IMAGE PROCESSING IN C

PROJECT REPORT

BY
>,
‘ P/ / pRtSE N, C. RANGANATHAN
N. GIRIDHARAN
1991-92 V. KANNAN

S. ELIZABETH

GquUIDED BY

Mr. K. RAMPRAKASH, w2

G pritited i prrisad foftment o e
segucrement’ or the award o the Segree of
v%aéfzéz o g;z/maei¢}7 oy Etbotromics and

Comermurntcation é%gmgm‘@;/ of the

l%%ﬂ?di%zd@ %Mf@%@.ﬂ z/%

Department of Electronics and Communication Engineering

Kumaraguru College of Technology

COIMBATORE-641 006.

Department of Electronics &

KUMARAGURU GOLLEGE OF ‘I'EGHNOLOGY
COIMBATORE - 641 006

fﬁwl‘i{:m{f

This is to certify that the report entitied
IMAGE PROCESSING IN i

has been submitted by

P : -
A, reesscees eonererseassrssTIpsTIARSEE penseresesmpsseres

of Bachelor of Engneenng o the

in partial fulfilment for the award

Electronics & Communication Engineering branch offered by the Bharathiar

University, Coimbatore — 841 048 during the academic year 1991-8¢

Head of the Department

Certified that the Candidate with University Register Nou o WaS

examined in Project work Viva-Voce DY UE O e

Internal Examiner External Examiner

CONTENTS

PAGE NO.
ACKNOWLEDGEMENT 01
SYNOPSIS 03
CHAPTER I INTRODUCTION 04
CHAPTER II POINT PROCESSES
2.1 Introduction 05
2.2. Image Brightening 05
2.3 Negative Images 06
2.4 Image thresholding 06
2.5 Image pseudo Coloring 07
CHAPTER III AREA PROCESSES
3.1 Introduction 08
3.2 Convolution 10

3.2.1. yvarious convolution Kernels 12

3,2.2. Low-pass spatial filters 13
3.2.3. High-pass spatial filters 14
3.3 Edge Enhancements 15

3.3.1. Laplacian Edge Enhancement 16

3.3.2. The shift and Difference
Edge Enhancement 18

3.3.3. Gradient pirectional Edge

Enhancement 20
3.4 Image Blurring 21

3.5 Edge Detection with Sobel's
Algorithm 22

3.6 Median filtering 24

CHAPTER IV

CHAPTER V

FRAME PROCESSES
4.1 Introduction
4.2 Application of Frame processes

4.3 Various Frame Processes

GEOMETRIC PROCESSES

5.1 Introduction

5.2 Image scaling

5.3 Image Rotation

5.4 Translation of Images

5.5 Mirror Images

CONCLUSION

APPENDICES
APPENIX I FLOW CHARTS
APPENDIX II PROGRAM LISTING

APPENDIX ITII COLLAGE OF IMAGES

APPENDIX IV REFERENCES

ACKNOWLEDGEMENTS
we are grateful to our respected principal Major.
T.S.Ramamurthy who encouraged and motivated all of wus toO

proceed through and compute our project work.

We are thankful to our beloved Head of the Department
Prof. K. Palaniswami for being the source of inspiration for
us and for his valuable advices during the course of our

project.

We express our gratitude from the pottom of our heart
to our guide Mr. K. Ramprakash, who guided us in this project

work.

We also thank Prof. P. Shanmugam, Head of the
pepartment of Computer Science and Engg for providing us
with the facilities available in the computer lab. We are
indebted to the staff members of the CSE department for their

valuable suggestions.

We thank the Lab technicians of the Computer lab and
the ECE lab for their timely services during the cod}se of

our project.

We are.particularly thankful to Mr. K.Sutharsan Kumar
Consultant Madras for his valuable and timely help inspite of
his busy schedule. We are also thankfulto Mr. Govindaraj of
Chip-Brain systems, Pollachi and Mr. Ma thuranthagan of
Vigneshwar Computer Systems Pollachi for providing the

required facilities.

we express our sincere thanks

Last but not the least,

to all the staff members and the student friends of ECE

ons with great care at

department who gave valuable suggesti

various junctures.

SYNOPSIS

in this project, Image Processing Functions which
alter the picture information in some manner are delt with.
Various processing algorithms , that change the individual
pixel values , based on their own values or those of the
neighbourhood pixels, are discussed . These include point

processes, geometric processes § frame processes.

The processing is done using 1image 'pPseudocoloring’
technique. The entire image processing support functions were
developed using TurboC. The integerated graphics environment
provided Dby Borland's. TurboC serves as an ampie tocl 1in

developing these function.

CHAPTER I1 POINT PROCESSES

2.1 Introduction:

»?oint. processes are fundamental image processing
operafions. They are simplest>and yet probably the most
frequently used of image processing algorithms, they are

natural starting place.

Point processes are algorithms that modify a pixel's
value in an image based solely upon that pixel's wvalue and
sometimes its location. No other pixels values are involved
in that transformation. In gneral point processes do not
modify the spacial relationships within an image. For this
reason, point processes cannot modify the detail contained in
an image.

The point porcesses discussed are

a. lmage brightening

b. Negative images

c. Iméée thresholding

d. Image pseudocolouring.
2.2 Image Brightening:

The appearence of an image can be visually enhanced by
adjusting its brightness. Brightening is a point process that
adds or subtracts a constant value to or from pixels in an
image. Expressed algebrically, a pixel with intensity value V
is transformed as follows:

¥V = V + b, Where b is the brightness constant, +Ve or
-ve. If b is +ve, the brightness of the pixels increases and

if it is -ve, the brightness decreases.

2.3 Negative Images:

Negative images, resembling photographic negatives,
are easy to produce with point process. The idea is fc make
the portion of an image that was once 1ight, dark and that
was once dark light.Image negation is accomplished by
subtracting , the value of a pixel from the maximum possible
pixel value of 63. The darkest areas of an images, which has
pixel wvalues of 0 or black are then trasnformed intoc the
brightest white pixel value of 63. Conversely the brightest

white pixels are converted to black.

Negation of a full image is useful when looking for
detial in bright portions of an image. The human eve is much
more capable of discerning detail in a dark area of 1mage
than in a light area.

2.4 Threshold Images:

Image thresholding 1is a technigue for converiting a
continous tone image into a black and white image. Pixel
values below a specified threshold are all convertd to black,
whereas pixel values at or apbove the threshold are converted
to white.. This technique has application ranging from art to
machine vision. For artistic application, continous tone
images that are correctly thresholded produce what is
referred to as line art. Line art can then be used
effectively 1in desk top publishing application and in sign
and banner production. Thresholding is also used as 2 crude
methods of obtaining nhard printout of continuous tone images

on a dot matrix printer.

in the field of machine vision, images are typically
thresholded before an attempt is made at edge detection. In
this case, thresholding eliminates from an image extraneous
information that might upset the edge detection process.It is
very important 1O select that threshold value correctly,
however to ensure that not too much information is lost

during thresholding process.

2.5 Image pseudo coloring:

Image pseudo coloring involves false coloring of gray
scale images. This assigns different color wvalues to
different gray scales. The resulting is a pseudo colored
images. Each pixel is assigned a color value, corresponding

to its gray scale value.

CHAPTER 111 AREA PROCESSES
3.1 Introduction:

Area processes, also refereed to as group processes,
use groups of pixels to derive information about an imasge.
This 1is different from point processes, which use only @
sin%ol pixels information for performing the point process.
The group of pixels used in area processing is referred to as
the neighbourhood. The neighbourhood is generally 2 two
dimensional matix of pixel values with each dimension having
an odd number of elements. The pixel of interest theﬂ nixel
whose old value 1is being replaced by its new value as a
result of an algorithmic computation resides at the centre
of neigbbourhood. Having a cluster of pixels af interest
furnishes prightness trend information in two dimensions that
is utilised Dby most area processes. Another, more ©Oroper,

term for brightness trend information is spatial frequency.

spatial frequency 1is defined as the rate of change of
pixel brightness OF intensity divided by the distance ovVer
which the change has occured. Spatial f requency has
components poth in the vertical and horizontal direction in
an image. An jmage with high spatial frequency content
contains large, closely gspaced changes in pixel viaues. An
image of a black and white checkboard would contain high
spatial frequency component. The smaller the squares the

higher the frequency content. An image with low spatial
e ”“‘3#

-

frequency contains large area of constant or slowly chaging
pixel wvalues. Images of clouds generaly have low spatial

frequency content.

Having access to the spatial freqguency information
allows area processes 1o act as filters for removing OF
enhancing selective frequency components found in an image.
Many area processes then falls into the general category of
spatial filters. Spatial filters have a firm Dbasis in

mathematics.

Spatial filtering has many applications in image
processing. It can be used for example, for extraction of
image features (edge enhancement and detection), for
sharpening an image, for smoothing an image, and for removal
of random noise present in an image. These aspects of spatial
filtering will be demonstrated in this section.Images will be

used to show the effect of various area processes in action.

Here three area process algorithms are provided:
Convolution, median filtering, and sobél edge detection. The
median filter algorithm has single specific use, where as the
convolution algorithm being more general in nature has many
uses. The operation of each of these algorithms is similar to
that utilised for point processes. That is:

a. A single pass is made over an input image on a pixel Dy

pixel basis.

b. Each pixel in the input image 1S processed via a
tranformation into a new value.

c. The new values for the pixel is placed into the output
image bufifer at the name location as it was taken from the

input image pbuffer.

The~ difference petween a point process and an area
process 1is that, a point process utilizes only the value and
sometimes the location of the input pixel in generating the

output pixel.

3.2 Convolution:

Convolution is a very general purpose algorithm that
can be used 1in performing a variety of area Nrocess
transformations. Complex as convolution might sound it is
actually quite easy to understand and 1implement. Figurel

illustrates the convolution process.

Each pixel 1in neighboﬁr hood 1is multiplied By 2
similarly dimensioned convolution kernal; the sum that
results replaces the value of the centre pixel of interest.
Each element of convolution kernel igs a wieghing factor also
called a convolution coefficeint. The size and arrangements
of the wieghing factors contained in a convolution kxernel
determine the type of area tranform that will be applied to
the image data changing a weighing factor within a
convolution kernel influences the magnitude and possibly the
sign of the overall num and therfore affects tne value given

to the pixel of interest. Figure shows varicus convolution

kernels and the transfer functions they represent. As you can
see most kernels are three by three and most have odd number
of rows and columns . This format of concolution coefficients
within the kernel has been accepted by the industry as 2
standard. A larger kernel seze increases the flexibility of

the convolution processes.

unfortunately, the simple weighted sum convolution
calculation has some implementation details that complicate
its realization. The first and toremost has toO do with the
edges of the image. As we move the convolution kernel with
the pixel of interest under the centre of the kernel across
an 1image @& pixel at a time, we will have problems without
claculations whenever we come to the borders of the 1images.
That is because the weighing coeficients in the kernel are no
longer positioned over nine pixels of the source image. In
other words, the convolution kernel is, in effect, hanging
over the edge of the image puffer. This perturbance happens
at the 1top, l1eft, right and bottom borders of an 1image.
several methods may pe used to COPe with this situation. The
two most straight forward solutions are (1) the dataiat the
edges of the image can be ignored, oOT (2) image cata can be
replicated to synthesis additional border data. Method (1)
was utilised in the code provided in the area processing

function library.

3,2.1 Various convolution kernels:

The various convolution kernels used in area

processing are shown in fig 2.

Under close jnspection, it is easy to understand why
the blurring kernel produces much large values while the
other kernels l1isted no well behaved. All kernels except

Ve
hlkurring kernel the num of all weighing coefficeints 1S

sum of the 25 pixel values in the five by five neighbourhood.
1f for example, each of the 25 pixels had a value egqual 1o

one half of the maximum value or 32 the sum would equal

275x32 or 800. To bring this sum back to appropriate range, A2
scale value of 4 or 5 would be applied. This would reduce the
value of the weighted sum toO 50 or 25 respectively. The final

choice of scale is somewhat subjective and will depend upon

The final consideration thnat must ve Laxgil LilLu

account in the implementation of a convolution algorithm is
the sign of the calculated pixel values . when a convolution
kernel contains negative weighing coefficients as most do it
is possible to produce negative pixel intensity values. Even
though negative intensity values are interesting, we cannot
display them. For this reason, our convolution implementation

sets negative pixel - intensity values to 0. Other me thods

could be used to deal with negative intensity values For

instance, the abolute value of the intensity would be used

instead of setting the value to 0.

3.2.2 Low pass spatial filters:

Low pass spatial filters leave the 1low frequency
content of an image intact while attentuating the high
frequency content. Low pas filters are good at reducing the
visual noise contained 1in a image. They are also used to
remove the high frequency content of an image so that the low
frequency contents can be examined more closely. With the
high freguencies gone, more subtle low frequency changes can
be identified. The cut off of a low pass filter is determined
by the size of the kernel and the kernel coefficients. Three
different 1low pass frequency kernels are given in fig 2.The
sum of the kernel values for all of the low pass filters 1is

1. This fact is important for understanding how 1low pass

filter operate.

Consider a portion of an image without high freqguency
content. This means that the pixel values are of constant
value or that they are changing slowly. As a low pass kernel/
is passed over this protion of the image, the new value for
the pixel of interest the pixel centered under the kernel |is
calculated as the sum of the kernel coefficients times the
neighbourhood pixel values. I1f all the neighbourhood pixel
values are the same constant, the new pixel values is the

same as the old value. This is the reason the sum of the

coefficients is chosen to be 1. Low frequency content has

been preserved. As the kernel is moved over a portion of the
image with high frequency content any rapid changes in
intensity get averaged out with the remaining pixels in the
neighbourhood there by lowering the high frequency content.
The visual result of low pass filtering is a slight blur of
image. This blur result because any sharp pixel transitions
are averaged with their surroundings as the high frequency

content is attenuated.

Contrary as it sounds, low pass filtering can be used
to sharpen the appearene of an image. If a low pass filtered
image is subtracted from the original image, the rssult is
in relative increase in high frequency informational <content
without an increase in image noise.Subjectively the resultant
image appears sharper than the original.

3.2.3 High-pass spatial filters

High-pass filters attenuate the high-frequency
details of an image while leaving the low-frequency content
intact. Relative to the high - frequnency content the low-
frequency content, is attenuated. High pass filter is wused
whenever objects with high spatial frequency content need to
be examined. The higher-frequency portions of an image will
be highlighted (become brighter), while the lower-frequency
portions become black. Image sharpness is sometimes enhanced
with high-pass filtering at the expense of attenutated image
noise. Edge enhancement of an image in also possible with
highépass filtering. Fig 2: shows three high-paszs fiilter

kernels.

;The large center kernel co-efficients holds the key to
the'opefotion of‘high—pass filters. AS the large centre CO-
7€?‘§?$cient moves across a portion of an image with the high
';f;;Eéaé1 ‘ freqoency content (meaning a large-step change 1in
' gfxéo, intensity) the new value of the pixel of interest is
muléfolied many times in value. The smaller negative CO-

'effioienis in the kernel clustered around the large center

intensity are intensified, while areas of constant

pixel(areas of low spatial frequencies) are not affected DY

this transformation.

3.3 Edge—Enhancement

Another area process that can bhe performed using
convolution is edge enhancement. Edge enhancement is used as
a preliminary step in 1image feature extraction and is

image content 1is reduced and in many cases completely

eliminated. For this reason the processed image may not
closely resemble the original image. The brightness of an
edge after enhancement 1is proportional to the change in

brightness surrounding the edge in the original image.

Although edge enhancement is used mainly for machine
vision, it does have other uses as well. For example, the

edge jnformation provided by an edge—enhancement process can

be added pack into the original image 10O sharpen 1it. rdge
enhancement can also Dbe used as an artistic tool 1O produce
striking outlined images. These images can be touched UupP

with a point programme to produce real works of art.

In this gsection we will present three different edge-
enhancement me thods and one method of edge detection. A1l of
the brightnees trends in a pixel's neighbourhood are used to
find and accent the edges contained in an image. BY jts very
definition, an edge is a large cnange in intensity. It

should be noted that all edge—enhancement algoritnms that use

convolution are 1inear. That is. they are made up Of the
sum oOf first-degree products. The Sobel edge~detection
algorithm, however uses first derivatives to detect edges.

The non-linear method does 2 petter job of detecting edges

2

feeling for greater accuracy that non linear processes can

provide.

3.3.1 Laplacian Edge Enhancement

Lalplacian Edge Enhancement differs from the

other
enhancement me thods to be discussed in peing omni-
directional. That 1is, it highlignts edges regardless of
direction. It is called Laplaciamn anhancement because this

transformation approximates the Lapiacian operator ntilized

b
R

thfogghout mathematics and electronics. Laplacian edge

eﬁﬁédéeﬁént géherates sharper edge definition than do most

33gtheff4énhancement operations. Additionally, its highlights

"édgéS“fﬁaVing both positive and negative brightness slopes.

For these reasons, Laplacian edge enhancement finds use in

many machine vision applications.

‘For the more mathematically oriented reader, the

Laplacian of an function f(x, y) is

L(f(x, y)) = d f/dx « d f/dy

'IWhere' d f/dx 1is second partial derivative of f with respect

to x‘énd d f/ady is the second partial derivative of f with
respect to V. For discrete functions the second partial
derivatives can be approximated by
d f/dx =f(x+1)-2.f(x)+f(x—1) and
d f/dy =f(y+1)—2.f(y)+f(y—1)
The.Laplécian can therefore be- approximated by
‘L(f(X;Y)) = f{x+1, y) + f(hx-l, y) +f(x, y+1}) +
E t(x, y-1) - 4.1(x,y)
Th157 can be expressed as a convolution kernel that is

Conyolved with f(x,y). The kernel becomes:

¥

P (x, V) = o 1 O
1 -4 1
0 1 0

The Kernel is given as LAP 1.

All edge-enhancement operations, Laplacian included,

attenuate, the low spatial frequencies of an image. Regions

of constant intensity or linearly increasing intensity become
black as a result of these transformations, whereas regions
of rapidly changing intensity values are highlighted.
Convolution Kernels that attenuate low frequencies have

coefficients that sum to 0.

3.3.2 The shift and difference edge enhancement

As the name implies, this algorithm enhances image
edges by shifting an image by a pixel and then subtracting
the shifted image .from the original. The result of the
subtraction 1is thé measure of the slope of the brightness
trend. In the area of constant pixel intensity, the
subtraction will yield a slope of zero.Zero slope results 1in
black pixel wvalued. In an area with large changes in
intensity, an edge, for example, the subtraction will vield a
large value for the slope, which will become light colored
pixel. The larger the difference in intensities, the
vwhiter" the resultant pixel. Care must be taken when
implementing this technique, as negative slope values will
occur with transitions from white to black . An absolute
value function should be employed so the shift and difference
algorithm can detect both black to white and white to bDlack

pixel transition edges.

When this approach is used to enhance vertical edges,
an image is shifted left one pixel and then subtracted from
the original. To enhance horizontal edges, an image 1is

shifted up one pixel and subtracted. To enhance both

vertical and horizontal edges the image is first shifted left

one pixel and then shifted up one pixel Dbefore the

subtraction is performed.

simple as this approach sounds,its implementation is
somewhat complex. For this reason, instead of actually
shifting the 1images around, a convolution will be wused tO
obtain the same effect. The convolution kernels that provide
shift and difference edge enhancements are shown in fig 2.
These kernels resemble visually the shift and difference
algorithm. Take for example, vertical edge enhancement. We
said earlier that to enhance vertical edges the image 1is
shifted to the left one pixel and subtracted. The vertical
Kernel performs the same process. It compares two
horizontally adjacent pixels in an image in an attempt 1o
find the slope of the brightness. I1f it passes gaver
constant-intensity aréas, the result ofthe convolutiocn will

pe 0, because

ate

- 1 % Intensity + 1 # Intensity = O
if there 1is a large intensity change, however, the result
will be either a large positive number (for a black to white
transition) or a large negative number (for a white to black
transition). The intensity of the resultant pixel will be
directly proportional to the intensity slope. Then, the
white to black and black to white transitions will be

enhanced.

3.3.3 Gradient Directional Edge Enhancement

The shift and difference edge enhancement detailed
earlier showed how vertical and horizontal edges in an 1image
can be enhanced. In actual practical application, most edge-
enhancement algorithms utilizing only a 3x3 Kernel will
enhance more than just completely vertical and horizontal
lines. A lafger Kernel may be used to enforce the vertical

and horizontal edge requirements.

Sometimes, it is necessary to highlight edge in an
image other than strictly vertical or horizontal edges.
Diagonal edges of parts during a machine inspection operation
may also be important. selectively hightlighting edges in
different directions can bDe used to give a computer an
overall idea of what it is looking at. The gradient
directional edge-enhancement method can be used just for this

purpose. It provides eight different convolution kernels 19

highlight edges in eight different directions. The
directions are called out as points on a compass "North",
"NorthEast", "East", "SouthEast", "South", "SouthWest",
"West" and "NorthWest". These kernels are shown in fig 2.

If a positive slope in the direction of the kernel
exists, a light-colored pixel will be placed in the output
image. The intensity of the output pixel will depend upon
the slope of the brightness. The larger the slope, brighter

the pixel. For examplie,the "East" gradient kernel will

enhance edges that transition from black to white from left

to right.

We now know that since the summation of the kernel co-
efficients. equals 0, regions of constant brightness (low
spatial frequency) will be attenuated. In otherwords, areas
of constant brightness will result in black pixels being

output.

Many special convolution kernels exist for enhancing
and detecting image edges. Two such kernels, referred to
"matched filter kernels" are shown. They are called matched
filters because, they resemble the attributes of the edges
they are designed to enhance. They are examples of large
convolution kernels, which guarantee more accurate edge
detection at a price of decreased performance. Still larger
kernels are possible. These contain 'templates' or shape
definitions of the object(s) being searched for in an image.
When a shape matches that of the template, the edges are

highlighted and all other portions of the image become black.

7

3.4 Image Blurring
Intentionally, blurring an image might seem contrary

to the philosophy of image enhancement with image processing.

True, image blurring does not bring to mind any industrial
applications, although there may be some. However, as an
artistic tool, blurring gan be put to good use. It can be

used to provide a blurred background over which a foreground

5

object 1s to be placed. The contrast of sharness and
blur} can have a pleasing, eye-catching effect. 3lurring
can be produced using convolution. A Kernal used to
blur an image 1s shown 1in figure. It is a 5X5 kernel
containing all 1's. The larger the kernel dimensions.
the more Dblurred the image. In essence, convolution
with the blur kernel averages all pixel wvalues 1in the
pixel neighbourhood Averaging causes the details of an

image to be reduced, resulting in the blurring effect.

3.5 Edge detection with Sobel's Algorithm

Sobel's alghorithm is the only non-linear edge enhance-

ment/detection method discussed here, because of its

wide use and efficiency.

Actually there are two distinct methods to implement
Sobel's algorithm. The first method calculates two different

convolutions at the pixel of interest.

X using, kernel -1 0 1
-2 0 =2

-1 0 1

y using, kernel 1 2 T
0 0

-1 -2 -1

and from these convolutions, calculates the magnitude direc-

tion of the detected edges from,

2 2
magnityde = SQRT (x + y)
Direction = tan»l (y/X)

This 1s computationally very expensive process to
perform each pixel's operation. For this reason, a different
method 1s wused to implement Sobel's algorithm. First,

let us consider a 3 X2 pixel neighbouhood as shown belw.

d e f
e o
Pixel 'e' 1is the pixel of interest. Exactly four

unique lines can be drawn through this neighbourhood to pass

through pixel 'e'. These lines are:

Line 1 : a-e - 1
Line 2 : b -e -nh
Line 3 : c -e -h
Line 4 : d -e - f

Each line drawn through the pixel subdivides the pixel
space into two three-pixel neighbourhoods. €.g8., line 3
subdivides the pixel space intoa , b, d and h, 1 f. For gach
of the four lines,the absolute value of the differences 1in
the averages of the two subneighbourhoods is calculated.
Thus, for total calculations are performed. The pixel of
interest, here 'e' is given a value of the largest of the
four absolute differencéé.

Value 1 = abs {((a+b+d)/3 - (f+i+h)/3)

Value 2 = abs((a+d+g)/3 - (c+f+i)/3)

w
1

Value abs((b+c+f)/3 - (g+h+1)/3)
Value 4 = abs((a+b+c)/3 - (g+h+1)/3)

e = The greatest of these values.

After the appliciation of Sobel's algorithm to each
pixel in an image, the output image is usually subjected to a
thresholding point process operation. The net result is that

the output is a black and white image that contains none of

the original image information except edge information.

3.6 Median filtering

Median filtering is an area process that does not fall
ander the category of convolution. Median filtering, c¢an
also be thought of as a point process by the way in which it

works.

v
Median filtering wuses the values of the pixels

contained in the pixel neighbourhood to determine the new
value given tothe pixel of interest. But, it does not
algorithmically calculate the new pixel value from those of
the neighbourhood in ascending order and picks the middle or
median pixel value as the new value for the pixel of
interest. The median filter algorithm is illustrated in

figure 3.

The result of median filtering is that any random noise
contained in the image will be effectively eliminated. This
is because, any random, adrupt transition in pixel intensity
within a pixel neighbourhood will be workedout. That is it
will be placed at either top or the bottom of the sorted
neighbourhood values and will be ignored Dbecause of the
median value is always picked for the new pixel wvalue.
Multiple applications of median filtering to an 1image can

result in rather pleasing visual effects.

(col, Row)

-
P

Median or middle value

27 22 29

42 | 60 128 | — 22 {25 |27 \ 27 | 28

29

29

42

60

27 25 29]

3 X 3 pixel
neighour hood in the output image.
Centre pixel with
value of 60 is

under process.

el G {(Contd)

A Value of 28 replaces the value of 60

(col, Row)

3 X 3 pixel

neighbourhood

P5 is pixel

being computed.

(Col,Row)

1 %2 K3
s %5 Ke
i
|
1
; Kg Ko |
3% 3
convolution
kernel.

Fig: 1 Contribution illustrated.

Weighted sum calculation

. +
(Kl Pl)

. +
(K2 P2)

. +
(K3 P3)
(X ,.P,) *
(p_.P_} +
(=_.P. ~

9] <

P

New value of P

MR
1

New value for Pg placed

in output 1mage.

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9
LP1
-1 -1 -1
-1 g -1
-1 -1 -1
HP1
0 0 0
-1 1 0
0 0 0

Vertical edges

-1 0 1
-1 0 1
-1 0 1
-1 0 1
-1 0 1

Vertical edges

1 1 1
1 -2 1
-1 -1 -1
North

1.Low Pass Filters

1/10 1/10 1/10 1/16 1/16
i/10 1/5 1/10 1/8 1/4
1i/10 1/10 1/10 1/16 1/8
LP2 LP3
sum = 1
2. High - Pass Spatial Filters
0 -1 0 1 -2 1
-1 5 -1 -2 5 -2
o -1 0 1 -2 1
HP2 - HP3
sum = 1

Sshift and Difference Edge Enhancements

o -1 0 -1 8| 0
0 1 0 0 1 0
0 0 0 0 3 0

Horizantal and
Yertical ed

Horizantal edges

sum = 0

Matched Filter Edge Enhancements

-1 -1 -1 -1 -1
0 0 0 0 0
1 1 1 1 1
Horizantal edges
sum = 0

Gradient Directional Edge Enhancements

1 1 1 -1 1 i -1 -1 1
-1 -2 1 -1 -2 1 -1 -2 1
-1 -1 1 -1 1 1 1 1 1
Northeast East Sgutheast

wo- i

Fig., 7 Horizmomiit M Tia3d

1/16
1/8
1/16

ges

-1 -1 -1
1 -2 1
1 1 1

South
0 1
1 -4
0 1
LAP1
Notes:
1.
2.
3.

sum

o L

1 -1 -1 1 1 -1
1 -2 -1 -1 =2 1
1 1 1 1 1 -1
SouthWest West
sum = O
6. Blurring Kernel
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
sum = 25
7. Laplace Edge Enhancements
-1 -1 -1 -1 -1 -1
-1 8 -1 -1 9 -1
-1 -1 -1 -1 -1 -1
LAP2 LAP3

normally = 0 except LAP3

1
1
-1

1 1
-2 =1
-1 -1

NorthWest

!
™

|
[SORtEY

LAP4

All Kernels from Baxex except from Dawson
Equivelent to adding original image to output of

convolution using kernel

LAP2.

Proof can be found in Gonzalez and Wintz.

Fig 2.

various Convolution kernels.

N

CHAPTER 1V

FRAME PROCESSES
4.1 Introduction

Frame processes use information from two (or more)
images together with a combination function to produce a
brand-new image. This new image depends not only on the
content of each input image but also upon the type of
function used to combine them. These processes are called
frame processes because a complete video image 1is called a

frame. They work on two complete video images.

4.2 Application of Frame Processes

Frame processes have many practical applications.
They are being used in industry today for security, guality
control and image-qualty-enhancement applications. They have
artistic uses as well, as we shall see. We shall investigate

some of these applications in the discussion that follows.

For security applications, frame processing can be
used to detect motion and therefore introduces. Assume a
video camera is positioned within the lobby of a building in
such a manner that its field of view convers the complete
lobby I1f each frame from the video camera is digitized and
compared to the previous frame, any movement within the field
of view of the camera can be detected. The comparision of
video images is actually the substraction of the images

followed by a thresholding process and finallv a pixel

difference tally. 1If the number of pixels that differ in two
sequential video images crosses a pre-determined threshold,
it is time to set off the alarms. Not only is motion
detected, but the direction and speed of the motion can also
be measured. This is possible as long as three things are
known: -

1. The time between the sequential video frames.

2. The distancg from the camera to the moving object.

3. The total displacement of the object ih pixelé,
Armed with this information and some trignometry, speed and
direction can be approximated.

Ths code provided in the frame process provides each

of the following contribution functions: "And", "Or". "Xor'",
"Add", "Subtract", "MULTIPLY", “*Divide", "Average", " Maximum
value", "Minimum value", and “"Overlay". Some of these

continuation functions make infinitive sense while others
(multiplying images, for exampi=} make very little sense.
Notes:

1."S Data" is data fetched from the source image. "D
data™ 1is data fetched from the destination images and
eventually stored back into the destination image.

2. The destination images is modified by all these
combine operations.

3. Overby performs a copy ocperation from the source to
the destination image.

Truth table for basic loz:z functicns.

This table gives the rules for the basic combination
functions {and then some). With this table it is possible to
predict the result of combining overlapping image data wusing
the simple logic functions.

Figure 4 shows image combination functions Provided by the

frame process

4.3 Various frame processes

The bitwise "AND" continuation function is used mainly
to mark out portions of an image. First, a mask image is
produced that contains a 1 in every pixel location that is to
be retained and a 0 in each pixel location to be marked out
(changed to black). When an image and the mark image are
combined using the "AND" function, the output image will be
the same as the source image wherever the mark image
contained 1's and will be black every where the mark

contained O0's.

The uée of the "AND" function with a mark having
values other than 0 or 1 is of questionable value. The effect
would be selettively to remove bits from each pixel's value,
thereby changing its displayed color. A practical
application of this technique is unknown, although artistic
uses can probably be imagined. Also, wusing the "AND"
function to combine actual images may have interesting
visual impact but otherwise is of dubious value. The same is
true when combining image with any logical operations: "TAND"

"OR" and "XOR".

The "OR"™ function can =& used under certain conditions
to combine two images quite sffectively. If twe images are
available that have bright foreground objects on dark {black)
backgrounds and that do not overlap, the "OR" function can be
used to merge both foreground objects into a single image.
The foreground object of one image overlays the other image's
block background and vice versa. The "OR" function will
cause the bits that are set in the foreground objects toc be
animilated into output image, because any pit set in the
foreground object "OR" ed with the 0 bit of the back-ground
will become set. "éR"ing foliows exactly the same rules for

image combination as it does in logic gates in electronics.

Problems arise, however if the foreground objects of
the two images being combined overlap. The "OR"ing of the
two nonzero pixel wvalues in the foreground objects will
result in a new pixel value %hat in the combination of the
two. The color used for the display (gray scale tone0 of the
overlapping pixels will then De unreleased to either 1image.
The results are not very pleasing to look at and there is no

known practical use.

The exclusive "OR", "XOR", 1is another combination
function available. From elementary logic, with an "XOR"
operation any bits that are the same become 0 and bits that
are different become 1's. With this combining funcition it is
possible to detect all pixels nf an image with a specified

value. To do this, an image cuffer is prepared by clearing

it

"XOR" ed with a

that was exactly

. < B

other pixels beco

Toc make the ef

follow the

to specified pixel value, say 32,

It
real image, every pixel
.equal to 32 will be set
ﬁ{gé someother non black

fect more noticdeable, a

"XOR" operation that sets all black

white and all other pixels to black.

this image is then

in the reai: 1image

to biack, with all

color (gray tone}.

point process can

pixels to

5.2 Image scaling

The geometric process of scaling allows an image or
portion of an image to be changed in size. The resultant
image may be a magnified or reduced version of the originai
image. A limitation of the scaling functions is that, the
scaled 1image must reside completely within an image buffer.
This,of course, is a problem only when images are magnified
in size, and not when they are reduced. So, here we discuss
only image reduction and not image magnification.

The geometric process of scaling can change the
spatial organization of image data to such a degree that the
original 1image data 1is not recoverable. As an image is
reduced 1in size, one pixel of the reduced image 1is derived
from four (for a reduction factor of 2) pixels of the source
image. Obviously, some information is lost in this process.
5.3 Rotation

Tﬁe rotation geometric process allows an image to be
rotated about its center point through any arbitrary angle
specified. A complete image 1is rotated by separately
rotating each pixel that makes up the image. The equatidns
which govern the transformation of the location of a pixel
of the source image (i old, j old) into its new rotated
location in the destination image ("i new " , "j new ") are

as follows:

3

i old

3%

i new

cos{0) + j old sin(0) and

%

j new

it

j old cos(0) - i old * sin(0)

Where, O is the Angle of rotation.

5.4 Translation

Translation is a geometiric transformation that allows an
image or portion of an image to be changed in position. in
case of image processing and computer graphics, translation
mearns movement,

This transformation is performed from the source
image's perspective instead of from that of the destination
image. The trasformation is a one-for-one mapping between
source and destination pixels. This makes the translation
transformations quiék compared to image scaling/rotation.

5.5 Mirror Images

Mirror imaging, simply rearranges the pixels of a
source image to generate a mirror image of the source, as the
destination image. The resulting image trasformation appears
as if a mirror were used to produce it.

The types of mirror images are discussed here, viz.,
“horizontal mirroring, which generates a mirror of the source
in the horizontal direction, and vertical mirroring, which
workse in the vertical direction. With horizontal mirroring
source image left becomes destination image right and source
image right becomes destination image left. With wvertical
mirroring, source image top becomes destination image Dottom

and wice versa.

CONCLUSION

The image processing functions provided here all deal
with pseudo <coloring of a gray scale image, due to non-
availability of system. The processing with actual gray
colors, can be obtained by properly adjusting the Red, Green
and Blue color registers of a VGA (Video Graphics Adapter)in
its video mode 13x (which is a 256-color, non-standard mode,
not supported by version 2.0 of Borland's turboC) color image
processing involves the same processing techniques as for

grayscale images.

The techniques of image processing can be applied to
data even if they are not in a visible form. The manipulation
of visible image data is just one of the many uses of image
processing. This can be done to produce a visible image of
purely numeric data enh;nced in some manner to highlight some
aspect of the data. Examples of this kind can be found 1in

magnetic resonant medical imaging ecguipment, sonar, radar,

ul trasound equipment, heatsensing equipment, fractals, and so

on.

One final word, applying an image processing algorithm
to an image is not always done with the appearance of the
image in mind. Actually, the result might not be pleasing to
look at Aesthetics are not the only criterion by which to

judge the effectiveness of the applied transformation. If

the transformation is designed to bring out additional
information and / or details not visible in the original
image, the result can be considered successful even if it is

not pleasing to look at.

g

Digfla% the
_¥1xe at m.n
with above ocolor

FLOW CHART FOR PSEUDOCOLORING

(start j)
I

Read image file
nama and? th’ the
threshold value

l

lnitializel

graphics
R?ad ? rixel
rom
MHN filn
YES is HO
Iy > th
] lor
HHITE

color
BLACH

Display the
.pixel at m,n
ith above color

'

close
graphics

Y
(meor D

FLOHCHART FOR THRESHOLDING

Initialize
graphics

'

Get the image
. into arrag
imagel(1441[(144}]

color
imagelm—1])in-11%#filteriB]
imagelim-4linlx*filterfi]+
imagelm—1lin+tlfilterll]
imageimlin-1I#filtert31+
imagelmlinlxfilter[4]+
imageimlinti)x#filterfSi+
imagelim+ilin-1lfilterisnl
_imagelmtilinlefilter[71+
imageim+ilintilefilteris]

graphics
(: stop :)

FLOHCHART FOR FILTERING

close I

+ 4+

+

(jﬁ Start :}

i

_read
__image
File name

/ l
Initialize
graphics

:

Read ? rixel
romM
MH file

YES HO

byl
Q

TR F

MHN

PN
e
*(Pk

Iis lau the
¥ ixel at m.n
With above color

'

close
graphics

1
(oror D)

FLOWCHART FOR BRIGHTENING

struct menui void (#fn)();
char sname ;-
#includessidio.h>
#includesgraphics.hz
#include<conio.h?
#include<dos.hz
#includetmath.h>
#includesprocess.hz
int g_d = EGA, 3_m = EGAHT ¢
#define PI 3.141346798
#includepoint.h”
fincludearea.h"
ﬁincluﬂe”geometri.h”

/% MAIN PROGRAM =/
main()
£ int display();
void point();
void arsal();
void frame();
void geomelric();
void histgm();
int n = &,rel;s
static struclt menu mainlél =

-

{ point ,"Poinl process
farea ,"“Area process'y,
fframe ,'Frame process'),
fgeometric ,"Geomelric process’'y
fhistgm, “histogram'l,

fewxil ,VExITYZ

5,
4

ey
4

char ®#mainmend = “MAIN MENUY;

ret = display(mainmenu,main,nl;

window(1,1,80,25);

clrscr():

textcolor (YELLOW);

textbackground (BLUEDY§

clrscr{)s

gotoxy (13, 103

if{ret '= 5}
{(#¥mainCretl.fn))

window(1,1,80,25);

clrscr(d;

pril (1)

>

7 PROGRAM TO DISPLAY A MENU

int display(subn,disp,n)
char ¥subng
struct menu displ103d;
int ng

£ int x,y.i,k,J,z,choice;
window(1,1,80,25);
texicolor (YELLOW?;
textbackground (BLUE)
clrscr(d;y

= 203
i =y = 33
gotoxy(x,i++);printf(”lMMMMMMMMMMMMMMMHMMMMMMMMMMMMMMMMMM:“);
gqotouy(x,i++);printf (s A
gotoxy(x,i++);print?(“LMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM@“);
while(i < y+2%#n)
gotloxy G, i++Ysprintf (' A
gatoxy(x,i++);printf(j:ﬁDDDDD}DDDDDDDDDDDDDDDDDDDDDDDDDDDb”):
gotoxy(x,i++);printf(“: R
golowy (x,17); printf(“HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM{“?;
J = y+13

window(Z1,3i,41,3);
gotoxy (10, 1)
printf("%s",subnly

jo+= 23

bk = C‘;

while(j < y+Z#(n+1))
T
L%

window(Z1,3.41,1);
gotoxy (10, 1)
printf("%4s',displk++I.namel s

J o+= 25
z = 0O
window(21, &+z#Z, 54, 6+z%2)
Ttextecolor (WHITE) s
textbackground(RED?});
clrscr();
gotoxry (10, 123
printf("4s",displzd.name}:
gotoxry (1, 1);

L

“n

scan: choice = gelch{) 1
switch(choice)
kS
case 80: window(Z1,b6+z#2,34, 642325

textcolor(YELLOWY s =
textbackaground (BLUEYY
clrscr ()
gqotoxy (10, 133
printf("is,displzld.name)l;
oihe abe SN

(o]

ey - e e B
CAaSe Soe

case 13:
gefaultl:
qotn scans

if(z == n} = = 0y
window(81,b+z%2,54,b+2*2)
textcolor(HHITE);
textbackground (REDY
clrscr ()3

gotaxy(10,1);
print?(“xs“,dispE:]uname)
gotouy (1,135

breal;

window(21,é+z%2,54,&+2%2)

tewtcolor (YELLOWY;
teﬁtbackgrouﬂd(ELUE);
clrsor ()

gatoxy(ﬂﬁ,ﬂk;
print?(”Zs“,disptz].nam@)

- s W
o

if (z 4 Oy = = n-1s
windaw(ﬁ1,b+:%5754yé+2%2)
textcnlor (WHITEY;
taxthbackground (RED) S
clrscr()s

gotoxy (10, 13
print?(“%z“,dispﬂz]“name)
gotoxy(1,1?;

break:

return 27

break;:

an

an

n

~au

/% PROGRAM TO DISPLAY CHOICES */

int chart{subn,list,n?
char #subn;
char #1ist{1;
int nj
£ int #%,y,i.,k,J,z,choice;

window(1,1,80,25);

textcolor (YELLDOW?Y
texthbackground (BLUED

LB
clrscr ()
o= 20

fa I

i:}i’=a7
gatﬁxy(x,i++);print?(“IMMMHMMMMMMMMMMMMHHHMNﬂMMMMHMMMMHMM;”)

il Y g
}

gotaxy(ﬁ,i++);printf(“= :
gataxy(g,i++);print?("LMHMMMMMMHMMMMMMMMMMMMHMMHMMMMMMWMM?“)

whils (i « w+Z3n)

&

<

x4

it
HE

gotoxy (x, i++)sprintfChs
gatex'(H,i++);printf(”:DDDDDDDDDDBDDﬂDDDEDDDDDDHDDDDDDDDDé“)
gotoxy(g,i++);printf(
gatoxy (3,0} printf(“HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMHi“)
i= y+1;
window(21,3,41,3)s
gatoxy (10, 133
printf("is',subnl)y
3= dy
E = O3
while(j < y+ax{(n+1))

!
o
kY
Py

it w ig

: A
.
Y

window(21,3,41,3):
gotoxy(10,1};
printf(“%s”,listEk++]);
jo+= 2 ~
z = O3
window (21, b+z%2,54, b+ l;
teutcolor (WHITE)
textbackground (RED)
clrscr()s
gotLoxy (10,1}
printf (s, listizl)s
gotony (1,123

scan: choice = gelch() 3
switch(choioe)

s

case 80 window(Z1, £

Tawtoolor (YE N
tewtharbgroundt CELUEY ¢
clysorisg

Aoty (10, 1)
i..) 1_ I ",.] l', :(‘ (:("(, Lo . P ‘) E ’\"' _— a

h e e W
N A

43 4w

fe]

/% MENU PROGRAM FOR GEOMETRIC PROCESSES 7
void geomelric()
void rotate();
void scale();
void mirror(l);
void translalte(};
static struclt menu geomi3d = { frotate, "Rotation'>,
farale , "Scaling'l,
fmirror, "Mivrrortl,
ftranslate, " Translation’s .
fmain, "EFxil to main menu’r 5
int rel:
char #¥sbmenu = “GEOMETRIC PROCESH':
ret = display(sbmenu,geom,3)y
window(1,1,80,25);
clrscr ()
(#geomfretd.fn) ()
(#geoml4.fn) ()

[

A% PROGRAM FOR FRAME PROCESDES #/
void frams()
treturng ¥
char #framl33 = 4 “AMD".
YOR,
UEORT,
CONVERLSY Y .
SEXIT OTO RSN MENUY
int ratl;
char #sbmenu = "“FRAME PROCESE
void far #hilmaps
unsigned int i,j,valuel 1443014470
unsigned long nbs
FILE #=Ff_p3
FILE =+ _pi
f p o= Ffopen(“hi.img","rb"}:
f _p1 = fopen("hsc.img™,"rb™);
ret = chart(sbmenu,fram,3);
window(1,1,80,2%;
clrscr()s
initgraph(&g_d,83_m, """}y
selgraphmods (3_ml;
ford(i = O;idtdd;i-+)
for (i = Q3 + 144: 3+

valuelidCid = getcl(f_pi;
putpixel(j,i,valuelildDyd/ 1607

forti = Qpid7Zri++)
for (3 = Opj < TEp 1442
valuelildCild = geltc(f_ptr;
putpiael(j+150,1,v£1ue[i][j]/1&?"

Y
N

nh = imagesize . Oy
hitmap = farmalloci{nb):
Jgetimage (120 ,3,28',71,bitmqp*?
putimage (150,00, bitmap, XOR_PUTY
putJmagP<ud,ug‘b1tmap framlretld):
farfres(bitmap);

gqeloch();

[
.
v

char
igned int 1maqe[1443[144i ?
igned int graylvl j

uns
Thi-
int

/% PROGRAM FOR CONVOLUTION FILTERING

onvolute ()

souUroce £i1el202 ;

£ilt_sum = OF

FILE #fp .

int
int
int

char
char

;J.rets
conv”choice,Filter_choic& 2
Filterl&HICFT = A 1. 1, 4. 1.

1, 1. 1. 1.
1, 2. 1. &»

—-i,—1,-1,—1,

[T N B ST A
|

a,-1, 0,1, L1, 0.
1 27 '13'"'27 » Ty -17'_
A n
r -

namallZ
#ohil 73

“ %

Q71 = “CONVOLUTION KERMAL"Y
- 1(1‘:,.1!I [llFl"')llylllF)"){l’ll;..’r"’lﬁ7llsf.l{:,zKl!

ol

clrscr()s

filter

choice = chart (name,ch,7)3

while (filter_choice != &

Ke
window(43,21,42,210;
teAtJaLLground(R&D) b
texteoolor (YELLOWY o
clescr () 3
printf("Entar Source Ima
scanft ("¥s,&source filel
clrsor(y 1

S

!
[T T . N

<

-~

[P T W
+

CHPp3Y, fenid

fp = fope n<:nur e'fjle.“
initgraph (&g L& m,
:PTqraphmodefq mio3

For(i = O 3 1+ 144 5 1+
for (j = O ¢ 1 + 184 5 g3++

s
f

el

]

for(y = O 1 1 < 144 3 1k
for(i = O 3 i < 144 1 34+
PEi(i == 0 L3 == 0) && (io== 143 0 3o o== AT
graylvl = 4 3
else
gravivl = imageli-1303-11 filterlfilter_choicedDOl
imageli—-130371 # filter(filter_choiceldl 1l
imagel i~ 130 +10 # filterCfilter_choiceldbdl
imagelidli~-11 * Fiiter[?ilter_choia%;EBJ
imagelildrill ¥ filterlfilter_choicedl4]
imagelildli-+11 # filterlfilter_rhoicellS]
imageli+1d0y~1d # filterlfilter_choiceldléd
imageli+ 110370 # filterCfitter_choiceldl7d
imageli+1d03+11 # filterlfitter_choiceldl&d:
for(i=0ri<%¥;filt_sum += filterCfilter_choiceldli++
graylvl /= filt_sum;j
putpixel(j+150,i,graylvl/ﬂé) :
settextstyle(4,HORIZ_DIR, 1} =
moveto (10,180
puttext ("ORIGINAL IMAGE')
moveto (160, 180) ;
puttext ("PROCESSED IMAGE"!
getch(} 3
closegraph(} i
window(1,1,80,25}) 7
textcolor (YELLOWY
textbackground (BLUEY
clrsocr () 3
return;s

refurns

hn L A : e
¥ T T s T

L

/% PROGRAM FOR EDGE DETECTION %/
rdige ()
£ woid shift_diffid;
void matched_filter(}:
void ngrad_directional(l}y
void laplaca();
struct menu edglSl = i {shift_diff,"Shift & diffar
fmatched filter,"Matched 4
{grad_directional,“Grad_di%
{laplace, "Laplace'’,

-

£ oexit , "ewxit to mainiic:
int enhance_choice 3

char #title = "EDGE ENHANCEMEMTE":

enhance_choioe = displav(title,adg,2}y
if(enhance_choice != 42

(*edg[enhance_choice],?n)();
window(1,1,80,25) 1
textcolor (YELLOWY 3
texthackground(BLUE} 3
returns;

relurns:

Ture {2

int value.,i,]3;

unsigned int imagel 144314437

int level;

crhar infilel207d:

FILE *fp; -
window(43,21,45,213; :
textbackground(RED?

toexteocolor(YELLOWY ¢

clrscr () 3

printf{"Enter Source Image file + ") :

5c§nff“%s“,&infile) 3
clrscr () 3
initgraph(&g_d.8g_m, """y
setgraphmoda{g_m?;

fp = fopen(infile,"rb'")y
forii=071iv=133:++1)

For{j=0; ic=1437++3)

5
1S

imageﬁi][j] = ¥Fgetl
teval = imagelilli
putpimel(j,i,level

T

(fpis

S 1&s

~—~ Linm

~a

Trid 1435 +4+12
3

tor(1= AR e)

r

4

level = imageli-23Ci-Zd+image Fi-2ili-10+imageli—20030

imageli—-230 i+ 10+ imageli-230i+2d+imagali-1 -
imageli—-11Cj~1d+imageli-1201d+imageli— 100+ 10+
image[im1]Ej+2]+image£i]Ej~E]+image[ijEj~1]+
imagelidCid+imagelidli+1d+imagelildli+2dd
imageli+1d0i-80+imageli+120i-11+imagel1-+ 13051+
imageli+1J0 i+ 10+ imageli+ 120 i+20+imageli+2d0 20+
imageli+21Ci~12+imageli+230 i +imageli+2d0 1+ 10+
imageli+2305+20y ~

level /= 500;

pulpixel (j+150,1,1level):

¥

gelch():

closegraph(};y

H
sobel (3

char source_filel201 3

unsigned int imagel t4470144°0
unsigned int graylvl

unsigned int sobell4l,sobeld1l%]
FILE =#fp »

FILE #fpi;

void threshol (FILE =#F)
int 1,3,k %

textcolor (WHITE?
textbackground (BLACK)
clrscr () 3

window (10,116,776, 15y
textcolor (YELLOW)
tertbackground(RED?} 7
clrscr () 3

goloxy (10,3 3
printf("“Enter Source Image file
scanf ("us" Ssource_filel)
clrscr () 3

fp = fopen(source_file,"rb"i;
fpt = fopen(“cioulimage.img", "wh+'iy
initgraph{&g_d,8g_m,"") =
setgraphmode (g3_m)

for(i = ¢ ¢ i < 144 5 i+

for (3 = 0 ¢ 3 < 144 ¢ J-++2

an

an

BT

s

imagelildLid = fgelc(fpl 3
graylivl = imagelilL3il/ 16 s
putpixel (i,i,graylvl}

far(i = Gz 1 < 144 ; g kb)
far (j = O3 3 144 + j++)
<

== 14Z 1. 1 ==
graylvl = 4 3

else

< sobell0l = imageli-—13203i-13 :
soballdl = imageli—-13050 &
sabellf21 = imageli-—-1303i+13
sobell31 = imagelilli-13 :
sobelld4d = imagelilCil
sobel0S] = imageliJCi+11
sobellél = imageli+ 130313 ¢

sobell7l = imagelli+ 13010
sobelld1 = 1mage[1+‘3[1~-“ :
s0bsl 1003 = abs{{sobell3d + sobellsd + sobell73 —
sobell1d — sobellZld - SDbElEB])/g) H
sobeli1017 = abs{{sobell0d + sobelll31 + sobelldd —
sobell2d - sobell31 - sobelL&3173) =

cnbeil02] = abs((sobelf0l + sobellltld + snbelil3d -
spbells3 - sobelld3 - sobell73¥/3) ¢
sobsiiC27 = abs((sobell0d + sobelldl + sobaelilZ21 -
sobell&sdd — sobell?d - sobell83)Y/3) =
grayivl = sohel1C0d 3
forik = 1 35 k <= 3 ;5 k++}
i¥(sobeldDkd » graylvl) graylel = sobeltflkd =
Ff.'ﬁ(graylvl,¥p1);

ThrF‘whOl(tp‘l\"
zettextsltyle (4, HORIZ _DIR, 1)
movelo (10, 118Gy

outtext ("ORIGINAL IMAGE') ;
movao(Ié(180

ault T(“PhDCESaED IMAGE'"Y ¥
getLh() H

closegraph(}
window(1,1,8G,23) 3
textcolor (YELLOWY 3
textbackground (BLUEY 3
Fafurng

void

-
S

F= PROGRAM FOR EDGE DE
shitt_diff 2

char source_+11elZ00

kXS

TECTION BY SHIFTADIFFERENCE

unsigned int imagel 1447301447

unsigned int graylwel
FILE *fp ;
FILE =+{pt;
int i,i,z
int shift_choice,fil
int shift_filter[3]C

char "‘5\"'{,1'{,19 = "OHIFT
char #1istC4] Loy

i

filter _choice = char
if(filter_choice !=
window (10, 10,70, 13)
textcolor (YELLOWY 7
taxtbackground (RED)
clrscr() 3
gotony (10,3 ¢
printf("Ernlter Source
scanf("#%s",8source_f
clrscr () s
fp = fopen{(source_+1
fpl = fopen(cioulim
initgraph(dg_d.&g_m,
setgraphmode (g_m} 3
for(i = 0 3 1 < 144
for (4 =0 ¢« 3 < 144
imagelidD]d
graylvl = im
putpixel(i,i

ter_choice
1 =

B L) ¢
7 1 y ov Or (-)7 C'\'.v
. G, O, O, G, O

o, 0,1
-1, 0, O
o, ¢, 1

& DIFFERENCE EDGE ENHANCEMENT':

ertival edges', “horizanial edges'
“Vert & Horz esdges"

t{title,list. .42

3y i

"
Y

“n

Image file = ')
ile}

le,"rb);
age.img', “wh+"z
[ERTIRY -
B RS
g 3+

= fgelc(fpl :
agelildlid716 ¢
Laraylevly 1

b4

it

()

For(i = Q ¢ 1 144 5 i+
for(i = Q 1 3 144 5 j++2

Rt

graglvl = imageli-1303—-11 = shift_filterCfilter_
imageli-130171 # ghift_filterffilier_
imageli—13C3+1d # shift _filterDfiller_
imagellildfi—-11 # shift_filterCfiller_
imagelfildCil 4 shift_filterDfilter_

% shift_Ffilterifiller_

zhift_filterCfilter_

imageli+13031 % shift_Ffilterlfilter_

* 5hi¥tﬁfi1terEFilter_chai:§3C83;

CimagelildCi+13
S imageli+ 30311

imageCi+ 1201+

fputclgraylvl,fptls
1,

threshol(fpids

sottextstyle(4,HORIZ_DIR, 13
moveto (10, 180)

onttext ("ORIGINAL IMAGE'™)Y 3

movetn (160, 180) 3

puttext ("PROCESSED IMAGE™) i

getch(} @

closegraph() 3 -
window(1,1,80,2%)r 1

toaxtoolor (YELLUWY

Textbackground (BLUEY

clescri) 5 %

Folurns

choicedl0]
choicedtd
choiceldlZ21
choiced0321
choiceldf4d
choic=ldl5]
choicellbd

choicsdC71

/% PROGRAM FOR EDGE DECTION BY MATCHEL FILTERING =/
void matched_filter
char source_filelzZC]
unsigned int imagel 1443014470
unsigned int graylvl
CFILE =fp
FILE #fpil;s
int i,i,reb;
int conv_chaice,filter_choice :
int match filterf220153

r-\‘
\

|

1, 0,1,=1, 0, 1,-1, G,1,-1, 0. 1. ~1,
=1, =1,=1,=1, O, O o, 0,0,1,1,1,
char namelL201 = UMATCHED FILTERS":
char_ ®*chf31 = LUUERTICAL EDGES', "HORIZANTAL ERGES", "EXIT 3
clrscr (s
filter_choice = chart(name,ch,3};
while (filter_choice != 2)

window(43,21,45,21);
textbackground (REDY ¢

teutcolor (YELLOWY 3
clrscr() 3
printf{“Enter Source Image file = Yo
ScaHF(“ZS”,&sourcenfile) z
clrscr() 3
fp = fopen(saurce_?ile,“rb“):
fpl = Fopen(“c-mutimage.img“,“wb+“);
initgraph(&g_d,&g_m,””) z
setygraphmode (g_m) ¢
for(i = 0 3 1 < 444 3 it}
For (j = O ¢ 3 < 144 3 o)

e

imageli2Lid = fgetoc(fpr
graylvl = imagelid0ild 1o ¢
putpixel(j,i,graylvl) H

(W)

graylvi =

graylwl =

fexthbackground (BLUED

for{i
for (]

T
.

oSO

1l

if
imageli—-1303-2
imagelidCi-23
imageli+110i—23
imageli—-1303-13
imagelidCi—11
imageli+11301—-1d
image[i~1][j3
imagelildCid
imageCi+11C31
imageCi-131Ci+11
imageliJCj+11
imageli+110i+13
imageli-13C3+23
imangelilCi+23
imageli+130i+21

glse
imageli-23C3i-11
imageli-13C3-11
imageEi]Ej—ﬂ]
imageli+11C3—11
imageli+2103i-11]
imageli-22033
imageli—-13037
imagellildCid
image[i+13Ej]
imageli+23031
imageli-21C3+11
imagelli~1303+13
imagelidCi+1]
imageli+1305+11

roio0 144 3 14+

3 144 3 F++)

(filter_choice == O}

#* matah_?ilterEFilter_choice]ﬂoj

¥ match_?ilterEFilter_choicelt13

* match_?i1ter[¥ilter_choice]t8]

#* match_?iltert?ilter_choice][Bj

* match_?i1terE¥ilter_choitejE43

* match_?i1ter[¥ilter¢chaiceji53

* match_?i11&r[#ilter_choice]ﬂé]

#* match_?ilter[?ilterﬂchaicej[?]

* match_?ilter[?ilter_chaicejtﬁj

3* matchnFilterE¥i1ter_thoicelE?]

¥* matchmfilterE@ilter_choicejﬂ103
match_?ilter[?ilLerﬁchaice]Eﬂi]
match_¥Fi terlfilter_choicedl 1l
match~¥i129r[?ilter_choice]£133
* match_?i1terEFi1ter*choice]E¢4]
#* match_Fi129r[€ilter_choice][03

mat:h_?ilterC?ilteF_chalce]EWJ

* matchﬁ?iltertfilter_choice]EE]

3t match_?iltertfilter_choice]EBS

* match_?i1terE¥ilter_choicejt4]

* match~FilterEFi1ter_choice]E53

match_?ilierEFilter_chai:e]Ebj

* match_?ilterEPilter_choite]ETJ

* match;?i1terE¥ilter~choice]E3]

#* matth_?i119r[?ilter_thoice][?]

#* match_?ilterEFilter_cheice]EWO]
matchﬁ?ilter[?iltar_chaicejﬂ%ij
match_?ilterEFilter_choicejtﬂﬁj
3* match_?iltEFEFilter_chDiCE]EWSJ

imageli+210i+10 * matchg?iltertfilter—choicejti4j
fputc(graylvl,?pﬂ);}

threshol (Fpi)s
5ettEﬁtstyle(4,HDRIX_DIR,1) H
moveto (10, 180} i
outtext ("ORIGINAL IMAGE"Y 7
movelo (160, 180 3
outtext ("PROCESSED IMAGE™)
getoch)
closeqraph(} 3
window(1,1,80,25)
textcolor (YELLOW]

clrsor () ¢
returny

e urng

"

"
7

“ o+t

/% PROGRAM FOR EDRGE

DECTION BY GRAD

void grad_directional ()

RS

char
unsigned
unsigned

source_+ti11elZ00]
int imagel 1447301447
int gravivi

FILE sfp s
FILE #+fpi;

int
int
int

char
char

i,j,rets
grad_choice,filter_c
grad filterl830%1

ho

YGRAD. DIRECTIONAL
UNORTH', "NORTH EAST™, "
MSOUTH', "SOUTH WEST",
EXIT"D

namell2071
*chl9]

R

clrscr()s

filter_choice

chart(name,ch,%};

while (filler_choice '= &}

R
&

window(43,21,45,21%):
texibackground(RED)
texlcolor (YELLDWY
clrsocr () 3
printf("Enter Source Imags
scanf ("is',source_file) =
clrscr () 3

i

fp = fopen(source_Ffile,"rb"):
fpl = fopen(cioulimage.img’,

inittgraph(&g_d,&g_m, """} =
selgraphmode (g_m) 3

DIRECTIONAL =/

~2, A==,
~1, =2, =1,

AR IR B I

_..E .1’ .1y .»i’ i

~2, 1, 1, 1, 1

----- 2.1, 1, 4,
R D B R

~E, A, =1,
EAST", "SOUTH EAST,

CWESETY, NORTH WESTY .

e o8 "y s

“‘A‘b"‘“) s

for(i = 0 : 1 144 = 14

for (3 = O = 3 144 = Feek)
imagelidlil = fgelcl{ip) :
graylvl = imagelildlil/ 16
pulpixel (i, i,.graylvi}

16

for(i = O 5 1 144 2 i++:
for(j = Q 5] 144 ¢)
<
PF((] == O 1 j == 0} &% (i == 743 i1 J ==
<
graylvl =256

graylvl = imageli—t130j—13
imageli-1103 1
imagelCi-1303+13
imageCiJli-11
imagefildCid
imageCiJCi+11
imageCi+130i-13
imagefi+ 13031
image[i+13[j+13

¥

Bow

S

%ode weoweow

grad_?ilterEFilter~:hnic93EO]
grad_?i1tert?ilter_chaice3ﬂij
gradwFiltert?ilter_thoicejﬂE]
grad_?ilterﬂfi1terﬂ:h0ice]£3]
grad_ﬁi1ter[¥ilter_choice3ﬂ4]
grad_?iIKEFE?ilter_chﬂicejﬂij
gradﬂfilter[?i1ter_zhoice]Eé3
grad_?ilter[?ilter_choi:e]E?]
grad~?i1ter[€ilter_choice3ﬁ83;

putc{grayivl, fpils

b3
E)

threshol{fptls

settentstyle(4,HORIZ_DIR, 1) 3

moveto (10, 180 3

puttext ("ORIGINAL IMAGE')Y 3

moveto (160, 1807

outtext ("PROCESSED

getch(}) 3
closegraph() 3
window(1,1,80,25)
teutocolor (YELLDW?

»
7
u

k4

IMAGE"Y 3

textbackground (BLUE) 3

clrscr() 3
returnsy

'\,

4

rafturns 7

/% PROGRAM FOR LAPLACE DFPERATIONG =/

void laplace(?

ks
v

char soutrce_filelZQd 1
unsigned int imagel 1443014470
unsigned int graylvl

FILE #+fp s

FILE #fpi;

int i,3.3 ¢

int lap_choice :

int lap_filtD430%0 = { G,

1

y Oy '1,'—4,
&

-1,~1,—1,-1,
"_.17—'1.'—15"‘..13

.1’

o, n

char #title

=

bl

= ”LAPLACIAN OPERATORS " ;
char #11istDS2 = £ “"LAP1TY, YLAP2Y. "LAPSY,

lap_choice = chart(title,list, 4);

if(lap_choice = 43

€ window (10, 1C¢,70,13)
textcolor(YELLOW)
texlbackground (RED)Y 3

clrscr () 3
gotoxy (10,3}

-
b4

o
1,2, 4.

printf (“Enter Source Image file *
scanf{"ns" ,&source_Ffile)

clrscr () 3

"
7

fp = fopen(source_file,"rb"l;
fpt = fopen(cioulimage.img', “wh+'"):
initgraph(&g_d,&3_m, """}
setgraphmode (3_m}
Co14d 3 14+
ok}

for(i = O :
for (i = O 1
i
K9

imagelidL37]

i

i

144

fgetoclip?

=
¥

I
T

graylvl = imagelildLjil/ 1
putpixel (di,i,graylvi)
-".

N

¥

ll‘}

x
7

“

L h
oo
- -
o~
e bt

[

graylvl

“g

ralurns

o
ET I TY
-,

io4 144
i ¢ 144 3 i+

graylvl = 236

“n

= imageli-13C3i—-13 = lap_filtflap_choicedfOd
imageBi-11033 % lap FiltClap_choicedl 1l
imageli-1303+13 # lap filtClap_choicedCZ]

imagelilCi~13 # lap filtflap_choiceldl31
imageCidCil # lap filtClap_choicedDad
imagelildj+11 % lap filtClap_choicedlS]

imageli+110i—-12 # lap _filtClap_choicelb&d
imageli+1d037 # lap_filtClap_choiceldC71
imageli+1303+13 lap_filtflap_choicell&1d:

putcigrayivl,fpti;
settextstyle(4,HORLZ_DIR, 1)
movelo (10,1803 5
puttext ("ORIGINAL IMAGE"™) 3
movelo (160,180 3
puttext ("PROCESSEDR IMAGE') ¢
getch() 1
closegraph() 3
window(1,1,80,25} 3
textcolor (YELLDWY 3
textbackground (BLUEY ¢
clrscr(y § %

7% PROGRAM FOR THRESHOLDING ./
void threshol (FILE #fp)

L

int i,j,threshold,values;
rewind(fplry
for (i = 07 1 < 144; ++1i)
for (j = 03 3 < 144: ++3i)
value = fgetc(fpr;
it (value =100 2
value = WHITE:
elsa
value = BLACK:
pulpixel (j+150,i,valus):

getch(};
returns

(W]

/% PRUGRAM FOR BRIGHTENING =/
void brighten(}

int 1,33
int value,vly
char infilef207;
FILE #fps
initgraph(&g_d,&g_m, """}
printf("imagefilenama:'}:
scanf (“us",&infilels
fp=fopen(infile,"rb")s
For(i=0;i< 144 ++1)
for(j=0:i<t4ds++32

value = fgetlc(fpl;

vl = value /143

putpixel(j,i,v1l};

vl = (vl » & 7 vl & vl +2Z);

pulpixel (j+130,1,vlls

()

(o)

/% PROGRAM FOR PSEUDOCOLORING =/
void pseudo()
int colorC16d = € 0,3,4,2,1,5,7,20,58,56.59,57,61,60.63,56E
int 1,33
int value,vl:
char intilelZ031;
FILE #fp;y
initgraph(&g_d,&3_m,""}; -
printf(“imagefilenama:)y
scanf("%s",&intilel);s
Fp=FDpen(in¥ile,”rb“};
For(i=0;i<1445++1)
For(3i=0rj<t445++3)

value = fgetc(fpl;

vl = valus /14

putpivel (j,1i,v1;
putpixel(j+150,i,color[vl]);

getch ()

)
N

/% PROGRAM FOR SEGARTION
void negate(?

char im_+ilellZ2CTds

int i,3.valuss

FILE =f_pg

printf(“give The image +1ig2 riame 'y

scanf ("As,&im_Tfilel;

f_p = fopen(im_file,"rb" ¢

initgraph(8g_d,&g_m, """}

setgraphmode (g_m);

for (i = 03 1 < 1447 ++1i7

for (3 = Q: 3 + 1445 ++13
value = fgetcl(f_pJs
putpixel(j,i,value/1&0s

rewind{(f_pr;

for (i = QOp i < 144y ++1:

for (i = O3 3 < 1447 ++3:
value = fagelc(f_pls
value /= 1é&3
value = 146 — value;
putpixel(j+150,i,value};

gelch{);

closegraph():

returns

M

/% PROGRAM FOR THRESHOLDING =/
void threshold()}

int i,3j,threshold,valuey

FILE *f_ps

char im_filefl20l:

printf{‘give the image File name''};

scanf ("%s'",&im_filel;
f_p = fopen(im_Ffile,"rb"}s

printf ("GIVE THRESHOLD VALUE:"}):
scanf ("%d",dthrashold}y
initgraph(&g_d,&g_m. """}z
setgraphmode (g_m):

for (i = 03 i < 1447 ++i)

for (3 Or 3 4 1445 ++30

Re
L

i1

value = fgetc(f_pls
putpixel(j,i,value/16):
rewind(f_pl;
for (i = 0; i < 14457 ++1i)
for (j = O3 3 + 1445 ++3)

value = fgetc(f_pl;

if (value » threshold ?
value = 3:
else
value = 03
putpixel(j+150,i,va1ue);

getlch()s
closegraph();
returns

\

/% PROGRAM FOR SCALING THE IMAGE #/
void scale()

uynsigned int i,3,values
int s_faclor;
uns1gned int imagel 144301440
char intilel201;
char #scalel31 = fugnet, "two', "Lhree'i
char *f_name;
FILE #f_ps
char #title = "scaling +4Ltor“=
printf{'give the source filename'}y
scanf ("¥%s",infilels
5_factor = chart(title.scale,3)+1:
initgraph(ug_d,&g_m,””);
setgraphmode (g_m) s
f p = fopen(infile, Hrbhttys
For (i = 03 i < 1443 ++1i)

Far (§ = O3 j < 1445 ++3)

imageCildCid = fgetclf_pls

value = imagelilljild/ /163
putpixel(j,i,value);
}
for (1 = 03 i < 1443 i+=s5_factor?
ffgr (0§ o= Q3 3 4 1443 j+=s factor’
{ switch(s_factlor)
L case 1:
value = imagelilLid 14:
brealks
case £3
value =]mquL‘JL1]*vm+gﬁ!}41]F;J+
1m1qu1Jl1+1]%1mqurlrtztjr‘]"“o
value /= ZZb;
breaks
case 33
value = 1mage[1][;]+1magkL'4ijj]+
image F1+’]F i1+ imagelilCi+1d+
image aCi+470i+10+ imageli+Z303+123+
imageli3Cji+2d + imagelD i+ 1203+20+

imageli+@303+23¢
valus /= 57b:
hreak:
\
S

rutpivel (37s factor+150,1 /5 _*Factor, valusal):
i f —

[

o,
E

getch(};
closeqgraph(ly

/% PROGRAM FOR ROTATING THE IMAGE #/

void rotate(}

int 1,j,in,Jn,value;

float THETA:

char infilefZ203;

FILE #f_pgs

printf('give the source filename');

scanf{("¥s",infile}:

f p = fopenlinfile,"rb'i;

printf('"give the angle of rotation'):

scanf ("AF",&THETA) ¢

THETA #= PI / 18Q0;;

initgraph(&g_d,&g_m, """

setgraphmode (gJ_m);

Cfor (1= Q3 i 4 144; ++i)
for (3 = 03 3 « 1445 ++433

value = fgelc(f_pl;
putpixel(j,i,value/1&):
rewind(f_pl;
for (1 = 03 1 1445 ++12
for (3 Gy 3 <« 1447 ++3)
value = fgelc(f _pl:
in = i¥cos(THETA)Y + j#sin(THETA);
in = 3%cos(THETA)Y — 1i#sin(THETA};
pulpixel (Jn+290,in,valus/ 163

.
4

i

getch();
ctlosegraph(});

4
rs

/% PROGRAM FDOR MIRRORING =/
wvigid mirror (3}

char infilel20];

char #submenu = "MIRRORING";

char #mirlZ21 = LUHDRIZANTALY, "WERTICAL " 4

int i,j,value[ﬂ443[1443,ret;

FILE #f_ps

ret = chart{submenu.mir.,2);

printf("give the source filenams'};

scanf("*%s",infilal;

f p = fopenlinfile,"rb')

initgraph(&g_d,&g_m,""};

setgraphmode (g_m);

for (i = Q3 1 + 144: ++i}

Ffor (3 = O¢ 7 + 1445 ++33
valuelDildCDild = Ffgetc(f_pl;
putpixel(j,i,value[i][j]/1b);

T}

4

rewind(f_pl:

switch(rat)}

case (= for(i = Q¢ i4<144 ; ++1i2
for (i = 144: i = O3 ——32?

putpixel(300~j,i,value[i][j]/?b?;

4

N

a 13 for (1

a = 444 1 = O 1-——3
for (i o= Qi + 144 ++312
(e
K%

putpixel (i+150, 1501, valuelildl 3/ 160
}
brealkys
qatch();
closegraph();

nh =
hitmap =

gPLJmaq91” 0,14Q

rleardev
f‘niﬂ image

geTch');

-
%

30,10, 0
rfree{bitmap)y

at&nx(nh

.%4;,bltm&p)?

iLtmap,

XOR_PUTY

rdva 2

e ge s ME T - ;
'_‘E%E;‘:; " §; v . o 3 3
. . St Y Tararg,
’ e

Avavs
va

i

lwage

Il PR
Yy

A N g
Y '
2o
;

3 f
i

[
&

- PSR - . O
H Lt

A}

aGal

s
.

i

n
i v G
Ry
Lo T

AT N

va

