SECURE COMMUNICATION OVER SSL

i

MANAGEMENT SEWACE

P \2L16

PROJECT REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF THE DEGREE OF

BACHELOR OF ENGINEERING IN
COMPUTER SCIENCE AND ENGINEERING

OF THE BHARATHIAR UNIVERSITY, COIMBATORE

SUBMITTED BY
AKSHAY CHANDU 0027K0154
BALUMAHENDRAN.V 0027K0166
MANJU.H 0027K0181

UNDER THE GUIDANCE OF

Mrs D.Chandrakala ML.E.

MARCH 2004

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY

(AFFILIATED TO BHARATHIAR UNIVERSITY)
COIMBATORE — 641 006

(AFFILIATED TO BHARATHIAR UNIVERSITY)
COIMBATORE - 641 006, TAMIL NADU, INDIA

APPROVED BY AICTE, NEW DELHI - ACCREDITED BY NBA

KUMARAGURU COLLEGE OF TECHNOLOGY A

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

CERTIFICATE

THIS IS TO CERTIFY THAT THE PROJECT ENTITLED

«SECURE COMMUNICATION OVER SSL”

HAS BEEN SUBMITTED BY
AKSHAY CHANDU, BALUMAHENDRAN.V & MANJU.H

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
AWARD OF DEGREE OF
BACHELOR OF ENGINEERING
DURING THE ACADEMIC YEAR 2003-2004

<l i _d// D - Um@(/vk,(ﬂm‘ﬁ) 5

Head of the Department Project Guide

Submitted for the university examination heldon _25-5-dc4

ISk CJZNM MJ&ZJ/{,] " g e

O*;/

Internal Examiner External Examiner

ACKNOWLED GEMENT

ACKNOWLEDGEMENT

We are greatly indebted to our revered Principal Dr.K.K.Padmanabhan,

who has been the motivating force behind all our deeds.

We earnestly express our sincere thanks to our beloved Head of the
Department Prof.S.Thangasamy Ph.D., for his immense encouragement and help

and for being our source of inspiration all through our course of study.

We are much obliged to express our sincere thanks and gratitude to our
beloved guide , Mrs.D.Chandrakala, M.E., for her valuable suggestions,
construction criticisms and encouragement which has enabled us to complete our

project successfully.

We gratefully thank Mrs.M.S.Hema, B.E., for extending her most

appreciative and timely help to us.

We also thank all staff members of the Department of Computer Science

and Engineering for all their encouragement and moral support.

We also extend our heartiest thanks to all our friends for their continuous

help and encouragement throughout the course of study.

-
SYNOPSIS
et

SYNOPSIS

Security is important on the network since data sensitivity on the network
has to be taken care at all levels, particularly with credit transaction involving a lot of

money and with huge volume of confidential data.

This project work entitled “Secure Communication Over SSL” is used
for providing secure communication over Local Area Network (LAN) for file
transaction. SSL is application independent .The file to be transmitted is encrypted
using a standard encryption algorithm namely RSA .The file tends to increase in size
after encryption thereby slowing down the process of transaction of files across
network. To avoid this, a compression phase is added which uses 3 algorithms, viz.
Run Length Encoding, Burrows-Wheeler Transform and Move-To-Front 10
significantly compress the file size. The file is then sent over the Secure Socket Layer

residing on top of the TCP/IP layer.

At the receiving end, decompression and decryption are done in the
specified order to get back the original file. Thus both security and fast transmission

over the network are achieved.

1.
1.1

CONTENTS

INTRODUCTION

Existing system and limitations

1.2 Proposed system and advantages

2.1
2.2
2.3
24
25
2.6
2.7
2.8

3.1
32
33

SOFTWARE REQUIREMENT SPECIFICATIONS
Introduction

Overall Description

Functional Specification

Assumptions And Dependencies

External Interface Requirements

Design Constraints

Acceptance Testing Requirement

Other Requirements

DETAILS OF PROPOSED METHODOLOGY
Cryptography
Compression And Decompression

Creation Of Secure Socket Layer

N

[§%) W

|98

(W]

o N N D

10
5

4. DESIGN DETAILS

5. SYSTEM TESTING
5.1 Testing objectives
5.2 Testing principles
53 Levels of testing

6. CONCLUSION AND FUTURE OUTLOOK

7. REFERENCES

8. APPENDIX

8.1 Sample Source code

8.2 Sample Output screens

19
19
20
20

g
e

23

24
24
32

INTRODUCTION

1. INTRODUCTION

Computer Networks are typically a shared resource used by many
applications for many different purposes .Though there are lots of benefits which a
network may provide, security of data is a key issue to be addressed. The data
transmitted in the network between various applications should be highly
confidential. Hence eavesdropping may be dangerous. Therefore, users sometime
want to encrypt the messages they send, with the goal of keeping any one who is

eavesdropping on the channel from being unable to read the contents of the message.

In this project, Secure Socket Layer (SSL) , an encryption method for
Transmission Control Protocol/Internet Protocol(TCP/IP) sockets , is used for secure
file transaction over a Local Area Network .The file is both encrypted and

compressed before transmission, thereby providing security along with agility.

1.1 EXISTING SYSTEM AND ITS LIMITATIONS:

Existing system is client / server model .On one side there is the customer
client and on the other side there is a server. The client sends confidential data over
the TCP/IP connection to the server. File transfer takes place using a program like
FTP.

DISADVANTAGES:

> No encryption.
> Interception of a file transfer.

> No control over sending a partial file.

1.2 PROPOSED SYSTEM AND ITS ADVANTAGES :

SSL is provided in between the Transport layer and Application layer. On
the sending side, SSL receives data, encrypts it, and is compressed and directs the
data to a TCP socket. At the receiving side, data is received from socket,

decompressed and then decrypted.

SSL is protected from dictionary attacks by having very large keys spaces
for all its ciphers. Even if the attacks are run against the export ciphers, they become
prohibitively large. Because the dictionary would have to be produced for each
session, the hackers have to supply the session ID each time for breaking the

information, which is practically impossible.

Nor is SSL vulnerable to man-in-the middle type of attacks providing that

the server uses private key to decrypt the message.

SOFTWARE REQUIREMENTS
SPECIFICATION

2. SOFTWARE REQUIREMENTS SPECIFICATION

2.1. INTRODUCTION:

PURPOSE:
To provide secure and fast communication using SSL.
OVERVIEW:

This project aims at providing quick and safe transfer of files using the
secure socket layer, which is provided between the transport layer and the application

layer.

SCOPE:
This project can serve as a means of providing secure file transfer in LAN.

DEFINITIONS .,ACRONYMS:

SSL:
Secure Socket Layer

RSA:

Rivest-Shamir-Adelman

LAN:
Local Area Network

TCP
Transmission Control Protocol

1P
Internet Protocol

2.20VERALL DESCRIPTION:

SSL is provided in between the Transport layer and Application
layer. On the sending side, SSL receives data, encrypts it , and is compressed and
directs the data to a TCP socket. At the receiving side, data is received from socket,

decompressed and then decrypted.

2.3.FUNTIONAL SPECIFICATION:

1) ENCRYPTION AND DECRYPTION:

Introduction:

This module deals with providing security for transfer of data.

Input:

At Transmission Side:
The user gives in the name of the file that has to be encrypted before it

is transferred .

At Reception Side:
For decryption, the input is the decompressed file .

Process:

Encryption and decryption of data using RSA.
Qutput:

At Transmission Side:
The encrypted file is obtained. The content of it is called the cipher text.

At Reception side:
The original file is recovered.

2) COMPRESSION AND DECOMPRESSION:

Introduction:
This module deals with reduction in size of file for quick transfer

Input:
At transmission End:

The encrypted file for compression.
At Reception End:

The transferred file for decompression

Process:
Compression is performed using a sequence of algorithms viz.. Run
Length Encoding, Burrows-Wheeler Transform, Move To Front and Run

Length Encoding again.The reverse is used for decompression.
Output:

At Transmission Side: Compressed File.

At Reception Side: Original File.

3).CREATION OF SSL AND TRANSMISSION:

Introduction:
This involves creation of sockets and transmission of data.
Input:
Encrypted and compressed file.
Process:
Transmission of file across to the other system.
Output:
Message describing the status of file transfer at the transmission side

and reception of file at the receiving end.

2.4 ASSUMPTIONS AND DEPENDENCIES:

CONSTRAINTS AND DEPENDENCIES:
e Communication between not more than two systems at a time.

® Transfer of text files only.

ASSUMPTIONS:
Both systems are connected through the LAN.

2.5.EXTERNAL INTERFACE REQUIREMENTS:

Dialog boxes for encryption, compression,

decompression and decryption.

2.6.DESIGN CONSTRAINTS:

HARDWARE LIMITATIONS:
e Communication is limited to LAN.

* Communication speed depends on file size.

SOFTWARE LIMITATIONS:

This works only on any one of the windows platforms.

2.7.ACCEPTANCE TESTING REQUIREMENT:

Two systems of a LAN and text files to be transferred.

2.8.0THER REQUIREMENTS:

Hardware Specification:

Processor — Pentium III and above.
RAM - 64 MB

Software Specification:
Operating System — Windows 98

Language —~ Microsoft VC++

connection,

-_—
DETAILS OF PROPOSED

METHODOLOGY
— METHODOLOGY

3. DETAILS OF PROPOSED METHODOLOGY

3.1CRYPTOGRAPHY:

Cryptography deals with algorithms for encryption and decryption for the

purpose of ensuring secrecy and authenticity of messages.

Plain Text:

This is the readable message or data that is fed into the Encryption

Algorithm as input or obtained as output from a Decryption Algorithm.

Key:
This is the value independent of the plain text that is used by the

encryption algorithm for producing the cipher text or by decryption algorithm to

retrieve the plain text.

Encryption Algorithm:

The Encryption Algorithm performs various transformations on the plain

text and converts it into an unintelligible form.

Cipher Text:

This is the scrambled message produced as output .It depends on the plain
text and the key .For a given message, two different keys will produce two different

cipher texts.

Decryption Algorithm:

This algorithm accepts the cipher text and with the help of the decryption

key the original plain text is retrieved.

3.1.1 ENCRYPTION METHODS:

There are two types of encryption namely, Symmetric Encryption (secret

key encryption) And Asymmetric Encryption (public key encryption).

Svymmetric Encryption:

It is also called secret key encryption because the secret key must be
shared between the sender and receiver. The symmetric encryption can be depicted as
a mathematical formula:

Encrypted Data=Function (data, key)

With an inverse function existing of the form

Plain text data=Inverse function (Encrypted data, key)

Asymmetric Encryption:

In this type of encryption, two keys are involved. The first key (the public
key) is published and is used by the entities to send data securely The second key (the
private key) is known only to the owner .This means that the private key can be used

to encrypt data that can be decrypted only by using the public key and vice versa.

3.1.2 RSA Algorithm:

This Algorithm is used for the encryption and decryption process. It is
named after its inventors: Ron Rivest, Adi Shamir and Leonard Ad leman founding

members of RSA Data security.

Description Of The Alsorithm:

Plain text is encrypted in blocks, with each block having a binary value
less than some number n. Encryption and decryption are of the following form, for

some plain text block M and cipher text block C:

C=M"emodn
M=C"*dmodn
N=M)"ed mod n
Both sender and receiver must know the value of n. The sender knows the
value e, and the receiver knows the value of d. Thus this is the public key encryption

algorithm with a public key of KU= {e, n} and a private key of KR= {d, n}.

Kev Generation:
To Create Public Key:

L. Select 2 prime numbers p, q
p=7,q=17

2. Calculate n=pq

7*17=119
3. Calculate f (n) = (p-1) (g-1)

6*16=96
4. Select ‘e’ such that e is relatively prime to f (n) and less than f (n)

e=5

5. Public key is then ‘e’ concatenated with ‘n’

Public Key is (5,119)

To Create Private Key:

6. Determine’d’ such that MOD (de, 96)=1 and d<96.
Correct value of d is 77.

7. Private key is then *d’ concatenated with‘n’
Private Key is (77,119)

ENCRYPTION:

Plain text; M<n

Plain text: 19 (P is treated as a numerical value)
9

Cipher text: C=M " e (mod n)
19 POW 5=2476099/119=20807 REM 66.
Cipher text = 66

DECRYPTION:

Plain text=C

Cipher Text; M=C ~d (mod n)

66 POW 77=value/119=value rem 19

19=Plain text.

3.2 COMPRESSION & DECOMPRESSION

*RUN LENGTH ENCODING
*BURROWS WHEELER TRANSFORM
*MOVE TO FRONT ALGORITHM

3.2.1 RUN LENGTH ENCODING

This program performs the Run Length Encoding function on an input
file, and sends the result to an output file or stream. In the output stream, any two
consecutive characters with the same value flag a run. A byte following those two
characters gives the count of *additional* repeat characters, which can be anything
from 0 to 255.

RLE ALGORITHM

*Get two bytes
*Loop
*Are they equal?
*Yes
—Output both of them
10

—Count how many bytes repeated we have
—Output that value

—Update pointer to the input file

—Get next two bytes.

—~Repeat.

*No

—Output the first byte

— -put the second, as first

—-get a byte for the second one

-update pointer to input file
— -repeat.
—A little example, we have the file: "aaaaaabcddece" The encoder should output that:

a,a,4,b,c,d,d,0,c,c,1 And the decoder will be able to decompress

UNRLE ALGORITHM
*Get one byte, put it to the output file, and now it's the "last' byte.

*Loop

*Get one byte

*Is the current byte equal to last?

*Yes

—Now get another byte, this is 'counter’

—Put current byte in the output file

—Copy 'counter’ times the 'last’ byte to the output file
—Put last copied byte in 'last’ (or leave it alone)
—Repeat.

*No

—Put current byte to the output file

~Now 'last' is the current byte

—Repeat.

11

ADVANTAGES

1. A front end to BWT avoids pathologically slow sorts that occur when the input
stream has long sequences of identical characters

2. The RLE has also been used as a heuristic postprocessor from the MTF program

3.2.2 BURROWS WHEELER TRANSFORM

The BWT is an algorithm that takes a block of data and rearranges it

using a sorting algorithm. Consider the block

D RDOGE B &

COMBINATIONS:
Stingll D R D © B B 3 o
s1{R D © B & 35 D
s2lD 0o B B S5 D ®
s3{0 B B 5 D R O
s4lB B s D R 0 0O
ss|B s 0D R D o &
56/ 5 D R D 0© B B

{2

TRANSFORM VECTOR:
The transformation vector routes S[i] to S [i + 1]

T
S4 |— 4 \‘*1 S 4
S5 |e—g S5
S2 |4 — 55
SO |——-25 — 50
S3 |—g —~ | 53
S1 |e——-2 — [51
SB |»— 3 _| — |58
REGENERATION OF ORIGINAL DATA SET
) (7
O B ? 4 ? ? ?
B B ? ? ? ? i
R D ? ? ? v e
s D ? ? ? ? ?
] Q ? ? ? ? ?
] R ? ? ? ? ?
B S ? ? ? ? ?
o —— o ‘}

The output consists of a copy of last column of sorted strings and an integer

indicating which row contains the original first character of buffer

i3

INVERSE BWT:

The transformation vector T is calculated from the copy of L. The vector
routes s [I] to s [I+1].By using the primary index from transform vector, the originaj
string can be retrieved. BWT normally compresses large blocks of data as the output

depends on future bytes.

3.2.3 MOVE TO FRONT ALGORITHM

Move To Front is a transformation algorithm which does not compress
data but can help to reduce redundancy some times, like after a BWT transformation,

where a symbol which has recently seen, appears again
PROCEDURE

MTF instead of outputting the symbol (byte), outputs a code which refers
to the position of the symbol in a table with all the symbols, thus the length of the
code is the same as the length of the symbol. These simple schemes assign codes with
lower values for more redundant symbols.

SEQUENCE FOR COMPRESSION

L ORIGINAL FILE —,

y
RUN LENGTH ENCODING j

y .
L BURROWS-WHEELER TRANSFORM ‘,

y
L MOVE TO FRONT ALGORITHM 7

y
RUN LENGTH ENCODING

y
COMPRESSED FILE
iq

SEQUENCE FOR DECOMPRESSION

| COMPRESSED FILE |

,_RUN LENGTH DECODING T

INVERSE MOVE TO FRONT ALGORITHM

INVERSE BURROWS - WHEELER TRANSFORM

l

| RUN LENGTH DECODING |

ORIGINAL FILE

3.3. CREATION OF SECURE SOCKET LAYER

A socket is an interface between the application layer and transport layer
within a host. It is also referred to as API (Application Programmers Interface)
between the application and the network. The communication between the application
layer, secure socket layer and transport layer is established by port. The port values
are statically allocated by the program,
3.3.1CONNECTION ORIENTED COMMUNICATION:

A client and server must select the transport protocol that supports a
connection-oriented service before sending data. To establish a connection, the
applications interact with transport protocol software on the local computer and the
two transport protocol module exchange messages across the network. After both
sides agree that the connection has been established, the applications can send data.

15

3.3.2 SEQUENCE OF SOCKET PROCEDURE CALLS

l sofket(} '

I hindiy ’

neren()

ccept()

L\iuckmg umti conn,

From the client Conn. astablishivenr

connect:

l

Wil

reed(,‘»

Data {regusst)

writed)

Data {repiy)

On the client side, a structure is initialized with information such as port
number, address family and a socket is created in stream mode by calling socket. Now
connection is done with the server and a thread is created. Inside the thread the send
function is repeatedly called until all the data is sent. Now the socket is released by

calling close.

On the server side, a socket is created in stream mode by calling socket. The
server calls bind to specify a local port for the socket and listen to place the socket in
passive mode. The server then enters an infinite loop in which it calls accept to accept
the next incoming request. A thread is created and recv is called until all the data has

been received. Now the socket is released by calling close,

i6

-
DESIGN DETAILS

4. DESIGN DETAILS

—

CLIENT | SERVER |
y | I
Original File Original Fiie i
(Plain text) (Plain text) ;

\ /

DECRYPTION
ENCRYP TION (Cipher text)
(Cipher text) /
COMPRESSION | DECOMPRESSION
FLOW DIAGRAM
MODULE 1:

ENCRYPTION AND DECRYPTION:

Public and private keys are generated on the server side,
every time the text file has to be sent from the client to the server. The prime numbers
used to generate these keys are got as input from the user.On the client side the public
key generated by the server is used to encrypt the plain text using RSA algorithm. On
the server side, the private key is used to regenerate the original plain text from the
cipher text.

17

MODULE 2:

COMPRESSION AND DECOMPRESSION:

The encrypted file is usually of a larger size, when compared to the
original text file. For ease of transmission across the network, the file is compressed
by using a series of algorithms. The sequence foliowed is
I. RUN LENGTH ENCODING
2. BURROWS-WHEELER TRANSFORM
3. MOVE TO FRONT ALGORITHM
4. RUN LENGTH ENCODING

On the receiving side, the sequence of the algorithms

applied is reversed to get back the file from the compressed format.

MODULE 3:

CREATION OF SECURE SOCKET LAYER AND TRANSMISSION

A socket is an interface between the application layer and transport
layer within a host. It is also referred to as API (Application Programmers Interface)

between the application and the network.

On the client side, a structure is initialized with information such as port
number, address family and a sbcket is created in stream mode by calling socket. Now
connection is done with the server and a thread is created. Inside the thread the send
function is repeatedly called until all the data is sent. Now the socket is released by

calling close.

On the server side, a socket is created in stream mode by calling socker. The
server calls bind to specify a local port for the socket and listen to place the socket in
passive mode. The server then enters an infinite loop in which it calls accepr to accept
the next incoming request. A thread is created and recv is called until all the data has

been received. Now the socket is released by calling close.
18

SYSTEM TESTING

5. SYSTEM TESTING

Testing is an activity to verify that a correct system is being built and is
performed with the intent of finding faults in the system. Testing is an activity,
however not restricted to being performed after the development phase is complete.
But this is to be carried out in parallel with all stages of system development, starting
with requirement specification. Testing results once gathered and evaluated, provide
a qualitative indication of software quality and reliability and serve as a basis for

design modification if required.

System Testing is a process of checking whether the development system
is working according to the original objectives and requirements. The system should
be tested experimentally with test data so as to ensure that the system works
according to the required specification. When the system is found working, test it

with actual data and check performance.

Software testing is a critical element of software quality assurance and
represents the ultimate review of specification, design and coding. The increasing
visibility of software as a system element and the attendant “cost” associated with a

software failure are the motivation forces for a well planned, thorough testing.

3.1 TESTING OBJECTIVES:

The testing objectives are summarized in the following three steps.

Testing is the process of executing a program with the intent of finding an error. A
good test case is one that has high probability of finding an error. A successful test is

one that uncovers as ~yet-undiscovered errors.

19

3.2 TESTING PRINCIPLES:

All tests should be traceable to customer requirements. Tests should be

planned long before testing begins, that is, the test planning can begin as soon as the
requirements model is complete. Testing should begin “in the small” and progress
towards resting “in large”. The focus of testing will shift progressively from
programs to individual modules and finally to the entire project. Exhaustive testing is
not possible. To be more effective, testing should be one, which has highest

probability of finding errors.

The following are the attributes of good tests:

* A good test has a high probability of finding an error.

* A good test is ndt redundant.
* A good test should be “best of breed”
* A good test should be neither too stmple nor too complex.

“Software Testing is the process of uncovering the defects of the function, in logic,
in implementation with the objective of assuring that the defined inputs will produce
actual results that agree with the required results”

Testing is the important phase of Software development cycle and no software is

complete without putting it to severe testing.

3.3 LEVELS OF TESTING:

The details of the software functionality tests are given below. The testing

procedure that has been used is as follow:

> Unit Testing
> Integration Testing
> Validation Testing
20

Unit Testing:

> The compression and decompression modules were tested using text files
of varying sizes to determine the amount of compression achieved . The test
cases in this process were many text files of sizes 985KB, 1.2 MB which were
compressed to 450 KB, 625 KB i.c. nearly 50%.

> The encryption and decryption modules were tested using client and server
-And found that original file sent was retrieved at the other end as it was sent

at the sender side.

Integrated Testing:

The main modules were integrated and the files to be securely transferred
were compressed, sent, received, and decompressed, as required.

The modules to make the final system acceptable used the basic
functionalities supported by the system .This was also found in good stead.

Validation Testing:

At the end of integration testing, software is completely assembled

as a package, interfacing errors have been uncovered and correction testing begins.

Validation Test Criteria:

Software testing and validation is achieved through series of black
box tests that demonstrate conformity with the requirements are achieved,
documentation is cotrect and other requirements are met. Here the 3 modules which
are checked in the integration testing are assembled and programmed in the code is

testing for any correction.

21

—— e

CONCLUSION AND FUTURE
OUVILOOK

———

6. CONCLUSION AND FUTURE OUTLOOK

“Security is a continuous evolving process and not a product”-Bruce
Scheiner. Total security is an academics deal. Well-performed security involves risk.
The level of risk involved depends on how well the technology is understood and

applied. Protection guarantees should be equal to the level of need.

Information that travels from a client workstation and servers ,through out
the network is susceptible to fraud and misuse by other parties. The network does not
provide a built in mechanism (security system) that will prevent the mtermediaries

from deceiving us, eaves dropping, copying from, damaging the communication etc.

This project provides the required security for documents going around
the network along with compression which is an enhanced feature. This project can be
enhanced , to provide message authenticity and message integrity, which are key

features when it comes to security of transmitted information on the local network.

Security is important on the Internet. Whether sharing financial, business
or personal information, people want to know with whom they are communicating
(authentication), to ensure that what is sent is what 1s received (integrity), and to
prevent others from eaves dropping in their communications (privacy).This project

can be enhanced to provide security on the Internet environment.

22

REFERENCES

7. REFERENCES
BOOKS:
1. William Stallings, “Cryptography and Network Security”, Prentice Hall, second
Edition ,1999.
2. Andrew S. Tanenbaum “Computer Networks”, Prentice-Hall India ,Third
Edition,2001.
3. David J. Kruglinski “Programming Visual VC++" First Edition ,WP Publishers
India, 1999.
4. Douglas E. Comer “Computer Networks and Internets” ,Prentice-Hall India,

second edition ,2003.

JOURNALS:
George Apostolopolous ,Vinod Peris ,Debanjan Saha “Transport Layer Security;How
much does it really cost? ” IEEE Network Security July/August 2000

Paper by Mark Nelson on “Data Compression”.

WEBSITES:
1. http:///openssl.com dt.25-11-03
2. http://rsa/security.com _ dt .26-11-03

3. http://www.netscape.com/assist/security/ssl/protocol.html dt.27-11-03

4. http://datacompression.info/algorithms/rle dt.8-12-03

5. http://autrocampos.com/ac.mtf.html dt.17-12-03

6. http://autrocampos.ac-.rle.htrril dt.18-12-03

7. htip://security.com dt.2-2-04

23

APPENDIX

8.APPENDIX

8.1 SAMPLE SOURCE CODE:
CLIENT SIDE

// SSL._CommDlg.cpp : implementation file
#include "stdafx.h"

#include "SSL_Comm.h"

#include "SSL_CommDIg.h"

#include "NewDecompDlg.h"
#include "math.h"
#define WIN32_WINNT 0x0400
#include "bwt.h"
#include "windows.h"
#include "wincrypt.h" '
#include "stdio.h"
#ifdef DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS FILE[]=_ FILE_;
#endif
class CAboutDIg : public CDialog
{ public: CAboutDIg();
// Dialog Data
enum { IDD =IDD_ABOUTBOX };
// ClassWizard generated virtual function overrides
protected:
virtual void DoDataExchange(CDataExchange* pDX);
// Implementation
protected: DECLARE_MESSAGE_MAP() }:
24

CAboutDlg::CAboutDIg() : CDialog(CAboutDlg::IDD}
0 |
void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{ CDialog::DoDataExchange(pDX);
}
BEGIN_ _MESSAGE_MAP(CAboutDlg, CDialog)
END_MESSAGE MAP()
// CSSL_CommbDlg dialog
CSSL CommDIlg::CSSL_CommDIg(CWnd* pParent /*=NULL*/)
: CDialog(CSSL_CommDIg::IDD, pParent)
{ me=0;mn=0; m hlcon=AfxGetApp()-Loadlcon(IDR_MAINFRAME);
H
void CSSL_CommDIlg::DoDataExchange(CDataExchange* pDX)
{ CDialog::DoDataExchange(pDX);
DDX_Control(pDX, IDC_EDIT PASS, m edPassWd);
DDX Control(pDX, IDC_EDIT2, m_edStat);
DDX Control(pDX, IDC_EDITI1, m_edIP);
DDX Control(pDX, IDC_ED SRCFILENAME, m_ed SrcFName);
DDX Control(pDX, IDC_ED DSTFILENAME, m ed DstFName}):
DDX Text(pDX, IDC _EDIT PUBLIC, m_e);
DDX Text(pDX, IDC_EDIT PUBLIC TWO, m_n);}

BEGIN MESSAGE_MAP(CSSL_CommbDlg, CDialog)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC BUTTONOPEN, OnButtonopen)
ON BN _CLICKED(IDC BUTTON_BROWSE, OnButtonBrowse)
ON_BN_CLICKED(IDC_BTN_COMPRESS, OnBtnCompress)
ON_BN CLICKED(IDC BTN DECOMP, OnBtnDecomp)
25

ON_BN_CLICKED(IDC_BUTTON?2, OnButton2)
ON_BN_CLICKED(IDC_BUTTONENCRYPT, OnButtonencrypt)
END MESSAGE MAP()

///'
void CSSL._CommbDlg::OnButtonopen()
{ CString strFilePath(""); TCHAR szPath[MAX PATH]="\0";
g_strCurrPath = ""; ::GetCurrentDirectory (MAX PATH,szPath);
g_strCurrPath = szPath; BOOL bFileOpen = TRUE; CFileDialog
cf(bFileOpen,NULL,NULL,OFN_HIDEREADONLY,NULL,NULL);
cf.DoModal (); strFilePath = cf.GetPathName ();
m_strSrcFName = strFilePath; m_ed SrcFName.SetWindowText (strFilePath);}

void CSSL_CommDIlg::OnButtonBrowse()

{ CString strFilePath(""); BOOL bFileOpen = FALSE,;

CFileDialogcf(bFileOpen, NULL,NULL,OFN_HIDEREADONLY ,NULL,NULL)

; cf.DoModal ();strFilePath = cf.GetPathName ();
m_strDstFName = strFilePéth;m_ed_DstFName.SetWindowText (strFilePath);
m_strTransFName = strFilePath; }

void CSSL_CommDIlg::OnBtnCompress()

{ CWaitCursor wc; Compress(m_strSrcForComp,m_strDstFName); }

void CSSL_CommDIg::OnButtonl()

{ char ipaddress[35]; m_edIP.GetWindowText(ipaddress,30);
cli.sin_addr.s_addr=inet_addr(ipaddress);cli.sin_family=AF INET;
cli.sin_port=htons(5000); clisock=socket(AF_INET,SOCK_STREAM,0);
ee=1; AfxBeginThread(thread,0);

}

void CSSL_CommDIg::OnButton2() //send button

{ char buff[100]; CSize size; size.cx=0; size.cy=30;

LPCTSTR lpctBuff = NULL; LPTSTR IpBuff:
26

CString strTmp(""),strPath("\\\\"),strTmp1("\\"),strTmp2(;'\\");
::GetComputerName (strTmp.GetBuffer (dwLen),&dwLen);
strTmp = strTmp.GetBuffer (sttTmp.GetLength ()+1);
strPath = strPath+strTmp; / computer name
int j = m_strTransFName.ReverseFind (\\");
LPCTSTR IpFName = m_strTransFName; CFile cf;
DWORD dwFileLen=0; CString sttFLen("");
cf.Open (IpFName,CFile::modeRead);dwFileLen = cf.GetLength ();
cf.Close (); strFLen.Format ("%d",dwFileLen);
strTmpl += m_strTransFName.Mid (j+1); // file
m_strTransFName = m_strTransFName.Left (j);
j = m_strTransFName.ReverseFind (\\');
strTmp2 += m_strTransFName.Mid (j+1); / folder
strTmp.Empty (); strTmp = strPath + strTmp2 + str'Tmpl;
strTmp +="\t"; strFLen += "\t";
sttrTmp = strFLen + strTmp ; AfoessageBox(strTmp);
IpctBuff = strTmp; nSize = strTmp.GetLength();
send(clisock,lﬁctBuff,nSize,()); }
void CSSL_CommDIg::BeginEncrypt (CString strSrcFName,CString strDstFName)
{ » .
CString strPassword(""); strSrcFName.TrimLeft (); strSrcFName.TrimRight ();
strDstFName. TrimLeft (); strDstFName. TrimRight ();strPassword = m_strPassWd;
m_strSrcForComp = strDstFName;
if(EncryptFile(strSrcFName, strDstFName))
{ AfxMessageBox("Encryption Successful"); }
else { AfxMessageBox("Error encrypting file!"); return; }
} v
BOOL CSSL_CommbDIg::EncryptFile (CString strSource,CString strDst)
{
UpdateData(TRUE); int NO_BITS=32; double ¢=0,d=1; char bits[100];
27

double n=(double)m_n; unsigned char ch; double data;//19;
long i,k=NO_BITS; CString str; int sizeof d=sizeof(double);
LPCTSTR szSource = "\0"; LPCTSTR szDst = "\0";
szSource = strSource; szDst = strDst; FILE *inFP, *outFP;
inFP=fopen(szSource,"rt");
if(inFP==NULL)
{AfxMessageBox("Couldn't open input file");return FALSE;}
outFP=fopen(szDst,"wb");
if(outFP==NULL)
{AfxMessageBox("Couldn't create output file");fcloseall(); return FALSE;}
//change integer 'm' to binary
D_to_B(m_e,32,bits); GetOnlyProperBits(bits);k=NO_BITS = strlen(bits)-1:
while(1)
{ /Iread from ip file into 'data’
if(fread(&éh, 1,1,inFP)==0)break;data =(double)ch;
//calculate ((data)“e mod n) .i.e the remainderc=0;d=1:
for(i=k;1>=0;i--)
{ c=2%*c; d=fmod(d*d,n);
if(bitsfNO_BITS-i] == '1") {c=c+1;d=fmod(data*d,n);}
}
/Iwrite to op file from 'd'
fwrite(&d,sizeof d, 1 ,OutkFP);
}//end of while loop
fcloseall(); return TRUE;
}
void CSSL_CommDIg::OnButtonencrypt()
{ CString strF ile(""),strPassWd(""); int npos = -1;
strFile = g_strTmpFName; strFile. TrimLeft ();strFile. TrimRight ();
npos = strFile.ReverseFind (\\');strFile = strFile.Left (npos);
28

strFile = "C:\\tmp5.txt";CString strSrcToEnc("");
BeginEncrypt(strSrcToEnc,strFile);

h

SERVER SIDE

SSL_Comm_ServDlg.cpp : implementation file

#include "stdafx.h"

#include "SSL_Comm_Serv.h"

#include "SSI._Comm_ServDlg.h"

#include "DeComp_ New.h"

#include "math.h" :

#define WIN32_ WINNT 0x0400

#include <stdio.h>

#include <windows.h>

CString m_strIncmgFPathCIt(""); int nFLen = 0;
CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{public: ~CAboutDlg();

enum { IDD =IDD_ABOUTBOX };

protected: virtual void DoDataExchange(CDataExchange* pDX);
protected: DECLARE_MESSAGE_MAP() };

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);

) .

BEGIN MESSAGE MAP(CAboutDlg, CDialog)

END MESSAGE_MAP()
CSSL_Comm_ServDlg::CSSL_Comm_ServDIg(CWnd* pParent /*=NULL*/)
: CDialog(CSSL._Comm_ServDlg::IDD, pParent)

{ m_primel =0; m_prime2 = 0;
m_hIcon = AfxGetApp()->Loadlcon(IDR_MAINFRAME); }

29

void CSSL_Comm_ServDlg::DoDataExchange(CDataExchange* pDX)
{CDialog::DoDataExchange(pDX);DDX Control(pDX,IDC PRIVATE KEY,m kr)
DDX_Control(pDX, IDC_PUBLIC _KEY, m_ku);
DDX_Control(pDX, IDC_EDIT PASSWORD, m_edPassWd);
DDX_Control(pDX, IDC_BUTTONDECOMP, m_btnDecomp);
DDX_Control(pDX, IDC_LIST2, m_list);
DDX Control(pDX, IDC_ED DECOMP FILEl, m_ed Decomp File);
DDX_Control(pDX, IDC_ED_COMP_FILE1, m_ed Comp_File);
DDX_Text(pDX, IDC_PRIMEI, m_primel);
DDX Text(pDX, IDC_PRIME2, m prime2);}

BEGIN_MESSAGE _MAP(CSSL_Comm_ServDlg, CDialog)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON BN CLICKED(IDC BUTTON DECOMPFILE, OnButtonDecompfile)
ON BN CLICKED(IDC BUTTONSAVE, OﬁButtonsave)
ON_BN_CLICKED(DC BUTTONDECOMP, OnButtondecomp)
ON_BN_CLICKED(IDC_BUTTONDECRYPT, OnButtondecrypt)
ON_BN_CLICKED(IDC_GEN_KEY, OnGenKey)
END_MESSAGE MAP()
void CSSL_Comm_ServDIg::OnButtonDecompfile()
{
CString strFile(""); BOOL bFileOpen = TRUE;
CFileDialog
dlg(bFileOpen,NULL,NULL,OFN_HIDEREADONLY,NULL,NULL);
dlg.DoModal ();strFile = dlg.GetPathName ();
m_strCompFName = strFile ;}
void CSSL._Comm_ ServDlg::OnButtonsave()

30

{ BOOL bFileOpen = FALSE; CString strFilePath("");
CFileDialog

dlg(bFileOpen, NULL,NULL,OFN_HIDEREADONLY ,NULL,NULL);
dlg.DoModal ();strFilePath = dlg.GetPathName ();
m_strOrgFName = strFilePath;}

void CSSL._Comm_ServDIg::OnButtondecomp()
{ CWaitCursor cw;
WriteToTmpFile(); }
void CSSL_Comm_ServDlg::WriteToTmpFile ()
{
cf.Open (IpFName,CFile::modeRead|CFile::typeBinary|CFile::shareExclusive);
cfl.Open (IpTmpFname,CFile::modeCreate|CFile::modeWrite);
dwLen = nFLen;

while(bFlag)
{ cf.Read(szBuff,1); cfl.Write (szBuff,1); i++;
if(i >= dwLen) bFlag = FALSE;}

cf.Close ();cf1.Close ();
DeCompressFile(strtTmpFname,strDstForDecomp); }
void CSSL_Comm_ServDlg::OnButtondecrypt()
{
CString strPassword("");
m_edPassWd.GetWindowText (strPassword);
CString strSrcForDecrp("'C:\\TempDecomp.txt");
if(DecryptFile(strSrcForDecrp,m_strOrgFName))
AfxMessageBox("Deccryption successful");
else
AfoessageBox("Deccryption Failed");
}
BOOL CSSL_Comm_ServDIg::DecryptFile(CStringstrSource, CString trDestination}
31

int NO_BITS; double ¢=0,d=1;char bits[100] ; double n=(double)m _n;
double data;//19; long i,k; CString str;int sizeof d=sizeof(double);
szSource = strSource; szDest = strDestination;

FILE *inFP, *outFP;

inFP = fopen(szSource,"rt+");
if(inFP == NULL)
{AfxMessageBox("Couldn't open input file");return FALSE;}
outFP=fopen(szDest,"wt+");
if(outFP==NULL){AfxMessageBox("Couldn't create output file");}
//change integer 'd' to binary
D _to B(m_d,32,bits); GetOnlyProperBits(bits);k=NO_BITS = strlen(bits)-1;
while(1)
{//read from ip file into 'data’
if(fread(&data,sizeof d,1,inFP)==0) break;
/[calculate ((data)"e mod n) .1.e the remainder ¢=0;d=1;
for(i=k;i>=0;i--)
{c=2%c;d=fmod(d*d,n);if(bits]NO_BITS-i] =="1")
{c=c+1;d=fmod(data*d,n);} }
/Iwrite to op file from 'd’ unsigned char ch=(unsigned char)d;
fprintf(outFP,"%c",ch);}
fcloseall(); return TRUE; }
void CSSL_Comm_ServDIg::OnGenKey()
{ Execute(); m_key gen done flg = true;}
void CSSL_Comm_ServDIg::Execute ()
{
CString str; GeneratePrimeNumbers(); m_n=m_Primel * m_Prime2;
m_Undef= (m_Primel-1) * (m_Prime2-1); SelectE(); CalculateD();
m_ku.SetWindowText(str); m_kr.SetWindowText(str); }
32

void CSSL_Comm_ServDlg::GeneratePrimeNumbers()
{
CString str; UpdateData(TRUE);
H
void CSSL_Comm_ServDIg::SelectE()
{
CString str;
///algo: EUCLID
for(float i=2;i<100000;i++)
{ if(IsRelativePrime((floatym_Undef,(float)i))
{m_e=(long)i; WriteValues(str);return;}}}
bool CSSL_Comm_ServDlg::IsRelativePrime(float X.float Y)
{
float R;///algo: EUCLID
//X 1s always great than Y at this point
for(;;)
{if(Y==0) break; R=fmod(X,Y);X=Y,;Y=R;}
if(X != 1) return false;

else return true;//relétively prime }

void CSSL_Comm_ServDlg::CalculateD()
{
float d; long d_dash; CString str;
for(float k=1;k<100000;k++)
{ d=(m_Undef*k+1)m e:
d_dash = (long)((m_Undef*k+1)/m_e);
if(d == d_dash)
{ m_d=d;

return;

1} 33

8.2 SAMPLE OUTPUT:

ﬂf_ 5SS L_Eomm.S ery

34

