P-r209
HTTP SCHEDULER FOR
SCALABLE WEB SERVERS TV

)
\ ™ 4

PROJECT REPORT

Submitted in partial fulfillment of the
requirement for the award of the degree of
Bachelor of Engineering in Computer Science and Engineering

Of Bharathiar University, Coimbatore.

Submitted by
Ramanasundaram. R Vanitha. R Ramkumar. V
0027K0195 0027K0208 0027K1119
Under the guidance of

Ms. P. Sudha, B.E, MISTE, MCSI.
Lecturer, IT.

DEPARTMENT OF COMPUTER SCIENCE AND EN GINEERING
KUMARAGURU COLLEGE OF TECHNOLOGY,

COIMBATORE - 641006.

MARCH - 2004.

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY
(Affiliated to Bharathiar University, Coimbatore)

CERTIFICATE W_

This is to certify that the project entitled

HTTP SCHEDULER FOR
SCALABLE WEB SERVERS

is done by
Ramanasundaram. R Vanitha. R Ramkumar. V
0027K0195 0027K 0208 0027K1119

and submitted in partial fulfillment of the
requirement for the award of the degree of
Bachelor of Engineering in Computer Science and Engineering
Of Bharathiar University, Coimbatore, during the
academic year 2003-2004.

S I e / é@&

Professor & Head of the department Guide
(Dr.S.THANGASAMY) (Ms. P. SUDHA)

Certified that the candidates were examined by us in the project work
viva -voce examination held on 23.% 2004

Sk MMJ\"?E)_B)'DV Sl e e 1o

Internal Examiner . External Examiner

DECLARATION

We, Ramanasundaram.R, Vanitha.R, Ramkumar.V, here by
declare that the project entitted “HTTP scheduler for scalable web
servers”, submitted to Kumaraguru College of Technology, Coimbatore.
(Affiliated to Bharathiar University) is a record of original work done
by us under the supervision and guidance of Ms. P.Sudha B.E.,
Lecturer, Department of Information Technology.

NAME REGISTRATION SIGNATURE
NUMBER
Ramanasundaram.R 0027K0195 % W\
Vanitha.R 0027K0208
Cpﬁg}ﬂl(
Ramkumar.V 0027K1119 ?___cz\/\/L/L—!4

Countersigned by Staff- in- charge ,

P &t

Ms. P.Sudha B.E.
Lecturer,
Department of Information Technology,

Kumaraguru College of Technology.

Place : Coimbatore

Date : 40. 3. 04

‘Web server

HTTP
Scheduler

¥

[IR

1
]

b

s

By
%
4

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

The exhilaration achieved upon the successful completion of any
task should be definitely shared with the people behind the venture. This
project is an amalgam of study and experience of many people without

whose help this project would not have taken shape.

At the onset, we take this opportunity to thank the management of
our college for having provided us excellent facilities to work with. We
express our deep gratitude to our Principal Dr.K.K.Padmanabhan
B.Sc(Engg), M.Tech., Ph.D., for ushering us in the path of triumph.

We are always thankful to our beloved Professor and the Head of
the Department, Dr.S.Thangasamy, B.E.(Hons), Ph.D, whose consistent

support and enthusiastic involvement helped us a great deal.

We are greatly indebted to our beloved guide Ms.P.Sudha,B.E.,
Lecturer, Department of Information Technology, for her excellent
guidance and timely support during the course of this project. As a token
of our esteem and gratitude, we honor her, for her assistance towards this

cause.

We also thank our project coordinator Mrs.S.Chandrakala
M.E.,Senior Lecturer, Departement of Computer Science and
Engineering and our beloved class advisor Mrs.M.S.Hema B.E.,
Lecturer, Department of Computer Science and Engineering, for their

invaluable assistance.

We feel proud to pay our respectful thanks to our Parents for their
enthusiasm and encouragement and also we thank our friends who have

associated themselves to bring out this project successfully.

SYNOPSIS

SYNOPSIS

In Web, requests from the clients may be delayed or failed
when requests made are more than the server capability. So there is
a need to upgrade the server configuration or else we can scale the
web server. In scalable web servers there is need to schedule the

HTTP requests among the servers available.

Our project, a system side application, intends to perform the
redirection of the HTTP requests to the servers effectively, such
that the response is immediate. Also it does the performance

evaluation of various algorithms in processing the HTTP requests.

The main advantage of the project is reduction in time
consumption and memory usage in processing the HTTP client

requests.
Our project features
¢ Dynamically we can add and remove servers without any
performance degradation.
¢ We are using threads per client concept instead of process per
client, so that the memory and time consumption in processing
the requests is minimized.
#* Preloaded threads are used here, so that time consumed (in

creating threads) is minimized.

Scheduler and client applications are implemented in
Linux. The server can be wused in any platform, more preferably

Linux because of its high security.

INDEX

. INTRODUCTION

1.1 Existing System and Limitations
1.2 Proposed System and Advantages

. SYSTEM REQUIREMENT AND ANALYSIS

2.1 Product Definition
2.2 Project Plan

. SOFTWARE REQUIREMENT SPECIFICATION

3.1 Purpose

3.2 Scope

3.3 Product Overview and Summary

3.4 Development and Operating Environment
3.5 Functional Specification

3.6 Architectural Diagram

. SYSTEM DESIGN

. SYSTEM TESTING

5.1 Testing Objectives
5.2 Testing Principles
5.3 Levels of Testing

. FUTURE ENHANCEMENTS
. CONCLUSION
. BILIOGRAPHY

. APPENDIX

9.1 Sample Code
9.2 Sample Output

11

15

20

21

22

23

INTRODUCTION

INTRODUCTION

1.1 Existing System and Limitations

Whenever there is HTTP load increase the web server must
be upgraded or scaled. Upgradation is a very costly and time
consuming option. So the only other option is scaling(load
distribution). The current system uses only a particular method in

distributing the HTTP requests over the available servers.
® It is efficient only in particular circumstances and in most
other cases the response is very slow.
There is no option for dynamically adding the servers .
1.2 Proposed System and Advantages

Our intention is to develop a HTTP scheduler for web
servers that can be scaled. It acts as a facilitator between the
clients and the servers. It has the responsibility to redirect the
clients HTTP request to the server and also send the server’s
response back to the client. In order to be efficient in all
circumstances we will be using four different methods for

redirecting the request.

#* Based upon the circumstances we can use any one method
effectively.
Dynamic addition/deletion of servers.

Reduction in time consumption and memory usage.

+*+ ¢ @

Provision of user friendly interface for configuring scheduler.

L4

We provide a performance evaluation, to judge the effective

algorithm in the given circumstance.

SYSTEM REQUIREMENT
AND ANALYSIS

SYSTEM REQUIREMENT AND ANALYSIS

System study is an activity that encompasses most of the
tasks that we have collectively called computer system engineering.

System study is conducted with the following objectives.

Identify the needs.

® Evaluate the system concept for feasibility.

#* Perform economic and technical analysis.

Allocate function to hardware, soﬁare, people and other system
elements.

Create asystem definition that forms a foundation for all
subsequent engineering works.

2.1 Product definition

Scalable web servers can be built using a network of
workstations where server capacity can be extended by adding new
work stations as the workload increases. Our project is a
comparison of different methods to do load balancing of HTTP

traffic for scalable web servers.

We present a classification framework for the different load
balancing methods and compare their performance. So the main catch
is a clustered s-erver may also provide better reliability than a
upgraded server by use of appropriate load sharing algorithms that
can facilitate fault resilience with graceful degradation of

performance as machines leave the cluster due to failure or

2.2

preventive maintenance. A clustered server also makes it possible to

add new machines without interrupting service.

The HTTP protocol is stateless, such that a TCP connection
must be setup for every object on a web page. Thus each request
can be rooted independently. This HTTP property can be used to
achieve load sharing ina cluster by directing requests in that one

logical serverto different physical server with identical content.

Since web objects are seldom referenced , replication is a
valid strategy only for the most popular objects . Another alternative
is load sharing through file or object placement on different

machines.
Project Plan

In the analysis phase, the use of protocols like TCP,
differentiation of modules, user interface and certain other aspects

are identified and ambiguity are eliminated.

From the results of analysis phase, the design phase is
commenced where the complete system is depicted in the form of a

even flow diagram.

Finally, during the implementation phase, coding is done for

each module and they are integrated to function smoothly.

Then testing is done to confirm the required criteria and

validity of the product is confirmed.

SOFTWARE REQUIREMENT
SPECIFICATION

SOFTWARE REQUIREMENT SPECIFICATION

3.1 Purpose

In scalable web servers, the HTTP requests from the clients
has to be distributed in a efficient manner. Otherwise it results in
delay or even failure of the request. So we intend to redirect the

clients requests to the servers amicably.

3.2 Scope

We are using four different methods in the redirection of the
client requests. So that our project can be configured dynamically to
the various circumstances. We also presented a performance of each

methods in various circumstances.

3.3 Product Overview and Summary

Our product provides a reliable, robust and efficient means of load
distribution of HTTP client requests.Our product basically deals with the
usage of four different algorithms for minimizing the time
consumption and memory usage. The product is developed keeping in

mind that it is user friendly and easy to use.

At first, the scheduler module is mvoked, the servers are
configured and then the algorithm is chosen and now the preloaded
threads are started and the scheduler starts listening at the port
address 8080. The client program is executed with and it sends the

requested URL to the scheduler.

Then the scheduler receives the URL and routes the request

to the server based on the algorithms chosen. The server responds

with the requested page and send it to the scheduler which n-

turn send it to the client.

The time taken between the request and response of the
page is calculated dynamically and stored in result module. The
result analysis page stored in “result.c” displays the time requirement
for each algorithm. From this we can infer which one is the best

algorithm in that circumstance.

3.4 Development and Operating Environment

The development environment gives the minimum hardware and

software requirements.

Hardware Specification

® Processor Pentium III
% RAM 64 MB

¢ Cache 128KB

Hard Disk 10 GB

¢ Floppy Drive 1.44 FDD

Monitor 14” Monitor
Software Specification

* Operating System Red Hat Linux 8.0
® Language Advanced C

4+ Server IIS or PWS

3.5 Functional Specificaiton
Description of the modules are as follows.
1. Client and time calculation

A socket program is written to create a socket and to
establishes the connection with the scheduler’s IP address. The
request is then send to the scheduler through appropriate system
calls. Also the timer is automatically invoked when the request is
send and it keep running till the response is received at the client
side. Then the timing statistics are stored in the “result” file
dynamically. By executing the “result.c” we can get the time taken

for each algorithm.

2. HTTP scheduler

This is the main module which takes care of routing the client
requests to the server based on the scheduler configuration. It creates
the preloaded threads and waiting for the clents request at port 8080.
When it receives the request it finds appropriate server by using the
algorithm chosen and then it sends the request to the chosen sever.
When it got the response from the server it sends it to the client.

Thus it integrates all the algorithms, GUI interface and the server.

3. Algorithm Implementation
Round Robin:

It distributes request to the different web servers in a round
robin manner independent of the load on each web server. This

scheme is very simple to implement but can, of course overloaded

web server if the sequence of the request is non optimal. It
transparently return the IP address of the available web servers in a

round robin manner.

Random:

It generates the IP address of the available servers randomly

using the rand() function as below.

(Number of available servers * rand()) / (RAND MAX +1.0)

Active Connections:

Scheduler keeps track of the number of active connections to
each server and always directs a new connection to the server with
least connections. If two or more servers have the same number of
active connections the load balancer will choose the server with the

lowest server identifier. The consequence is that first server in the
order will always be chosen when anew connection arrivesin an

empty system. If a new connection always arrives ina empty system

the same web server will be used.

Priority:

In this policy , each and every is allotted a specific weight.
Depending upon the weightage the usage of the server is calculated

and the server with most free usage is assigned the request.

Server = Maximum(free usage among servers)

Priority Table:

Suppose we have two servers with weight assigned as 2

and 1.
Server’s Usage Server with Server with
(/100) weight :1 weight : 2
Initial 0 0
1% request 0 50
2™ request 100 50
34 request 100 100

When the usage of all the servers is 100% , then it is reset

to 0 and continue as before.

4.GUI module

It is an interface created to scheduler using GTK

programming. It consists of three leaves.

* Scheduler Configuration

Here we specify the scheduler IP address, port number and the

number of threads to be created..

¢ Algorithm Selection

Here we need to select the algorithm which is represented

using radio buttons.
* Server Configuration
Here we can dynamically add, delete and update the web
servers configuration by specifying its IP address, port number.
3.6 Architectural Diagram

Overview Diagram:

SERVER 1 SERVER 2
HTTP
SCHEDULER
Thread 1 Thread 2 Thread N
/4 y

CLIENT 1 CLIENT 2 CLIENT N

RESULT GRAPH:

B 2 servers

3 servers

M 4 servers

SYSTEM DESIGN

SYSTEM DESIGN

The system design is the high level strategy for solving the
problem and building a solution. System design includes decisions about
the organisation of the system into subsystems, allocation of subsystems
to hardware and software components, and major conceptual and policy

decisions that form the framework for the detailed design.

Architectural Framework

In retrieving an object from the web, a canonical name must
be mapped to an IP address » MAC addresss and an object locator.
Each mapping offers an opportunity to redirect the request to the
most appropriate machine from a load balancing viewpoint.
Therefore, load balancing architechtures are best classified according
to where redirection is used: That is at the client, at the server or

in the network.

Remapping in the Client

The remapping of addresses at the client side can be
classified into two groups: those transparent to the client and those
that are not transparent. The later group requires changes to client
software. Netscape’s extension to the browser client for load

balancing of access to Netscape’s own server is one example.

However, the smart client approach increases network traffic
by frequent polling, and is vulnerable to delays between polling

and sending the request.

The DNS system, provides a distributed database for
mapping between canonical name and IP address. Each naming
domain maintains its own local address and host name information.

A domains name servers are queried by “resolvers” in any
end system for the mapping between C names within the domain
and IP address. These name servers can transparently return the IP
address of the available web servers in the list in round robin

manner.

However, due to the catching strategies with the configurable
time to live TTL wused throughout the internet in the DNS ,
performance is influenced by the spatial and temporal distribution
of access. Request from end systems in the same domain will be
directed to the same destination since the remote name server will
cache the canonical name to IP address mapping. This mapping is
reported by the rotating name server at the first request, and is
cached by name server in the clients local domain. The result may
be skewed load on a server using the rotating name server

method if many clients use the same name server.

Remapping in the Server

This method uses a modified workserver as a proxy server
for the replicated servers. The proxy will not process the HTTP
requests, but passes it on to the most suitable machine among the
replicated servers. The SWEB project at UCSB is based on HTTP
redirection at the server in conjunction with detailed server load
estimates. The draw back of this type of solution is that remapping
is done at the application level, and the request must transverse the

full protocol stack four times before the request can be processed.

Thus, this solution is only interesting when time to process
the request is the limiting factor. In most cases the proxy server

will be a bottleneck and the solution does not scale.
Remapping in the Network

In this type remapping can be done at two levels. One at the
network layer itself or between the network and link layers. The
network element performing the remapping is called HTTP
scheduler. Apart from this special mapping, operations in the HTTP
scheduler are similar to the normal routing and forwarding

operations.

In the first alternative each replicated server has a unique IP
address. All packets destined for a logical server are inspected ,
and the destination address is replaced with the address of the
replicated server with the lowest load. The remapping network
element (HTTP scheduler) must monitor all of the IP traffic and
send all incoming IP traffic of a particular HTTP request to the
same web server. For this to work the HTTP scheduler must
change the IP address of all IP packets in each direction. Also all
packets in a HTTP transaction must be mapped to the same server.

A TCP connection is identified by
<TCP,IP-src_addr,src _port,IP-dst_addr,dst_port>

The HTTP scheduler has to monitor the TCP connection
from setup to tear down. To find out when a connection that is
terminated incorrectly can be removed from the connection
database, the HTTP scheduler has to mimic the TCP state machine

including the TCP timeout values .

In other methods the IP address replacement requires that
access to the web cluster be done through the HTTP scheduler,

increasing the networking capacity.

In the second alternative , remapping is done between the
network and link layers, and all replicated servers have the same P
address as the logical server. With an Asynchronous Transfer
Mode(ATM) or Label Switched System (LSS), each server is

associated with a set of virtual channels or labels.

With link level redirection, the scheduler must hard core the
address resolution protocol table to avoid issue in ARP request to
the subnet. An alternative is to use layer 2 multicast to all servers
in the cluster and use packet filtering to select the packets
processed by individual nodes. The advantage is less overhead in
the remapping network element at the expense of higher processing
cost due to packet filtering and synchronization between the

filtering processes.

SYSTEM TESTING

SYSTEM TESTING

Testing is an activity to verify that a correct system is being
built and 1s performed with the intent of finding faults in the
system. Testing is an activity, however not restricted to being
performed after the development phase is complete. But this is to
be carried out in parallel with all stages of system development,
starting with requirement specification. Testing results once gathered
and evaluated, provide a qualitative indication of software quality
and reliability and serve as a basis for design modification if

required.

System Testing is a process of checking whether the
development system is working according to the original objectives
and requirements. The system should be tested experimentally with
test data so as to ensure that the system works according to the
required specification. When the system is found working, test it

with actual data and check performance.

Software testing is a critical element of software quality
assurance and represents the ultimate review of specification, design
and coding. The increasing visibility of software as a system
element and the attendant “cost” associated with a software failure

are the motivation forces for a well planned, thorough testing.

5.1 Testing Objectives

The testing objectives are summarized in the following three

steps. Testing is the process of executing a program with the intent

of finding an error. A good test case is one that has high
probability of finding an error. A successful test is one that

uncovers as—yet-undiscovered errors.

5.2 Testing Principles

All tests should be traceable to customer requirements. Tests
should be planned long before testing begins, that is, the test
planning can begin as soon as the requirements model is complete.
Testing should begin “in the small” and progress towards resting
“in large”. The focus of testing will shift progressively from
programs to individual modules and finally to the entire project.
Exhaustive testing is not possible. To be more effective, testing

should be one, which has highest probability of finding errors.
The following are the attributes of good tests:

¢ A good test has a high probability of finding an error.

® A good test is not redundant.

* A good test should be “best of breed”

* A good test should be neither too simple nor too complex.

5.3 Levels of Testing:

The details of the software functionality tests are given

below. The testing procedure that has been used is as follow:
Unit Testing
¢ Integration Testing

Validation Testing

Output Testing

Unit Testing

Unit testing is carried out to verify and uncover errors
within the boundary of the smallest unit or a module. In this testing
step, each module was found to be working satisfactory as per the
expected output of the module. In the package development, each
module is tested separately after it has been completed and checked
with valid data. Unit testing exercise specific paths in the modules
control structure to ensure complete coverage and maximum error

detection.

The project is divided into four modules. These three

modules are developed separately and verified whether they function

properly.

Integration Testing

Integration Testing address the issues associated with the
dual problems of verification and program construction. After the
software has been integrated a set of higher-order tests are
conducted. The main objective in this testing process is to take unit-
tested modules and build a program structure that has been dictated
by design.

The following are the types of integrated testing:
Top Down Integration:

This method is an incremental approach to the construction

of the program structure. Modules are integrated by moving

downward the control hierarchy, beginning with the main program
module. The module sub-ordinates to the main program module are
incorporated to the structure in either a depth-first or breadth-first

manner.
Bottom Up Integration:

This method begins the construction and testing with the
modules at the lowest level in the program structure. Since the
modules are integrated from the bottom up, processing required for
modules subordinate to given level is always available and the need
for stubs is eliminated. The bottom up integration strategy may be

implemented with the following steps:

The low level modules are combined in to clusters that
perform a specific software sub-function. A driver i.e. the control
program for testing is return to coordinate test case input and
output. The cluster is tested and drives are removed and clusters

are combined moving up ward in the program structure.

The four modules which are developed during unit testing are
combined together and they are executed and verified whether the
linking of the files and the corresponding modules without any

€ITor.

Validation Testing

At the end of integration testing, software is completely
assembled as a package, interfacing errors have been uncovered and

correction testing begins.

Validation Test Criteria:

Software testing and validation is achieved through series of
black box tests that demonstrate conformity with the requirements
are achieved, documentation is correct and other requirement are
met. Here the four modules which are checked in the integration
testing are assembled and programmed in the code is testing for

any correction.

Output Testing:

Output testing 1s series of different test whose primary
purpose is to fully exercise the computer based system. Although
each test has a different purpose, all the work should be verified so
that all system element have properly integrated and perform

allocated functions.

Output testing is the stage of implantation, which is aimed
at ensuring that the system works accurately and efficiently before
live operation commences. The input screens, output documents were
checked and required modification made to suite the program
specification. Then using rest data prepared, the whole system was

tested and found to be a successful one.

Here giving checks the whole system sample inputs i.e. the
predefined no of threads in the scheduler and clients. It is checked
for the whole function so that the system functions well and the

requirements are met.

FUTURE ENHANCEMENTS

FUTURE ENHANCEMENTS

4 The TCP/IP protocol stack can be changed such that the server
sends it response directly to the client not via the scheduler.

¢ Extending the application to other operating system such as
WINDOWS, MAC, SOLARIS.

¢ Performance evaluation of each and every algorithm can be
shown in graphical form.

¢ Providing network security using encryption and decryption
techniques between »client and scheduler, and between scheduler
and webserver.

¢ Dynamically detect and recover the server from overload.

CONCLUSION

CONCLUSION

We have built a robust and effective system by which the
four algorithms can be easily evaluated in various circumstances or
situations and they can be suitably compared inorder to determine

which one is best suited for that situation.

According to our testing round robin algorithm has proved
itself to be reliable in most of the -circumstances. Notably
efficiency, speed, transmitted bytes etc. Also we have created a

unique user friendly interface using GTK programming.

We can add, delete or update whatever number of servers
we want to determine the end result. Above all the use of Linux
platform has provided full security and speed without frequent

congestions.

BIBLIOGRAPHY
Richard Stevens, “UNIX Network Programming “, Addison Wesley
Longman, 1996, Second Edition.
¢ Richard Stevens, “UNIX Advanced Programming”,Addison Wesley,
1995, First Edition.
¢ Michael K. Johnson and Eric W.Troan, “Linux Application
Development”,Addison Wesley,2000,First Edition.

¢ www.icee.org

APPENDIX

APPENDIX

9.1 SAMPLE CODE

Client. C:

#include <stdio.h>

#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <pthread.h>
#include <string.h>

#include <sys/timeb.h>
#include "result.h"

#define NOT 5

int socketfd;

struct sockaddr_in serveraddr;
pthread t tid[10];
void thread_make(int);
void * thread_main(void *);
int main(int argv, char ** argc)
{

mt i;

struct result scheduler result;
struct timeb t_start;

struct timeb t_end;

struct timeb t_total;

FILE * fp read, * fp write;
fp_read = fopen("result.rs","r");
fread(&scheduler_result, sizeof(scheduler_result),1,fp read);
fclose(fp_read);

ftime(& t_start);
for(i=1;i<=NOT ;i++) {

thread make(i);
}

printf("Main:waiting for thread termination");
fflush(stdout);
for(i=1;i<=NOT;i++)
{
pthread join(tid[i],NULL);
}
printf("\nMain:All Threads Ended..\n");
ftime(&t_end);
printf("\nStarting time:%ld:%d",t_start.time,t start.millitm);
printf("\nEnding time:%Ild:%d",t_end.time,;t end.millitm);
t_total.time =t end.time - t_start.time;
if(t_end.millitm < t_start.millitm){
t_total.time --;
t_end.millitm += 1000;
}
t_total. millitm =t_end.millitm - t_start.millitm;
printf("\nTotal time:%Ild:%d\n\n",t_total.time,t_total.millitm);
printf("\nIn Milli-Sec:%d\n\n",t_total.time*1000 +t_total.millitm);
printf("\nAll:%d\n\n" atoi(argc[1]));
switch (atoi(argc[1]))
{
case 1: scheduler_result.round_robin =t _total.time*1000 +
t_total.millitm;
printf("Alg:ROund Robin\n\n");
break;
case 2: scheduler_result.weight =1t _total.time*1000 +
t_total. millitm;
printf("Alg: Weight\n\n");
break;
case 3: scheduler_result.connections =t_total.time*1000 +
t_total. millitm;
printf("Alg:Connection\n\n");
break;
case 4: scheduler_result.random =t _total.time*1000 +

t_total.millitm;

printf("Alg:Random\n\n");
break;
default: printf("nUn supported algorithm\n");
}
fp_write = fopen("result.rs","w");
fwrite(&scheduler_result,sizeof(scheduler _result),1, fp_write);
fclose(fp_write);
fflush(stdout);
}
void thread_make(int n) {
printf("\nCreating thread %d...",n);
pthread_create(&tid[n], NULL, &thread main, (void *)n);
}
void * thread_main(void * arg)
{
char buff[1024] = "GET /newwalk.html HTTP/1.0\r\n\r\n" ;
int n= strlen(buff);
printf("nThread %d started...", (int)arg);
fflush(stdout);
socketfd = socket(AF_INET, SOCK_STREAM, 0);
if(socketfd =-1) {
printf("\nError creating socket");
exit(0);
}
else
printf("\nSocket created");
bzero(& serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
serveraddr.sin_port = htons(8080);
if(inet_pton(AF_INET, "192.168.1.6", &serveraddr.sin_addr) <=0)
printf("IP Addr is wrong");
else
printf("IP Addr is right");
if ((connect(socketfd, (struct sockaddr *)&serveraddr, sizeof(serveraddr))) ==-1)
printf("\n%d:Connection failed",(int)arg);

printf("\n\n***

HHHAH\n):

fflush(stdout);

)

RESULT.H:

struct result

{

int round_robin;

int weight;

int connections;

int random;

¥

ALGORITHMS :

ROUND ROBIN:

int roundRobin()

{

NextWorker ++;

if(NextWorker > NofWorkers) {
NextWorker = 1;

}

return(NextWorker - 1);

}

RANDOM:

int random_algorithm()

{

float number;

int result;

number = (float)NofWorkers;

result = (int) (number * rand() /(RAND _MAX +1.0));
return(result);

}

PRIORITY:

struct prirority table

{

int max;
int served;
float usage;
int index;
b5
int weight_algorithm()
{
int 1,j,id;
float min;
static struct prirority_table ptable[10];
struct prirority_table temp;
static int pindex;
if(Priority reset ==0)
{
Priority reset =1;
printf("\nEntering INIT\n");
fflush(stdout);
for(i=0; i < NofWorkers; i++) {
ptable[i].max = atoi(worker[i].weight);
ptable[i].served = 0;
ptable[i].usage = 0.0;
ptablefi].index =1;
}
pindex = NofWorkers -1;
for(i=0;i <= pindex ;i ++) {
for(j= i+1; j<=pindex ;j++) {
if(ptable[i].max < ptable[j].max) {
temp.max = ptable[i].max;
temp.served = ptable[i].served;
temp.usage = ptable[i].usage;
temp.index = ptable[i].index;
ptable[i].max = ptable[j].max;
ptable[i].served = ptable[j].served;
ptable[i].usage = ptable[j].usage;
ptable[i].index = ptable[j].index;

ptable[j].max = temp.max;
ptablefj].served = temp.served;
ptable[j].usage = temp.usage;
ptable[j].index = temp.index;

}
}/if Priority_reset
// Find MIN
min = 100.0;
id=-1;
for(i=0;i <= pindex ;i++) {
if(min > ptablefi].usage) {
min = ptable[i].usage;
d=1i;
}
}
ifid 1I=-1) {
ptable[id].served ++;
ptable[id].usage = (ptablefid].served *100) /ptable[id].max;
/***********del*/
for(i=0;i<=pindex;i++) {
printf("\nUsage: %f] Priority:%d",ptable[i].usage,ptable[i]. max);
printf("\nServed: %d",ptable[i].served);
}

/*****************************/

return (ptable[id].index);

}

else {

printf("\nReseting....\n");
fflush(stdout);

for(i=0; 1 <= pindex ;i ++) {
ptable[i].served = 0;
ptable[i].usage = 0.0;

9.2 SAMPLE OUTPUT

THREAD CREATION:

‘otal No Of Worker:

ocket successfully created..

cheduler Bind completed..
! PScheduler started....Listening at port no 80...
fiCreating thread 1...

Creating thread 2...

[fCreating thread 7...
f Creating thread 8...
Creating thread 9...

fCreating thread 10...

i Thread 1 started...

; Thread 2 started...
Thread 3 started...
Thread 4 started...
Thread 5 started.
Thread 6 started...
Thread 7 started...
Thread 8 started...
Thread 9 started...
Thread 10 started...90.0.0.108:8080:10

SERVER CONFIGURATION:

eating thread 8...

reating thread 9...

eating thread 10...
Thread ‘5 started...
Thread 6 started...
Thread 7 started...
Thread 8 started...
Thread 8 started.
‘Thread 10 started. ..90.0.0.108:8080:10

tering UPdate fun/n
p:90.0.1.112
0
eight:l

lEntering UPdate fun/n
80.0.1.93

§

|
|
|

