DEVICE DRIVER DEVELOPMENT
FOR

CBK INFOTECH INDIA (P) LTD., BANGALORE.

PROJECT REPORT ﬁD" /2.2 ‘
Submitted in partial fulfiliment of the requirements for the award of the degree
of

M.Se¢ Applied Science Software Engineering,
Of Bharathiar University,

Coimbatore.
Submitted By
KARTHIKEYAN.T
Reg. No. 013750034
Guided By
EXTERNAL GUIDE INTERNAL GUIDE
Ms.V.HemaLatha, B.E, Mrs. R K Kavitha, M.C. A, M.Phil,
System Designer. Lecturer.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE - 641 006
SEPTEMBER - 2004

KUMARAGURU COLLEGE OF TECHNOLOGY
(Affiliated to Bharathiar University)
Department of Computer science and Engineering

Coimbatore — 641 006

CERTIFICATE

This is to certify that the project work entitled

DEVICE DRIVER DEVELOPMENT

Done By

KARTHIKEYAN.T
Reg. No. 0137S0034

Submitted in partial fulfillment of the requirements for the award of the
degree M.Sc Applied Science Software Engineering of Bharathiar

University.
g JL Ric. [LCv\ 'L‘
Professor an He;aj Interna aulde
Submitted for the University examination held on ... 2 SAS N

£ M~

Internal miner ernal Examiner

4/3, Sree Complex,
M.S.R.E.C. Road
Opp. NIAS, Mathikere,
Bangalore - 560 054
E-mail : cbk@satyam.net.in
Ph.: 3602402/ 3603995

Ref No. CBK/CT/2009/2004/03 Date:20.09.2004

TO WHOMSOEVER IT MAY CONCERN

This is to certity that Mr. T. Karthikeyan, (Reg . No. 013750034) of
Kumaraguru College Of Technology, Coimbatore (affiliated to Bharathiar
University), has successfully completed the project titled ‘Device Driver
Development’ in compliance with the requirement of partial fulfillment of the
Master Of Science (Software Engineering). He was associated with us during
the period from June -2004 to September-2004.

As per our company policy the source code is a property of CBK Infotech India
(P) Ltd. And it cannot be disclosed.

For and on behalf of CBK Infotech India Pvt Ltd.

DECLARATION

I hereby declare that the project entitled “Devices Driver
Development ”, for CBK InfoTech India(P) Ltd. Bangalore submitted to
Kumaraguru College of Technology, Commbatore, affiliated to
Bharathiar University as the project work of M.Sc Applied Science
Software Engineering, is a record of original work done by me under the
supervision and guidance of Ms. V.Hemal.atha ,B.E and Mr. K.R Baskaran,
B.E, M.S and this project work has not found the basis for the award of any
Degree/Diploma/Associate ship/Fellowship or similar title to any candidate of

any university.

Place: Coimbatore
T RoxRRenss
Date: 2.1 .500%n Signature of the Student

ACKNOWLEDGEMENT

To add meaning to the perception, it is my indebtedness to honor a few who had
helped me in this endeavor, by placing them on record.

With profound gratitude, I am extremely thankful to Dr. K. K PADMANABAN B.Sc.
(Engg), M.Tech, Ph.D., Principal, Kumaraguru College of Technology, Coimbatore for
providing me an opportunity to undergo the M.Sc APPLIED SCIENCE SOFTWARE
ENGINEERING course and thereby this project work also.

I extend my heartfelt thanks to my Computer Science & Engineering Department
head, ProfDr.S. THANGASAMY B.E (Hons), PhD, for his kind advice and
encouragement to complete this project successfully.

It’s my privilege to express my deep sense of gratitude and profound thanks to
Ms. V. HemaLatha, B.E System Designer, CBK InfoTech India (P) Ltd, Bangalore for
having allowed me to do my project work in her esteemed team and for helping me in all
means in successful completion of this project work.

Gratitude will find least meaning without thanking my Project coordinator
Mr.K R.BASKARAN, BE, M.S,, Assistant Professor, Dept of Information Technology
and my guide Mrs.R K Kavitha, M.C.A, M.Phil Lecturer, Dept of Computer Science &
Engineering for the valuable guidance and support throughout my project.

My gratitude is due to all staff members of CSE department, my parents and all my

friends for their moral support and encouragement for successful completion of my project.

KARTHIKEYAN.T
(Reg.No:013750034)

SYNOPSIS

The aim of this project is to provide a device driver for Microsoft Windows NT that
will allow touching any devices connected with Peripheral Component Interconnect (PCI)
system bus. The device driver is to provide the full-required functionality of a memory, 1/O
and Interrupt operation on any PCI device, which is connected to PCI bus. Driver can touch
entire memory location of any device that is connected with PCI bus. Driver supports
memory mapped /O and YO mapped /O operations. Driver search’s for the selected
device and communicates with the particular device. Driver runs at kernel level of the

operating system.

Application gives complete details of devices connected to PCI bus. It gives an
opportunity to select devices and get complete information about devices. You can select
any device for I/O, memory or Interrupt operation. Application will pass message to driver

with complete information.

Specifically, the device driver and the user library are to be implemented in
Microsoft Visual C++ using the Microsoft Windows NT Device Driver Kit (DDK) and
Windows NT Software Development Kit (SDK) environment.

According to the Windows NT terminology the device driver developed in this
project is a kernel-mode driver (Microsoft Corporation 1996). The device driver is
designed to operate only with PCI interface devices. Alternative system buses, such as ISA,
are not supported. The driver provides an interrupt service routine for handling hardware
interrupts. The driver also provides routines for handling read () and write () system calls.
The C library developed in this project provides the necessary interface between the user

piocesses and the Driver.

TABLE OF CONTENTS

PAGE.NO

1. INTRODUCTION
1.1 PROJECT OVERVIEW
1.2 ORGANIZATION PROFILE
2. SYSTEM STUDY AND ANALYSIS
2.1 SOFTWARE REQUIREMENT SPECIFICATION
2.2 EXISTING SYSTEM
2.3 PROPOSED SYSTEM
3. PROGRAMMING ENVIRONMENT
3.1 HARDWARE COFIGURATION
3.2 DESCRIPTION OF SOFTWARE AND TOOLS USED
4. SYSTEM DESIGN
4.1 PROCESS DESIGN
42 FLOW CHART
5. SYSTEM IMPLEMENTATION AND TESTING
5.1 SYSTEM IMPLEMENTATION
5.2 SYSTEM TESTING
6. CONCLUSION
7. SCOPE FOR FUTURE DEVELOPMENT
8. BIBLIOGRAPHY

9. APPENDIX
9.1 SAMPLE SCREENS
9.2 SAMPLE CODE

55

56
56
61

1.0

INTRODUCTION

1.1 PROJECT OVERVIEW

The goal of this project is to provide a device driver for Microsoft
Windows NT that will allow touching any devices connected with Peripheral
Component Interconnect (PCI) system bus. The device driver is to provide the
full-required functionality of a memory, I/O and Interrupt operation on any PCI
device, which is connected to PCI bus. Driver can touch entire memory location
of any devices connected with PCI bus. Driver support memory mapped 1/O and
I/0 mapped 1/O.

Driver will search any selected device and communicate with that device.
Driver runs at kernel level of operating system. So the Kernel level driver gives
an opportunity to the user level application to communicate with the driver.
Driver receives all messages, which comes from the user level application.
According to the user’s message, driver performs the read/write operation. If there
is any problem with driver or device then the driver should not start and flash

proper message. At the time of unloading, the driver should not get crashed.

The user application gives complete details of the devices connected to
PCI bus. It gives an opportunity to select one device at a time and get complete
information about devices. You can select any device for I/O, memory or
Interrupt operation. Application will pass message to the driver with complete
information. Driver runs at ring O level and application runs at ring 3 level. So
when the application wants to communicate, the driver control should jump from

ring 3 level to ring O level.

Specifically, the device driver and the user library are to be implemented
in Microsoft Visual C++ using the Microsoft Windows NT Device Driver Kit
(DDK) and Windows NT Software Development Kit (SDK) environment. The
implementation of the device driver will be tested in the working environment of

PC-compatible platforms.

Applications that are based on the device driver and the C user library,

will be tested with one or more PCI devices.

According to the Windows NT terminology, the device driver developed
in this project is a kernel-mode driver (Microsoft Corporation 1996). The device
driver is designed to operate only with PCI interface devices. Alternative system
buses, such as ISA, are not supported. The driver provides an interrupt service
routine for handling hardware interrupts. The driver also provides routines for
handling read () and write () system calls. Therefore, the application is capable of
using the operating system’s services for transferring data to/from the device. The
C library developed in this project provides the necessary interface between the
user processes and the driver. Practical issues concerning the communication

performance justify this functionality of the device driver and the user library.

1.2 ORGANIZATION PROFILE

CBK InfoTech: Partners of TCS (Tata consultancy Services) is a world
class software led IT services. CBK InfoTech is a IT service company providing a

range of value added software services to:

. Hardware product companies
. Software product companies
. End-user in large and medium business organization.

ABOUT CBK INFOTECH INDIA (P) LTD.

The information is the hallmark of today’s world. A driver for productivity
and the ability to offer quality solutions on information super high way are the
key to development of CBK InfoTech India (P) Ltd.

The essence of true development since 1988 by enhancing growth with the
presence of social justice. In promoting and cherishing the growth of those

associated with clients who are the true partners in progress.

There is no shortcut to success so as in the case of IT industry too. It is
never possible without innovation, an eye for vision, a strong will to succeed and
unlimited quality service. Quality objectives, precise and time bound are the root

criteria for success and development is not an exception with CBK.

CBK will leave no stone unturned to reach its customer to the topmost
rung of ladder success. A result that is translated at CBK, ie. - in tune with
technology with time and trust, truth and tradition, and requirement is the
principle assets. CBK has two divisions working at the moment - Training
division as Compu Home and a software development division. It is the
development division that is offering this project training as detailed in this

document.

CBK provides the state of the art technology like COM, COM+, Active-X,

ASP, 3-tier solutions etc. and limited support of its clients 1n India and abroad.

3

CBK also provides Consultancy services for all IT related matters to its clients.
With the revolving strategy and re-structuring, CBK has now started offering Web
based solutions and gearing towards providing the E-Commerce / M-Commerce

solutions to its existing and new clients.

TRAINING TIE-UP

CBK INFOTECH having status of ATC of TATA CONSULTANCY
SERVICES for committed to excellence in corporate training. CBK have the
unique advantage of combining a management perspective with in-depth technical
knowledge in all our training solutions. CBK offer a wide range of training

programs to meet the requirements of corporate clients.

OTHER TIE-UPS

The following are the measure Tie-ups of CBK INFOTECH in the areas of

Software Development, Consultancy and Training.

1. Project Development Partner of TCS
Technology Team Development of RGSL

3. R&D and technology Team Development of APSON.com (p)
LTD.

4. Prototype Development for VFM Software Solutions (p) LTD.

And Many More........

WORK RELATED AREAS @ CBK:

AR

© B N o

10.
11

Developing Device And Device Drivers
Web enabled applications development
Client / Server Applications Development
Embedded System

Research & Development in WAP and WEB related conversing
technologies

Corporate training

High-end User Training (Vocational)

Industrial Automation

Data Processing

One-Wire and Tiny Technology

Palm top/Hand Held PC Application Development/ E-CRM

It is the policy of CBK to design, develop, deliver, maintain and support

high quality software solutions. This is done not only to meet the client's

requirements but also to exceed their expectations by being their true partners to

the ladder of success. CBK extend its services to its clients by providing skilled

manpower resources on contractual basis. This leads to a dedicated human

resources development program.

TECHNICAL

The technical team at CBK has a combined IT experienced of more than

15 years in tools as follows

C/C++/VB/VC++/Java / Developer 2000
Access / MS SQL Server / Oracle

HTML /DHTML / ASP

COM /COM+/D-COM /MTS

Visual Interdev / Front Page / Hotdog

Adobe products / Macromedia Products

Etc...

2.0 SYSTEM STUDY AND ANALYSIS

2.1 SOFTWARE REQUIREMENT SPECIFICATION

The design of device drivers is influenced mainly by three factors:

. The hardware architecture of the interface adapters
. The system bus of the host computer
. Operating system upon which the driver is supposed to execute.

The aim of the project is to detect the existence of the PCI buses in the
system. If the bus is present then identifying the PCI devices and capture the
resources and complete Information about the devices present, to perform read or
write operation. This operation is performed on Input /OQutput Port or Memory of

the PCI device. Also information about the interrupt present is read.

TASK ACCOMPLISHMENT:

The task is accomplished by writing driver program with the help of
SDK and DDK for Windows NT Operating System.

SOFTWARE REQUIREMNTS:

a) DEVICE DRIVER

WinNT Driver Development Kit (DDK)
Software Development Kit (SDK)
Language ‘C’

OS - Windows NT 4.0

b) APPLICATION

. VC++ (MFC)
. OS — Windows NT 4.0

2.2 EXISTING SYSTEM

. In the existing system separate drivers are present for the devices
connected to the PCI-BUS.

. There is no separate driver that deals with all the devices
connected to the PCI-BUS.

. For example if the devices like floppy drive, CD-ROM, or Mouse
are present in the system connected to the PCI-BUS then there a
separate driver is required to operate these devices.

. These separate drivers cannot be linked with the other device
drivers.

. To over come this problem the proposed system has been
developed

2.3 PROPOSED SYSTEM

A device driver for Microsoft Windows NT is designed, that will allow
touching any devices connected with Peripheral Component Interconnect (PCI)
system bus. The device driver provides the full-required functionality of a
memory, I/O and Interrupt operation on any PCI device, which is connected to

PCI bus. Driver can touch entire memory location of any device that is connected
with PCI bus.

Driver support memory mapped /O and /O mapped I/O operations.
Driver searches for the selected device and communicates with the particular

device.

The user application gives complete details of the devices connected to
PCI bus. It gives an opportunity to select one device at a time and gets complete
information about devices. You can select any device for 1/0, memory or
Interrupt operation. Application will pass messages to the driver with complete

information

The device driver is designed to operate only with PCI interface devices.
Alternative system buses, such as ISA, are not supported. The driver provides an

interrupt service routine for handling hardware interrupts.

The driver also provides routines for handling read () and write () system
calls. Therefore, the applications opening the device can use the operating

system’s services for transferring data to/from the device.

In the existing system there is a separate driver for all the devices
connected to the PCI-bus. This problem has been over come by developing a
single driver for all the devices connected to the PCI-bus. This operation 1s done

by writing a single driver entry to the driver.

For example consider the devices like floppy drive, Mouse, CD-ROM that
is present in the system connected to the PCI-bus. There will be a single driver
that can perform the process of identifying the devices and to get the details
regarding the devices and the port or memory address that is used for developing

drivers of the separate devices.

[¢]

3.0 PROGRAMING ENVIRONMENT

3.1 HARDWARE CONFIGURATION

o Machine : Inte] 80x

o Processor : Intel Pentium-IiI
o Clock speed : 450Mhz

o Floppy disk : 1.44 MB

o Ram : 16MB RAM.

o 60MB hard-disk space for a minimum DDK installation; 95MB for a full
installation. (The same space is required for all platforms; a manual
installation is equivalent to a full installation.)

o 80MB hard-disk space for a full installation of the HCT test suites. (See
testing Your Driver for more details on system requirements and
installing various testing configurations.)

o A second machine capable of running Windows NT for kemel
debugging.

o AnyPClIDevice

10

3.2 DESCRIPTION OF SOFTWARE AND TOOLS USED

> Microsoft Visual C++

Visual VC++ 6.0 is designed to deploy applications across the
enterprise and to scale to nearly any size needed. The ability to object
models, database integration, server components, interacting with
operating

System and Internet/intranet applications provide an extensive

range of capabilities and tools for the developer.

Why Visual VC++?

Among the modern programming languages Visual VC++ plays a pivotal
role. In the field of development it can apply in to multiple purposes very easily.
Moreover it is a product of Microsoft. As like any other product of Microsoft
Visual VC++ is also very easy to use. We can easily develop applications and
enhance it using Visual VC++. Visual VC++ ranges from lightweight Visual
VC++ Script programming, to application- specific programming with Visual
VC++ for Applications, and finally, full-fledged enterprise development.

. Visual Platform

. Ease of Use

. Flexibility

" Ease of Enhancement

. Easy to Understand

Windows has been one of the most popular graphical user interface (GUI)
operating systems, and Microsoft revolutionized Windows development with the
advent of Visual VC-++. Windows works in an event-driven environment,
meaning the user is in control, and programs need to create and respond to events
(such as a mouse click). Visual VC++ became one of the first “Visual” tools to

provide an elegant interface for working in this environment. And the sixth

i1

iteration adds the ability to work 1n a different type of visual environment-the

Internet. Visual VC++ has been popular for one other kind of development-

Databases. Visual VC++ 6.0 gives us even more tools in the IDE to work with

databases.

Microsoft has added significant functionality in several core areas.

They are outlined as follows:

o

DATA ACCESS A key addition for helping programmers build
database applications is support for ActiveX Data Objects,
Microsoft’s new data access technology. Development tools
include a SQL editor, data environment for developing data
objects, and data report designer.

INTERNET FEATURES: What may be the most significant new
functionality is the ability to create both server-and client-side
Internet applications. Visual VC++ finally comes to the Internet.
COMPONENT CREATION Visual VC++ continues to emerge as
a world-class development tool for creating and working with
components ranging from ActiveX controls to integration with

Microsoft’s Transaction Server.

NEW AND UPDATE CONTROLS: Microsoft continues its
legacy of creating and enhancing controls for supporting rapid
application development.

LANGUAGE FEATURES: True to the long tradition of Visual
VC++, there have been many language enhancements that make
working with strings, numbers, and objects even easier and more
powerful.

WIZARDS: Wizards and more wizards have been added to the
tool set to support rapid application development of enterprise-

level applications.

12

> Microsoft Windows NT 4.0

Windows NT (Windows New Technology) is a 32-bit secure operating
system (OS) that uses a Graphical User Interface (GUI) for graphical, interactive
user control. It can support multiple processors (up to 16 in Windows NT Server
editions) it is a preemptive and multi-tasking OS. Rather than the traditional
method of applications allocating central processing unit (CPU) time, the OS
makes these assignments, preventing most applications from hanging the
operating system, resulting in few, if any, operating system crashes. In previous
versions of Windows, Windows has been an add-on to the Disk Operating System

(DOS). WindowsNT is a complete operating system by itself.

Second, its developers gave NT a multitasking preemptive-scheduling
system. Neither DOS nor Windows 3.x is capable of true multitasking with
preemptive scheduling. Without add-on software, DOS can execute only one
program, or task, at a time. Windows 3.x can execute several programs
concurrently, but they must be well behaved; that is, each program must be aware
that other programs may need to run, and it must therefore yield the machine at
regular intervals. This design means that a buggy or malicious program can halt
the computer simply by entering an infinite loop in which it never yields. In NT, a
centralized scheduling authority doles out CPU time to programs that need it.
Once a program's turn has ended, the scheduler has the power to preempt it and
give another program a turn.

o) COMPACTIBILITY: The OS should support a wide range of
existing s/w & h/w.

o ROBUSTNESS AND RELIABILITY: The OS has to resist the
attacks of naive or malicious user & individual applications should

be as isolated from each other as possible.

o PORTABILITY: The OS should be able to run on a wide variety
of current and future platforms.

o) Extensibility: It should be possible to add new features and support
new I/O devices without disturbing the existing code base.

o) Performance: The OS should be able to give reasonable
performance on commonly available h/w. It should also be able to

take advantage of features like multiprocessing hardware.

¢ CHARECTERISTICS OF WINDOWS NT
« MULTITHREADING

The unit of execution and scheduling on Windows NT 1s the thread. An
initial thread is created when a process is created. That thread may create
additional threads. In Windows NT, each thread has its own scheduling priority
and is autonomous in terms of scheduling i.e. the OS does not take into account

the process to which a thread belongs when it makes scheduling decisions.

o MULTITASKING

Windows NT allows multiple units of execution to run simultaneously. It
rapidly switches among these units of execution, allowing each to run for a short
period of time. This characteristic is termed as multithreading. In NT, multiple
threads may run at one time. The decision as to which thread is selected is almost

entirely based on priority. Nt has 32 possible thread priorities.

Priorities 0-15 are Dynamic priorities

Priorities 16-31 are Real-Time priorities

NT implements what is known as Pre-emptive multitasking. This 1s based
on time slicing. Neither DOS nor Windows 3.x is capable of true multitasking
with preemptive scheduling. Without add-on software, DOS can execute only one

program, or task, at a time. Windows 3.x can execute several programs

14

concurrently, but they must be well behaved; that is, each program must be aware
that other programs may need to run, and it must therefore yield the machine at
regular intervals. This design means that a buggy or malicious program can halt
the computer simply by entering an infinite loop in which it never yields. In NT, a
centralized scheduling authority doles out CPU time to programs that need it.
Once a program's turn has ended, the scheduler has the power to preempt it and

give another program a turn.

MULTIPROCESSING

NT supports only symmetric multiprocessing (SMP). Here all systems
share the same main memory and each system has equal access to the peripheral
devices. The OS runs on all the processes in the SMP system. In NT there is no

concept of master and slave CPUs.

The Windows NT architecture supports SMP systems with up to 32 CPUs.
By default, the Win NT WORKSTATION can support 2 processors, Windows
NT Server Systems can support 4 processors and Windows NT Enterprise Edition

can support up to 8 processors.

INTEGRATED NETWORKING

Windows NT has always supported multiprotocol networks. A few
protocol families which NT supports are AppleTalk, TCP/IP, DLC etc.

DEMAND PAGED VIRTUAL MEMORY

Windows NT utilizes a virtual memory architecture in which each process
has its own 4GB virtual address space. This virtual address space is subdivided
into pages. Each page is of 4KB in X-86 architecture. Typically user applications
have access to 2GB of their process’s virtual address space, with the remaining
2GB of address space to be used by the system. The NT virtual memory model
allows the same physical addresses space to appear within the virtual address

space of multiple processes

15

USER VS KERNAL MODE

The NT architecture is divided into two modes —the user mode & the
kernel mode. User mode is the least-privileged mode NT supports; it has no direct
access to hardware and only restricted access to memory i.e. they can't touch parts
of memory that are not specifically assigned to them. Kernel mode 1s a privileged
mode. Those parts of NT that execute in kernel mode, such as device drivers and
subsystems such as the Virtual Memory Manager, have direct access to all

hardware and memory.

Other operating systems, including Windows 3.1 and UNIX, also use
privileged and no privileged modes. What makes NT unique is where it draws the

line between the two.

MICRO KERNAL ARCHICTURE

NT is sometimes referred to as a micro kernel-based operating system.
The idea behind the pure microkernel concept is that all operating system
components except a small core (the microkernel) execute as user-mode
processes. But the core components in the microkernel execute in privileged

mode, so they access hardware directly

Microkernel architecture gives a system configurability and fault
tolerance. Because an operating system subsystem like the Virtual Memory
Manager runs as a distinct program in microkernel design, a different
implementation that exports the same interface can replace it. If the Virtual
Memory Manager fails in a microkernel design, the operating system can restart it
with minimal effect on the rest of the system. But in a monolithic operating
system design (e.g., DOS and Windows 3.1), the entire operating system must be
rebuilt to change any subsystem. Le. if the Virtual Memory Manager has a bug in

a monolithic system, the bug is likely to bring down the machine.

14

A disadvantage to pure microkernel design is slow performance. Every
interaction between operating system components in microkernel design requires

an inter process message, which results in context switches

NT takes a unique approach, known as modified microkernel that falls
between pure microkernel and monolithic design. In NT's modified microkernel
design, operating system environments execute in user mode as discrete
processes, including DOS, Winl6, Win32, 0S/2, and POSIX .The basic operating
system subsystems, including the Process Manager and the Virtual Memory
Manager, execute in kernel mode, and they are compiled into one file image.
These kernel-mode subsystems are not separate processes, and they can

communicate with one another by using function calls for maximum performance.

Thread scheduling and thread dispatching are the responsibilities of the
microkernel. NT's Executive components use basic hardware functionality
implemented in the microkernel. The microkernel, which is known in NT as the
Kernel, contains the scheduler. The Kernel also manages the Executive's use of
NT's hardware and software interrupt handlers and exports synchronization

primitives
MULTIPLR OS EMULATION

NT supports execution of Win32, POSIX, 0S/2, DOS & Windows 3.1
programs with their native semantics. NT's user-mode operating system
environments implement separate operating system APIs. The degree of NT
support for each environment varies. NT’s operating system environments rely on
services that the kernel mode exports to carry out tasks that they can't carry out in
user mode. The services invoked in kernel mode are known as NT's native API
This API is made up of about 250 functions that NT's operating systems access

through software-exception system calls.

17

Native API requests are executed by functions in kernel mode, known as
system services. To carry out work, system services call on functions in one or

more components of NT's Executive.

Device drivers are dynamically added NT components that work closely
with the I/O Manager to connect NT to specific hardware devices, such as disks

and input devices.

PROCESSOR ARCHICTURE INDEPENDENCE

Windows NT was designed to work on a wide variety of processors. To
facilitate this, most Windows NT code is written in the C programming language.

Use of assembly language has been kept to a minimum.

Device drivers and the Kernel use the HAL to interact with the computer's
hardware. The HAL exports its own APL which translates abstract data into
processor-specific commands. NT is portable across processor types because
processor-specific code is restricted to the Kernel and the HAL. This situation
means that when NT is ported to a new processor, only the Kernel and the HAL
must be converted. The rest of NT's code is written in C and C++ and can simply

be recompiled for the new processor.

OPERATING SYSTEM ENVIRONMENTS

NT's operating system environments are implemented as client/server
systems. As part of the compile process, applications are bound by a link-time
binding to an operating system API that NT's operating system environments
export. The link-time binding connects the application to the environment's client-
side DLLs, which accomplish the exporting of the APIL For example, a Win32
program is a client of the Win32 operating system environment server, so it is
linked to Win32's client-side DLLs, including Kernel32.dll, gdi32.dll, and
user32.dllL

18

Client-side DLLs carry out tasks on behalf of their servers, but they
execute as part of a client process. In some cases a client-side DLL can fully
implement an APl without having to call upon the help of the server ex. Read

File, in other cases, the server must help out ex Create Process.

User components, In NT 3.51, whenever a Win32 program makes a
drawing or user-interface call, the GDI or User client-side DLLs make LPC calls
to the Win32 server

The server's aid is usually necessary only when global information related
to the environment must be updated. When the client-side DLL requires help from
the server, the DLL sends a message known as a local procedure call (LPC) to the
server. When the server completes the specified request and returns an answer, the
DLL can complete the function and return control to the client. Both the client-

side DLL and the server may use NT's native API when necessary.

However, Microsoft has removed the most LPC-intensive portion of NT
3.51's Win32 operating system environment. The Win32 environment includes
graphics and user-interface functions, which are implemented in its graphics
device interface (GDI) and (CSRSS.EXE). Those LPC calls to the server cause
Win32's sluggish performance.

But in NT 4.0, the User and GDI components have been moved from user
mode into kernel mode as a new Executive subsystem, Win32K.SYS. When a
drawing call is made, the client-side GDI's DLL makes a new native system call
into kernel mode, where the request is carried out (Win32 native system calls
didn't exist in NT 3.5x). There is no message passing and no context switches--
just a switch from user mode to kernel mode and back. This optimization has a

dramatic effect on the performance of Win32 applications

19

Protected
Subsystems

|

User Mode
- T | | Kernel Mode
LAN ~ Y Y
Ma
(System Services)
/O Manager Configuration m:::::r Process P L°::| Object ge;:urlty
FileSystem, M rocedure | Manager |Reference
Executive Intermediate, anager Executive Structure call Monitor
and Device Support
Drivers
= Kemel
v,
Hardware Abstraction Layer l
Executive and System Services
Window
Yo ::;“@1‘
Manager Graphice
Object Security Process Local Memory Cache Device
Manager | Reference | Mapager | Procedure | Manager | Manmager | Interfice
Kernel Manager Call
Mo.de Craphi
Drivers Device
Driverss
Microkernel

Hardware Abstraction Layer (HAL)

20

User Mode

Kernel Mode
Srstent Services
NT Prowess WM LG
Exocuiive | M2808eT | Manager| | Manager
Kernel
Drivers
Handwane

Figure 4. Windows NT input-output syastem (aduapted from Custer 19933

¢ THE WINDOWS NT 4.0 BOOT PROCESS
First of all, there are a handful of files required for a successful boot:

NTLDR - The operating system loader, which must reside in the root of the boot
drive. In a multi-boot environment, it will be used to start the other systems

initially. This file is hidden, system, and read-only.

BOQOT.INI - a text file, which is used to build the OS Selection menu, and gives
the path to each OS available. This file also must be in the root of the boot drive,

and is read-only, system.

BOOTSECT.DOS - This file contains the boot sector of the Operating System
that was on the hard drive previous to installing NT. NTLDR will use this to boot
in a multi-boot environment if an OS other than NT was chosen from the boot

menu. It too, is a hidden system file that must be 1n the root of the boot drive.

21

NTDETECT.COM - This program examines the hardware on the machine, and
builds a list, which it passes back to NTLDR to be used to build the Hardware
Hive of HKEY LOCAL MACHINE in the Registry. This file is also a hidden,

read-only system file, in the root of the boot partition.

NTOSKERNEL.EXE - The kernel of the OS itself which resides in the
WINNT\SYSTEM32 directory.

NTBOOTDD.SYS - This device driver file will only be used on systems that boot
from a SCSI disk on which the SCSI adapter BIOS is disabled.

SYSTEM - This file is located in the WINNT\ SYSTEM32\CONFTI G folder, and
controls which drivers and services are loaded during the Windows NT startup.
Next when the machine is first powered on, it will go through a series of steps

before NT actually begins booting:

POST - Power on Self Test (usually counts memory, offers an opportunity to
enter the BIOS settings, etc.).

The machine locates the boot device, and loads the MBR (Master Boot Record)
into memory, which runs the program, which is in it.

The MBR's program will locate the active partition and load the boot sector into
memory from it.

From the boot sector, NTLDR will be loaded into memory and run.

This brings us to the actual NT booting process.

> NTLDR switches the processor to a 32-bit flat memory model, supporting
up to 4 GB of RAM (physically installed).

> NTLDR starts what is called a mini file system. Windows NT can read
one of three file formats: FAT, NTFS & CDFS.

22

> NTLDR reads the BOOT.INI file, and displays the operating system
selections in the Boot Menu. If Windows NT is selected, NTLDR will run
NTDETECT.COM. K another OS is selected, NTLDR will load and run
BOOTSECT.DOS, and pass control to it, and exit. The other OS will continue as
though the machine had just booted. f BOOTSECT.DOS is missing or corrupt, it

must be replaced or reconstructed in order to boot to the other OS.

> NTDETECT.COM scans the machine's hardware (you will notice the
keyboard lights and modem lights flash at this point, as 1t scans the various ports).
The information gathered during this phase will be passed back to NTLDR.

> NTLDR then loads NTOSKRNL.EXE and passes the hardware
information to it. This technically ends the "boot phase" and begins the "load
phase."

There are four more phases to go before NT is officially up and running. They
are the Kernel Load, Kernel Initialization, Services Load, and Subsystem Start

Phases.

> During the Kernel Load phase, the HAL (hardware abstraction layer) is
loaded, which hides the physical hardware from applications.
The system hive of the registry is loaded next, and scanned for drivers and

services that should be loaded.

> During the Kernel Initialization phase, the screen is blue. The drivers are
initialized and loaded, and the registry's CurrentControlSet is then saved, and the
Clone control set is created, but not saved. The registry hardware list is then

created from the information gathered earlier.

23

> In the Services Load phase, the session manager is started (SMSS.EXE),
which runs any programs listed in

HKEY LOCAL _MACHINE\SYSTEM\CurrentControlSet\ Control\Session
Manager: Boot Execute. After this, the session manager sets up the page file(s).
Next the Clone Control Set is written to the registry. The last thing the session
manager does is loading the required subsystems (by default, only Win32).

> In the Subsystem Start phase, WINLOGON.EXE is automatically started,
which starts the Local Security Authority (LSASS.EXE) and brings up the logon
dialog box (CTRL+ALT+DEL). The Service Controller (SCREG.EXE) is then
run, which looks through the registry for services that are set to automatic load,
and loads them.

» The last part of a Windows NT boot is the user logon. Once the user logs
on successfully, a boot is considered complete, and the Clone control set is copied

to the Last Known Good control set.

> Microsoft Windows NT 4.0 DDK (Device Development Kit)

. Windows NT DDK drivers are built using the build utility, which uses a
set of rules and project files that specify how drivers should be created.
° 1t is a product of Microsoft Corporation used to compile the driver file.

° It compiles the driver coding into a system file.

» Debug Viewer

This software is used to debug and test the driver. Debug viewer is like a
text editor in which we can list the print statement of the driver coding while

testing.

24

» PCI-BUS

Peripheral Component Interconnect (PCD), as its name implies is a
standard that describes how to connect the peripheral components of a system
together in a structured and controlled way. The standard describes the way that

the system components are electrically connected and the way that they should

behave.
cruU
| PC1Bus 0
PCL-1SA pC1-PCL f Upsrreum
Bridge Bridge
Video * Downsrreems
1SA Bus PCl1 Bus 1
Super 1O Controller SCs1 Ethernet

Figure: Example PCI Based System

Figure is a logical diagram of an example PCI based system. The PCI
buses and PCI-PCI bridges are the glue connecting the system components
together; the CPU 1s connected to PCI bus 0, the primary PCI bus as is the video
device. A special PCI device, a PCI-PCI bridge connects the primary bus to the
secondary PCI bus, PCI bus 1. In the jargon of the PCI specification, PClbus1is
described as being downstream of the PCI-PCI bridge and PCI bus O is up-stream
of the bridge. Connected to the secondary PCl bus are the SCSI and Ethernet
devices for the system. Physically the bridge, secondary PCI bus and two devices
would all be contained on the same combination PCI card. The PCI-ISA bridge in

78

the system supports older, legacy ISA devices and the diagram shows a super VO

controller chip, which controls the keyboard, mouse and floppy.

PCI BUS DETAILS

The PCI bus is a 32 or 64-bit wide bus with multiplexed address and data
lines. The bus requires about 47 lines for a complete (32-bit) implementation.
The standard operating speed is 133MHz, and data can be transferred

continuously at this rate for large bursts.

Cache
CPU Controller ———p| Memory

EISA Bridge
PCI PCI I
Device Device

EISA Bus
Function Function
0 0

EISA
Slot 0

TS

¢ PCl Address Spaces

The CPU and the PCI devices need to access the memory that is shared
between them. This memory is used by device drivers to control the PCI devices
and to pass information between them. Typically the shared memory contains
control and status registers for the device. These registers are used to control the
device and to read its status. For example, the PCI SCSI device driver would read
its status register to find out

If the SCSI device was ready to write a block of information to the SCSI
disk. Or it might write to the control register to start the device running after it has

been turned on.

The CPU's system memory could be used for this shared memory but if it
were, then every time a PCI device accessed memory, the CPU would have to
stall, waiting for the PCI device to finish. Access to memory is generally limited
to one system component at a time. This would slow the system down. It is also
not a good idea to allow the system's peripheral devices to access main memory in
an uncontrolled way. This would be very dangerous; a rogue device could make

the system very unstable.

Peripheral devices have their own memory spaces. The CPU can access
these spaces but access by the devices into the system's memory is very strictly
controlled using DMA (Direct Memory Access) channels. ISA devices have
access to two address spaces, ISA VO (Input/Output) and ISA memory. PCI has
three; PCI 1/0, PCI Memory and PCI Configuration space.

The Alpha AXP processor does not have natural access to addresses
spaces other than the system address space. It uses supporting chipsets to access
other address spaces such as PCI Configuration space. It uses a sparse address
mapping scheme which steals part of the large virtual address space and maps itto

the PCY address spaces.

27

¢ PCI CONFIGURATION HEADER

Jl 16 15 0]
Device 1d Vendoc 1d Och
Stams Commend O4h
Class Code OBh

| | 10k

‘Base Address Registers

24h
CerdBus CIS Pointer
SubSystem ID SubSys Vendor ID
Expantion BIOS Rom Addr
Reserved
Reserved
MaxLat MinGnt Line l Pin 3Ch

Figure: The PCI Configuration Header

Every PCI device in the system, including the PCI-PCI bridges has a
configuration data structure that is somewhere in the PCl configuration address
space. The PCI Configuration header allows the system to identify and control the
device. Exactly where the header is in the PCI Configuration address space
depends on where in the PCI topology that device is. For example, a PCI video
card plugged into one PCI slot on the

28

PC motherboard will have its configuration header at one location and if it
is plugged into another PCI slot then its header will appear in another location in
PCI Configuration memory. This does not matter, for wherever the PCI devices
and bridges are the system will find and configure them using the status and

configuration registers in their configuration headers.

Typically, systems are designed so that every PCI slot has it's PCI
Configuration Header in an offset that is related to its slot on the board. So, for
example, the first slot on the board might have its PCI Configuration at offset 0
and the second slot at offset 256 (all headers are the same length, 256 bytes) and
so on. A system specific hardware mechanism is defined so that the PCI
configuration code can attempt to examine all possible PCl Configuration
Headers for a given PCI bus and know which devices are present and which
devices are absent simply by trying to read one of the fields in the header (usually
the Vendor Identification field) and getting some sort of error. The describes one
possible error message as returning OxFFFFFFFF when attempting to read the
Vendor Identification and Device Identification fields for an empty PCl slot.

70

Vendor

A unique number describing the originator of the PCI device. Digital's -

Identification | PCI Vendor Identification is 0x]011 and Intel's is 0x8086.
Device A unique number describing the device itself. For example, Digital's
Identification | 21141 fast ethernet device has a device identification of 0x0009.
Status This field gives the status of the device with the meaning of the bits of
this field set by the standard. . f
Command By writing to this field the system controls the device, for example
allowing the device to access PCI /O memory,
Class Code This identifies the type of device that this is. There are standard
classes for every sort of device; video, SCSI and so on. The class code
for SCS1is 0x0100.
Base Address | These registers are used to determine and allocate the type, amount
Registers and location of PCII/O and PCI memory space that the device can
use.
Interrupt Pin | Four of the physical pins on the PCI card carry interrupts from the
card to the PCI bus. The standard labels these as A, B, C and D. The
Interrupt Pin field describes which of these pins this PCI device uses.
Generally it is hardwired for a pariticular device. That is, every time
the system boots, the device uses the same interrupt pin. This
information allows the interrupt handling subsystem to manage
interrupts from this device,
Interrupt Line | The Interrupt Line field of the device's PCI Configuration header is

used to pass an interrupt handle between the PCl initialisation code,
the device's driver and the operating system's interrupt handling
subsystem. The number written there is meaningless to the the device
driver but it allows the interrupt handler to correctly route an interrupt
from the PCI device to the correct device driver's interrupt handling

code within the operating system.

4.0 SYSTEM DESIGN
4.1 PROCESS DESIGN

The following are major functions during the device Driver Development

Initialization.
Initialization individual operations on the device.
Handling interrupts from the device.

Processing the interrupt.

DA e

Unloading.

¢ Module One:

Initialization, the first state, is a relatively simple task. The special
function called Driver Entry is called by /O manager after the driver is loaded.
Driver entry creates Device object to represent the actual hardware. A device
object represents all states of the device. Driver Entry then sets up the initial state

for each device and makes the device available by name to the application level.

Hardware

fi{s) g
Manager !

4
‘l
\ DriverEniry 0 ‘

Module Two:
The second state is to initialize the individual operations on the device. As
the application code requests such operations as Open, Close, Read, and Write,
NT routes these requests through the I/0 manager, which calls the appropriate
Dispatch routine to handle the function. Depending upon the operation, the
dispatch routine may or may not touch the actual hardware. This is shown on

figure below.
re

Mamnager Hardware
4

!

Pispaich ;

Routine it]
A !

. 3 !

. 5 H

L] ". .f

J‘ ',

Dispatch y j

Routine « ;

| ;

l‘ .‘

l' J[

l‘. ,'f

Y 7

1 HAL /
[y)
‘1‘ L

¢ Module Three:

The third and forth states together are one of the interesting feature of
Device Driver. Handling the interrupt is done when the device notifies the
processor that it needs attention. The HAL intercepts this signal and activates the
Interrupt Service Routine, an entry point that is called to process the interrupt
request. This routine does as little as possible- handling perhaps a dozen
instructions in the simplest case — and then queues up a request for interrupt

processing and returns. This is shown in figure below.

¥0 Hardware
Manager
Intexrrupt
Service
Reutine

£%

¢ Module Four

Processing the interrupt is when all of the real work of dealing with the
interrupt happens. Buffers may get copied if the request was for input. If an error
occurred, error recovery may be initiated if it is appropriate for the device. A new
1/0 operation may be started. Kernel memory that was dynamically allocated may
be freed. All of these relatively lengthy operations are handled by a function that
is logically “called” by the ISR but which in fact executes at some later time.
Because the actual execution of the procedure is deferred, that is called Deferred
Procedure Call (DPC) and the procedure itself called the DPC routine. The DPC
routine is called, indirectly, by the ISR and when it completes,

o) Hardware
Manager -

Deferred
Procedure

Call

Interrupt
Service
Routine

3

\
\HAL/
N4

it notifies the I/O manager that the I/O transfer has completed. The 1/O

manager can then release the application program that has been waiting for the
/O operation. The path from ISR to DPC routine to the I/O Manager is shown in

figure above.

A

¢ Module Five
Ultimately, the driver needs to be unloaded. This is done in fifth state. It

can be the consequence of the system’s shutting down or of the drive’s being

explicitly stopped either by the program or by the user. The unload operation 1s
called by the /O manager and may or may not touch the hardware in the process
of being unloaded. A device driver may, in the process of unloading, need to
“shut down” the device. The structure of the Unload operation is shown in figure

below.
/\ Hardware
o

Manager T

i

‘

'

i

H

]

-

L Unload [;
v N ;

AR

¢ Driver for WinNT

An NT Device driver can be simplified to the schema shown in figure . The
arrow indicates flow of control

o
Mansger
-
—# DriverEntry | ".‘
i
!
Bispaich H
g =
Vo
LY 1
Y H
—— ‘o
—® Rouiine A
\\\'u;
a
i > Unload :
:

-
-

I
Y.

T
r

Device Driver Entry Routine

This routine is invoked automatically by the I/O Manager when the device
driver is loaded in the system . The entry routine creates and initializes system
objects that are used by the YO manager to recognize and access the driver. This
is the only routine that has to be named with a fixed name: DriverEniry. This

routine is entry point of Driver. Syntex is

NTSTATUS

DriverEntry {
IN PDRIVER OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath

)}z

Dispatch Routines

Dispatch routines provide the main functions of the device driver. When
the /O Manager is called to perform an /O operation, it creates an IRP and
passes it to one of the driver’s dispatch routines. Each dispatch routine is set up to

handle a given major function code in the form IRP_MJ_XXX.

Start /0 Routine

This routine is specific to the lowest-level Windows NT device drivers.
Because Windows NT is a multithreaded operating system and the I/O Manager
supports asynchronous I/O operations, the I/O requests to the driver may arrive
faster that it can process them. In this case queuing is required. After an /O
request has been issued, the start /O routine is invoked first and queues the IRP

representing the request for further processing by the driver dispatch routines.
Interrupt Service Routine

When a peripheral device generates an interrupt, the kernel’s interrupt
dispatcher transfers control to the Interrupt Service Routine (ISR) of the driver. In

Windows NT, interrupt service routines run at high interrupt request levels

(IRQL).

Cance! Routine

Since the Windows NT I/O system is asynchronous, a device driver may

have a number of IRPs pending for an indefinite interval of time in the queue.

7

During that interval, the thread that initiated the /O request, represented by an
IRP, may be canceled.

Unload Routine

Windows NT supports drivers that can be replaced, or unloaded and
reloaded while the operating system is running. Consequently, drivers must
provide an unload routine. The unload routine releases all system resources
associated with the device driver, so the /0 Manager can remove the driver from

memory.
Forwarding an I/O Request to a Device Driver

When application threads in Windows NT perform /O operations, they
obtain a file object that is a higher-level representation of the device responsible
for the required I/O operations. The operating system synchronizes user threads
and kernel threads by signaling the file object for /O completion. You can get

complete idea by shown figure.

Dispaich

IoSiartP acket

Iniexrupt Service

IoReguesiDpc

DpcForlsr

IoCompleieRequest
ToStarilNe xtPacket

Data Flow Diagram Level 1:

[HEADER FILES J l INIFILE

|
{

1/'0 MANAGER J‘—

v

DRIVER ENTRY

STRUCTURE

d

P

MESSAGE

DISPATCH
ROUTINES

1/P BUFFER

DIR FILES

OUTPUTBUFFE

DATA READ FROM
RESOURCES

4.2 FLOW CHART

Return Status)

Check for
PciBus and
Devices

Return Status)

Store all the Device Information in a temporary
variable and a global structure

v

Create Device name in Dosmode and Kernel mode

Y

Return Status >

Create symbolic between the two objects

Return Status >

§

Check for the resources of the devices and call
the dispatch routines

v

:
v '

'

Msg for create func

Msg for close fanc Check for the user
defined message

To unload driver

Call Read()

Call Read
a0

Get the current IRP Stack Location

Is user Misg
from

Application=IR
P_MJ DEVIC
E_CONTROL

[

Get the control code of the Msg from the stack Location

a1

PciUnload()

Is user Msg from Yes

Application=I0C

TL_READ DEVI

CE_INFORMATI DataRead() “—‘@
ON

Is user Msg from
Application=IOCTL

_WRITE_DEVICE
INFORMATION

DataWrite()

Is user Msg from
Application=IOCTL
_READ_IO_MAPP
ED_ADDRESS

Yes
ToMappingread() ——b.

1s use Msg from
Application=JOCTL

_WRITE_IO_MAPP
ED_ADDRESS

ToMappingWrite()

AN

Is user Msg from
Application=IOCTL
_READ_MEM_MA
PPED_ADDRESS

Is user Msg from
Application=IOCTL
_WRITE_MEM M
APPED_ADDRESS

MemMappingWrite() }p@

No

Receive Msg from the Application

v

Retrieve the required information of the device

v

Send the data from driver to Application

Return Status

Receive Msg from the Application

v

Retrieve the required information of the device

v

Send the data from driver to Application

Return Status

Retrieve the mapping address of the Port

v

Translate the Bus relative address to system relative address

.

Read the Data from the Mapped Address]

v

Send the Data from Driver to Application

(Return Status }

a4

Retrieve the data to be written on the port

v

Translate the Bus relative address to system relative address

y

write the Data to the Mapped Address

v

Write the data to the port Address

v

Send the Data from Driver to Application

G

v

Receive the Msg from the Application

v

Translate the Bus relative address to system relative address

v

Get the size of the address to be mapped

v

Get the virtual Address

v

Map the address to System logical Address

v

Read the data from the memory address

v

Send the data to the Application

v

(Return Status)

Receive the Msg from the Application

v

Translate the Bus relative address to system relative address

v

Get the size of the address to be mapped

v

Get the virtual Address

v

Map the address to System logical Address

v

Write the data from the memory address

v

Send the status of the process to application

Return Status

46

5.0 SYSTEM IMPLEMENTATION AND TESTING

5.1 SYSTEM IMPLEMENTATION

Installing a device driver on a machine using the Microsoft Windows NT.

Most drivers are installed using the Windows NT 4.0 information (INF)
files and Setup functions; however, some drivers (for example, network and
multimedia) are installed with the legacy methods. Driver installation can occur

either during or after the installation of Windows NT on the machine.

When Windows NT is installed on a machine, the initial phase of the
Windows NT Setup program installs only the minimum number of drivers needed
for NT to run: keyboard, mouse, video, SCSI/Disk, and Machine/HAL. This
phase of the Setup program is known as text setup. If you want the user to be able
to install your driver during text setup, your distribution disk must include a text

file named txtsetup.oem.

After the text setup phase has been completed, the setup program boots
Windows NT and proceeds with the GUI-mode phase of the Windows NT
installation. During this phase, the Setup program gives the user an opportunity to

install network components.

After Windows NT has been installed, a user with administrator privileges
can install drivers. This would be necessary, for example, if a device is added to

the hardware configuration that was not present when NT was installed or if the
user wants to install a different or updated driver for an existing device. For this

situation, the following installation methods are available:

® To install a display driver, keyboard driver, modem driver, mouse driver,
PC Card (PCMCIA) driver, port driver, printer driver, SCSI adapter
driver, tape device driver, or telephony driver, the user would run the

corresponding applet in the Control Panel folder.

. To install network components, the user would run the Networks applet
(ncpa.cpl) in the Control Panel folder. This applet calls the Windows NT
Setup program, and expects to find an oemsetup.inf (or oemsetnt inf) file
on the supplied distribution disk.

. To install a multimedia device, the user would run the Multimedia applet
(multimed.cpl) in the Control Panel folder. The driver distribution disk

must contain an oemsetup.inf (or oemsetnt.inf) file

. For driver types not discussed above, the driver developer can write an
installation program and provide this with the driver. The installation
program would use functions in the Setup API to set up the registry and
to copy files.

> Driver Installation Requirements:

Windows NT device driver installation includes the following

components:

Copying the files required by the driver into the appropriate system
directories. Storing information about the driver in the Windows NT

configuration registry.

> Text-Mode Setup:

During the text setup phase of Windows NT installation, the Windows
NT Setup program installs drivers for the following components: keyboard,
mouse, video, SCSI, disk, CD-ROM, and machine/HAL. If text setup cannot

find a driver for any of these components, it prompts the user to insert a disk

48

containing the driver. The user can also select other from a list of drivers for a

component; this causes Setup to prompt the user for a disk.

If you are distributing a driver for one of these hardware components and
intend to enable the user to install it during text setup, your distribution disk
must include a file named txtsetup.oem. A ixtsetup.oem file i1s a text file

containing the following information:

* Identifies the hardware components supported by this #xisetup.oem file.
* Lists the files to copy from the distribution disk for this component.

* Lists the registry keys and values to create for this component.

» INF Files:

This section describes Windows NT 4.0- and Windows 95-style INF
files. An INF file is a formatted reference file that contains information about
installation files and devices such as filenames, version information, and so on.
You can create or modify an INF file using any text editor. If you are providing
a Windows NT device driver to be installed with a Control Panel application or
other installation program, you must create an INF file. The INF file enables

your device to be installed and to work in the Windows NT environment.

> INF File Format Reference:

The format of the Windows NT 4.0- and Windows 95-style INF files
differs from the Windows NT 3.x INF files. These new INF files do not contain
installation scripts. All of the installation procedures are included in the setup

program; the INF file acts as a resource, contining formatting and file

information.

49

An INF file is made up of a set of named sections. To be used by the
operating system installer, a section must contain one or more items. There can be

any number of sections in an INF file.

There are approximately 20 types of sections that can be used in an INF
file. Each type of section has a particular purpose; for example, to install a service

or add entries to the registry.

INF files must follow these general rules:

. Sections begin with the section name enclosed in brackets.

. Values can be expressed as replaceable strings using the form %strkey%e.
To use a % character in the string, use %%. The strkey must be defined in
a Strings section of the INF file.

Each INF file must contain a Version section identifying it as a Windows NT
4.0/Windows 95-compatible file.

5.2 SYSTEM TESTING

Windows NT DDK drivers are built using the build utility, which uses a
set of rules and project files that specify how drivers should be created. The build
-cef command normally used to build drivers causes a scan of dependency files,

performs a clean build, and creates an error log.

The dirs file specifies which directories in the sub trees contain source
code files to be built. The sources file specifies which source files are required to

build the current driver.

If your driver will consist of multiple binaries, or the source will be keptin
multiple directories, you might need to create a dirs file specifying which
directories are to be built and in what order. Each separate binary requires a

sources file describing which files are to be compiled/linked to create the driver.

Each driver directory also contains a makefile. Build spawns the nmake
utility for each source file listed in sources and nmake uses the makefile to
generate dependency and command lists. The standard makefile file in a driver
source code directory directs nmake to the master nmake macro definition file,
makefile.def This file defines the flags for the build tools such as the compiler
and linker. Makefile.def simplifies the creation of platform-independent driver

projects and is similar to the ntwin32.mak file in the Win32 SDK.

After you have dirs, sources, and makefile files created, the next step is to
run the build utility which parses the sources file and spawns nmake for each
source file. The nmake utility evaluates the macros in makefile.def and spawns
the C compiler with the proper switches. After the compile stages are completed,
build spawns nmake again to link the objects and complete the driver building

phase.

51

If your sources file is correct, running build -cef is all that is required to
compile and link your driver. Using build and makefile.def removes the
guesswork, of which compiler switches are required, which arguments the linker
requires, and so on. By adding the appropriate defines to the sources file, it 1s

possible to control the build options in a platform-independent fashion.

During driver development you will need to build free and checked
versions of your driver. This is controlled by environment variable settings that
are interpreted by build and nmake. These variables are set by setenv.bat, as
discussed previously. To build a free driver, run build from the free environment.

To build a checked driver, run build from the checked environment.

Template files (.tpl) for dirs, sources, makefile, and other files can be
found in the \<destination>\doc directory. Working versions of these files can be
found in driver source subdirectories of the DDK. Examining these files along
with makefile.def (located in the \<destination>\inc directory) provides additional

information.

6.0 CONCLUSION

The approach of this project provides us a methodology to write a single
driver for multiple devices, which can be very feasible for the multiple application
integration. The driver developed will provide the full-required functionality of a
memory, VO and interrupt operation on any PCI device. The driver provides an interrupt
service routine for handling hardware interrupts. The driver also provides routines for

handling read () and write () system calls

The goals achieved by developing this device driver are

o Performing Memory management

° Capable of Handling interrupts

. Reducing the access time of devices

» Getting access to multiple devices using a single driver
o Further enhancement is also possible

£

7.0 SCOPE FOR FURTHER DEVELOPMENT

o The device driver developed for PCI-BUS can be expanded.

° Any user device driver like driver for CD-ROM or MOUSE can be added

with this driver if they are connected to the PCI-BUS.

54

8.0 BIBLIOGRAPHY

0/
L4

)
*

Books Referred:

William Stallings, ‘Operating Systems’, Prentice-Hall India, Eastern Economy
Edition (second edition), 2001.

Peter G. Viscarola & W. Anthony Mason. “Windows NT Device Driver
Development “, Macmillan Technical Publishing, 1998.

Edward N. Decker & Joseph M. Newcomer, “Developing Windows NT Device
Driver”, Addison Wesiey Longman,Inc , Microsoft Edition 1998, March 1999.

E.Balagurusamy, ‘Object-Oriented Programming’, Tata McGraw Hill
Publication, 1999, Page No 1-25, 97-114.

‘MSDN (Microsoft Developers Network)’, Microsoft Corporation, Visual Studio
6.0 Release.

David J. Kruglinski & George Shepherd & Scot Wingo, “Programming Microsoft
Visual C++ Fifth Edition- Microsoft Press «“, WP Publishers & Distributors Pvt.
Ltd.

Mickey Williams, “VC++ in 21 days”, SAMS Techmedia, Second Edition 2001.

K&

9.0 APPENDIX
9.1 SAMPLE SCREEN

{77

8Q

N

9.2 SAMPLE CODE

CDevicedView::CDeviced View()

{

}
CDevicedView:~CDeviced View()
{

}

void CDeviceList::OnOK()

{

CDialog::0OnOKJ();
CDeviceSelection DeviceSelection;
DeviceSelection.DoModal(),

}

void Clnterrupt:DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);

void CResourcelnformation::OnWrite()

{

CDialog::OnOKJ();

