;

}

strcpy (msgdata, "") ;

for(i=2;i<argc;i++)

{
strcat (msgdata,argviil) ;
strcat (msgdata," ") ;

rc = send(sd, msgdata, strlen(msgdata) + 1, 0);
F A DA —-- - e */

return 0;

/* Kernel Timer Tuner - Declared in tcptimer.h (tcptimer.c)=*/

#include "tcptimer.h"
int set timer (int kt,int kp,int ki)
{

char env[25];

sprintf (env, "ktime=%d",kt) ;

putenv (env) ;

system("sysctl -w net.ipv4.tcp_keepalive time=$ktime >>
/dev/null") ;

sprintf (env, "kprobes=%4d",kp) ;

putenv (env) ;

system("sysctl -w net.ipv4.tcp keepalive probes=$kprobes >»
/dev/null") ;

sprintf (env, "kintvl=%d", ki) ;

putenv (env) ;

system("sysctl -w net.ipv4.tcp_keepalive intvl=$kintvl >>
/dev/null") ;

}

int reset_timer (void)

{
system("sysctl -w net.ipvé4.tcp keepalive time=7500 »>>
/dev/null") ;
system("sysctl -w net.ipv4.tcp_keepalive probes=9 >> /dev/null") .
system("sysctl -w net.ipv4.tcp keepalive intvl=75 >> /dev/null").

if (address file == NULL || tmp file == NULL)

{
printf (" Error opening file dnat.df/dnat.tmp !");
return;

}

while(!feof (address file})
{
fscanf (address_file,"%s",from file 1);
fscanf (address_file,"%s",from file 2);
if (stremp (from file 1,ip) && strcmp(from file 1,"000C"))
{
fprintf (tmp file, "%s\n",from file 1};
fprintf (tmp_ file, "$s\n",from_file_2);
}
strcpy (from_file 1,"0000");
strcpy (from_file 2,"1111");
!
fclose (address_file);
fclose (tmp_file) ;
system("rm -f dnat.df");
gystem("mv dnat.tmp dnat.df");
return;

/* snat.c - Source Network Address Translation
* declared in nat.h*/

void snat (char *ip,int choice)
{
char env[50];
switch (choice)
case 1:
sprintf (env, "sip=%s",ip) ;
putenv (env) ;
gsystem("iptables -t nat -A POSTROUTING -0 eth0 --
SNAT --to $sip");

break;
case 2:
sprintf (env, "sip=%s", ip) ;
putenv (env) ;
system("iptables -t nat -D POSTROUTING -0 ethO --
SNAT --to $sip");

break;
default:
exit (0) ;
1
!
/* ___
/* dnat.c - Destination Network Address Translation

* declared in nat.h*/

