IMPLEMENTATION OF S/MIME

2 _12-1 3

Project Report

Submitted in partial fulfillment of the
Requirement for the award of the degree of the

Bachelor of Computer Science and Engineering
Of
Bharathiar University, Coimbatore.

Submitted by
Z. Althaf Ahamed

M. Pradeep
T. Thangavel

Under the guidance of
Mrs. M.S. Hema B E_,

Lecturer
Department of Computer Science and Engineering

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY,
COIMBATORE - 641006.

MARCH 2004.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

£\

MANAGENENT SERVICH

KUMARAGURU COLLEGE OF TECHNOLOGY
(Affiliated to Bharathiar University, Coimbatore)

1505001

CERTIFICATE
This is to certify that the project entitled

IMPLEMENTATION OF S/MIME

is done by

Z. Althaf Ahamed M. Pradeep

T. Thangavel
0027K0155 0027K0189

0027K0207

and submitted in partial fulfillment of the
requirement for the award of the degree of the

Bachelor of Computer Science and Engineering
Oof
Bharathiar University, Coimbatore.

U

Professor & Head of the department Guide
(Dr.8.THANGASAMY) (Mrs.M.S. HEMA B.E))

Certified that the candidates were examined b
Viva voce examination held on [

B - clw@t‘fvf’k{%

Internal Examiner “External Examiner

y us in the project work

Declaration

We,
Z. Althaf Ahamed 0027K0155
M. Pradeep 0027K0189
T. Thangavel 0027K0207

declare that the project entitled “Implementation of S/IMIME”, is done by us
and to the best of our knowledge, a similar work has not been submitted earlier to the

Bharathiar University or any other institution, for fulfillment of the requirement of the
course study.

This project report is submitted on the partial fulfillment of the requirement

for all awards of the degree of Bachelor of Computer Science and Engineering of
Bharathiar University.

Place : Coimbatore.

Date : 22.%38.2.C04. e ity S

Z. Althaf Ahamed

= . e
M. Pradeep
of 6%01\{@0%(
T. Thangavel
Countersigned : /\ —"7—

Guide : Mrs.M.S. Hema B.E.

DEDICATED TO OUR
BELOVED PARENTS
AND FRIENDS

ACKNOWLEDGEMENT

The exhilaration achieved upon the successful completion of any task
should be definitely shared with the people behind the venture. This project is an
amalgam of study and experience of many people without whose help this
project would not have taken shape.

At the onset, we take this opportunity to thank the management of our
college for having provided us excellent facilities to work with. We express our

deep gratitude to our Principal Dr.K.K. Padmanabhan B.Sc(Engg),M.Tech., for
ushering us in the path of triumph.

We are always thankful to our beloved Professor and the Head of the
Department, Prof.S. Thangasamy B.E.(HONS)., whose consistent support and
enthusiastic involvement helped us a great deal.

We are greatly indebted to our beloved guide Mrs.M.S. Hema B.E.,
Lecturer, Department of Computer Science and Engineering for her excelient
guidance and timely support during the course of this project. As a token of our

esteem and gratitude, we honour her for her assistance towards this cause.

We also thank our project coordinator Mrs. S. Chandrakala M.E., and our
beloved class advisor Mrs.M.S. Hema B.E., for their invaluable assistance.

We also feel elated in manifesting our deep sense of gratitude to all the

staff and lab technicians in the Department of Computer Science and
Engineering.

We feel proud to pay our respectful thanks to our Parents for their
enthusiasm and encouragement and also we thank our friends who have
associated themseives to bring out this project successfully.

SYNOPSIS

The project entitled “Implementation of S/MIME “is developed to provide
security for the MIME messages that are sent during communication.

This project aims at providing data security across the Public key
Infrastructure Standards. This project provides security in terms of various
cryptographic techniques such as Encryption-Decryption, Digital signatures and
Data enveloping. The project is key based i.e. the public key and private key. The
complete security resides in the key because the algorithm is standardized. This
system can be applied in both Internet and Intranet.

Digital signatures are used to provide authentication and data integrity
during the message transfer. Digital signature is a signed document generated

and sent to the designated host. Digital signature verification is done in the case
of non-repudiation.

Data enveloping is a method of wrapping the digital signature. By

enveloping the content is completely hidden. Enveloping provides confidentiality
for the messages transferred.

CONTENTS

Introduction
1.1 Existing System & Limitations
1.2 Proposed System & Advantages

System Requirement & Analysis
2.1 Product Definition
2.2 Project Plan

Software Requirement Specification

3.1 Purpose

3.2 Scope

3.3 Product Overview and Summary

3.4 Development & Operating Environment
3.5 Functional Specification

Design Document

Product Testing

5.1 Testing and Test Plan
52 Test Case

Future Enhancements
Conclusion

Reference

Annexure

9.1 Sample Code
9.2 Output Screens

12

20

23

25

27

29

1. INTRODUCTION

1.1 EXISTING SYSTEM & LIMITATIONS

The existing system does not have any security for the information
transferred during the communication. The messages are sent through the MIME
protocol which doesn't have any Standardized techniques or algorithm for
encryption and decryption. The security lies in the algorithm to be implemented.

The system follows the Group-id technique i.e. whenever the message is
sent from the source machine, the message will reach all the team members and
the person having the key will decrypt the message, it is really cumbersome and
less secured.

These were some of the drawbacks met in the existing system.

The existing system doesn’t provide privacy for the messages. The major
drawback is the non-repudiation that is the sender shouid not be able to falsely
deny later that he sent a message. The existing system lack data integrity where
the possibility for the receiver of a message to verify that it has not been modified
in transit.

1.2 PROPOSED SYSTEM AND ADVANTAGES

The proposed system is developed, owing to the number of
drawbacks in the existing system. The proposed system aims to remove most of
the drawbacks found extensively in the existing system which can be thought of

as maintenance friendly. The proposed system maintains proper flow of control
and relationships.

The security for the information is given by encryption and decryption
algorithm which is key based i.e. the public key and private key. The
authentication and data integrity are provided by digital signature by making use
of hashing algorithm. Confidentiality of information is assured through data
enveloping.

The public key cryptography is chosen for security over messages mainly
to avoid the key distribution problem. Authentication and data integrity for
secured messages are provided through hashing algorithms. The verification
option availabie in digital signature serves the non-repudiation activity.

The digitally signed message can be enveloped which acts as a wrapper
for the message. Enveloping is mainly done for confidentiality purpose. In rare
cases attacks are also possible on cipher text. So enveloping is done to prevent
it.

Thus the project provides security by addressing all the four major

cryptographic pillars namely, authentication, data integrity, confidentiality and
non-repudiation of the cryptographic field.

The user has the option of selecting the modules depending on the
requirements. The proposed system is developed to be user-friendly. The
proposed System provides complete security to the data that are being handled

by the users.
Features of the proposed system are
» Privacy
» Authentication
» Signature
» Data integrity

» Non repudiation

SYSTEM
REQUIREMENT
ANALYSIS

2. SYSTEM REQUIREMENT ANALYSIS

2.1 PRODUCT DEFINITION

This project is for providing security for the MIME messages that are sent

during communication. This project provides security in terms of various
cryptographic techniques such as Encryption-Decryption, Digital signatures and
Data enveloping. The project is key based i.e. the public key and private key.

2.2 PROJECT PLAN

The project titled “Implementation of SIMIME” is to develop a standardized

method which can be used for providing data security across the Public key
infrastructure Standards.

The following are the key steps involved

>

>

Obtaining the message digest from the original text.
Attaching the digest with the original text and encrypting.
Enveloping the encrypted document.

The receiver unwrapping the document from the envelope to retrieve the
message and a new digest.

Comparing the message digests to check the authenticity of the message.

3. SOFTWARE REQUIREMENT SPECIFICATION

3.1 PURPOSE

The purpose of thig project is to create a standardized method to create
security for the messages sent during communication.

3.2 SCOPE

The scope of the proposed system is to develop and establish complete
security to the data that is being sent via net and intranet for all the users.

3.3 PRODUCT OVERVIEW AND SUMMARY

integrity. MD5 hashing algorithm is used to obtain the message digest in digital
signature. Data enveloping is implemented using symmetric algorithm.

This project provides security in terms of three modules nameiy,
1. Encryption and Decryption

2. Digital signatures
3. Data Enveloping.

The RSA consists of three sub-modules:
1. Key generation
2. Encryption

3. Decryption

The second module is Digital Signatures which is generated using the
RSA and a hashing algorithm. In cases where the communication becomes
unreliable, digital signatures play a vital role. A digital signature is a signed
document which is generated by the sender and sends to the designated party.
The digital signatures involves two processes namely,

a. Digital signature creation
b. Digital signature verification

In digital signature creation, MD5 hashing algorithm is used to obtain the
message digest. The message digest is then encrypted using the sender's
private key and the result is the signature. The signature is then appended with

the original data which now becomes the signed document, is send to the
receiver.

Digital signature verification is done in cases where the sender or the
receiver denies the communication that has taken place. In such cases, the
receiver applies the hashing algorithm for the original data and obtains the
message digest. The receiver also applies the public key for the signature and
gets the message digest. Both the message digest is then compared.

The last module is Data Enveloping. Enveloping acts as a wrapper for the
signed document. The signed document is the output of the digital signature
module. in enveloping, the signed document is given as input and data
enveloping is done to the signed document by encrypting it.

The encryption involves the data encryption standard (DES) for encrypting
and decrypting the data. The symmetric key is encrypted and sent to the
receiver. The symmetric key is encrypted using RSA private key. The enveloped
data follows the encrypted symmetric key. Data enveloping is done to obtain
privacy in the communication.

3.4 DEVELOPING AND OPERATING ENVIRONMENT

HARDWARE ENVIRONMENT

It describes the environment in which the system has been developed.
The hardware interfaces used for development are listed below.

Processor : Pentium ||
Primary memory : 128 Mb or more
Secondary memory : More than 6GB
User interface . keyboard\mouse

SOFTWARE ENVIRONMENT

The following software Products are required to run this software at the
implementation environment

Operating system : windows INT/XP
:C

Language i
Complier : Borland C.

3.5 FUNCTIONAL SPECIFICATION
MODULE DESCRIPTION

The project involves three modules namely,
a. Encryption-decryption

b. Digital signatures
C. Data Enveloping

ENCRYPTION - DECRYPTION

DIGITAL SIGNATURES

A Cryptographic primitive which is fundamental in authentication,
authorization, and Non-repudiation is the digital signature. The Purpose of digital

DicITAL
SIGNATURE

to the signer and additionally on the content of the message being signed
Signatures are verifiable; if 5 dispute arises whether a party signed g document,
the third party must be able to resolve the matter equitably, without requiring
access to the signer’s secret information. The digital signatures offer many
advantages in terms of functionality and implementation.

solution to this probiem is digital signature.

11

The output of the hash function (MD53) is the message digest. The
message digest is then encrypted using RSA private key. This yields the
signature. The signature is then appended with the original message to produce
the signed document. The signed document is sent to the other party.

Digital signature verification is done in cases where the sender or the
receiver denies the communication that has taken place. In such cases, the
receiver applies the hashing algorithm for the original data and obtains the
message digest. The receiver also applies the public key for the signature and
gets the message digest. Both the message digest is then compared.

DATA ENVELOPING

The last module is Data Enveloping. Enveloping acts as a cover for the
signed document. The signed document is the output of the digital signature
module. In enveloping, the signed document is given as input and data
enveloping is done to the signed document by encrypting it using DES algorithm.

T

I3

4. DESIGN DOCUMENT

RSA ALGORITHM

The Rivest-Shamir-Adleman (RSA) algorithm is one of the most popular
and secures public-key encryption methods.

ALGORITHM DESCRIPTION

To generate the two keys, choose two random large prime numbers, p

and g. for maximum security, choose p and q of equal length. Then compute the
following

n=p“q
Then randomly choose the encryption key, e such that e ang [p-1){g-1] are
relatively prime. Finally, use the extended Euclidean algorithm to compute the
decryption key, d, such that
e*d=1 mod [p-1]lg-1]
in other words
d=e-1 mod [p-1jlg-1]
note that d and n should be relatively prime .
Using an encryption key (e,n), the algorithm is as follows:
1. Represent the message (plain text P) as an integer between 0 and (n-1).

Large messages can be broken up into a number of blocks. Each block would
then be represented by an integer in the same range.

2. Encrypt the message by raising it to the eth power modulo n1. The result is a
cipher text message C.

The encryption key (e,n) is made public. The decryption key (d,n) is kept
private by the user. Using a decryption key (d,n), the algorithm is as follows:

2. Decrypt the message by raising it to the dth power modulo n1. The result is a
plain text message.

Plain Text Piain Text l

—
Plain Text | Cipher Text

1 Plain Text

!

200 digits. Any cryptographic technique, which can resist a concerted attack, is
regarded as secure. At this point in time, the RSA algorithm is considered
secure.

MD5 ALGORITHM

Ron Rivest at MIT developed the MD5 message-digest algorithm. This
algorithm takes as input a message of arbitrary length and produces as output a
128-bit message digest. The input is processed in 512-bit blocks.

The processing consists of the following steps:

Step1: Append Padding bits.

The message is padded so that its length in bits is congruent to 448 moduio 512.
That is, the length of the padded message is 64 bits less than an integer muitiple
of 512 bits. Padding is always added, even if the message is already of the
desired length. The padding consists of a single 1-bit followed by the necessary

number of 0-bits.

Step 2: Append Length.

A 64-bit representation of the length in bits of the original message is appended
to the resuilt of the first step. If the original length is greater than 264, then only

message that is an integer muitiple of 512 bits in length.

Step 3: Initialize MD buffer.

A 128-bit buffer is used to hold intermediate and final results of the hash function.
The buffer can be represented as four 32-bit registers (A, B, C, and D). These
registers are initialized to the following 32-bit integers (hexadecimal values):

A = 67453201
B = EFCDABS89
C = 98BADCFE
D = 10235476

These values are stored in little-endian format, which is the least significant byte
of a word in the low-address byte position. As 32-bit strings, the initialization
values (in hexadecimal) appear as follows:

Word A: 01 23 45 67
Word B: 89 AB CD EF
Word C: FE DC BA 98
Word D: 76 54 32 10

16

Step 4: Process message in 512-bit (16-word) blocks.

DATA ENCRYPTION STANDARD

DES is a block cipher it encrypts data in 64 bit bjock of plaintext goes in
one end of the algorithm and 64 bit block of Cipher text comes out the other end.
Des is the Symmetric algorithm the same algorithm and key is used for both

ALGORITHM

Des operates on a 64 bit block of plain text. After the initial permutation
the block is broken into right half and left haif each 32 bit long. Then there are 16
rounds of operation in which the data are combined with the key. After the
sixteenth round the right and the left halves are joined and a finaj permutation
finishes the algorithm.

a. INITIAL PERMUTATION

The initial permutation occurs before the first round. Which will transpose

the input block the injtial permutation and the final permutation will not affect the
des security.

b. KEY TRANSFORMATION

Initially the 64 bit des key is reduced to 56 bit key by ignoring every 8th bit.
These bits can be used as parity check to ensure the key is error free. After the
56 bit is extracted different 48 bit sub key is generated for each round of 16
rounds of des. First the 56 bit key is divided into two halves. Then the half is
circularly shifted left by either one or two bits depending on the round after being
shifted 48 out of 56 bits are selected, it is called as compression permutation.

Li -1 Ri - 1 L Key

v v

! shift (f shifr’
E permutation

4 A

< C permutationJ

s-box substitution)

] y
j p-box perm utatior;[

]

Li , Ri (i Key

One round of DES

C. EXPANSION PERTMUTATION

This operation expands the right half of the data from 32 bits to 48 bits.
Because this operation changes the order of the bits as well as repeating certain
bits this is known as expansion permutation. This operation has two purposes: it
makes the right half the same size as the key for XOR operation and it provides a
longer result that can be compressed during the substitution operation. Des is
designed to reach the condition of having every bit of the cipher text depend on
every bit of the plain text and every bit of the key as quick as possible.

After the compressed key is XORed with the expanded block, the 48 bit
result moves to a substitution operation. The substitutions are performed by eight
substitution boxes or s-boxes. Each s-box has the 6 bit input and a 4 bit output
and there are eight different s-boxes. Each s-box is a table of 4 rows and 16
columns. The six bit input of the s-box specifies under which row and column
number to look for the output.

d. THE P-BOX PERMUTATION

The 32 bit block of the s-box substitution is permuted according to a p-
box. This permutation maps each input bit to an output box position. No bits are
used twice and no bits are ignored. This is called a straight permutation. Finally
the result of the p-box permutation is XORed either the left haif of the initial 64 bit
block.

e. FINAL PERMUTATION

The final permutation is the inverse of the initial permutation. The left and the
right halves are not exchanged after the last round of des, instead the
concatenated block is used as the input to the final permutation.

The encryption involves the data encryption standard (DES) for encrypting
and decrypting the data. The symmetric key is encrypted and sent to the
receiver.

The symmetric key is encrypted using RSA private key. The enveloped
data foliows the encrypted symmetric key. Data enveloping is done to obtain
privacy in the communication.

5. PRODUCT TESTING

TESTING AND TEST PLAN
i) TEST PLAN

> Testing is done with one primary objective to ensure the quality of
software before live operations.

» Testing is a process of executing of a program with intent of finding an
error.

» A good test is not redundant that is there is no point in conducting a test
that has the same purpose as another test.

a. UNIT TESTING

Unit testing focuses verification effort on the smallest unit of the software
design- The software component or a module. Important control paths have been
tested comprehensively to uncover errors within the boundary or the module.

b. INTERGARTION TESTING

Integration testing is a systematic technique for constructing program

structure while at the same time conducting tests to uncover errors associated

c. STRESS TESTING

Stress testing executes a system in a manner that demands resources in
abnormal quantity, frequency or volume. Test cases that require maximum
memory or other resources have been executed and the system has been
performing consistently without crashing.

d. SENSITIVITY TESTING

Sensitivity testing has been performed to check if a very small range of
data contained within the bounds of valid data for a program may cause extreme
and even erroneous processing.

laTal

ii) TEST CASE

TESTING ACTION EXPECTED OBSERVED
RESULT RESULT
Checking for Creation of Signature created
loops digital signature
Unit testing eg. Choice : 1 computed
Choice :2 Verification of Signature verified
digital signature
Sensitivity Range of value | Program should | Key generation |
testing for key should execute properly | executed properly |
be 64 bit :
Avoiding very If exceeds 40 Characters less |
Stress testing | long path name | characters than forty
for files should be invalid | accepted

Modules tested

Linking between

The modules

Integration individually and | the three individually and !

testing also whole modules should | linking are proper ;
system be proper

Dataflow Testing fiow of | Data stored in If data stored is

testing data by printing | variable should | wrong then error is
value of data be correct shown :
frequently ;
Clicking mouse | Correct action By clicking the '

Unit testing at appropriate | should be taken | Mouse appropriate

position within

modules are

the range linked and values

got for processing. |

il

(%]
L¥F]

6. FUTURE ENHANCEMENTS

Our project is so flexible that it can be enhanced so easily. The primary
objective of the project is to provide security to the data during data
transformation. The system met the initial primary requirement but there is ample
scope for the system to be improved. Some of the features and facilities can be
incorporated in the system are listed below.

» Increasing the key length from 64 bits to 128 bits
> Increase the security by using three keys(Triple DES)

lals}

7. CONCLUSION

This software provides maximum security to the data during transmission.
It protects the data from the infruders and unauthorized persons. Specifically,
digital signatures provide authentication and data integrity, and in rare case of
intruders the verification process is also included. The system has user friendly
features. It is possible for any novice user to use the system.

The programming techniques used in the design of the system provide a
scope for further expansion and implementation of any changes, which may
occur in the future.

Data enveloping serves as the more secure process which provides more
security and flexibility and it is the option of the users to choose. The plain text is

encrypted and decrypted quickly and accurately then transmitted across the
network.

This system developed will be usefui for the organization to maximize the
security of important data during transmission very effectively and securely. The
system is also proven to be more flexible to future enhancements.

Since, the requirements of any organization and their standards are
changing day by day, the system has been designed in such a way that its scope
and boundaries could be expanded in the future with little modifications.

This system has been developed using turbo-C. The system has been
tested and performances found satisfactory.

la ¥~

8. REFERENCE

1. SCHNEIER. B, 1992, "Applied Cryptography”,
Replika Press Pvt Ltd, Second Edition

2. STALLINGS. W, 1997, “Cryptography and Network Security”,
Pearson Education Inc, Second Edition

3. RHEE.M.Y, 1995, " Cryptography and security Communications”.

4. MENEZES. A, OOORSCHOT. P, VANSTONE. S, 1998,
“ Applied Cryptography”, CRC Press.

5. AWARD.E.M, 1987, “System Analysis and Design” |
Galgotia Publications, Second Edition

6. HAWRYSZKIEWYCZ.I.T,‘I 992, “System Analysis and Design”,
Prentice Hall of India Pvt Ltd, Third Edition

7. PRESSMAN.R.S, 1990 “Software Engineering”,
McGraw Hill, Fifth Edition

Web Sites:
8. http:/lcourses.cs.vt.edul~c35204/fall99/protection/rsa.htmf
9. http:/lwww.hull.ac.uleuIIICC_WebIdocslcnotes/c3.html#03-5

10. http://pardus~larus.student_utwente.ni/DOC;’Lam,’C;
ctut/ctutorial/Advantages-of-C_html

11. http://www.specs.delusersldannilcompars/
12. http:l/gandaIf—library.sourceforge.net/
13. http:/Amww.verisign .com/repository/crptintr. html

14. http://www-lbm.comsoftwarefwebserversfappservdoc;’
v40/aefinfocenter/iwas/050501 .html

15. hitp://docs.sun.com/source/g 1 6-6154-10/contents. htmi#101 6376

16. http:llwww.xml.comlpub/a/2001/08/O8Ixmldsig.html

“rry

9. ANNEXURE

9.1 SAMPLE CODE

#include <dos.h>

#include “desh.h”

#include <stdio.h>

#include <process.h> .
#include <conio.h> ’
#include “digest.h” '

void
void
void
void
void
vold
void
void
vold
void
void
void

init mouse();
show mouse (};
hide mouse();

rsamain (void) ;

move mouse (int x,int y);
getmousepos (int *button, int *x, int Y
env{int)

shadow(int ,int ,int ,int)
textbar (int ,int ,int ,int cint) ;
square (int);

screen{void) ;

rsakevy{void);

int findkey(void);
int encrypt{void):
int decrypt(void):
unicn REGS ii,o;

long

void
void
void
void
void
vold
vold

double max;

choilcel (void) ;
choice? (void) ;
digital (veid);
envelope (void) ;
guit{void);
combine (char *,char *,char *);
extract(char *,char *,char *);

’

int compare(char *,char *);

void

main{}

{

int choe;

clrscri{);

env({l);

printxy (16,5, "Enter 1 Digital/ 2 Envelope/ 3 RSA
cscanf ("%d", &cho) ;

getch{};

switch (chao)

{

case 1:

et

"

110

30

digital ();
break:;

case 2:
envelope {);
break;
case 3:
rsamain{);
break:;
default:
printxy (16,7, "Invalid choice " L110;
delay (1000} ;
exit (1);

}

getch(});

'

voild envelope (void)

{

char select;

clrscr();

printxy (26,3, "MODULE 3 - ENVELCPING SIGNATURE", 113 ;
printxy (16,8, "Enter ur choice : 1-Tx ,2-Rr - ", 3);
textcolor (15+BLTINK) ;

cscanf ("%c", select);

select=getche();

if(select=="1")

choicel () ;

else if(select=='2")

choicez () ;

else
quit():
return;

}
vold cheicel (vaid)

{

long double pub,modu;

char *keyip;

printxy(5,11, "SENDER SIDE ENVELODE CREATICN", 2} ;

printxy (30,15, "DES KEY AN

textcolor(15);

cscanf ("%s", keyip);

printxy (30,17, "PUBLIC KEY - ", 12);

textcolor(15);

cscanf ("3LE", apub) ;

printxy (30,19, "MODULUS T ", 14);

textcolor(l5s);

cscanf ("SLE", smodu) ;

getch():

rsaemain(keyip,"keyipl.txt",pub,modu);

findenvelope (keyip) ;

printxy(l2,23,“ENVELOPE WAS SUCCESSFULLY CREATED, PRESS ANY KEY TO
QUIT"™, 10+BLINK) ;

return;

}

an

vold choice2 (void}
{
leong deuble pri,modu;
printxy (5,11, "RECEIVER SIDE ENVELOPE EXTRACTION",Z);
printxy (30,17, "PRIVATE KEY : ",12);
textcolor (15} ;
cscant ("3LL", &pri);
printxy{30,19," MODULUS " 14 ;
textcolor(15);
cscanf ("SLE™, &modu) ;
getch();
rsadmain("keyvipl.txt","key.Lxt",pri,mogu! ;
extractenvelcope () ;
printxy (12,23, "ENVELCPE WAS SUCCESSFULLY EXTRACTED, PRESS LNY KEY
TO QUIT", LO+BLINK) ;
return;
'

void quit (void)
{
printxy (30,17, "Inavalid Choice™,12);
printxy (28,23, "PRESS ANY KEY TO QUIT", L0+BLINK);
refturn;

}

vold combine (char *ipfile,char *sign,char *fin)
{

FILE *fp, *fpl, *fp2;

char cl;

tp=fopen (fin, "wt+");
fpl=fopen{ipfile, "r"};
fp2=fopen(sign,"r");

while((cl=fgetc(fpl)) !=EOF)
{
fputc(cl, fp) s
1
fputc (i, fp);
fclose{fpl);
while((cl=fgetc{fp2)) | =EQF}
{
fputc{cl, fpl:
}
fclose (fp);
fclose (fp2);
return;

b

void extract(char *file3,char *filel,char *file2:
{

FILE *fp,*fpl,~fp2;

int i;

char c¢l;

fp=fopen(file3,"r™);

lalh

fp1=fopen(filel,"w");
fp2=fopen(file2,"w");
while((i:fgetc(fp))f=1)
{
fputc (i, fp1);
1

fclose(fpl);
while((cl=fgetc(fp))!:EOF)
{
fputc(cl,fp2);
}
fclose(fp2);
fclose (fp);
return;

}

int compare (char *filel, char *file2)
{

FILE *Efp, *fpl;

char cl,c2;

int k=1;

fp=fopen(filel,"r");
fp1=fopen(file2,"r");

while((cl:fgetc(fpl))!tEOF)
{

c2=fgetc(fp);

if(cl!:c2) k=0;

}

fclose(fply;

fclose(fp);
return k;

}
void digital(void)
{

char ch;

char *ipfile,*opfile,*sign;
char *fin,*fflagz"No";

int flag=0;
fin="final.txt";

clrscr();

env{l};

printxy(23, 5, "DIGITAL SIGNATURE VERIFICATION",lS);
printxy(13, 8, "MESSAGE. . FILE NAME ;> ", 10 ;
textcolor(lB);

gotoxy (38,8 ;

cscanf("%s",ipfile);

getch();

opfile="digest.txt";

sign:“sign.txt";

printxy(5,16, "ENTER YOUR CHOICE 1-Sender Z—Recepient > ", 11
textcolor(14+BLINK);

ch=getcha();

delay(3000) ;

lalal

if(ch=='l')

}

{
finddigest(ipfile,opfile);
printxy(l3,l8,"RSA Private Key :> » 12y,
printxy(l3,20,"Modulus... - A .
textcolor(lO);

gotoxy (24,18);

cscanf("%Lf",&e);

gotoxy(34,20);

cscanf("%Lf",&n);
rsaemain(opfile,sign,e,n);
combine(ipfile,sign,finj;

else if(ch=='2')
{
extract("final.txt","newm.txt","news.txt");
finddigest("newm.txt","digest2.txt");
printxy(lB,lB,"RSA Public Key :> ",12);
printxy(13,20,"Modulus... e
textcolor(lO);

gotoxy(34,18);

cscanf("%Lf",&d);

gotoxy(34,20);

cscanf("%Lf",&n);
rsadmain("news.txt","digestl.txt",d,n);
flag:compare("digestl.txt","digest2.txt”);
if (flag==1)

fflag="ves";

gotoxy(13,24};

textcolor(l2);

cprintf(fflag);

}

else

{

printxy(25,22," —————— <-Invalid Choice-»——oo___ ",6+BLINK);
}

delay(lOOO);
getch();
clrscri(y;
rYeturn;

void Isamain {void)

{

int i, I
Char choice;

int button,tx,ty;

int idno=143;

int key;

FILE *stream,*temp;

char ch;

static char a[lOJ[lO],b[lO][lO];
int accno,acc,no,count=0;
char *name,*newname,*pword;
float amount, amt=19,0;

e}

}

struct time t;

int h,m,s;

float hh,mm;

unsigned int size;

aa:

clrscr();

init_mouse();

show meouse();

screen{);

delay (2000} ;

while (1)
{
getmousepos(&button,&tx,&ty);
1E(tx>=72 §& tx<=184 &g Ly>=096 && ty<=11
{
encrypt (};
goto aa;

}

if{tx>=264 &g Ex<=376 s& ty>=95 3g ty<=112 && button==1;

{
decrypt (};
goto aa;

}

1£{tx>=472 &5 tx<=584 & Ly>=96 g& ty<=112 5¢ button==1)

{
findkey();
goto aa;

}

LE(tx>=272 s& Tx<=368 && ty>=144 g4 ty<=160 && button—==1:

{
clrscr();
exit{0);
!

1

return;

int findkey(void}

{

int button,tx,ty;
rsakey () ;

Square (7) ;
textcolor({7);
textbackground(l);
gotoxy (28, 6) ;
cscanf(“%Lf",&max);
rsak (max) ;
textcolor(WHITE};
textbackground (1) ;
gotoxy(45,12);
cprintf("%.2Lf“,d);
gotoxy (45, 14);
cprintf("%.ZLf",n);
gotoxy(45,16) ;
CPTintf ("$.2Lf", e);
shadow(58,24,10,1);
textbar(60,23,10,1,11);
textcolor(11+BLINK);

A

2 && button==1;

35

gotoxy (62.0,23);
cprintf ("O.K.,.");
x1:
getmousepos(&button,&tx,&ty):
1L (tx>=472 && tx<=544 &g ty==17¢ && button==1)
return 0;
goto x1;
//getch(y;
}
int encrypt (void)

char *ipf, *opf;

int button, tx, ty;

clrscr{);

env(l);

shadow (20, 4, 38, 3) ;
textbar(18,3,38,3,11);
textcolor{WHITE);
textbackground (11} ;

gotoxy(22,4);

cprintf("RSA ENCRYPTION-PLATN TO CIPHER") ;
square {8) ;

square (24) ;

textcolor(WHITE);

textbackground(1);

gotoxy(13,13);

cprintf ("ENTER THE PUBLIC KEY :");
gotoxy (13,15} ;

cprintf ("ENTER THE MODULUS VALUE:") ;
gotoxy(13,17);

cprintf ("ENTER THE SOURCE FILE:");
gotoxy(13,19);

cprintf ("ENTER THE CUTPUT FILE:");
textcolor(9);

gotoxy{38,13);

cscanf ("BLE", el ;

gotoxy(38,15);

cscanf ("SLE", &n) ;

gotoxy(38,17);

cscanf ("%s", ipf);

gotoxy (38,19) ;

textcolor(14);

cscanf ("%¥s", opf};
rsaemain(ipf,opf,e,n);
shadow(58,24,10,l);
textbar(60,23,10,1,11);

textcolor {11+BLINK) ;
gotoxy(62.0,23)

cprintf{"0.K.,.");

X2:

getmousepos(&button,&tx,&ty);
IE(tx>=472 && tx<=544 &z Cy==176 && button==1:
return 0§;

goto x2;

//getch();

ol

int decrypt (void)
{

char *ipf, *opf;
int button,tx,ty;
clrscr():
env{l);
shadow(20,4,42,3);
textbar(18,3,42,3,11);
textcolor(WHITE);
textbackground(ll);
gotoxy (22, 4);
cprintf ("RSA ENCRYPTION—CIPHER TO PLRAIN TEXT"™) ;
square(8);
sSquare (24} ;
textcolor(WHITE);
textbackground(l);
gotoxy (13, 13);
Cprintf ("ENTER THE PRIVATE KEY "y;
gotoxy (13,15);
cprintf("ENTER THE MODULUS VALUE:"™) ;
gotoxy(13,17);
cprintf {"ENTER THE SOURCE FILE:");
gotoxy(13,19);
cprintf ("ENTER THE QUTPUT FILE:");
textcolor(9);
gotoxy (38,13} ;
Cscanf("%Lf",&d);
gotoxy (38,15);
Cscanf ("$Lf", &n) ;
gotoxy (38,17} ;
Cscanf("%s",ipf);
gotoxy (38,19 ;
textcolor(l4);
cscanf("%s",opf);
rsadmain(ipf,opf,d,n);
shadow(58,24,10,1);
textbar(60,23,10,l,ll);
textcolor(ll+BLINK);
gotoxy (62.0,23) ;
cprintf("O-K.-.");
x3:
getmousepos(&button,&tx,&ty);
1f(tx>=472 gg Lx<=544 gzs Lty==176 gs button==1.
return 0;
goto x3;
//getch();
}

void rsakey(veid)
{

env(l);
textcolor(WHITE);
textbackground(l);

gotoxy (3,6);

cprintf {"ENTER THE MAXIMUM RANGE™) ;

textcolor (11l ;
gotoxy(25,12);
cprintf ("PRIVATE KEY");

gotoxy(25,14);
cprintf ("MODULUS™) ;

gotoxy(25,16);
cprintf ("PUBLIC KEY"):

return;

}

void shadow{int p,int q, int r,int s)
{
int 1i,7;
textcolor(0):
textbackground (0} ;
for{i=qg;i<q+s;i++)
{
gotoxy(p,i);
for (§=0;3<r;3++)
{
cprintf("™ "j;
}
}
return;
}
vaeid textbar(int p,int grint r,int s,int <)
{
int i,3;
//textcolorid);
textbackgroundic);
for(i=qg;i<g+s;i++)
{
gotoxy(p,i);
for(j=0;:3<r;i++)
{
cprintf (™ ");
}
}
return;
}
vold square{int v)
{
int i,3;
int d=196;
textcolor (WHITE) ;
textbackground (1)
for(i=2;i<B0;i++)
{
gotoxy (i,v);
cprintf ("sc",d);
}
return;

}

’

3T

vold screen(void)
{
highvideo () ;
env(l};
shadow(8,3,562,3);
textbar(10,2,62,2,11);
textcolor (WHITE+BLINK) ;
gotoxy (29,3);
cprintf ("IMPLEMENTATION OF SYAMIME™)Y ;

shadow (25,8, 28, 3);
textbar(27,7,28,3,11);
textcolor (il);//+BLINK);
gotoxy(34,8);

cprintf ("RSA ENCRYPTION™);

shadow({8,14,15,3);
textbar{10,13,15,3,11);

textcolor(ll);

gotoxy(12,14);

cprintf ("ENCRYPFT...");

shadow (32,14,15,3};

textbar(34,13,15,3,11);

textcolor(ll);

gotoxy(36,14);

cprintf ("DECRYPT..."™);

shadow (58,14, 15, 3);

textbar(60,13,15,3,11);

textcolor{1l});

gotoxy(62,14);

cprintf ("NEW KEY..."};

shadow (33,18,13,3);

textbar(35,19%,13,3,11);

textcolor(11l):

gotoxy (38,20} ;

cprintf ("EXIT...");
return;

}

vold init mouse ()

{
char status;
_AX=0;
geninterrupt (0X33);
status=_AX;
1f (status!=-1)
return;

}

void show_mouse {)

{
_AX=1;
geninterrupt (0X33);
return;

o

39

vold hide mouse ()

{
_AX=2;
geninterrupt (0X33)
return;

}

void move mouse(int x,int v)
{

_B¥=d;

_CX=x;

_DX=y;

geninterrupt {0X33);

return;

vold getmousspos (int *button,int *x,int *vy)
{
il.x.ax=3;
int86(0x33,&1ii, &0);
*button=o.x.bx;
*X=0.X.CX;
*y=0.x.dx;

return;

}

arat

40

9.2 OUTPUT SCREENS

The Main Screen is shown below

Tnter 1 Digitals 2 Touvelopas 2OoALa -

The below Screen shows the Key Generation Process

FRIVATE KEY 149641 1 H

MODITAS 2298007 _AA

PURLIC KLY 3.08

AN

41

The below Screen shows the RSA Encryption Process

ENTER THE PUBLIC KLY
FNTER THE MODILIES uardp-
ENTEX THE SOURCE FILE:
ENTER THE OQUTPUT FILE- out L txt

ENLER IHE PRIVATE KEYy -
INTER THL MODULUS VALUE:

Eout . txt

ENTER THE OUTPUT FILE: decrupt _txi

A1

42

The below Screen Shows the Digital Signature Verification

BHGITAL STCNRTURE UERIFICATION

MESSAGE. . FILE HAME :>

ENYER YOUE CHOICE 1 —Sender 2-Recepicont
R5A Private Key - 149861 1

ModuTas .. Ty My

The below Screen shows Enveloping using DES

MODULE 3 -~ ENUELOPING S1GNATURE

Enter ur cheice @ 1-Tx . “-He : 11
SERDEE SEDE ERUELOPE CRENTION
DES KEY o key_twt

PUBLTC HEY - 2

MOpULUS BN

ENUELOPE WAS SUGCCESSFULLY CREATFD, PRESS ANY KEY TO QUIT

A

AT

44

The below Screen shows the Message along with the encrypted
Digest

24D6GB.BA 206837 .08 20007H.00 22294760 FARCLH . B
760018.60 4,8659 .08 9 r 7103 .988 £ o0t}
Qﬁbb(4 A6 YR6674 0GR 912221 .00 9667 . Qi
76 Nl 4hl?1h': i
j ¢4ﬁhhh.nn

The below Screen shows the Enveloped Document

Ea -Ox
Pile Edit

0pt1nns Help
=\ pro ect\ENUELOPE IXT

Quarch U1ow

47d92877945¢ SfaBaBf11F477ec 3t hac 0PN R1BF 6 a2 o
133Bdal1h Sha%a

Line:3 Col:1

A A4

