Serial / Parallel Communication RAdapter

Project Work
P 1299

SUBMITTED BY

S. Krishnakumar

P. M. Mushtaa Amir
V. Richard

A. Sivakumar

Under the Guidance of

Mr. K. Ramprakash,M.E

In partial fulfilment of the requirements
for the award of the degree of
BACHELOR OF ENGINEERING

in Electronics and Communication Engineering

Bepartment of Electronics and fommunication Engineering
Kumaraguru Lollege of Technology
£oimbatore - 641 006
1994



SOFT LINK SERVICES

67 D, Z-150, 5th AVENUE, ANNA NAGAR, MADRAS-600040.

Ref. . Date :

REF :SLS/ECERT/KCT /84
DATE: 14/03/84

TO WHOMSOEVER IT tMAY CONCERN

This to Certifvy that the following students of the

KUMARAGURU COLLEGE OF TECHNOLOGY.COIMBATORE-6, have peen

doing their project viz:IBM Compatible PC based Seriai/Parall

adapter card . in our premises utilising our Compbuter and

other test facilities.Their perfomance have tesen zood and

immoressive.

ROLL NUMBER NAME
1) 90ECE1l1 S.KRI{SHNA KUMAR
2) SQECE1L7 P.M.MUSTAG AMEER
3) 90ECE23 Y.RICHARDS
4) QOECE29

A.SIVA KUMAR

- e s wr W Y M e e e n e v ar an ow  a me ae o —

PERIOD OF EXECUTION:15 FEB'1994 TO 12 MARCH 1994.
for SOFT LINK SERVICES
AT R W AT
\Z) AINVELLS )Q, ////
AYTHOR[ISED ISIGNATORY -



ACKNOWLEDGEMENT
First and foremost,we would like to thank our

respected principal Dr.S.Subramanian B.E., M,.Sc(Engg).. Ph.D

for giving his consent to do the project.

We ave greatly thankiful and express our heartfelt

gratitude to our beloved Head of the Departrent Rtn. Prof.

1.E.E.E., F.I.2.T.E., for his constent

K.Palaniswami M.E., M.I.

cencouragement and inspiration througnhout our project work.

We are also thankful and consider it a privilege to
work under the guidance of our beloved guide Mr.K.Ramprakash

-

M.E., senior lecturer, who has guided us and had been &
source of Inspiration.
We would be failing in our duty if we do not thank

our lab technicians who had extended their kind co-operation.

AUTHORS



SYNOPSIS

The project on SERIAL/PARALLEL COMMUNICATION ADAPTER
is to enable communication between two computers through a
cable. This card 1is connected to the 1/0 bus of the system
nother board. It converts the parallel data from the
microcomputer I1/0 bus into serial channel. Data can also be
received serially which are converted into parallel bits.
Another circuit incorporated into this adapter is parallel

interface which is exclusively used for printers in IBM PC's.

The heart of the adapter card is the UART chip and
the single custom IC, designed exclusively for CENTRONIX
INTERFACE.The former is used for serial communication and
latter is used for parallel communication. Asynchronous
communication is used in serial data transmission and for
which the standard used 1is EIA RS232-C. In parallel

communication centronix interface 1is used.



A PAL chip has been used to give high performance and
has replaced the conventionally used logic gates and flip

flops. The PAL device is a programmable AND array driving a

fixed OR array. This PAL chip 1is programmed according to

specification.

The software design is a user friendly menu driven
utility which has 2 major things:
1:File Transferring.

2 :Remote Printing.



Chapter

10
11
12

CONTENTS

ACKNOWLEDGEMENT
SYNOPSIS
INTRODUCTION

SYNCHRONOUS / ASYNCHRONOUS
COMMUNICATION

OPERATING MODES OF UART

SERIAL PARALLEL COMMUNICATION
USING UART- 8250B

SERIAL INTERFACE STANDARDS

ARCHITECTURE AND ORGANISATION
OF IBM PC FAMILIES

COMMUNICATION SOFTWARE
APPLICATIONS

FUTURE DEVELOPMENT

A SUM UP

BIBLIOGRAPHY

APPENDIX

Page No.

14
23

28

50
126
128
129
130
132



INTRODUCTION

Computers have become indespensible and play an
important role in our day to day life. They serve many
purpose and are recently being used in advanced fields like
commmunications and networking. Thus in this situation it
will be advantageous to design a circuit that can be used
for communication between two computers.

The SERIAL/PARALLEL COMMUNICATION ADAPTER was developed
to serve this purpose. It can enable a parallel computer to
communicate with another parallel computer through serial
data transfer. This INTERFACE CARD has been implemented by

using both hardware and software.

It has the hardware feature for transmitting and
receiving data between two computers and parallel
transmission to the printers. The SERIAL INTERFACE CIRCUIT

consists of two ports by which simultaneous transmission and

reception is possible.



There is no well defined format for synchronous or
asynchronous transmission but if timing signal 1is to co-
ordinate the activity between the device and the interface
the transmission would be considered synchronous.If only hand

shaking signals are used, transmission is asynchronous.

SERIAL COMMUNICATION

Within a micro-commputer data is transferred in
parallel which is the fastest method to do.For transmission
over long distances parallel transmission requires too many
wires. Therefore data to be sent for long distances 1is
usually converted from parallel form to serial form so that
it can be sent on a single wire or a pair of wires. Serial
data received from a distant source is converted to parallel

form so that it can be easily tranferred to the computer.

Three terms encountered in serial data systems are

SIMPLX, HALF DUPLEX, FULL DUPLEX.

1) A simplex data line can transmit data only in one

direction.

2) In half duplex, communication takes place in both

directions at a time.

3) In full duplex each system can send and receive data

at the same time.



There are two basic communication standards namely

1) ASYNCHRONOUS and

2 ) SYNCHRONOUS .

SYNCHRONOUS AND ASYNCHRONOUS COMMUNICATIONS :

In asynchronous each data character has a bDbit which
identifies its start, and 1 or 2 bits which identifies 1its
end. Since the character 1is idenified individually,

chaeacters can be sent at any time.

In synchronous communication characters are allowed to
be sent back to back.But this nethod should include special
sync characters at the beginning of each message and special
idle characters in the data stream to fill up time when no
information is being sent. Here they are all sent at a

constant rate.



ASYNCHRONOUS COMMUNICATION :

The sending and receiving systems are synchronised
using some kind of auxillary signal so that both ends of a
connection are always in step. This synchronous communication

technique is used primarily in mainframe systems.

The alternative is to provide markers in the data train
to indicate where every distinguishable block of data begins
and ends. The receiving system can then sort out the proper
beginning and avoid confusion without any synchronisation.
Such systems are described as being asynchronous and are the

operating basis of personal computer serial ports.

In most asynchronous systems,the data is broken up into
small pieces,each roughly-corresponding to one byte. Each of
these chunks is called a word, and may consist of five ¢to
eight data bits. The most widely used word lengths are seven
and eight bits, the former because it accommodates all upper
and lowercase text characters in ASCII code; the latter

because each word corresponds to one data byte.

As serial data, the bits of a word are sent one-at-a-
time down the communication channel. As a matter of
convention, the least significant bit of the word is sent out
first. The rest of the bits follow in order of their

increasing significance.



Added to these data bits 1is a very special double-
length pulse called a start bit, and it indicates the
beginning of a data word. One more bit known as the stop bit
indicates the end of the word.The arrangement of the start
and the stop bit in each of the character is given in fig
(2.1a) Betweeﬁ the last bit of the word and the first stop
bit a parity bit is often inserted as a data integrity check.
Together the data bits, the start bit, the parity bit, and

the stop bits make up one data frame.

Five kinds of parity bits can be used in serial
communication, two of which actually offer error detection.
This error detection works by counting the number of bits in
the data word and determining whether the result is even or
odd. In odd parity, the parity bit is sent on when the number
of bits in the word is odd. Even parity switches on the
parity bit when the bit total of the word is even.The total
bit pattern consisting of all the bits including the start,
stop, and parity bits 1is clearly represented in the fig

(2.2a).

In mark parity the parity bit is always on, regardless
of the bit total of the word. Space parity always leaves the
parity bit off. No Parity doesn't even leaves space for a

Parity bit.



characterd character 2 cnaTalicy 9 e § T n
[ L4 ——H

O A T

Stop  Statt  Stop Start stop stast stop
Bk Bit Bikt Bit Bit Rit Bik
2,-1@) ASYnchvonous C omimunication
E Block 1 —> ‘T‘ ‘— Block2 ____)'

SYNC
gynchronous C ommunication
LowW "
avh Hvg
‘f_,___d\L Do Di DL D3 D4 D5 Dé D7 P )
Stavt stop

\4—————/“ character ____,_,.-—,—-—*){

2.2:(a) character format.

topbit
,,_’_“,“_L Do D3, b4 Dé | Stop
Space - - | b 0% D5 D7 l
Stavt bit panty
bik

(b) Characte (Hexa A6)



All of these bits are sent down the serial line as
negative-going pulses superimposed on the normal positive
voltage on the data 1ine. That is, the presence of a bit in a
serial word will be a negative pulse. Compared to normal
logic systems, RS-232 standard data looks upside down.
There's no particularly good reason for the inversion except
that it's the way things have always been done and, when 1it
comes tTo communications,things work best when everybody

sticks to the same standard.

Serial signals are also described by the nominal rate
at which the bits in the serial train are sent. The standard
form of measurement is simple-the number of bits per second
that are sent-with the standard unit being one bit per second

or bps.

For somewhat arbitrary reasons, bit rates are
enumerated in a rather odd increment. The usual minimum speed
is 300 bps, although slower submultiples of 50, 100, 150 bps
are available. Faster standard speeds merely double the
preceding rate,so the sequence runs 600, 1200, 2400, 4800,
9600, to 19,200, the fastest personal computers, the PS/2

Models 50 and above.



Even the fastest of these speeds are mnot the limit of
serial hardware. In fact, third-party developers offer
software that drives IBM hardware to much higher speed-today
115,200 bps appears to be the limit. At the unsupported
speeds above 19,200 bps,the doubling increment mnoO longer
applies, and most developers allow a 19,200 bps gaps between
the higher speeds they support. The 9600 and 19,200 bps
1imits enforced by IBM represent the maximum operating speed
of the parts once the overhead of the serial port BIOS
routines are taken into account. Programs that run faster
than the IBM 1limit do so by avoiding these slow BIOS

routines.



OPERATING MODES OF UART

IBM relies on a special type of integrated circuit to
transform the parallel signals inside the computer into a
serial train of pulses called as Universal Asynchronous
Receiver/Transmitter OT UART, this chip accepts eight lines
as a parallel input and provides a serial output. It 1is
desinged to work both ways, and can convert serial signals

into the parallel signals.

Three different types of UART are used in the IBM
family of computer. The original PC and XT used a chip
nunbered the 8250 that was installed on IBM's Asynchronous
Communications Adapter card. Most after market vendors
adapted this same chip to thelr communications  and
nultifunction boards. It is also wused in many internal

modemns .

The Universal Asynchronous Receiver Transmitter (UART)
is wusually a programmable 1ST device having mnecessary
hardware circuits for implementing asynchronous serial

communication. Fig 3 shows the essential components of the



Rw
TyD '
+—P SIPO

cLX

Transmitter
Data
Control L i
BuS Og
Receiwvey

T

&

Recewvex

1

Buffer

LI_(:E

[

5 (a) UART Block

Pavity Checker

+—» RPE

3(b) UART Recetver section.

150

pB

ko
,\’2 Tyansnutter
13ugfer "
Vi
Parity
Genevator
Transimit
clock

CLlk

A () UART Lyansmittey gection.

3 TxD




receiver section and transmitter section in an UART. The
receiver converts serial data bits received on the line into
parallel bytes. The transmitter converts the parallel bytes
into serial bits to be sent on the line. The frequency of the
receiver clock has to match the baud rate of the received
data (RXD). The SIPO ( Serial In Parallel Out ) logic
deserialises the serial data bits into a parallel byte. The
RPE ( Receiver Parity Error ) signal is generated by the
parity checker 1if there is a wrong parity in the received
character. In the transmitter section, the PISO ( Parallel In
Serial Out ) logic converts the parallel byte into a serial
bit stream. It also adds start bit, parity bit and stop bit

to the data.

The frequencies of the transmit clock and the receive
clock need not be equal. But the baud rate of the sending end
transmitter should be equal to the receiving end receiver. If
the baud rates are not equal the receiver section will
generate an RFE ( Receilver Framing Error ) signal. When the
receiver section finds an invalid data format it issues the
RFE signal. The received data is said to be invalid when

(a) The start bit is sensed but no stop bit is
found after the data bits and the parity bit time.
(b) The start bit is sensed but its duration

is less than a baud period.

10



I1f the receiver clock frequency and the data format are
proper and still the RFE is generated, it 1is obvious that
there is either noise on the line, or a fault in the line or

receiver circuits.

The UART samples the 1line condition at a fixed
frequency which is 16 times the baud rate. To satisfy this,
the clock inputs to the UART should be 16 times the desired

baud rate.

Besides data transmissions, the UART also creates and
reacts to other signals which control its operation. Control
is afforded through several registers that are accessed by
the computer through 1/0 ports. For example, to change the
speed at which the serial port communicates,the only need is
to load the registers with proper number. The conversation
control is handled by voltages that appear Or are received on

the serial port connectors omn the rear panel of PC or PS/2.

Flow Control

The computers have the problem that they may
shovel out data and have it disappear into the ether unused.
Even when the connection is good, the receiving equipment may
be otherwise engaged and not able to give its attention to

the serial information being delivered to it or the serial

11



data arrive at such a high speed that it exceeds the capacity
of the receiving system toO do anything with 1t on the fly-
even saving the information for later inspection.
Consequently, some means is needed for the receiving system
to single the sending system to hold on and wait until it is
ready to acquire data. Several techniques for controlling
the flow of serial data have evolved, all generally classed
as methods of handshaking, called that because it signifies

the agreement to the terms of the transmission method.

The easiest solution is to use 4 special wire as a
signal line that the receiving system can use to indicate
that's it is actually ready to receive. Because this method
used extra hardware-the £flow control wire it 1is termed
hardware handshaking. This is the default flow control method

used by IBM personal computers.

Some communications channels do not allow the use of an
extra signal wire. For instance, the telephone connection
used by modems (the prototypical serial communications
device) only provide the two wires necessary for carrying
data; consequently flow control systems based on characters
embedded in the data being transmitted are often wused.
Because these flow control characters can be added through
special programming of the sending system, this 1is often

called as software handshaking.

12



In most software handshaking methods, the receving
system uses two distinct characters to tell the sending
system when it is ready to receive a data transmission and

when it can no longer accept more data at least temporarily.

Two methods of software handshaking are commanly used:
One, called ETX/ACK,uses the control code represented by the
ASCII hexadecimal character O03(hex) to indicate that it
requires a pause in data transmission,and the ASCII
character 06(hex) to indicate that it's okay to resume.More
comman among PC products today is XON/XOFF handshaking, which
uses the ASCII characters 13(hex), and 11(heX) to ask for

pause or resumptions of data flow.

Although most PC peripherals that used a serial
connection offer the option of software handshaking, without
special driver software ,they will not work properly with an
IBM personal computer product or a compatible. The result is

data overflow and characters are lost from the transmission.

13



HARDWARE DESCRIPTION

The fig.4.a. shows the circuit diagram of the
Serial/Parallel Communication Adapter 1in the null modem
configuration using RS 232¢ standards. This card has two
sections,

1) a serial port using 8250 UART and

2) a printer interface using printer controller IC 82C11.

The serial port consists of a semi custom PAL chip
16L8ACN. A semi custom chip is a chip whose
interconnections are incomplete. The user has the facility to
program the chip according to his specifications.It 1s a
programmable AND array driving a fixed OR logic. The inputs
to the OR gates are fixed permanantly and connected to a set
of AND gates.The output can be selected by programming the
chip. The PAL used has a matrix of 32 by 64 with 10 inputs

and 8 outputs.

The address signals are taken from the 1/0 slot and
given to the PAL input pins. The I/0 port address of COM1 and
COM2 are 03F8 and 02F8 respectively. When the COM1 port 1is
to be selected by using the address 03F8, a pulse is produced
at 08 (pinl19) of the PAL which selects that port. Similarly
for selecting COM2 port ,02F8 1is given to the PAL inputs and

a pulse is produced at 07(pin 18) of the PAL.

14



The I/0 slot also gives the address bits AZ, A1, AO
which are connected to the respective A2, Al, A0 pins of the

UART.

These address signals are used for selecting the 10
internal registers of the UART. This function 1is implemented

by software. The registers are,

1) Receiver Buffer register (RB) or Transmitter Holding
register(THR)
During the input operation by CPU the RB is accessed. During
ouput operation THR is accessed.
2) Interrupt Enable register (IER) fig.4.b.-
This is an output register with four bits masking for
four different interrupts.
3)Interrupt Idenification register (IIR) fig.4.b.:
Indicates two types of information
a) Interrupt pending status
b) Interrupt level which has been given priority.
4) Line Control register (LCR) fig.4.c.
An output register, where the format of an asynchronous
character is stored by program.
5) MODEM Control register (MCR) fig.4.d.
Controls the output signals to the MODEM and also

provides loopback facility.

15



D1 06 D8 D4 03 D2 D1 Do

0 o) () 0O EMS1 ERLST ETHREL tDRL

F\(ﬂ-bl INTERROPT EnARLE REMISTER FORMAT

D3 De bg Da D3 Dy D2 Do

INT | INT | reens

© © © © © ip1 {100

T b2 INTERRLPT IDEWTIFICATION REGISTER FORMAT

D3 Do Ds Da D3 Oz D1 Do

SeT  [Stuek
DLAB larenk [parity

EPS | PEN | 1B |wLS1|WwWLSO

Flla.c Ling CONTROIL REGKIVITIER  FORM®

V3 D¢ 0s Da O3 Da D1 Do

0 0 O |{L60P |ovr2}o0utl | RIS | DIR

fita.d- ™Mopgm (ONTROIL REGISTER fORMAT

D3 06 Dsg Da Dy Da O1 Do

O |TsRe |THRE | BI | FE | Pg | OR | DR

it 2. Jiwe STatus REGISTER  FORMAT

D3 D¢ D Da Dz D3 Da Do

|

RLSp | RT | DSR | CTs [DRLSD | TERT | DDSR| DCTs
i
|

Flo . popem  QTATUS REGISTER  FORMAT




6) Line Status register (LSR) fig.&4.e.
Indicates different status conditions in transmitter
and receiver sections of the UART.
7) MODEM Status register (MSR) fig.4.f.
Indicates the status of the signal from the moden.
8) Baud rate divisor ( L Byte) and Baud rate divisor (H byte)

The program issues two bytes to these registers.

The 8250 has three chip select signals (CSO, CS1,
C37). To select the UART chip CSZ is made jow while CSO

and CS1 are permanantly pulled high.

The UART  has two input conrol signals to
enable reading from the chip.The DISTR (pin 22) is an active
high input and the DISTR (pin 21) is an active low input. Any
of these pins can be used for reading from the UART. Here
DISTR is grounded and DTSTR is connected to IOR of the 1I/0
slot. Similarly there are two control signals DOSTR (pin 19)

and DOSTR (pin 18) to enable writing into the chip. Here the
DOSTR is grounded and DOSTR is connected to TOW of the 1I/0
slot. The ADS input (pin 25) is used to latch the chip select
and address inputs to the UART.But as the PC works in the CPU
bus cycle these pins are permanantly grounded. The INTPRT
(pin 30) is nmade high by the UART when it wants to interrupt
the CPU. This signal is controlled by software and goes high

for the following conditions.

a) a break in transmission

16



)ddsess Bus Option — 8250 | |
.:Pcnr{: : !
" AJAYGSS ',___‘___._v—;
Decodes
Chip
Select
TTL LEVELS
UART 8250 | 4 Brvess.
| THR &5
pata bus PBus [ !
Transcelves Q:{).Oo-l), == TR | ! /{:
' x
D
] y
_ :
R ! |
! !
RBR. ' ‘
ijs-l:a./.
Oscillator %S 2,3:%6
ZQCQCVQYS .
TTL LEVELS Es 252C Leu
kg <«

tig eta) : RLOCk DIAGRAN) -



b) an error in transmission
c) after transmission of a file and

d) after reception of data

TThe INTPRT signal goes to the PC as the IRQ
signal. Here IRQ3 is reserved for COM2 and IRQ4 is reserved
for COM1.

The AEN signal is used for selecting the
adapter card when it is low .During DMA cycles the AEN goes

high thus diabling the card.

When a data is to be sent through this card the
ports are selected using the address for either COM1 or COMZ2.
When COMl is selected using address 03F8 and if the data 1is
to be transmitted, the DOSTR is made active low through the
TOW signal. The registers of the UART are 1initialised using

software.

The data bits to be transmitted are given to the DO-D7
pins of the UART. These data bits are stored in the THR of
the 8250. After a file has been transmitted the UART gives an

interrupt.

The parallel data signals are converted into
asynchronous serial data whose character length, baud rate,
parity bit are determined by software. The serial output data
comes from SOUT (pin 11) of the UART and are given as the

TXD signals to the RS232C interface chip (MC 1488), converted

17



to RS 232C standards and transmitted. Similarly when
receiving data through RXD line the RS232C signals are
converted into 5V signals by the interface chip MC 1489 and
given to the SIN (pin 9) of the UART. This data is stored in
the RB register of the UART annd goes to the PC after given
the interrupt.
Handshaking signals are used between the Two

terminals. The handshaking signals are

1) Request To sent (RTS)

2) Clear To Sent (CTS)

3) Carrier Detect ( CD)

4) Data Terminal Ready (DTR)

5) Data Set Ready ( DSR)

The baud rate of the transmitter and receiver
sections are determined by software. The BAUDOUT of the 8250
is the signal whose frequency is 16 times the baud rate which
is connected to RCLK (pin 9) of the UART. This is toO make
both the transmitter and receiver sections of the UART ¢to

work at the same baud rate.

The next section of the adapter card cosists of
a centronics printer interface using 82C11. The block diagram
of the Controller is shown in Fig.4.g. This chip is selected
through the PAL chip using the addresses 0278 and 0378.The
printer interface consists of two parts
1) Clock generator

2) printer interface logic.

18



The printer controller 1is a 40 pin LSI chip
and is dedicated PC bus compatible.

The clock generator section has an oscillator
part to which a crystal of 18.432M frequency is connected at
the input pins X1 and X2. The RCLK output is available at pin
9 of the UART.

The interface can be identified by the 25 pin female
connector. It has three address ports available which can be
configured. There are three address port 03BC, 0378 and
0278.

0378 and 0278 may be configured as I1/0 port addresses
while 03BC is used as data port address. Each address inturn

has three internal addresses namely,

03BC --- Data port
03BD --- Status port
03BE --- Command port

The Centronics Interface provides a handshake protocol
between a computer and a printer and supports a maximum data
transfer speed of about 100 kb/s. The printer side of the
interface is a 36 pin connector and the PC side is a 25 pin D
type connector. The PC uses 36 pin flat cable in which every
alternative wire is for the ground. The signals are TTL
level signals and the twisted pair return ground wire for
each signal is connected to the signal ground level. To

prevent noise effects the twisted pair wires are shielded and

19



.
— " Lk r——————-—ﬁ\
< CLOCK GENERATOR
— %2 DOLK b
Dn1n Busd;:::{) PRINTER
DRTA
{180
_ == S— 4 STRORE
o3 PK|NTER DRIVER — IN\T
) 3 SLLT AN
I NTE R.FP\('E CIRCUITS e
—— RO % BUTo FD XT
ke BUSY
————— ResET RECEIVER K— . PE
——— 30 ToW CIRCLUITS K——— ERROR
Sel TOR K 3T
Fign. A-Gr g2C11 BLOCK DIAGRAM
-
BLSY '
ACK
-
£—SpsS——
DRTA
i
STROBE ': :
| )
| i
] 1 !
I OHS 1 GRS | OSKS,
3 [}
f & > CENTRONICS T NTERFACE
Filtr. 4 -9

TiMI NG ORdA]



I Udm Dol Ao s T «
qC - B Il
.Mm. m»B_ucmcu 44 ago? asb bO 23 ¥Y mﬁ...o
=
T = [ I R I B I W &
T J.l - T e
oT B
bt ,ruu wusﬁu a> g5 o |€0 |82 )
g1 v
mouuw a
34 [ - gr | AL YT [ 13T
ad 188 a3
hend " = ksog da2 .
1975 1 ST y] d9E
Lint _ gz |+*® B'onml.ml.BpH
9 zo | A £d = 4Q
¢ o I (R 1 9a ;94
diol n T = d4 0V sq Iﬂ.l.mo 6915
L
agoais, | So | 390415 va—Hh °fF
b Zzg |14 ¥4 —¢%a
vd 7
9¢ | 2d
g VIVd [,
v g% | 9d
vivd g
v td
3 d&a 4 i
i d
1 vivd g L ] e
o d.&g < 1e id
og | °d
§31nJ241D Lajo PP < | A12
D\
403 9guUdoJ mdgv.w. uhom _d:.vm | i3 %124
o¥

.4 qr uways d



the shield is connected to the chassis ground in the systen

box.

SIGNALS FROM PC TO PRINTER:
There are 12 signals from the PC to printer. Out of
these eight signals are data bits and four signals are

control signals. The control signals are: STROBE, INIT,

STLCTIN, AUTO FEED XT. All the control signals are 1low

active.

-t
9]

STROBE: The printer should take the data when this signal

low.

INIT: When INIT is low, the printer resets its electronics

logic and clears the printer buffer.

STCTIN : SLCTIN is an interface enable signal. When this
signal is 1low, the printer responds to signals from the

controller.

AGTO FEED XT: After printing every line, the printer will
provide one line feed automatically if this signal 1is low.

This type of line feed is known as hardware line feed.

SIGNALS FROM PRINTER TO PC:

There are five status signals from the printer to the

PC. These are ACK, BUSY, PE, SLCT, and ERROR.

ACK: ACK signal is an acknowledgement for STROBE signal from
the PC. When active, it indicates that printer has received

data sent by the PC and the printer is ready 1is ready to

20



accept next data type.
BUSY: When BUSY signal is high, it indicates that the printer
is busy and it cannot receive data. This signal becomes high

under any of the following four conditions:

1. On receiving STROBE active

2. During printing operation

3. When the printer is in offline state
4

. When the printer senses some error condition

PE: When PE signal is high, it indicates that there 1s no
paper in the printer. Either the paper is torn Or the paper

is over.

SLCT: SLCT signal indicates that the printer is selected and

logically connected to the PC.

FRROR: ERROR signal indicates that there is some error
condition in the printer. The three reasons for this signal
to go active are:

1. Mechancial fault or electronic fault in the printer

2. The printer is in offline state

3. There is no paper in the printer, i.e., paper—end state.

The timing diagram of Centronics interface protocol 1is
illustrated in Fig.4.h. The printer controller sends data to
the printer. After a minimum gap of 0.5 micro seconds, it
nakes STROBE low and keeps it low for a minimum duration of

0.5 micro seconds. As soon as STROBE become active low, the

21



printer makes the BUSY line high. The controller should
retain data on the data on the data lines for a minimum
interval of 0.5 micro seconds from the trailing edge of
STROBE. Thus the data should be kept on the data lines for a
minimum duration of 1.5 micro seconds. When the printer 1is
ready to receive the mnext character of data, it makes ACK
line low. When ACK is made inactive, the printer also
removes BUSY. To perform data transfer with a printer, it is

enough if the the printer contoller senses either BUSY or AC

signal.

22



SERIAL INTERFACE STANDARDS

Most of todays sophisticated microcomputers and
microprocessors based instrumentation systems come across
the term 'RS-232-C' compatible serial interface.In order to
understand the serial interface standards various modes of
digital data communication are considered.Basically,these
interface standards define the interface between a data
terminal equipment (DTE) and a data communication
equipment (DCE) i.e the links 1 and 3 shown in fig.5(a). The
DTE and the DCE are also sometimes referred to as data

terminal and data set respectively.

We shall look in to commonly used standards,such as the
Flectronic Industries Association (EIA) defined as RS 232C,or
its approximate the Consultative Committee of International
Telephone and Telegraphs (CCITT) defined V24/V28

specifications.

Let us develop the interface logically step by step.
The basic data exchange lines have to be present in the most
rudimentary interface as shown in fig.5(b). There will be
unidirectional transmission and reception data lines along

with common ground line between the DTE and the DCE.

1t can be noticed, that this 1s not a complete and
sufficient interface. The DTE and DCE do not have any have

any means to 'handshake' with each other; mnor do they know

23



DTE

DCE /‘? DCE

TRANSIISS 10N
MEDIUN

Fig: 5()

DTE

DTE

TRANSMITTLL DATA

L REcEIVED DATA

GROUND

LOCL

?ig : 5(b)

DTE

70 D

LINE SIGNAI. INDICATOL.

READY FOR SENDING |
| DATA CHANNEL RECEIYS

DCE

;Cig P 50)




when one is going to receive or transmit data. In order to
overcome this defect,some lines are included to control the
direction of data flow between the DTE and the DCE (see
Fig.5(c)). The line 'request to send' is to indicate to DCE
that DTE wishes to transmit data. Next 1line 'ready for
sending' is to allow DCE to inform DTE that 1is available and
ready to transmit. The 1line 'data channel received line
signal indicator' allows DCE to inform DTE that it is in a

condition to accept incoming data.

Apart from these lines,some other 1lines 'enabling

lines' should be included in the interface. We may have some

status information from DTE and DCE as well. Such an
interface in given in Fig.5(d). 'Data set ready’ line in
Fig.5(d) indicates to DTE that DCE is now operational. 'Data

terminal ready' 1line indicates to DCE that DTE is now
operational and it is wused to enable the DCE. "Calling
indicator' signal is used by DCE to inform DTE that a calling

signal is being received.

Till now the interface has been geared to handle
asynchronous data communication efficiently. But in the case
of asynchronous data movements, the data lines themselves
carry the synchronising bits, namely, the start and stop
bits. In order to generalise interface, provisions should be
kept for synchronisers. This complete interface is shown in

Fig.5(e).

24



DTE

DATA SET REAQY

DATA TERMINAL RERDY

CALLING T NDIWCATOR

DCEt

—

b
|
‘|
|

Fiq: 5Cd)

-

r

DTE

TRANSMITTING  SIGNAL |

ELEMENT TIMING (oceﬂ

RECEIVER SIGNRAL ELEMENT
TiminGg (BCE)

Fig: 5@)

DCE

PR



'On to off transitions on the line marked 1 indicate
the time at which the DCE should sample the 'transmitted
data' line. The DTE is responsible for the timing in this
case. In a similar way 'off to on' transitions on the line
narked 2 indicate to DTE when the mnext data element for
transmission should be presented on the 'transmitted data'

line. In this case the DCE is responsible for the timing.

Similarly for other timing element line, ‘'on to
off' transition the line, indicate the time at which DTE
should sample the 'received data' line. The DCE 1is

responsible for the timing.

The interface developed above is nothing but the CCITT-
V24 interface. The electrical characters of the interface
are laid down in the other standard CCITT-V28. The together
are often called the CCITT-V24 interface. RS-232C standard
is almost equivalent to this interface. RS-232C standard is
widely used in American industries and CCITT-V28 is used in
European industrial circles. These standards are meant toO
cover data rates up to 20kbauds (1 baud=1 bit/sec.) and for a
naximum distance of about 15 metres. For higher data-rate-
distance products, and for DCE's designed to work with high
speed data-links, the CCITT-V35 performs the same role as the
V24 or V28 for low-data rates. Corresponding DIA standard
for high data-rate-product is the RS-423. All these

standards relate to an unbalanced mode of transmission.

25



The other mode of digital data transmission is known as
the balanced mode of transmission. This mode has an inherent
advantage over the other, in that it as better common-mode
rejection (CMR) of noise. This effect is illustrated 1Iin

Figs. 5(£) and 5(g).

Fig. 5(f) shows an unbalanced driver and receiver
connection. Note that the receiver will receive the signal
and any noise generated in the line without distinction. In
some of the contemporary receiver chips there are threshold-

set pins to reject this common-mode noise to some extent.

Fig. 5(g) shows a balanced transmission and reception
system. You will notice in this figure that any common-mode
noise introduced in the transmission line will be rejected as
per the common-mode rejection ratio (CMRR) of the receiver.
In this form of transmission the data travels both its direct

and inverted forms through a pair of lines in each direction.

There is an EIA standard for balanced transmission at

high data rates. It is known as the RS-422 standard.

Some important characteristics of common EIA standards
are listed in Table I. Manufacturers like Texas Instruments,
Motorola and American Micro Devices produce driver and

receiver chips for these EIA standards.

26



TABLE-

..,-...._._.___._......_...._.__....._._..A..__+.,.A.,. — e e e . — e —— . —
PORAMETER ' 18 RRAC
e e e wa wn e e e G e ..,ﬂ......‘...,..,.‘_,.4‘ v ———ar— ettt o — ——— - — — - -
MODE 0OF OPERATION LN BALANCELD
MAXIMUM DISTANCE(FL.L) 50
MAXIM DATA RATE :
(baud) : 20K :
MAYIMUM COMMON MODE d + 295
VOLTAGE (voltle) H -
DRIVER OUTPUT SIGNAL \ + 5V omain
1 + 15Ymaz
DRIVER LOAD(ohms) i C I
POWER-OFF DRIVER H
OUTPUT RESISTANCE ; 300 aohms
(MHi—-7 state) ;
REGEIVER INPUT ;
RESISTANCE (ohms) ; QW —— T
RECEIVER SENSITIVITY H +3Y
; e =



af—

]‘Eg'. 5(£)

£ X

<D

Flg9: 5C9)



Sometimes we come across another term “20/40/60 mA
current loop.' This current signaling method of digital data
transmission is based on telegraphy techniques. The basic
circuit of the 20 mA current loop driver and receiver 1is

shown in Fig. 5(h).

In this diagram, transmission is effected by means of
energising relay A which causes a current of 20 mA to flow
round the loop which in turn, energises relay B and closes
contact B of the receiver. In modern circuits, we have opto-
couplers and transistor amplifiers at the transmission and

reception points.

Finally, while transmitting data, the most important
question is when to use the current method, and when to use
the voltage method. The 20mA current loop has better
performance in electrically noisy environments. When the
transmitter and receiver have the same ground level, then

only the voltage method can be used successfully.

27



ARCHITECTURE AND ORGANISATION OF IBM PC FAMILIES

The IBM introduced the IBM personal computer on August

11,1981

and officially withdrew it from market on April

2,1987.During the nearly six year 1ife of PC it dominated the

market.

The specifications of PC are as follows:

1.

2
3.
4

10.
11.
12.
13.
14.

Intel 8088 microprocessor

. Clock frequency of 4.77 Mhz

Five 8 bit I/0 expansion slot

. 40 K ROM with ROM based diagnostics,power on self

test (POST)
One or two floppy disk drives which can be expanded
upto 4 drives
Basic interpreter in ROM
256 K of dynamic RAM can be expanded upto 640K
through expansion of memory boards
200 nano second memory access time
Flectrical requirement 104 volts to 127 wvolts,
50Hz to 60Hz
63.5 watt power supply
83 key
Cable length of 6 feet
One parallel port along with MDA

Socket for 80287 math coprocessor

28



IBM PC-XT

Introduced March 8,1983 the PC_xt with built in 10 - M
hard disk (original standard) caused a revolution in personal
computer configurations. XT stands for extended XTended. IBM
choose this name because the IBM PC XT system includes many

features with enchanced version.

The specifications are:

1. Intel 8088 16/8 microprocessor working at 4.77Mhz
clock speed and having 20 address bits through which
it can support 1MB of memory

2. 40K ROM having
a. POST(power on self test)

b. BIOS(basic input output system)
¢. Basic interpreter
3. 8 bit I/O expansion bus
4. 256K or 640K of dynamic ROM having 200ns memory
access time
. One 360Kb floppy drive
10M or 20M hard disk drive
. C.G.A adapter with support TV's

. One parallel and serial ports

O o N oy W

Socket for 8087 math coprocessor
10. 135 watt power supply

11. 83 key keyboard and its cable length is 6 feet

29



IBM PC-AT

IBM introduced the PC-AT (advanced technologies) August
14,1984 .1t included many features previously unavailable such
as increased performance and advanced microprocessor high
capacity floppy disk and hard disk drives larger memory Space
and an advanced coprocessor.Despite its new design the IBM AT
retains compatibility with most existing hardware and

software products of earlier system.

The specifications are:
1. 1Intel 80286 microprocessor having 24 address Dbits
and working at 6 or 8 Mhz clock speed
2. 64K of ROM having
a. POST(power on self test)
b. BIOS(basic input output systems)
c. Basic interpreter
3. The microprocessor has modes
a. 8086 compatible real mode (1MB memory only)
b. Protected virtual address mode (16MB memory)
512K of dynamic RAM having 150ns memory access time

1.2M double sided or high density floppy drive

o w &

20M or 30M hard disk drive
7. Serial/Parallel interface
8. Clock/Calendar and configuration with battery

backup

30



9. Key lock

10. 84 key keyboard having cable length of 9 feet

11. 19 switchable world wide power supply

12. 192 watt variable speed fan temperature controlled
power supply

13. Socket for 80287 math coprocessor

Though we are having different kind of PC products but
configuration and they are software compatible only.So now we
Jook into PC's whatever going to be specified are all same
for starting from PC to PC-AT unless otherwise specifically

specified.

1. DMA

In PC,PC-XT and PC-AT DMA data transfer is used between
memory and floppy disk.In PC-XT hard disk and memory transfer
is also through DMA.But the AT hard disk transfer is through
programmed mode of transfer.There are two DMAC in AT,in XT

and in ordinary PC there are only one.

They are all mapped for address

DMAC1 000 - OOF

DMAC2

il

0CO - ODF(only in PC-AT)

31



2. TIMER

The PC, PC-XT and PC-AT timer is used for three purposes:

a. Real time clock
b. DMA refresh
c. Speaker oscillator

In the above 8253 and 8254 is used and address

mapped between 40 - 4F.

3. INTERRUPT

Interrupts are used for different purposes.They are:

IRQ no. INT type Purpose

IRQO INTS8 Real time clock

IRQ1 INTO Keyboard

IRQ2 INTOA Not used

IRQ3 INTOB CcoM2

TRQ4 INTOC COoM1

IRQ5 INTOD Hard disk

IRQ6 INTOE Floppy disk

IRQ7 INTOF Printer

The above is true for both PC and PC-XT.

In PC-AT there are two 8259's and hence there uses are:

IRQ no. INT type Purpose

IRQO INTS8 Timer output

IRQ1 INTO Keyboard

IRQ2 INTOA Cascaded interrupt controller
input

32

are



IRQ3
IRQ4
IRQ5
IRQ6
IRQ7
IRQS
IRQY
IRQ1O
IRQ11
IRQ12
IRQ13
IRQL4

IRQ15

INTOB
INTOC
INTOD
INTOE
INTOF
INT70
INT71
INT72
INT73
INT74
INT75
INT76

INT77

COoM2

COM1

LPT2

Floppy disk
LPT1

Real time clock
Redirection to interrupt INTOA H
Reserved
Reserved
Reserved
Coprocessor
Hard disk

Reserved

33



BASIC INPUT/OUTPUT SYSTEM

Like software the BIOS is a set of instructions to the
computers microprocessor.Like hardware, however, the special
instructions are not evanescent, rather, they are coded into
the silicon of PROM chips. Because the twilight state of
programs like the BIOS, existing in the netherworld between
hardware and software, such PROM based programs are often
termed FIRMWARE. The BIOS of a IBM or compatible computer is
very special firmware, comprising routines that test the
computer, others that give in its personality more to help
other programs more smoothly mesh with the electronics of the

system.

The distinct parts of the BIOS work separately and
distinctly even though the code for each is contained inside
the same silicon chips. It operates like a set of small
TERMINATE AND STAY RESIDENT PROGRAMS (like SIDE KICK,or PRO

KEY) that are always in memory.

BIOS PURPOSE:
As long as all computers are crafted exactly the same,
the same ports used exactly for the same hardware with

exactly the same registers, there would be no problem.

34



However hardware arrangements differ from computer to
computer the BIOS routines that worked like the old ones and
were indistinguishable from the old ones when used by
application software. The addresses inside the routines would
be changed, however to match the updated hardware.The same
software could thus work with a wide variety of hardware

designs.

BIOS DATA AREA:

Once the BIOS code starts executing, it makes use of
part of the host systems memory to stor parameter values
important to its operations. Included among the data that it
stores are equipment flags,the base addresses of i/o
adapters,keyboard characters,and operating modes. The bios
data area comprises 256 bytes of memory, starting at absolute

memory location 0000400(Hex).

IMPORTANT BIOS DATA AREA ASSIGNMENTS USED IN OUR SOFTWARE:

ADDRESS FUNCTION

0400 Base address of first RS232 adapter (COM1)

0402 Base address of second RS232 adapter (COM2)

0404 Base address of third RS232 adapter (COM3)PS/2only
0406 Base address of fourth RS232 adapter(COM4)PS/2 only
0408 Base address of first printer adapter(LPT1)

35



040A
040C
0410

Base address of second printer adapter(LPT2)
Base address of third printer adapter (LPT3)

Installed hardware flags

Bit 0 = IPL diskette
Bit 1 = Numeric coprocessor
Bit 2 = Pointing device( except PC,XT,AT,

and convertible)
Bit 4,5 = Video mode
01 = 40%25 color;10 = 80%25color;11l =80%*25mono
Bit 6,7 = Number of floppy disk drives
Bit 9,10,11 = Number of serial ports
Bit 13 = Internal model(Convertible only)

Bit 14,15 = Number of printer adapters.

36



THE APPLICATION ENVIROMENT

When DOS is loaded from a bootable disk, it wusually
places itself into the lowest memory location
available.Device drivers, a special type of DOS program, load
next. Finally, COMMAND.COM (or another program specified by
the SHELL command in the CONFIG.SYS file) is loaded. The

remaining memory is free for user programs.

A large portion of the command interpreter,COMMAND.COM,
1oads in the highest partof memory. This is the transient
portion. (The rest, which loads in low memory, is the
resident portion.) The transient portion may be overlaid by a
user program requiring additional memory. When this happens,
the resident portion of the COMMAND.COM reloads the transient
portion after the user program exits.The figure shows system

memory map in detail.

It is important to realize that DOS may load a program
into any free memory location as long as it is on a segment
boundary. In other words, starting addresses offset must be
0000, but its segment can be any value. Location may be
different each time the program loads and will almost
certainly differ depending on the machine. Different types of

programs handle this problem in various ways.

37



TYPES OF DOS APPLICATIONS

DOS program fall into four categories:.EXE files,.COM
files, device driversand terminate and stay resident (TSR)
programs.A .COM,.EXE, or TSR program in memory is sometimes

called a PROCESS.

Each type of program has a set of rules that must be followed

when writing them, and each works best for certain tasks.

.EXE FILES: .EXE files , the most natural application model
for DOS programs, may contain multiple code and data
segments. Since a segment can only be 64KB long, this is an

important feature when building large programs.

An .EXE file consists of three parts. The first is a
header as shown below, that contains information about the
program. Among other things the header tells DOS how much
memory the program needs, where to start the program, and the

location of the data segment.

.EXE HEADER
OFFSET  LENGTH DESCRIPTION
OOH word .EXE file magic number (405AH)
02H word Length of last sector

38



04H word Size of file, including header(512 byte

pages)
O6H word Number of reallocation table items
O8H word Size of header (paragraphs)
OAH word Minimum# of paragraphs needed above
program
OCH word Maximum# paragraphs allowed above program
OEH word Displacement of stack segment(paragraphs)
10H word Contents of SP register on entry
12H word Checksum
14H word Contents of IP register on entry
16H word Displacement of code(paragraphs) relative

to start of the program

18H word Offset to first relocation table entry
(byte)
1AH word Overlay number(0 for main program).

The second part of the .EXE file is the relocation
table. This table contains segment fix-ups, which point to
places in the file that explicitly reference segments. DOS
adds two byte number at each fix-up location to the segment
address where the .EXE file loads, then copies the resulting

number into memory.

39



The final part of the .EXE file is the data to be

loaded into the computer.

.COM FILES: This is the simplest application model. The
program all available memory. The data segment is the same as
the code segment, which also equals the stack segment. .COM
files always load and begin execution at offset 100H in their
code segments DOS does not process a .COM file anyway, so
such a file cannot contain explicit referénces to segments as

an .EXE file can.

.COM files have no headers- they only contain the data

to load into memory.

.COM files loads faster than .EXE files and are slightly

smaller than .EXE files. Its length cannot exceed 64KB.

TSR PROGRAMS:TSRs are not really different kind of
programs; they may be .COM files or .EXE files. After an
ordinary .COM or .EXE program completes, however, DOS removes
it from memory before continuing. A TSR program, on other
hand, leaves a portion of itself in memory after exiting.
Usually it hooks itself into one or more interrupt routines

so that when an interrupt occurs the TSR can process it.

40



DEVICE DRIVERS: They are special programs that
communicate between DOS and one or more devices. DOS provides
default device drivers for the standard devices (such as PRN,
LPT1, AND CON) and disk drives. It loads device drivers right
after itself during the boot sequence. Like TSR's, these
drivers remain in memory after exit.Unlike TSR's you cannot
remove them nor can you install them without reboting the

system.

There are two types of device drivers: Character and
block. Character drivers have names likes LPT1 and CON. DOS

automatically assigns letters to block drivers.

Each type of driver has a specific format and must
contain the routines that DOS prescribes. From that
perspective, drivers are easy to write; however, because the
routines to interface with some devices are difficult and
since some device drivers are very hard to debug most

programmers consider them as a challenge.

41



8088 MICROPROCESSOR AND I/0 SLOT

This 8086 and 8088 both are compatible.They are first
16 bit microprocessors, both of then working in a same
internal and external architecture. The 8086 microprocessoor
is a 16 bit microprocessor both internal and external but
8088 is a 16 bit internal and 8 bit external.Since compatible
chips like 8237 DMAC,8255 ppi,8253 timer,8259-internet
controller were just 8 bit and cost of manufacturing of 16
bit chips were very high,Intel was forced to manufacture
those 8088 chips and IBM also implemented their design around

8088 chips.

The 8088 microprocessor is divided internally into two
parts BIU and execution unit.The actual reason for this
division is to speed up processor operations by reducing CPU
idle time.This is done by prefetching of instructions by the
BIU into one part of microprocessor while the execution unit
executes instructions.So overall efficiency of microprocessor
and its speed are decreased because microprocessor need not
to fetch an instruction only after execution which eats up

too much CPU time though fetching of an instruction is

42



constant and is comparatively less than EC of an instruction
cycle when more number of instructions are executed.This part
of an instruction cycle becomes important to note so this
division plays an important role in increasing speed of

microprocessor.

The specifications and internal structure of this
processor:

1. 20 address bits using which max of 1MB can be
accessed

2. 8 data bits

3. Working at 5Mhz clock frequency

4. There are two mode minimum and maximum mode
a. Minimum mode equal to its predecessors which it
will generate all bus control signals
b. Maximum mode ,the other microprocessor can be
made to work with this microprocessor but bus
control signals are to be generated outside the chip
using some external hardware components.

5. Made up of HMOS technology(N channel,depletion
load, silicon gate technology)and packaged in a 40

pin cer dip package

43



BIU

Bus control unit which generates bus control signals
like ALE,DEN,DT/R etc

Instruction queue:This is the area where instruction
are prefetched into the microprocessor by BIU.It 1is
4 byte wide in 8088 microprocessor and 6 byte wide
in 8086 microprocessor.

Instruction pointer: This is a 16 bit pointer which
points to the next instruction to be executed.It is
just equivalent to program counter in 8085
microprocessor.

Segment registers: The 8088/8086 microprocessor
views memory as different segments.Each and every

segment has 1its own purpose.The segments are as

follows.
SEGMENT PURPOSE
Code segment Instruction alone
Data segment Data alone
Extra segment Used in addtion to data
segment
Stack segment For stack operations

44



The maximum of each segment is 64KB only, and these
segments can be overlapping segments in the sense for eg
code segment is having instructions only up to 10KB ,let us
assume that data segment starts immediately from 11KB onwards.

There is no rule that it should start from 65KB onwards.

There are four segment pointers pointing the starting

address of each segment. They are

CSR Code segment
DSR Data segment
SSR Stack segment
ESR Extra segment

The above said registers are 16 bit registers only.

5. Address generator : Here for example if you see to
the address of an 1instructions there are two
pointers, one code segment register pointing to the
starting address of code segment where the
instructions are stored.There is also an
instruction pointer pointing which points to the

next instructions which is to be executed.Both the

45



Here

above pointers are 16 bit pointers.In order to
address a memory location we require a 20 bit
address. Hence putting the above two pointers we
need to generate what 1is called as physical
address. The formula used is

Segment address * 10H + offset address

multiplying a segment address by 10H means

shifting segment address by four bits to the left.

EXECUTION

1.

The

UNIT
General purpose registers: The general purpose
registers ax,bx,cx,dx are 16 bit wide. Though they
are 16 bit wide they can be firthur divided into
two 8 bit registers.The allowed pairs are

ax = ah,al

bx = bh,bl

cx = ch,cl and

dx = dh,dl

above general purpose registers in most of the

cases are also used as special purpose registers in some

predefined instructions.This means

46



ax = accumulator
bx = pointer
cxX = counter

dx = data register

Their usage can be seen while seeing instructions.

2. Offset registers:
a.Index registers:They are

SI and DI:

The SI is called source index and the DI is called as
destination index register. There usage 1is as offset
register to string operation, one pointing to the source of
the string and another the destination of the string.Though
they are used as pointers they can also be used as general
purpose register,but with one restriction that they cannot

be divided as two 8 bit general purpose register.

b. Stack and base pointers:

Designated as SP and BP respectively,both are 16 bit

pointers and are used as offset pointers within stack .While

SP is used to access data in seqgential order from stack and

BP in random.

47



3. FLAG REGISTERS:
Here there are 9 flags which occupy a 16 bit register.The
flags are:
bit0 = carry flag
bitl = x
bit2 = parity flag
bit3 = x
bit4 = auxillary flag
bit5 = x
bit6 = zero flag
bit7 = sign flag
bit8 = Trap flag
bit9 = interrupt flag
bit10 = direction flag

bitll = overflow flag

bitl2 = x
bitl3 = x
bitld = x
bitl5 = X

FUNCTIONS OF FLAGS:

CARRY FLAG: After any arithimatic and 1logic operation
generates carry. Carry flag will be set else carry flag will

be reset

48



PARITY FLAG: After any arithmatic or logical operation
generates even number of 1's then parity flaf will be setC.
AUXILLARY CARRY FLAG: After any arithmatic or logical
operation generates carry in lower order nibble and goes to
higher order nibble then auxillary carry flag will be set.
ZERO FLAG: After any arithmatic or logical operation result
generates zero of this flag will set.

SIGN FLAG: The result of any arithmatic or logical operation
makes MSB as 1.This flag will set.

TRAP FLAG: Used to trace the 8088 instructions step by
step

INTERRUPT FLAG: Tthis enables interrupt system of
microprocessor

DIRECTION FLAG: Increments or decrements memory by resetting
or setting this flag.

OVERFLOW FLAG: Whenever arithmatic operation generates

overflow this flag will be set.

49



SOFTWARE DESCRIPTION.

The main objective of this software is to
transfer files from one system and also it incorporate remote
printing,a new idea which 1is incorporated only in recent
sophisticated software like NOVELL NETWARE and also it has a
ON-LINE message transferring and internal loop back test,for

testing the serial/parallel interface card.

The software starts with all needed data
declaration contents, public declaration external definitions
The main procedure starts with finding all system
configuration like PC, or PC,XT or AT, determine peripherals,
determining memory etc. Now at this point a full screen box
is drawn with the following menu.

OPTIONS
PORT ADDRESS
PARAMETERS

. DOS FUNCTIONS

v B~ W N

FILES

Now at this point the procedure named as
keyboard is called where the user using exit menu of the main
menu "OPTIONS" or by pressing escape. Now the first function
within keyboard in "FILEGET" which gets the files(s) and
displays at the right corner within a box under option

"files".

50



USAGE OF THE KEYBOARD WITHIN THE MENU:

1. Page up: This key 1is used only for file display
which makes one page of files to another page of files. Each
page consists of 13 files and it goes only in upward
direction which means that the previous page of the files
will be displayed.

2. Page down: It is also used only in file function. It
display file £from one page to another page in downward
direction (i.e) displays next page of 13 files.

3. Space bar: This key is used for selection purposes.
(ie) selection of files. This 1is working as a toggle switch.
When you press over one file or port address that file or the
port address will be selected using their own markers. The
former uses incremental numbers and the latter wuses the
symbol '*'.

4. Left Arrow : This moves the created cursor towards
ljeft direction, option by option. If it reaches the last
option it moves the cursor once again to the first option. If
the submenu is opened it moves along with the submenu.

5. Right Arrow: This does the above said operations in
the reverse direction.

6. Up Arrow : This activates only if submenu is opened.
It moves the cursor to the options of the submenu, step by

step in a decremental way.

51



7. Down Arrow : This does the above said
operations in the reverse direction.

8. Escape : The escape key closes the submenu provided
the submenu is opened, or closes the main window and comes to
DOS prompt while submenu 1is inactive.

Now let us see the different options

elaborately.

1. OPTIONS :

This option has the following menu

(a) Transfer File : Transfers file from
one system to another system. I uses programmed mode of data

transfer at a rate specified by the user.

(b) Remote Printing : It prints file
through another system. It also uses the programmed mode of
data transfer at a rate specified by the user.

(c) Send Message : It is an ON line
message transfer between two systems. Both the wuser can
simultaneously transfer information from keyboard directly.

(d) Loop back Test : This loop back test
activates the internal loop back of UART.

(e) Exit : Exits from the option.

52



2. PORT ADDRESS

1t can be selected by pressing the space bar.
It acts as 2 toggle switch. When we press the space bar key

it puts ' and selects the port address. 1f we press it
again it de-selects port address, provided space bar 1is
pressed on the selected port address. 1f the space bar is
pressed on 2 new port address it will deselect selected port

address by removing ' ¥ '

3. GET PARAMETER :

1t displays baud rate, character l1ength and
parity. It has some default values. The default values are
baud rate 9600 bps, parity -~ odd parity, stop bit - 1,
character length - 7. 1t is possible TO change the parameters
just by pressing enter key over that parameter. 1t will
create an input window and we can input the data, if there is
an error it will prompt the same. For this get parameter

file is used.

4. DOS COM :

This uses DOS commands. Here only 3 DOS

commands are used. They are
(a) Type File : It is used to display a

file on the monitor screen, pPage by page-.

53



(b) Change Directory : It changes the
current directory to any other directory specified. If the

directory does not exist it will also prompt error message.

(c) Current Directory : It displays the
current directory information. For this one file DOS com is
used.

5. FILE FUNCTIONS

These file uses what are the latest trends
available in the file display. By pressing a space bar we can
select a file against which numbers will be marked in the
ascending order. Whenever directory is changed by change
directory command the files corresponding to the directory

will be displayed.

The process of communication starts when all
the required options are selected by means of the above said
operations. First the status of the other terminal is checked
by means of sending the handshaking signals. When the system
is not ready it requests the first terminal to wait. The
first terminal waits until the second terminal gets ready.
When the second terminal is ready it sends a status signal to
the first terminal that it is ready. Then the required

operation is performed.

If the operation is to transmit the data, the

54



selected file is transmitted to the other terminal through
the Transmit Hold Register (THR) of the UART chip. The data
that is transmitted is stored in the Receive Hold Register
(RHR) of the second terminal. Then a interrupt signal is send
from the UART to the system that it holds some data's to be
stored. Then the interrupt 1is acknowledged and the

transmitted file is stored in one particular location.

In the case of remote printing the file that is
transmitted, instead of storing in the memory location it
directly goes to the printer that 1is connected ¢to the

CENTRONIX interface and the file is printed.

In the case of send message, the adapter card
acts as an direct link between the two computers. The data
that is typed by the first user is displayed on both the
first terminal monitor and also in the second terminal
monitor. Likewise the data that are typed by the other user
is also displayed in the same manner. Thus this proves to be

more useful in communicating with two terminals.

The loop back test that is provided is used to
check the operation of the adapter card. In this the file
that is selected, is transmitted and received in the same
monitor, (i.e) the transmission and reception of the file is
displayed in the same monitor. This proves toO be a good

method for testing purposes.

55



Thus the software written, proves to be a very
good software since it can be used not only by technical

people but also by a common man.

56



FLOW CHART

( smrt )

¥
INITIALISE
SERIAL PORI

QUTPUT 27.R
TR
; 7
Y
QUIPUT 27.F
Y N
GET FILENAME
FROM BUFFER
v

1
i
|
{
!
i
|
i

OPEN THE FILE %

CHECK ™
17
FILE IS
OPENED



SERIALPRO.ASM

Main program which calls all other functions,written in
other files and also incorporates required functtions.

if1
include mymacro.asm
endif
CODE SEGMENT public 'code'
ASSUME CS:CODE
ORG 100H
extrn baudvalue :word
extrn parityaddress:word
extrn stop:word
extrn charlen:word
extrn lcrvalue:byte
extrn getparams:near
extrn change:byte
extrn FIND :near
extrn MON_ADDR :word
extrn BASE ADDR :word
extrn status port :word
extrn terminal :near
extrn doscomm:near
spc equ 3%h
da equ 50h
ua equ 48h
ra equ 04dh
la equ 04bh
pu equ 49h
pd equ 51h
hm equ 47h
ed equ 04fh
cr equ Olch
esc_k equ Olh
STT:JMP MAIN
star dw ?
comaddress dw 03£8h
dw 02£8h
dw O
dw O
portvalue dW ?
starstore dw ?
countvalue db ?
setcursor db ?
valuel db ?
portaddr dw ?
filelocation dw ?
storecount dw ?
close dw ?
endaddr dw ?
startaddr dw ?
FILETOP DW ?

57



FILEBOT DW 7

filerow dw ?

filecol dw ?

dollar db '$'

area db 256%13 dup (?)

count dw ?

value dw ?

savecol dw ?

saverow dw ?

rcount dw 19

lcount dw 50

asciiz db '*.%',0

colstart dw ?

colend dw 7

space dw 50 dup (?)

selcount db ?

pcount db ?

public
portaddr,space,area,row,col,stringdisp,display,char,addr,selcount

public countvalue,attr,saverow,savecol,index,portvalue,hexad

stringl db 'OPTIONS$'

STRING2 DB 'PORTADDRS$'

STRING3 DB 'Parameters$’

strings db 'Dos utlity$'

string5 db 'Files$’

coll dw ?
dw ?
dw ?
dw ?
rowl dw ?
ROW Dw 7
COL Dw ?

presentrow dw ?
presentcol dw ?
nextaddr dw ?
presentaddr dw ?
CHAR DB ?
ATTR DB ?
INDEX Dw 7
SUBINDEX Dw ?
MAININDEX DB ?
STATUS DB ?
rsize dw 7
csize dw ?
addr dw ?
file dw ?
filecount dw ?
dispcount db ?
colright dw ?
rowbot dw ?
winleft dw ?
wintop dw ?
dollarl db '$’
options db 'Transmit data$’
db 'Remote printing$’

58



db 'Send message$'
db 'Receive$'
db 'Loop back test$'
db 'Exit$'
labell label byte
dollar2 db '$’
portaddrs db 'Com 18$'
db 'Com 2§'
db ‘'com 3%’
db "com 4%
label2 label byte
dollar3 db '$'
parameters db 'Baud rate$'
db 'parity$'
db 'Stop bits$'
db 'Char length$'
label3 label byte
dollar4 db '$!
dosutility db 'type file$'
db 'change directory$’
db 'current directory$’
label4 label byte

submenu dw offset options
dw offset portaddrs
dw offset parameters
dw offset dosutility
termination dw offset labell
dw offset label2
dw offset label3
dw offset label4
addrtable dw offset stringl
dw offset string2
dw offset string3
dw offset stringé
dw offset string5
addrend label word
addr1l db '9600$"
addr2 db 'ODD$'
L middle equ 'L'
r middle equ '9'
TE TO COR EQU 'I'
HOR EQU 'M'
VER EQU ':'
RI_TO _COR EQU ';
LE BO COR EQU 'H'
RI"BO COR EQU '<'
MAIN PROC
mov ax,offset addril
mov baudvalue,ax
mov ax,offset addr2
mov parityaddress,ax
mov stop,l
mov charlen,7/
CALL FIND

59



11:

12:

13:

14:

15:

MOV ES,MON_ADDR
XOR DI,DI

MOV CX,80%25

MOV AX,0720H

REP STOSW

push es

mov ax,40h

mov es,ax

mov ax,es:60h
mov setcursor,ah
pop es

mov dx,base_addr
mov al,10

out dx,al

inc dx

mov al,20h

out dx,al

mov row,0

mov col,20

mov attr,70h

@string <'PROJECT WORK ON SERIAL PORTS$'>

mov row,2
mov col,3
MOV CHAR ,LE TO COR
MOV ATTR,07H
CALL DISPLAY
MOV CHAR,hor
inc col
cmp col,75
jb 11
mov char,ri to_cor
call display
mov char,ver
inc row
cmp row,22
jb 12
mov char,ri bo_cor
call display
mov char,hor
dec col
cmp col,3
ja 13
mov char,le bo cor
call display
mov char,ver
dec row
cmp row,2
ja 14
mov row,4
mov char,l middle
call display
mov char,hor
inc col
cmp col,75
jb 15

60



mov char,r middle
call display
mov cx, offset addrend-offset addrtable
shr cx,1
xor bx,bx
mov col,6
mov row,3
mov si,row
mov rowl,si
yet loop:mov si,col
mov [bx+coll],si
mov si,[bx+addrtable]
mov addr,si
CALL STRINGDISP
add col,5
add bx,2
loop yet loop
mov row,3
mov index,0
mov attr,70h
mov bx,0
mov si,[bx+coll]
mov col,si
mov si,[bx+addrtable]
mov addr,si
mov ah,O
int 16h
call stringdisp
call keyboard
@clrscr
mov dx,base addr
mov al,10
out dx,al
inc dx
mov al,0
or al,setcursor
out dx,al
ret
main endp
display proc
push ax
push dx
push bx
push cx
push di
push es
mov es,mon addr
mov dx,status_port
retrace:in al,dx
test al,l
jnz retrace
noretrace:in al,dx
test al,1l
jz noretrace
mov di,row

61



shl di,1

shl di,1

add di,row
mov cl,4

shl di,cl
add di,col
shl di,1

mov ah,attr
mov al,char
stosw

pop es

pop di

pop c¢x

pop bx

pop dx

pop ax

ret

display endp
STRINGDISP PROC

PUSH AX

PUSH bX

push si

mov si,addr
CLD

m s disp:lodsb
cmp al,'$'

je finish

mov char,al

call display

inc col

jmp m_s disp
finish:mov colend,si
pop si

pop bx

pop ax

ret

stringdisp endp
keyboard proc
push ax

push si

push bx

mov ax,row

mov filerow,ax
mov ax,col

mov filecol,ax
call fileget
getkey:mov ax,row
mov presentrow,ax
mov ax,col

mov presentcol,ax
mov ax,filerow
moOvV TYOwW,ax

mov ax,filecol
mov col,ax

mov ah,O0



int 16h

cmp ah,pd

jz pl _cont

jmp nopd

pl cont:push ds
pop es

mov ax,presentrow
mov row,ax

mov ax,presentcol
mov col,ax

cmp index,4%2

je y_file

jmp getkey

y file:

mov ax,[coll+&]
sub ax,5

shl ax,1

add ax,2

mov col,ax

mov ax,filebot
cmp ax,count

jae getkey

MOV FILETOP,AX
MOV row,b6

mov attr,07
@delwindow ROW,COL,RSIZE,CSIZE,char
mov si,endaddr
mov startaddr,si
mov colstart,si
1k2:inc filebot
MOV AX,COUNT

CMP FILEBOT,AX
jbe filesr

mov endaddr,si
jmp enddisp
filesr:mov addr,si
mov bx,col

call stringdisp
mov col,bx

add col,15

mov ax,si

mov pcount,0

mov di,offset space
MOV CL,SELCOUNT
CMP CL,O

JnZ lo2

inc col

JMP ncont

102 :inc pcount
scasw

jz 1lwl

loop lo2

inc col

jexz ncont
1lwl:mov al,pcount

63



mov si,startaddr
mov endaddr,si
1f1:std

dec filetop

cmp filetop,O
JGE y1 more

mov filetop,O
mov filebot,13
jmp anacin

yl more:sub si,?2
reverse:lodsb
cmp al,'$'

je fi disp

jmp reverse

fi disp:add si,2
mov addr,si

mov bx,col

call stringdisp
mov col,bx

add col,15

mov ax,si

mov pcount,0

mov di,offset space
MOV CL,SELCOUNT
CMP CL,O

JnZ lo3

inc col

JMP ncontl
lo3:inc pcount
scasw

jz 1lw2

loop lo3

inc col

jexz ncontl
1llw2:mov al,pcount
aam

or ax,3030h

mov char,ah

call display

inc col

mov char,al

call display
ncontl:sub col,16
dec row

cmp row,b6

jb anacin

jmp 1f1
anacin:mov ax,filetop
mov filecount,ax
mov startaddr,si
mov colstart,si
mov row,6

mov attr,70h

mov addr,si

mov bx,col



call stringdisp
mov col,bx
jmp getkey

nopu:cmp ah,la

jz yla

jmp nola

yla:cmp index,0%2

jnz decindex

mov bx,index

mov close,bx

mov index,4%2

jmp nextw
decindex:mov bx,index
mov close,bx

sub index,?2
nextw:mov si,[bx+coll]
mov col,si

mov si,[bx+addrtable]
mov addr,si

mov attr,07h

call stringdisp

mov bx,index

mov si,[bx+coll]

mov col,si

cmp bx,1%2
jne n_col ind
cmp star,0

je n_col _ind
mov ax,row
push ax

mov ax,starstore
movV TOw,aX
add col,12
mov attr,07h
mov char,'*'
call display
pop ax

movV TOw,ax
sub col,12

n_col ind:

mov si,[bx+addrtable]
mov addr,si

mov attr,70h

call stringdisp
cmp status,1l

je ysubme

jmp nosubme
ysubme:

cmp close,4%2

jne yclose

mov si,colstart
mov ax,presentrow

66



mov YOw,ax

mov ax,presentcol
mov col,ax

mov addr,si

mov attr,07

mov bx,col

call stringdisp

mov col,bx

jmp nclose
yclose:mov row,>5

mov ax,winleft

mov col,ax

mov attr,07

add rowbot,2

add colright,2
@delwindow row,col,rowbot,colright,char
nclose:mov status,00
mov dispcount,O

jmp y_da

nosubme: jmp getkey

nola:cmp ah,ra

jz yra

jmp nora

yra:cmp index,4%2
jnz incindex

mov bx,index

mov index,0

jmp next2
incindex:mov bx,index
add index,?2
next2:mov close,bx
mov si,[bx+addrtable]
mov addr,si

mov si,[bx+coll]
mov col,si

mov attr,07h

mov bx,col

call stringdisp
mov col,bx

mov bx,index

mov si,[bx+coll]
mov col,si

cmp index,1%2
jne n_col index
cmp star,O

je n_col index
mov ax,row

push ax

mov ax,starstore
mov Tow,ax

add col,12

mov attr,07h

67



mov char,'¥*
call display
pop ax

mov TOW,ax
sub col,12

n_col_index:mov si,[bx+addrtable]
mov addr,si

mov attr,70h

mov bx,col

call stringdisp

mov col,bx

cmp status,l

je ysubmenu

jmp nosubmenu
ysubmenu:cmp close,4%*2
jne statusok

mov si,colstart

mov ax,presentrow
MmOV TOW,ax

mov ax,presentcol
mov col,ax

mov addr,si

mov attr,07

mov bx,col

call stringdisp

mov col,bx

mov close,0

jmp eraseno
statusok:mov row,>
mov ax,winleft

mov col,ax

mov attr,07

add rowbot,?2

add colright,2
@delwindow row,col,rowbot,colright,char
eraseno:mov status,0
mov dispcount,0

jnp y_da
nosubmenu: jmp getkey

nora:cmp ah,hm
jz yhm

jmp nohm

yhm:mov bx,index
mov close,bx

mov index,0%2
mov si,[bx+addrtable]
mov addr,si

mov si,[bx+coll]
mov col,si

mov attr,07h
call stringdisp
mov bx,index

mov si,[bx+coll]

68



mov col,si

mov si,[bx+addrtable]
mov addr,si

mov attr,70h

call stringdisp

cmp status,l

je displayok

jmp nodisplay
displayok:cmp close,4%2
jne closeplease

mov si,colstart

mov ax,presentrow
mov Tow,ax

mov ax,presentcol

mov col,ax

mov addr,si

mov attr,07

mov bx,col

call stringdisp

mov col,bx

jmp closenot
closeplease:mov Tow,5
mov ax,winleft

mov col,ax

mov attr,07

add rowbot,2

add colright,?
@delwindow row,col,rowbot,colright,char
closenot:mov status,0
mov dispcount,0

jmp option
nodisplay: jmp getkey

nohm:

cmp ah,ed

jz yed

jmp noed

yed:cmp index,4*2
jne noid

jmp noerase
noid:mov bx,index
mov close,bx

mov index,4%2

mov si,[bx+addrtable]
mov addr,si

mov si,[bx+coll]
mov col,si

mov attr,07h

call stringdisp
mov bx,index

mov si,[bx+coll]
mov col,si

mov si,[bx+addrtab1e]
mov addr,si

69



mov attr,70h

call stringdisp
cmp status,l

je eraseok

jmp noerase
eraseok:

MmOV TOW,D

mov ax,winleft
mov col,ax

mov attr,07

add rowbot,2

add colright,?2
@delwindow row,col,rowbot,colright,char
mov status,0

mov dispcount,0
jmp eddisp
noerase:mov bx,presentrow
mov row,bx

mov bx,presentcol
mov col,bx

jmp getkey

noed:

cmp ah,da

je y_da

jmp noda

y_da:mov ax,presentrow
movV TOW,ax

mov ax,presentcol
mov col,ax

cmp index,4%2

je filefunc

cmp index,0%2

jne whatl

jmp option
whatl:cmp index,1%2
jne what2

jmp getport
what2:cmp index,2%2
jne what3

jmp getparam
what3:cmp index,3%2
jne whaté

jmp dosfunct

whaté4: jup getkey
filefunc:mov ax,count
cmp ax,filecount
jae ml

jmp getkey

ml:

cmp row,18

jb move

jmp getkey

move :mov attr,07
cmp status,l

70



je lop

eddisp:mov ax,[coll+4]
sub ax,>

shl ax,1

MOV col,ax

add col,?2

MOV row,6

mov status,l

mov attr,70h

mov si,startaddr
mov addr,si

mov bx,col

call stringdisp
mov col,bx

mov colstart,si
jmp getkey
lop:inc filecount
mov ax,filecount
cmp ax,count

jb displ

dec filecount

jmp getkey
displ:mov si,colstart
mov addr,si

mov bx,col

call stringdisp
mov col,bx

inc row

cmp row,18

jbe nkeyget

jmp getkey
nkeyget:mov si,colend
mov addr,si

mov colstart,si
mov attr,70h

mov bx,col

call stringdisp
mov col,bx

jmp getkey

option:cmp dispcount,b
jbe ok

jmp getkey

ok:cmp status,l

je open

jmp noopen

open:

inc dispcount

cmp dispcount,b6

jbE dok

dec dispcount

jmp getkey

dok:mov si,colstart
mov attr,07

mov addr,si

71



mov bx,col

call stringdisp
mov col,bx

mov si,colend
inc row

mov addr,si

mov colstart,si
mov attr,70h
mov bx,col

call stringdisp
mov col,bx

jmp getkey

noopen:mov status,l
mov dispcount,1

mov row,5

mov bx,index

mov ax,[bx+coll]
mov col,ax

mov ax,col

mov winleft,ax

mov ax,row

mov wintop,ax

add ax,7

mov rowbot,ax

mov ax,col

add ax,20

mov colright,ax

mov attr,07
@drawbox row,col,rowbot,colright,char
add col,?2

inc row

mov si,offset options
mov attr,70h

mov colstart,si
more to print:mov addr,si
mov bx,col

call stringdisp

mov col,bx

mov si,colend

inc row

inc dispcount

mov attr,07

cmp dispcount,6

jle more to print
mov dispcount,1

mov row,6

jmp getkey

getport:cmp dispcount,4
jbe can

jmp getkey

can:cmp status,l

je port_disp open

jmp port _disp nopen

72



port_disp open:inc dispcount
cmp dispcount,4

jbe canil

dec dispcount

jmp getkey

canl:mov si,colstart
mov addr,si

mov attr,07h

mov bx,col

call stringdisp

mov col,bx

inc row

mov si,colend

mov addr,si

mov colstart,si

mov attr,70h

mov bx,col

call stringdisp

mov col,bx

jmp getkey

port_disp nopen:mov status,l
mov dispcount,1

mov row,5

mov bx,index

mov ax,[bx+coll]

mov col,ax

mov winleft,ax

mov ax,row

mov wintop,ax

add ax,5

mov rowbot,ax

mov ax,col

add ax,15

mov colright,ax

mov attr,07

@drawbox row,col,rowbot,colright,char
add col,?2

inc row

mov si,offset portaddrs
mov attr,70h

mov colstart,si
more_ to dip:mov addr,si
mov bx,col

call stringdisp

mov col,bx

mov si,colend

inc row

mov attr,07

inc dispcount

cmp dispcount,4

jle more to dip

mov dispcount,l

mov row,6

jmp getkey

73



getparam:cmp dispcount,4
jle more_display

jmp getkey
more_display:cmp status,01
je param_open

jmp param_nopen
param_open:

inc dispcount

cmp dispcount,4

jle anacin2

dec dispcount

jmp getkey

anacin2:mov si,colstart
mov addr,si

mov attr,07h

mov bx,col

call stringdisp

mov col,bx

inc row

mov si,colend

mov addr,si

mov colstart,si

mov attr,70h

mov bx,col

call stringdisp

mov col,bx

jmp getkey

param_nopen:mov status,l
mov dispcount,l

mov row,>

mov bx,index

mov ax,[bx+coll]

mov col,ax

mov winleft,ax

mov ax,row

mov wintop,ax

add ax,5

mov rowbot,ax

mov ax,col

add ax,19

mov colright,ax

mov attr,07

@drawbox row,col,rowbot,colright,char
add col,2

inc row

mov si,offset parameters
mov attr,70h

mov colstart,si

more param disp:mov addr,si
mov bx,col

call stringdisp

mov col,bx

mov si,colend

74



inc row

inc dispcount

mov attr,07

cmp dispcount,4
jle more param disp
mov attr,87h
mov ax,row

mov presentrow,ax
mov ax,col

mov presentcol,ax
mov row,b6

add col,12

MOV AX,BAUDVALUE
MOV ADDR,AX

MOV BX,COL

CALL STRINGDISP
MOV COL,BX

INC ROW

MOV AX,PARITYADDRESS
MOV ADDR,AX

MOV BX,COL

CALL STRINGDISP
MOV COL,BX

INC ROW

MOV AX,30H

ADD AX,STOP

MOV CHAR,AL

CALL DISPLAY

INC ROW

MOV AX,30H

ADD AX,CHARLEN
MOV CHAR,AL

CalLL DISPLAY

MOV AX,PRESENTROW
MOV ROW, AX

MOV AX,PRESENTCOL
MOV COL,AX

mov attr,07h

mov dispcount,l
mov row,6

jmp getkey

dosfunct:cmp dispcount,3
jle more print

jmp getkey

more print:cmp status,l
je dos_open

jne dos_nopen

dos open:

inc dispcount

cmp dispcount,3

jle anacin3

dec dispcount

jmp getkey

anacin3:mov si,colstart



mov addr,si

mov attr,07h
mov bx,col

call stringdisp
mov col,bx

inc row

mov si,colend
mov addr,si

mov colstart,si
mov attr,70h
mov bx,col

call stringdisp
mov col,bx

jmp getkey

dos nopen:mov status,l1
mov dispcount,1

mov row,5

mov bx,index

sub bx,2

mov ax,[bx+coll]

mov col,ax

mov winleft,ax

mov ax,row

mov wintop,ax

add ax,5

mov rowbot,ax

mov ax,col

add ax,19

mov colright,ax

mov attr,07

@drawbox row,col,rowbot,colright,char
add col,2

inc row

mov si,offset dosutility
mov attr,70h

mov colstart,si

more _dos disp:mov addr,si
mov bx,col

call stringdisp

mov col,bx

mov si,colend

inc row

inc dispcount

mov attr,07

cmp dispcount,3

jle more dos disp

mov row,b6

mov dispcount,l

jmp getkey

noda:cmp ah,ua

jz y_ua

jmp noua

Y UA:cmp status,1l

76



je yplease

jmp getkey
yplease:MOV AX,PRESENTROW
MOV ROW,AX

MOV AX,PRESENTCOL
MOV COL,AX

cmp index,4%2

je filecun

jmp normal
filecun:mov ax,count
cmp ax,filecount
jae dodir

jmp getkey
dodir:mov ax,presentrow
mOV TOW,aXx

mov ax,presentcol
mov col,ax

cmp row,b6

ja dora

jmp getkey
dora:mov attr,07
cmp status,l

je lopl

mov ax,[coll+4]
sub ax,5

shl ax,1

MOV col,ax

add col,?2

MOV row,6

mov status,l

mov attr,70h

mov si,startaddr
mov addr,si

mov bx,col

call stringdisp
mov col,bx

mov colstart,si
jmp getkey
lopl:dec filecount
mov ax,filecount
cmp ax,0

jGe disp2

mov status,0

inc filecount

jmp getkey

disp2:mov si,colstart
mov addr,SI

mov attr,07

mov bx,col

call stringdisp

mov col,bx

dec row

cmp row,6

jae dcont

77



jmp getkey

dcont:mov si,colstart
std

sub si,2
nod:lodsb

cmp al,'$'

jnz nod

aDD SI,2

cld

MOV COLSTART,SI
mov attr,70h
mov addr,si

mov bx,col

call stringdisp
mov col,bx

jmp getkey

normal:cmp dispcount,l
jeE yesprint

jmp getkey
yesprint:dec dispcount
cmp dispcount,l

jge nocz

mov dispcount,1

jmp getkey

nocz:mov si,colstart
mov attr,07

mov addr,si

mov bx,col

call stringdisp

mov col,bx

sub si,2

dec row

std

not$:1lodsb

cmp al,'$'

jne not$

add si,?2

mov colstart,si

mov addr,si

mov attr,/0h

mov bx,col

call stringdisp

mov col,bx

jmp getkey

noua:push ds

pop es

cmp ah,spc

jz y_spc

jmp n_spc

y spc:mov ax,presentrow
mov row,ax

78



mov ax,presentcol

mov col,ax

cmp index,4%2

jne do_addr_test

jmp do_fi select
do_addr_test:cmp index,1%2
je do_port_addr

jmp getkey

do port addr:mov attr,07h
mov char,'*'

cmp star,1

jne nostar

mov ax,starstore
cmp ax,row

jne ystar

add col,10

mov char,20h
call display

mov portaddr,0
mov storecount,0
mov star,0

jmp getcol
ystar:add col,10
mov char,20h

mov ax,row

push ax

mov ax,starstore
mov YOow,ax

call display

pop ax

mov Tow,ax

sub col,10
nostar:mov char,'*'
add col,10

mov star,l

call display

xor bh,bh

mov bl,dispcount
dec bx

shl bx,1

mov portvalue,bx
mov ax,[bx+comaddress]
mov portaddr,ax

mov ax,row

mov starstore,ax
getcol:mov ax,presentcol
mov col,ax

jmp getkey

do fi select:

XOT CX,CX

mov ax,colstart

mov di,offset space
mov cl,selcount

cmp cl1,0

jne nze



jnp yze
nze:repne scasw
jz yfind

jexz yze
yfind:add col,15
sub di,2

mov [di],word ptr O
dec selcount
mov attr,07

mov char,20h
call display
mov char,20h
inc col

call display
sub col,16

call reorder
call select

jmp getkey
yze:add col,l15
stosw

inc selcount
mov al,selcount
aam

or ax,3030h

mov attr,07

mov char,ah
call display
mov char,al

inc col

call display
sub col,16

jmp getkey

n_spc:cmp ah,cr

jz yer

jmp nocr

yCrimov ax,presentrow
MmOV TOW,ax

mov ax,presentcol

mov col,ax

cmp status,1

je ywindow

jmp getkey
ywindow:cmp index,0%2
jne noprint

cmp dispcount,b6

jne noexit

mov status,O

@string <'Exiting Menu $'>
jmp trystatus
noexit:mov al,dispcount
mov countvalue,al
call terminal

jmp nodos

noprint:cmp index,3%2

80



jne testparam

mov al,dispcount
mov countvalue,al
call doscomm

cmp change,1

jne nodos?2

jmp filefunction
testparam:cmp index,2%2
je yedos

nodos2: jmp getkey
yedos:mov al,dispcount
mov countvalue,al
call getparams
mov attr,87h

mov ax,row

mov presentrow,ax
mov ax,col

mov presentcol,ax
mov row,b6

add col,12

MOV AX,BAUDVALUE
MOV ADDR,AX

CALL DELLINE

MOV BX,COL

CALL STRINGDISP
MOV COL,BX

INC ROW

MOV AX,PARITYADDRESS
MOV ADDR,AX

CALL DELLINE

MOV BX,COL

CALL STRINGDISP
MOV COL,BX

INC ROW

MOV AX,30H

ADD AX,STOP

MOV CHAR,AL

CALL DISPLAY

INC ROW

MOV AX,30H

ADD AX,CHARLEN
MOV CHAR,AL

CalLl DISPLAY

MOV AX,PRESENTROW
MOV ROW,AX

MOV AX,PRESENTCOL
MOV COL,AX

mov attr,07
nodosl: jmp getkey
filefunction:mov ax,row
mov presentrow,ax
mov ax,col

mov presentcol,ax
mov si,colstart
push si

81



call fileget

pop si

mov colstart,si
mov ax,presentrow
mov Yow,ax

mov ax,presentcol
mov col,ax

nodos:

jmp getkey

nocr:cmp ah,esc_k
jz trystatus

mov ax,presentrow
mov TOw,ax

mov ax,presentcol
mov col,ax

jmp getkey
trystatus:mov ax,presentrow
mov TOW,ax

mov ax,presentcol
mov col,ax

cmp status,l

je windowopen

jmp noesc
windowopen:cmp index,4%2
jne closewin

jmp getkey
closewin:mov row,>5
mov ax,winleft

mov col,ax

mov attr,07

add rowbot,?2

add colright,?
@delwindow row,col,rowbot,colright,char
mov status,0

mov dispcount,O
forever: jmp getkey
noesc:pop bx

pop si

pop ax

ret

keyboard endp

fileget proc
push ax

push si

push di

push cx

push es

push ds

pop es

mov selcount,0
cmp change,1
je chg

82



jmp nchg

chg:mov ax,[coll+4]
sub ax,5

shl ax,1

add ax,2

mov col,ax

mov row,6
@delwindow row,col,rsize,csize,char
jmp fichan
nchg:mov ax,row
mov filerow,ax

mov ax,col

mov filecol,ax
fichan:mov count,0
mov change,O

mov filecount,O
mov di,offset area
@findfirst asciiz
domore:inc count
mov si,80h

add si,leh
more:lodsb

cmp al,0

jz over

stosb

jmp more

over:mov ax,count
mov filecount,ax
mov al,'$'

stosb

@findnext value
cmp value,12h

jnz domore

mov ax,[coll+4]
sub ax,>

shl ax,1

mov col,ax

add ax,20

mov csize,ax

mov rsize,20

mov row,>5

@drawbox row,col,rsize,csize
add col,?2

mov row,b6

mov ax,col

mov di,offset area
mov startaddr,di
mov colstart,di
1kl :mov addr,di
mov ax,col

push ax

call stringdisp
pop ax

mov col,ax

mov al,'$'

83



mov cx,13

repne scasb

dec filecount
jle norow

inc row

cmp row,19

jb 1kl

jmp 11k2

norow:inc row

11k2:mov endaddr,di
mov ax,row

sub ax,6

mov filebot,ax

mov filetop,O
mov ax,filerow

mov TOw,ax

mov ax,filecol
mov col,ax

mov filecount,O

pop es

pop cx

pop di

pop si

pop ax

ret

fileget endp

select proc

push ax

push bx

push cx

push si

push di

mov ax,filetop
mov storecount,ax
mov pcount,0

XOY CX,CX

mov ax,presentcol
mov col,ax

mov row,6

mov attr,07
@delwindow row,col,rsize,csize,char
mov si,startaddr
MOREDISP:mov di,offset space
mov addr,si

mov bx,col

call stringdisp
mov col,bx

add col,15

mov ax,si

MOV CL,SELCOUNT
CMP CL,0

84



JnZ lol

inc col

JMP ncount
lol:inc pcount
scasw

jz 1lw

loop lol

inc col

jexz ncount
1lw:mov al,pcount
aam

or ax,3030h

mov char,ah

call display

inc col

mov char,al

call display
ncount :sub col,16
no$:lodsb

cmp al,'$'

jnz no$

MOV PCOUNT,O

inc storecount
mov ax,count

cmp storecount,ax
jb incrow

jmp discomt
incrow:inc row
cmp row,18

jbe moretodisp
jmp discomt
moretodisp: jmp moredisp
discomt:mov ax,presentrow
mov YOw,ax

MOV SI,COLSTART

MOV ADDR,SI
MOV ATTR,70H
MOV BX,COL
CALL STRINGDISP
MOV COL,BX
MOV ATTR,07
pop di

pop si

pop ¢x

pop bx

pop ax

ret

select endp

reorder proc
push ax

push si

push di

push cx

mov c¢l,selcount

85



cmp ¢l1,0

je nodata

mov di,offset space
mov si,di
lfor:lodsw

cmp ax,0

je lfor

stosw
nostore:loop lfor
nodata:pop cX

pop di

pop si

pop ax

ret

reorder endp

DELLINE PROC
PUSH AX

PUSH CX

PUSH ES

MOV ES,MON_ADDR
MOV DI,ROW
SHL DI,1

SHL DI,1

ADD DI,ROW
MOV CL,4

SHL DI,CL
ADD DI,COL
SHL DI,1

MOV AX,0720H
MOV CX,5

REP STOSW
POP ES

POP CX

POP ES

RET

DELLINE ENDP

hexad proc

push ax

push dx

push cx

mov dh,ah

and dh,11110000b
mov cl,4

shr dh,cl

cmp dh,9

jbe add30

add dh,07
add30:add dh,30h

86



@dispc dh
mov dh,ah
and dh,00001111b
cmp dh,9
jbe add3
add dh,07
add3:add dh,30h
@dispc dh
mov dl,al
mov cl1,04
shr dl,cl
cmp d1,9
jbe add31l
add d1,07
add31:add d1,30h
@dispc dl
mov dl,al
and d1,00001111b
cmp d1,9
jbe add32
add d1,07
add32:add d1,30h
@dispc dl
pop cx
pop dx
pop ax
ret
hexad endp
code ends
end stt



MYMACRO .ASM

Consists of all the required
function and subroutines.

@getbuffer macro pram
push ds

push ax

push dx

push cs

pop ds

mov dx,offset pram
mov ah,0ah

int 21h

pop dx

pop ax

pop ds

endm

@buffer macro parl,par2,par3,paré
parl db paré

par2 db ?

par3 db par4 dup(?)

endm

@mesg macro strl,str2,str3,str&
local msg, jump

jmp jump

msg db strl,str2,str3,stré
jump:push ds

push dx

push ax

push cs

pop ds

mov aH,09H

mov dx,offset msg

int 21h

pop ax

pop dx

pop ds

endm

@dispc macro par
push dx
push ax

mov ah,02
mov dl,par
int 21h

pop ax

pop dx

endm

@crlf macro
push ax

88

macros

for

the

main



push dx
mov ah,02
mov d1,10
int 21h
mov d1,13
int 21h
pop dx
pop ax
endm

@open macro paraml,handle
push ds

push ax

push dx

push cs

pop ds

mov al,O

mov ah,03dh

mov dx,offset paraml
int 21h

mov handle,ax

pop dx

pop ax

pop ds

endm

@read macro param3,handle,val
push ds

push ax

push c¢cx

push dx

push bx

push cs

pop ds

mov bx,handle

mov dx,offset param3
mov cx,1

mov ah,03fh

int 21h

mov val,ax

pop bx

pop dx

pop cx

pop ax

pop ds

endm

@close macro paramé
push ds

push ax

push bx

push cs

pop ds

mov ah,03eh

mov bx,paramé&



int 21h
pop bx
pop ax
pop ds
endm

@dispm macro par
push ds

push ax

push dx

push cs

pop ds

mov ah,0%h

mov dx,offset par
int 21h

pop dx

pop ax

pop ds

endm

@mess macro getl,get?
local disp,yet
push ds

push ax

push di

push dx

push bx

push cx

push cs

pop ds

mov di,offset getl
mov bl,get?2
yet:dec bl

je disp

mov al,'$'

mov c¢xX,65535
repne scasb
jmp yet
disp:mov dx,di
mov ah,09h

int 21h

pop cx

pop bx

pop dx

pop di

pop ax

pop ds

endm

@gotoxy macro Tt,C
push ax

push dx

push bx

mov ah,02

mov dh,r

90



mov dl,c
mov bx,0
int 10h
pop bx
pop dx
pop ax
endm

@cls macro
push ax
push dx
push cx
push bx
mov ah,02
mov bx,0
mov dx,0
int 10h
mov ¢cx,80%25
mov ah,09
mov bh,0
mov bl,07
mov al,20h
int 10h
pop bx

pop c¢x

pop dx

pop ax
endm

@dispbios MACRO CH
push ax
push dx
push cx
push bx
mov cxX,1l
mov ah,09
mov bh,0
mov bl,07
mov al,ch
int 10h
pop bx
pop ¢Xx
pop dx
pop ax
endm

@allocatmem macro paral,addr
push ax

push bx

mov ah,48h

mov bx,paral

int 21h

mov addr,ax

pop bx

pop ax

91



endm

@findf
push a
push d

mov dx,offset param

mov ah
mov cx
int 21
pop dx
pop ax
endn

@findnext macro value

push a

irst macro
X
X

,04eh
,0
h

X

mov ah,04fh

int 21
mov va
pop ax
endm

@delwi
local
push a
mov ax
mov sa
mov ax
mov sa
mov ch
111:ca
inc
mov
sub
cmp
jae
mov
mov
inc
mov
sub
cmp
jae
mov
mov
mov
mov
pop
endm

@drawbox macro rw,co,rs,CcoOs
local 1lsl,nextl,1s2,1s3

push
push
push

h
lue,ax

ndow macro rw,co,mr,mc,char

111

X

,TW
verow, ax
,CO
vecol,ax
ar,20h

11 display
co

ax,mc

ax,2

ax,co

111
ax,savecol
co,ax

TW

ax,mr

ax,2

ax,rw

111
ax,saverow
TW,ax
ax,savecol
co,ax

ax

ax
dx
cx

mov dx,rw

92



mov CX,CO

mov char,le to_cor

mov attr,07h

1sl:call display

mov char,hor

mov ax,cos

inc co

cmp CO,ax

jb 1sl

mov char,ri_to_cor
nextl:call display

mov char,ver

mov ax,rs

inc rw

cmp Tw,ax

jb  nextl

mov char,ri bo_cor
1s2:call display

mov char,hor

dec co

cmp co,CX

ja 1s2

mov char,le bo cor
1s3:call display

mov char,ver

dec rw

cmp rw,dx

ja 1s3

mov CoO,CX

mov rw,dx

pop c¢x

pop dx

pop ax

endm

@getscreen macro location
push es

push ds

push si

push di

mov cx,/79%24

push ds

pop es

mov di,offset location
mov si,mon_ addr

mov ds,si

xor si,si

rep movsw

pop di

pop si

pop ds

pop es

endm

@clrscr macro



push es

push di

push cx

push ax

mov es,mon_addr
xor di,di
mov ax,0720h
mov ¢xX,2000
rep stosw
pop ax

pop cX

pop di

pop es

endm

@putscreen macro location
push es

push ds

push si

push di

push cs

pop ds

mov cx,79%24

mov es,mon_addr

xor di,di

mov si,offset location
Tep MOVSW

pop di

pop si

pop ds

pop es

endm

@string macro messm
local jump,message
jmp jump

message db messm
jump:push si

push ds

push cs

pop ds

mov si,offset message
mov addr,si

call stringdisp

pop ds

pop si

endm

@ATOI macro PARA1,PARAZ
local 11

PUSH AX

PUSH SI

94



PUSH CX

push bx

MOV SI,OFFSET PARA1
XOR CH,CH

mov para2,0

MOV CL,[SI-1]
MOV BX,10

11l:mov ax, paraZ2
MUL BX

mov paraz,ax
lodsb

and al,0fh

xor ah,ah

add paraZ,ax
loop 11

pop bx

pop c¢cx

pop si

pop ax

endm

@strcmp macro potl,potZ2,var
local over,nocomp,comp,ter,testl
push ax
mov var,l
comp:mov al,[di]
mov bl,[si]
@lower bl
@lower al
cmp al,bl
jne nocomp
cmp al,'$’
je testl
inc di
inc si
jmp comp
nocomp:mov var,O
cmp [si],byte ptr '$'

je ter
inc si
jmp nocomp
ter: inc si
jmp over
testl:cmp [si],byte ptr '$'

je over

mov var,0
over :pop ax
endm

@lower macro char
local lower

cmp char,'$'

je lower



cmp char,'a’
jae lower
add char,20h
lower :nop
endm

96



TERMINAL.ASM

This incorporates routines for remote
printing, transmitting the file and sending messages

between the systems.

ifl
include mymacro.asm
endif

code segment public 'code’
assume cs:code
BUFSIZ EQU 2048
ctrz equ Olah
pIcmask equ 21h
piceof equ 20h
extrn countvalue:byte,row:word,col:word,addr:word,portvalue:WORD
extrn attr:byte,char:byte,selcount:word,space:word,area:byte,portaddr
extrn stringdisp:near,display:near,mon_addr:word,index:word,hexad:nea
public terminal
public errordisp
public getscreen
jmp terminal
coms db Och,11101111B
db Obh,11110111B
intrf db ?
CHAR1 DB 7
value dw ?
oldvect dd ?
buffertop dw ?
bufferend dw ?
comport dw ?
putdata db BUFSIZ dup(?)
prinport dw ?
storefile db 'serial.fil',0
tempfile db 'print.tmp',0
eofcount dw ?
getscreen dw 2000 dup(?)
tracol dw ?
trarow dw 7
rcrow dw ?
rccol dw ?
dispcol dw ?
disprow dw ?
carry db ?
error db ?
localrow dw ?
localcol dw ?
handle dw ?
filename db 12 dup(?)
zero db O

97



Thr dw
Rhr dw
Lsr dw
Ler dw 1
bdrh dw ?
bdrl dw ?
mcr dw
Iir dw
ier dw
msr dw

N D D D

D D D D

terminal proc
push si

push ax

push di

push bx

push es

push ds

pop es

mov ax,row

mov localrow,ax
mov ax,col

mov localcol,ax
mov dispcol,O
mov disprow,1
@getscreen getscreen
mov ax,portaddr
cmp portaddr,0
je n_port

jmp y_port
n_port:@clrscr
mov attr,07h
@string <'No Port address is found Select different option$’
inc row

mov col,0
@string <'press any key to continue$'>
jmp endpr
y_port:mov thr,ax
mov rhr,ax

mov bdrl,ax

inc ax

mov bdrh,ax

mov ier,ax

inc ax

mov iir,ax

inc ax

mov lcr,ax

inc ax

mov mcT,ax

inc ax

mov lsr,ax

inc ax

mov msT,ax

cmp selcount,0
jne filetransmit

98



jmp printend
filetransmit:

cmp countvalue,4

jne noreceiverl
@clrscr

mov row,0

mov col,>5

mov attr,07

@string <'THE FILE IS BEING RECEIVEDS$'>
call serialinit

call receiver

jmp endpr
noreceiverl:mov attr,07h
@clrscr

mov row,0

mov col,5

mov bx,offset space
mov di,offset filename
mov si,[bx]

more:lodsb

cmp al,’'$’

jz over

stosb

jmp more

over:mov [di],byte ptr O
@open filename,handle
jnc noerr

mov error,l

call errordisp

jmp endfile

noerr:cmp countvalue,l
je notest

jmp testl

notest:call serialinit
mov charl,27

call Transmit

mov charl,'F'

call Transmit

JMP PERFORM

testl:cmp countvalue,?2
je notestl

jmp test3

notestl:call serialinit
mov charl,27

call transmit

mov charl,'R’

call transmit

jMP PERFORM

test3:cmp countvalue,3
jne testé4

call serialinit

call sendmess

jmp endpr

test4:call loopbacktest
jmp endpr

99



perform:

@string <'File will be transmitted now $'>
mov ax,offset filename
mov addr,ax

call stringdisp

inc row

printok:@read charl,handle,eofcount
jnc noerrl

mov error,2

call errordisp

jmp endfile
noerrl:cmp charl,ctrz
jne proced

call transmit

jmp endfile
proced:cmp eofcount,O
jne ok

mov charl,ctrz

call transmit

jmp endfile

ok:mov ax,disprow

mov Tow,ax

mov ax,dispcol

mov col,ax

call displayfile

cmp col,0

jg nocoll

cmp row,24

jb nocoll

push si

push di

push es

push ds

mov si,80%2%2

mov di,1*80%2

mov es,mon_addr

mov ds,mon_addr

mov c¢x,80%23

rep movsw

mov ax,0720h

mov ¢x,80

rep stosw

mov row,23

mov col,0

pop ds

pop es

pop di

pop si

nocoll:mov ax,row

mov disprow,ax

mov ax,col

mov dispcol,ax
enddispO:call transmit
jmp printok
endfile:@close handle

100



jnc endpr

mov error,3

call errordisp
endpr:mov ah,0

int 16h

@clrscr

@putscreen getscreen
printend:mov carry,0
mov index,0%2

mov ax,localrow

mov Tow,ax

mov ax,localcol

mov col,ax

pop es

pop bx

pop di

pop ax

pop si -
ret \9;”
terminal endp ? P
transmit proc A
PUSH AX A7EINON
PUSH DX o & )3
PUSH CX \ AN
PUSH BX ANIHSS 7
mov bx,5 S

ytest:mov cx,65535

mov dx,lsr

in al,dx

test al,20h

jnz ytransmit

11:1loop 11

dec bx

jnz ytest

@string <'Transmission error could not Transmit data $'>
jmp overs

ytransmit:mov al,charl
mov dx,thr

out dx,al

overs: pop bx

pop ¢X

pop dx

pop ax

ret

transmit endp

loopbacktest proc
push dx

push ax

push ds

push cs

pop ds

mov row,O

mov col,1

101



mov trarow,l

mov tracol,l

@string <'File is being Transmitted $'>
mov row,13

mov col,1l

mov rcrow,lé

mov rccol,l

@string <'File is being Received $'>
mov dx,lcr

mov al,80h

out dx,al

mov dx,bdrl

mov al,Och

out dx,al

mov dx,bdrh

mov al,0

out dx,al

mov dx,lcr

mov al,0ah

out dx,al

mov dx,mcCr

mov al,13h

out dx,al

mov dx,ier

mov al,0

out dx,al

forever:mov dx,lsrt

in al,dx

test al,01h

jz noreceive

call receive

jmp forever
horeceive:test al,leh

jz noeror

mov row,13

mov col,1

@clrscr

@string <'Loop back reception Fails Press any key to continue $'>
mov ah,0

int 16h

jmp eoffile

noeror:test al,20h

jnz for

jmp forever

for:mov bx,handle

@read charl,handle,eofcount
jnc noerorl

mov error,2

call errordisp

jmp eoffile

noerorl:cmp charl,ctrz
jne noeoffile

jmp eoffile
noeoffile:cmp eofcount,0
je eoffile

102



mov ax,trarow
mov TOW,aXx

mov ax,tracol
mov col,ax

call displayfile
cmp col,0

ig ntraend

cmp row,12

jb ntraend

push si

push di

push es

push ds

mov si,80%2%2
mov di,1%80%2
mov es,mon_addr
nov ds,mon_addr
mov c¢x,80%10

rep movsw

mov ax,0720h

mov ¢x,80

rep stosw

mov row,11l

mov col,0

pop ds

pop es

pop di

pop si
ntraend:mov ax,row
mov trarow,ax
mov ax,col

mov tracol,ax
call transmit
jmp forever
eoffile:

mov c¢x,100
ecof12:mov dx,lst
in al,dx

test al,0lh

inz cllrec

foop eofl2

jmp nochar
cllrec:call receive
nochar :pop ds
pop dx

pop ax

ret

1oopbacktest endp

receive proc
mov dx,rhr
in al,dx

and al,07fh
mov charl,al

103



push ax

push ds

push es

push di

push si

mov ax,rcrow
mov TOow,ax

mov ax,rccol
mov col,ax
call displayfile
cmp col,0

jg nrcend

cmp row,24

jb nrcend

mov si,160%15
mov di,14%2%80
mov es,mon_addr
mov ds,mon_addr
mov c¢x,80%10
rep movsw

mov ax,0720h
mov cx,80

rep stosw

mov row,23

mov col,0
nrcend:

mov ax,row

mov rCrow,ax
mov ax,col

mov rccol,ax
pop si

pop di

pop es

pop ds

pop ax

ret

receive endp

displayfile proc
cmp charl,Oah

jne nolf

jmp enddisp
nolf:cmp charl,0dh
jne nocrl

mov col,0

jmp rowinc
nocrl:mov al,charl
mov char,al

call display

inc col

cmp col,79

jbe enddisp

mov col,0
rowinc:inc row
enddisp:ret

104



displayfile endp

errordisp proc

push ax

mov row,10

mov col,>5

cmp error,l

je y _open_err

jmp no_open_err

y open_err:@clrscr

@string <'Error has occured while opening file $'>
mov ax,offset filename

mov addr,ax

call stringdisp

inc row

mov col,5

@string <'The present operation cannot be completed $'>
inc row

mov col,5

@string <'press any key to conttinue $'>

mov ah,0

int 16h

jmp complet

no_open_err:cmp error,2

je y _read err

jmp no_read err

y _read err:@clrscr

@string <'Error has occured while reading file $'>
mov ax,offset filename

mov addr,ax

call stringdisp

inc row

mov col,>5

@string <'The present operation cannot be completed$'>
inc row

mov col,5

@string <'press any key to conttinue $'>

mov ah,O

int 16h

jmp complet

no_read err:cmp error,3

je y close_err

jmp write err

y close err:@clrscr

@string 'Error has occured while closing file §'
mov ax,offset filename

mov addr,ax

call stringdisp

inc row

mov col,>5

@string <'The present operation cannot be completed$'>
inc row

mov col,5

@string <'press any key to conttinue $'>

105



mov ah,0

int 16h

test write_err:cmp error,4

je write err

jmp complet

write err:@string 'Error has occured while writing $°
mov ax,offset filename

mov addr,ax

call stringdisp

inc row

mov col,5

@string 'prsent operation cannot be completed$’
inc row

mov col,5

@string 'Press any key to continue$'
mov ah,0

int 16h

complet:mov error,0

pop ax

ret

errordisp endp

serialinit proc
push dx
push ax
push ds
push cs

pop ds

mov dx,lcr
mov al,80h
out dx,al
mov dx,bdrl
mov al,Och
out dx,al
mov dx,bdrh
mov al,00h
out dx,al
mov dx,lcr
mov al,Oah
out dx,al
mov dx,mcr
mov al,03h
out dx,al
mov dx,ier
mov al,00
out dx,al
pop ds

pop dx

pop ax

ret
serialinit endp

sendmess proc
@CLRSCR

106



@gotoxy 0,0
contever:mov dx,LSR
in al,dx

test al,leh

jz procedl

mov row,13

mov col,l
@string <'Receiver error has occured
mov ah,0

int 16h
procedl:test al,Olh
jnz receivel
test al,20h

jz contever

mov ah,01

int 16h

jz contever

mov ah,0

int 16h

push ax

mov ah,14

mov bx,0

int 10h

pop ax

push ax

cmp al,13

jne nocyl

mov al,10

mov ah,14

int 10h
nocyl:cmp al,27
jne yes transmit
pop ax

ret

yes transmit:pop ax
mov dx,THR

out dx,al

jmp contever
receivel:mov dx,RHR
in al,dx

and al,7fh

push ax

mov bx,0

mov ah,l1l4

int 10h

pop ax

push ax

cmp al,13

jne nocr

mov al,10

mov ah,14

int 10h

nocr:pop ax

cmp al,27

je yctrz

107

Press any key to return to main mer



jmp contever
ctrz:ret
sendmess endp

RECEIVER PROC
pUSH AX

PUSH DX

push bx

call serenb
@creatl storefile,handle
backl:call serget
cmp charl,27

je backl

cmp charl,'F

je testfile

e:
NOFILE:CALL SERGET
@WRITE CHAR1 ,HANDLE
CMP CHAR1,CTRZ
JnE NOFILE
JMP endreceive
PRINTCHAR:CALL SERGET
mov prinport,03bch
call print
CMP CHAR1,CTRZ
JNE PRINTCHAR
endreceive:@close handle
call serdis
pop dx
pop bX
pop ax
ret
receiver endp

SERGET proc

pPUSH BX

push ax

push ¢S

pop ds

CLI

MOV BX,BUFFERTOP
CMP BX,BUFFEREND
jNe GETCHAR

STI

pOP AX

pPOP BX

JMP SERGET
CETCHAR :MOV AL,[putdata+BX]
MOV CHAR1,AL

INC BX

CMP BX ,BUFSIZ

JC GETCHAR1

xor bx,bx

108



GETCHAR1 :MOV BUFFERTOP ,BX
STIL

mov intrf,0

pop ax

poP BX

RET

serget endp

serint proc

STI

PUSH AX

PUSH BX

pPUSH DX

push ds

push cs

pop ds

mov intrf,l

CLI

mov dx,rhr

in al,dx

mov bx,bufferend
mnov [putdata+bx],a1
inc bx

cmp bx,bufsiz

jc serintl

xor bx,bx
gserintl:mov bufferend,bx
mov al,20h

out piceof,al
pop ds

pPOP DX

pop bx

pop ax

iret

serint endp

print proc

push dx

push ax

push cX

push bx

mov row,10

mov col,D

mov bx,10

nov dx,prinport
mov al,charl

out dx,al

inc dx

busy:mov cx,65535
in al,dx

and al,lOOOOOOOb
jz 1lp

jmp nbusy
11lp:loop 1lp

109



dec bx
jnz busy
@clrscr

@string 1printer 1is not ready please check pri
\

press any key TO continue
mov carry,l
pop bx
pop CX
pop aXx
pop dx
ret
nbusy:
mov al,charl
sub dx,1
out dx,al
mov al,00001101b
add dx,2
out dx,a
mov al,00001100b
out dx,al
pop bX
pop CX
pop dx
pop ax
ret
print endp

gerenb pTroOc

push ax

push bx

push dx

ush es

mov bx,portvalue

mov ax,bX

call hexad

mov aL,[bx+coms]

MOV AH,[BX+COMS+1]
mov comport,ax

nov ah,35h

int 21h

nov WORD PTR [oldvect+2],es
nov WORD PTR [oldvect],bx
mov dx,offset serint
MOV AX,COMPORT

nov ah,25h

int 21h

mov dx,mcYt

mov al,0bh

out dx,al

mov DX, IER

mov al,l

out dx,al

in al,picmask

MOV BX ,COMPORT

mov ax,DbX

110

nter



call hexad

and al,Bh

out picmask,al
pop es

pop dx

pop bX

pop ax

ret

serenb endp

gerdis proc
push ax
push dx

push ds

IN AL,PICMASK
mov bx ,comport
not bh

or al,bh

out picmask,al
1ds dx ,oldvect
mov bx ,comport
mov al,bl

nov ah,25h

int 21h

pop ds

pop dx

pop ax

ret

serdis endp
code ends

end

111



This

SELADP . ASM

finds all type of adanters installed in

system where the software 1s running.

CODE SEGMENT public 'code'
ASSUME ¢S :CODE
JMp FIND
printport dw ?
gerialport dw ?
totalserial db 7
totalparallel db ?
coms dw 7
dw 7
dw ?
dw 7
prints dw 7
dw ?
dw ?
COLOR EQU O0B8OOH
MEMO EQU 0BOOOH
MON_ADDT DW 7
coproc d ?
status_port dw ?
base_addr dw ?
gameport db ?
equip dw ?
mode db ?
ublic mode
public base_addr
public gstatus_port
public mon_addr
public find
FIND PROC
MOV AX, 4OH
MOV eS, AX
mov ax,es:63h
mov base addr,ax
add ax,6
mov status_port,ax
mov al,es:49h
mov mode ,al
MOV AX, eS:10H
AND AX, 30h
cMP AX, 30h
JE MOM
MOV mon_addr,COLOR
JMP OVER
MOM: MOV mon_addr,MEMO
OVER:moOV ax,es:th
mov equip,aX
and ah,llOOOOOOb
XOT CX,CX

112

the

host



mov
shr
mov
mov
and
shr
mov
mov
mov
and
shr
mov
mov
and
shr
mov
RET

cl,b6

ah,cl
totalparallel,ah
ax ,equip
ah,00001110b
ah,1
totalserial,ah
ax,equip

cl,5
ah,OOlOOOOOb
ah,cl
gameport,ah
ax,equip
al,00000010
al,l
coproc,al

FIND ENDP
CODE ENDS

END

113



DOSCOMM . ASM

This incorporates routines for 3 DOS funcions,
(a) Type a file
(b) Change directory
(c) Current directory

ifl
include mymacro.asm
endif
code segment public 'code'
assume cs:code
stt:jmp doscomm
extrn
selcount:word,display:near,stringdisp:near,countvalue:byte,errordisp:nea
extrn
row:word,col:word,space:word,addr:word,area:byte,mon_addr:word,char:byte
extrn
getscreen:word,saverow:word,savecol:word,attr:word,index:word
ctrz equ Olah
L_middle equ 'L!
r_middle equ '9’
LE TO COR EQU '’
HOR EQU 'M'
VER EQU ':
RI_TO_COR EQU '
LE_BO_COR EQU 'H'
RI_BO_COR EQU '<'
count db 22
direction db ?
change db 7
current dir db 64 dup(?)
dispcol dw ?
disprow dw ?
ecofval dw ?
1ocalcol dw ?
1ocalrow dw ?
handle dw ?
filename db 12 dup(?)
zero db O
dollar db '$!
carry db ?
error db ?
maxrow dw ?
maxcol dw ?
public change
public doscomm
doscomm proc
push si
push ax
push di

114



push bx

push es

push ds

pop es
mov axX,Yow

mov localrow,aX
mov ax,col

mov jocalcol,ax
mov dispcol,l
mov disprow,l
cmp countvalue,l
jne testnext

jmp typefile
testnext:cmp countvalue,?2
jne moretest

jmp chan dir
moretest:cmp countvalue,3
jne noaction

jmp curr_dir
noaction:moVv direction,O
mov count ,22

mov ax,localrow
mov TYOw,aX

mov ax,localcol
mov col,ax

mov index,3%2
pop es

pop bX

pop di

pop ax

pop si

ret

dosconm endp

typefile:mov attr,07
cmp selcount,0

jne fileprint

jmp endprint
fileprint:@getscreen getscreen
@clrscr

mov row,0

mov col,>

nov bx,offset space
nov di,offset filename
mov si,[bx]
more:lodsb

cmp al,'$'

jz over

stosb

jmp more

over:

nov ldil,byte PtT 0
@open filename,handle
jnc noerr

mov error,l

115



call errordisp

jmp endfile
noerr:@string <'File will be printed now $'>
mov ax,offset filename
mov addr,ax

call stringdisp

inc row

printok:@read char,handle,eofval
jnc noerrl

mov error,2

call errordisp

jmp endfile

noerrl:cmp char,ctrz
je endfile
noendfile:cmp eofval,O
je endfile

call displayfile

cmp carry,l

je endfile

jmp printok
endfile:@close handle
jnc endpr

mov error,3

call errordisp
endpr:mov ah,0

int 16h

@clrscr

@putscreen getscreen
endprint:mov carry,0
jmp noaction

displayfile proc

push ax

push cx

push es

push di

push ds

push si

mov ax,dispcol
mov col,ax

mov ax,disprow
movV TOW,ax

cmp char,0Oah

jne nolf

jmp enddisp
nolf:cmp char,0dh
jne nocr

mov dispcol,0
jmp findrow
nocr:call display
inc dispcol

cmp dispcol,79
jbe enddisp

mov dispcol,O
findrow:cmp direction,O

116



jne reverse
inc disprow
cmp disprow,24
jb enddisp

mov ah,0

int 16h

mov direction,l

reverse:mov es,mon_addr

mov ds,mon_addr
mov si,80%2%2
mov di,80%2*1
mov cx,80%23
Tep movsw

mov ¢cx,80%2
mov ax,0720h
rep stosw

mov disprow,24
mov dispcol,O
dec count

jnz enddisp
mov ah,0

int 16h

mov count,22
enddisp: pop si
pop ds

pop di

pop es

pop c¢x

pop ax

ret

displayfile endp

curr dir:mov row,13
~  mov col,>5
mov maxrow,20
mov maxcol,40
@drawbox row,col ,maxrow,maxcol
inc row
inc col
@string <'Current directory is C:\$'>
mov ah,47h
mov d1,0
mov si,offset current_dir
int 21h
mov cx,64
mov al,0
mov di,offset current_dir
repne scasb
mov [di-1],byte ptr '$'
mov si,offset current_dir
mov addr,si
call stringdisp
add row,2
mov col,10
@string <'Press any key to continue $'>

117



mov ah,0

int 16h

mov row,13

mov col,5

add maxcol,2

add maxrow,2

mov attr,07

@delwindow row,col,maxrow,maxcolschar
jmp noaction

chan dir:mov row,13
~  mov col,>
mov maxrow,20
mov maxcol,40
@drawbox row,col,maxrow,maxcol
inc row
inc col
@string <'Enter new Directory :$' >
mov [current_dir],byte ptr 64
push es
mov ax,40h
mov €s,ax
MoV ax,row
mov es:51lh,al
mov ax,col
mov es:50h,al
pop es
@getbuffer current_dir
mov di,offset current dir
xor bh,bh
mov bl,[di+1]
add di,2
mov |di+bx],byte ptr 0
mov |current dir],byte ptr 0
mov ah,03bh
mov dx,di
int 21h
jnc nocyl
inc row
sub col,10
mov attr,87h
@string <'Error occured '$'>
mov attr,07
nocyl:add TOowW,2
mov col,10
@string <'Press any key to continue$'>
mov ah,
int 16h
mov row,13
mov col,>b
add maxrow,2
add maxcol,2
@delwindow row,col,maxrow,maxcol,char
mov change,l

1138



jmp noaction
code ends
end

119



GETPARAM.ASM

This creates the menu for the following,
(a) Baud rate
(b) Parity
(c) Stop bits
(d) Character length

if1
include mymacro.asm
endif
code segment public 'code'
assume cs:code
jmp getparams
parityaddress dw ?
baudvalue dw ?
COUNT DW ?
baudrate dw ?
stop dw ?
charlen dw ?
localrow dw ?
localcol dw ?
parity dw ?
bdh db ?
bdl db ?
carry db ?
public getparams,baudvalue,parityaddress,stop,charlen,lcrvalue

baudvalues dw 0900h,0600h,0417h,0300h,OlSOh,OOcOh,OO60h,OO40h

dw 003ah,0030h,0020h,0018h,0010h,000ch
BAUDRATES DW 50,75,110,150,300,600,1200,1800,2000,2400,3600

DW 4800,7200,9600
PARITYSTRING DB ‘ODD$','EVEN$‘,'MARK$',‘SPACE$','NONE$'
PARITYVALUEs DB OOOOlOOOB,00011000B,OOlOlOOOB,OOlllOOOB,OOOOOOOOB
default db '9600%' ’

extrn
selcount:word,display:near,stringdisp:near,countvalue:byte
extrn
row:word,col:word,space:word,addr:word,area:byte,mon_addr:word,char:byte
extrn

getscreen:word,saverow:word,savecol:word,attr:word,index:word

L _middle equ 'L’

r_middle equ '9'

LE TO_COR EQU 1!

HOR EQU 'M'

VER EQU ':'

RI TO COR EQU ';'

LE BO COR EQU 'H'

RI_BO_COR EQU '<'

120



lcrvalue db 7
maxrow dw ?
maxcol dw ?
disprow dw ?
dispcol dw 7
getparams proc
push si
push ax
push di
push bx
push es
mov ax,row
mov localrow,ax
mov ax,col
mov localcol,ax
mov dispcol,O
mov disprow,0
mov row,13
mov col,5
mov maxrow,20
mov maxcol,40
@drawbox row,col ,maxrow,maxcol
inc row
inc col
cmp countvalue,l
jne testnext
jmp getbaud
testnext:cmp countvalue,?2
jne moretest
jmp getparity
moretest:cmp countvalue,3
jne yettest
jmp getstop
yettest:cmp countvalue,4
jne noaction
jmp getchar_len
noaction:add row,2
mov col,10
@string <'Press any key to continue $'>
mov ah,0
int 16h
mov row,13
mov col,5
add maxrow,2
add maxcol,?2
@delwindow row,col,maxrow,maxcol,char
mov ax,localrow
mov YOw,aXx
mov ax,localcol
mov col,ax
mov index,2%2
pop es
pop bx
pop di
pop ax

121



pop si
ret
getparams endp

getbaud:@string <'Enter baud rate
jmp getkey
@pbuffer maxl,actl,vall,S
getkey:CALL GOTOXY
@getbuffer maxl
@atoi vall,baudrate
mov di,offset vall
xor bx,bX
mov bl,[di—l]
nov [bx+dil,byte ptr '$'
mov baudvalue,di
mov si,offset baudrates
mov CX,15
norebaud:lodsw
cmp ax,baudrate
je y_baud
inc count
loop morebaud
call errordisp
MOV BDH,00
MOV BDL,OCH
mov ax,offset default
mov baudvalue,ax
jmp erasel
Y BAUD: mov BX,COUNT
MOV AX,[BX+BAUDVALUES]
mov bdh,AH
mov bdl,AL
jmp erasel

getparity:@string <'Enter parity
jmp getkeyl
@pbuffer max2,act2,va12,06
getkeyl:CALL GOTOXY
mov count,
@getbuffer max?2
mov bl,act2
xor bh,bh
mov di,offset val2
mov arityaddress,di
mov ?bx+di], byte ptr'$’
MmOV CX,5
MOV SI,OFFSET PARITYSTRING
nore:@strcmp si,di,carry
cmp carry,l
je y_found
inc count
mov di,offset val2
loop more
call errordisp

1§ >

:$'>

123



MOV PARITY,00001000B

mov ax,offset paritystring
mov parityaddress,ax

jmp erasel

y found:mov bx,count

mov al,[bx+PARITYvalues]
xor ah,ah

mov parity,ax

erasel:

jmp noaction

getstop:@string <'Enter stop bits :$>
jmp getkey?2
@buffer max3,act3,val3,2
getkey?2:CALL GOTOXY
@getbuffer max3
@atoi val3,stop
cmp stop,2
ja errentl
cmp stop,1
jae noerr
errentl: call errordisp
mov stop,l
noerr: jmp erasel

getchar len:@STRING <'Enter char length
jmp getkey3
@buffer maxé4,actd,vald, 2
getkey3:CALL GOTOXY
@getbuffer max4
@atoi vald,charlen
cmp charlen,8
ja errent
cmp charlen,5
jae noeror

errent: call errordisp
mov char,7
noeror: jmp erasel

GOTOXY PROC

push ax

push es
mov ax,40h
mov es,ax
mov ax,row
mov es:51h,al
mov ax,col
mov es:50h,al
pop ax
pop es
RET
GOTOXY ENDP
errordisp proc
INC ROW

124



mov col,10
mov attr,87h
@string <'Invalid parameter $' >
mov attr,07
ret
errordisp endp
code ends
end

125



APPLICATIONS

SERIAL/PARALLEL COMMUNICATION ADAPTER 1is
implemented in a wide variety of computer related equipment,
such as terminal, printer, mouse, optical scanner, bar code
reader, Vvoice synthesiser, OMR (Optical Mark Reader), OCR
(Optical Character Reader), process control systems, etc.

This adapter is used in UNIX enviroment and
even in DOS enviroment for £file transferring such as
printing. Sophisticated instruments like MODEM can be
connected. Data transfer can be done through long distances,
which 1is demonstrated in railway stations by the
computerised reservation.The AURLEC computers introduced new
tape drive which works in the parallel port mode to which
parallel devices like printers can be connected.

A real time processing system is in a parallel
time relationship with an ongoing activity and is producing
information quickly enough to be useful in controlling this
current live and dynamic activity. Thus the words “realtime'
describe a direct access OF online processing system with
severe time limitation. A real time processing requires
immediate transcation input £from all input originating
terminals. Many stations are directly +ied by high speed

telecommunications lines into one or move CPU's. Several

126



stations can operate at the same time. A few examples of
real time systems supported by telecommunications are in the
reservations systems used by airlines, hotels etc. Military
systems where the computers are used to accept , store and
constantly update masses of data from world wide radar
installations, and in air traffic control systems where
millions of aircraft flights are tracked across the nation
each year by air traffic controllers which are monitored by
computers.
The ability to use telecommunication line to

send electronic messages between distant points is not omnly
1imited toO personal computer users

, but also to sent

intracompound and intercompany messages.

127



FUTURE DEVELOPMENTS

The serial/parallel communication adapter can be futher
developed by designing it to work for four port address.It is
also possible to add another printer to the printer adapter
Modem connections can be done, through which telephone
communications is also possible. With more modifications the
telephone cable can be replaced by fibre optics and faster
nodes of communication can be acheived.This results in
maximum speed of data transfer with a possiblity of 20 giga

bits/second without amplification wupto 68 Knm.

128



CONCLUSION

The SERIAL/PARALLEL COMMUNICATION ADAPTER has been

sucessfully designed and fabricated.

The hardware circuit ry has been neatly mounted on the
PCB manufactured for this purpose.The interfacing of the card

with the parallel computer has been performed.

The software has been written in the 8088 assembly
language. Provision for checking the circuit by loop back
test has also been provided. The circuit also has an

additional feature for remote printing.

Details of the pin out diagrams of the UART chip and
CENTRONIX interface has been provided along with 1its

features.The circuit is working perfectly and is functioning

for a distance of 15m.

THe report also gives all the necessary data's
regarding the basic communication principles and major

applications of this communication card.

129



BIBLIWGRAPHY

TEXTBOOKS |

1) "Micrprocessor Interfacing
Programming and Hardware',
McGraw Hill Company,1986.

2) "IBM PC CLONES,Hardware,
Troubleshooting and Maintanance',
McGraw Hill Company,1991.

3) "Hardware Bible",BPB Publications,
1990.

4) '"Microcomputer Servicing,
Practical Systems and
Troubleshooting", Merill
Publications.

5) "Microcomputer Systems,
The 8086/8088 Family",
Prentice Hall Inc, 1991.

6) "Assembly Language Techniques
for The 1IBM PC",
BPB Publications,1988.

7) "Microprocessor and Microcomputer
Based System design',
Universal Book Stall, 1992.

8) "IBM PC XT/AT Problem Solver".

130

Douglas V.Hall.

Govindarajalu.

Winn Rosch.

Straut M.Asser

Vincent J.St
Richard

L.Barenburg.

Yu Cheng Liu
Glenn A.Gibson

Alan R.Miller.

Mohammed
Rafiquzzaman.

Robert
Jourdin.



9) "MS-DOS Adanvanced Programming". - Ray Dunken.

10) "DOS 5:A Developer's Guide Advanced
Programming Guide to Dos™,
BPB Publications1993. - Al Williams.

11) "Assembly Language Programming'. - Abel Peter.

12) "The PC DATA HANDBOOK",

BPB Publications,1993. - Stanley Shell.
13) "PROGRAMMER'S REFERENCE GUIDE - Peter Norton.
MANUALS

1) "Personal computer XT System,TECHNICAL
REFERENCE Manual'', Port Number-6936332,
IBM Corporation, 1984.

2) "IBM-PC AT REFERENCE Manual",
IBM Corporation.

3) "MACRO ASSEMBLER REFERENCE MANUAL",
Micro soft corporation, 1981.

4) "MICROCOMPUTER SERVICING,Practical Systems
And Trouble Shooting",
Merrill Publications, 1990.

131



COM'L: -4/5/7/D.6:8-: A

P34

ML - iC12°L/B-2-. B-a

k!
. advancead
PAL16R8 Family Micro
20-Pin TTL Programmable Array Logic Deices
DISTINCTIVE CHARACTERISTICS
£ As tast as 4.£ ns maximum propagation deiay ® Extensive third-; ary sotware ¢-.u
ProaremMings scul - QLI TUsISAPLE

= Loradar 20-nin architectyres: 1618 18RA
16RE, 16R4

& Picgrammatic replacement for high-speed
TTL logic

& Register preload for testability
Power-up resel for inltlalization

pannces
8 2%pinDIP a:..

B 28-pin PLLC-4 p.ckage provides uilra-clean
high-spoed signals

= ..C 2ackages save space

CENERAL DESCRIPTION

The PALIGR3 Famity (PAL16LS, PAL16RS, PALIERS
PAL16R4) inciudes the PAL16R8-5/4 Senes whchpro-
vides the highesl speed in the 20-pin TTL PAL device
tamily, making the series ideal lor high-performance ap-
i-1cations The PAL16RS Family is provided with stan
darg 20-pin DIP and PLCC pinouts and a 28-pin PLCC
pinout The 28-pin PLCC pinout contains seven extra
ground pins interleaved between the outputs o reduce
noise and increase speed.

The tamily utilizes Advanced Micro Devices' advanced
rench-isolated bipolar process and fuse-knk technot
ogy The devices provide user-programmabie logic for
repiacing conventicnal SSUMSI gates and liip-fops at a
feduced chip count

The fanuly allows the systems engineer 10 implement
the design on-chp, by opening fuse knks 1o configure
AND and OR gaies within the device, according o the
desired 1oge tunction  Compilex interconnectnne be.
tween gates, which previously required time -consumng
layoul, are litied from the PC board and placed on si
con, where they can be easily moddied during prototyp
g or proguction.

The PAL device implements the tamikar Boolean ng-
tanster funchion, the sum of products The PAL device

53 pwTgrammadie AND nrray dnery 1 ixed OR array
The AND array is prograrmTied 19 crete Sustom product
lerms while the OR array sums selectea terms at the
onlputs
Ire agamon, the PAL gevice provides the totlowing
opions

- Vanabie ingutroutput pin rato

- Programmable ifree-state outputs

- Regsters with teadback

Product te:me with all connections opened assusiae the
log:cal HIGH state. product terms connected (o bothirue
and compiement of any sugle input assume the logica!
LCW state Registers consistol D-type lhip-tlops that are
loaded on the LOW-10-HIGH transdion of the clock Un-
used input pins should be tied 10 Vee or GND

The emtwe PAL device famdy is supported by the
FusonPLD panncee The PAL tamily is programmed on
conventional PAL agvice programmers with appropriate
personalty and socke!l acapler modules Once the PAL
device is programmed and verilied, an addional con-
nectioh may be opened to prevent pattern readout This
fealure secures prupnelary cucuts

PRODUCT SELECTOR GUIDE
‘ DEDICATED PROOUCT TERMS/ |
DEVICE INPUTS OUTPUTS ouUTPUT FEEDBACK ENABLE
PAL16LS 10 6 comd 7 u0 prog
2 comd 7 - prog
PAL16R8 8 8 reg 8 reg. pin
PAL16R6 T8 6 1eg & teg pin
2 comd 7 0 prog
PAL16R4 8 4 reg 8 reg pin
{ 4 como 7 O prog
.[ R RPN T -] Ao & e o )

i
L-ua';a. Jereamry 199

NAL ¢COO Cacnilb.



L)

AMD &

FUNCTIONAL DESCRIPTION
Standard 20-pin PAL Family

The standard twpoiar 20-pin PAL tamidy devices have
common elecincal charactenstics and programming
procedures. Four ditterent devices are available, inciud-
'ng both registered and combinatorial devices. Ali paris
are produced with a fuse hnk a1 each input to the AND
gale array and conneclions may be selectvely re-
moved by applying appropnate voltages to the crcutt
Julzing an easily-implemented programuming aigo-
-1nm thece products can be rapidly programmed 1o
any ustomized pattern Exira test words are pre-
programmed duning Manulactunng 10 ensure extremely
nigh field programming yields. and peovide extra test
paihs to achieve excellent parametric cofrelation.

Pinouts

The PAL16R8 Family 1s avaiabie i the standaro 20-pin
DIP and PLCC pinouts and the PAL16R8-4 Series is
avaiiable in the new 28-pin PLCC pinout. The 28-pn
PL.CC pinout gives the designer the cleanes! possibie
signal with only 4 5 ns delay

The PAL16R8-4 pinout has been designed 1o mwmize
ihe noise that can be generated by high-speed signais
Because of 1s inherently shorter leads, the PLCC pack-
age is the best package for use in high-speed designs.
The shon leads and mulipie ground signals reduce the
elfective lead inductance, mwnimizing ground bounce.
Placing the ground pins between the outputs optimizes
1he ground bounce protection. and aiso isolates the out-
puts lrom each other, elmunating cross-tak. This pmnout
can reduce the etfeclive propagathion delay by as much
as 20% ftom a standard DIP pinout Design hies for
PAL 161184 Senes devices are wrrten as d the device
had a standard 20-pin DIP pinout 107 Most design solt-
ware packages

Variable Input/Output Pin Ratio

The roQisiered devices have eght dedcated INput knes,
and each combinatonal outpul is an VO pin The
PAL16L8 has ten dedicated nput lines and s of the
oght combinatonal outputs are VO ping. Butters lor de-
vice nputs have complementary outpuls 10 provide
user programmable nput signal polarly Unused input
pins should be tied to Vec or GND

Programmable Three-State Outputs

f ach output has a three stale oulput butier with three-
state control On combinalonal outputs, a product term
controls Ihe butter, allowing enable and cisable 1o be a
Junchion of any product of device INULS Of CUIPU 1eed-
back The combinatorial outpul provides a bidirectional
110 pin and may be conhigured as a dedicaled input i the
output butter 1s always disabled On registered outputs.
an input pin controls the enablng ol the three-siate
oulputs

Registers with Feedback

Regrstered oulpuls are provided for data storage and
synclwonizaton Registers are composed of D-type
fp-fiops that are loaded on the LOW-t0-HIGH transmon
of the clock nput

Register Preload

The register on the PAL 16R8 Famuly can be preloaded
from the outpul pins 10 tacktate tunctional tesung of
compiex state macrune desgns This teature allows o'
rect loading of arbeirary states. makng itunnecessary ic
cycle through long test vector sequences to reach a de-
swed state. In adddion, transdions lrom itlegal states can
be veritied by loading ilegal states and observing proper
recovery

Power-Up Reset

AB tip-tiops power-up 10 a fogic LOW for predictable
sysiem initialization. Outputs of the PAL16R8 Famly
will be HIGH due 10 the active low outputs. The Vcc nse
must be monolonic and the ceset delay time is 1000 ns

Security Fuse

Alter programeming and venficaton, a PAL 16R8 Famuly
design can be secured by programming the securty
tuse. Once programmaed, this fuse defeats readback of
the intemal programmed patiem by a device Lrogram-
mer, securing propnetary desgns lrom competitors
When the securily tuss is programmed. the array will
read as 4 every tuse is programmed

Quality and Testability

The PAL 16R8 Family offers a very fugh level of built-in
quality. Exira programmabie fuses provide 3 means of
veritying performance of akl AC and DC parameters in
addition, this verities complete programmabity and
functionaiity of the device 1o provide the highes! pro-
gramming yields and post-programming functonal
yields in the industry

Technology

The PALIG6RS Famsly s tabncated with AMD's ad
vanced lrench-solated bepolar process. This process
reduces PArastc Capactances and Mmwwmum geome
tnes 10 provide hugher performance The array connec
tons are tormed wih proven TiW tuses for reliable
operation

PAL16R8 Family -1




“r‘ AMD

CONNECTION DIAGRAMS

Top View
oiP 20-Pin PLCC
wreogt T ap oL
-z 3] NCTE o . g ¢
»{s swcie s gy
g o BRI ENEEEER
sl etz - ale . P
1s (e 15 JINOTE 6 s - Faores
wd- afJINOTE 5 s{]s e [JNCTE T
e 12[J NOTE a0 s vs [UnCTE 6
‘.59 12| NCTE 3 n{Je 4 [lince s
cup Qo 11 (INCTE 2) L 9 10 11 12 3
O]
S & AT
142750014 oW e -
g g g 14275 002A
28-Pin PLCC -0
GN';E PIN DESIGNATIONS
(NOTE 2(] CLK Clock
(NOTE 3 {] F’No l(;"&‘:w
GND ] vo input’Qutput
(NOTE & o] Output
GND( o] Output £ nable
Ve Suppiy Voltage
el - NS @ .
§ 6 g 6 E © 5 14275 0034 ::ti‘n marked 101 orentaton
Notls 16L8 16R8 16R6 16R4
1 lo CLK CLK CiLK
2 ) Ot Ot OF
3 O O: 10> 1WO-
4 vO2 O (673 10>
5 VO Os O O
6 O O Os 0.
7 VOs Os Os Os
8 1Os Os Oe Os
9 Os Or O rOr
10 Os Os 17Os /O
2.6 PALIGRS Family

NPT~ TRV U2 L0 S i




AMD . __

12468 002A

12468-003A

PAL16R4

8 D—D—
HHHBIII..
-1
D
LoD
2 o 3
m mOJmM..“ wwm .
sy Pa
51 H
2 ——
< = D—
5 —
m SD0—p—
-
m

~ R AREDIOMENITNIY WIWEL TONES M TSI SIS HIrSu D S RS Y




R i T N PPy SN SR

- e A f B o e ey n . o

> A — ——— . | P A AN, R YD

ORDERING INFORMATION
Commercial Products

A0 AT MAbIe 100 PIOGUCTS T IO S A0 €A s av 3 aDed W Ceyec a0 Aree 'CONmNe Tre s m mh

C AT Aat0r e by 2 compmate s of

PAL 5 R 8 5 P C
TTTT T
| j * o

rasuly typf ——— 4 1 ¢ L opmionac erOCESSING

B e Progres e A o ) | b Some s frrraan Trocey

NUMBER OF J ! g OPERATING CONDITIONS

ARRAY INPUTS J : T Tomeeiecn 3 Doem Lt

OUTPUT TYPE ot b rackece Tvee

R« Regslerec . P o 20-Pin Pasic DWP (PO Ll

i - Active-Low Covd-acra ‘ e 20.Pon Placic Leaded Ch

; ] Camer Py LG

NUMBER OF OUTPUTS J 28-Pin Piastc Leadgec Crr

SPEED Carreer tor -4 (PL 028"

PR SRR D « 2C Pun Ceramic DIP 1CD C2C

S5« Snstpp

T e TS ney

Valid Combinations Valid Combinations
The Vaid Combinations 1able ksts contigurations

PALIGLE planned 10 De £LOPONEd i volume tor this Cuvce
S Consult the local AMD sales oftce 10 contim

AL 1ERS oPC -4JC  4UC Avadateity of specdc vabd combinatons. and to
PAL 16136 ’ chuch On newly released combmatons
PAL 16R4 Note Markat with AMD 0go
PALIGLS 7
PAL16HS b UG DG
PAL16R6 /7
PAL 1614 7

PAL16R8-4/57 (Com'tj



amo

ORDERING INFORMATION
APL Products

-

e and Del.

AMO programmabie logi products for A

2ppcations are avadable wih several orgenng oplions

APL (Approved Products List) products are fully comphant weh MIL-STD-883 requiremaents The order number (Vahd

Combination) 1s formed by a combnation of

FAMILY TYPE
PAL « Programmabie Array Logic

PAL

NUMBER OF
ARRAY INPUTS

OUTPUT TYPE
R = Registered
L « Active-Low Combinatonal

NUMBER OF OUTPUTS

SPEED
‘10 = 10ns PO
‘12 = 12ns PO

DEVICE CLASS -

/B« MIL-STD-883C Class B

Valid Combinstions
PAL16LS
PAL16RS
‘10, -12 /BRA, B2A
PALV6R6
PAL16R4
Group A Tests

Group A Tests consist ol Subgroups 1.2.3.7, 8.9, 10, 1

Mititary Burn-in

LEAD FINISH
A = Hot Solder Dy

PACKAGE TYPE

R = 20-Pw Ceramc DIP
(CD 020)

2 « 20-Pin Ceramc
Leadless Chip Carner
(CL 020)

Vaild Combinations

The Vakd Combsnat:ons tabile ksts contgurations
planned 10 be supported in volume for this device
Consult the tocal AMD saies ofice W0 confirm
svaiabidty of specic vakd combinatons. 1o
check on newly teleased combinations, and o
obta:n sddaional dats on AMD's standard military
grace products

Note. Marked with AMD 0o

Miaary burn-in s in 3000IGance with the Current revision of MiL-STD-883. Test Mathods 1015, Condtions A theough E

Test condtions are selected at AMD's option

PAL16R8-10/12 (M)



a AMD

ORDERING INFORMATION
APL Products (MM! Marking Only)

AMD 510G’ 3MmMabie ‘0 POCUCTS 107 AGrospact and Delense 300ICAIONS A7@ 3viabie w N s@verd' crcenng oplons AR

(Approved Products | st) products are fully compkant with MIL-STD-883 requirements Tne orger numper iVaid Comb.nater

s formed Dy a COTMD ~aior ¢*

PAL 16 R 8 8B M J 8838
TITTITT
; .
[} L}
FAMILY TYPE ————————
PAL « Programmable Array Loge |
NUMBER OF e OPTIONAL PROCESSING
ARRAY INPUTS 8838 - MiL STD 883 Ciass 8
[}
OUTPUT TYPE ] L—-——— PACKAGE TYPE (Per 09-000i
R = Regsiered i v 20-Pin Cetamc CF
L + Active-Low Comtsnatona J €O 022’
W e 20-Pin Ceramc Fiatpacn
NUMBER OF OUTPUTS {CFLO20)
{ « 20-Pin Coramx Loaoless
SPEED Chio Carner (CL 020!
8 « Very Hgh Speed {20-50 ns try)
A . Hgh Speed {30-50 ns 1) OPERATING CONDITIONS
M . Migary
POWER
Blank = Full Power {180 mA IcC)
2 = Halt Power (90 mA icc)
4 « .Quaner Power {55 mA icC)
v Valid Combinstions
; slid Combinstions The Vald Combanatons 1abie lists conlgura:
PAL16L8 . ons planned 10 be SUPPOI1ed n volume for this
8.8.2 MJ/8838. device Consull the local AMD sales offxce to
PAL16R8 | A. B4 MWB838. confam avadabidy of specdc vald combina
110ns_ 10 chech On newly teieased combinations
PAL16R6 ML /88138 and 10 obtan addtonal wilormaton on AMO's
PAL 16R4 Standard Mdgary grade products
Note Marked with MMI i
Group A Tests
Group A Tests conust ol Subgroups 1.2 3.7 8 910 11

Mintary Burn.in

Military burn-in i i acaordance with the current 1evs.on of ML STO 883 Test Methods 107% Conditons A through
t Twst condtons are selected af AMD's opton

PAL16REB/B-2:A/B-4 (Mil)



z‘ AMD

LOGIC DIAGRAM
DIP and 20-Pin PLCC (28-Pin PLCC) Pinouts

16R6 (-4)
e
CLK% —— . = <

2¢ < y o2 R Tt % TS 2324 2N Y

1X

WU

g

ET e
-~ 0o
= 3]
43 J
1,[1}f} ﬂ‘ ‘I fU“"U
LI, ® |
) 3
= - SR ——E-]v\;
— '8
[ o
NOE; 33 <H‘.rJ er
(L] V

] 3 78 M2 516 90 M 21N N

1427% QO6A

2-14 PAL16R8 Family



&4 amo

ABSOLUTE MAXIMUM RATINGS
Ambient Temperature with

Power Apphed -65"C 1o +150 C
Slorage Temperature 55 Ctlo+125 C
Supply Voltage with

Respect 10 Ground -05Vio .70V

-12VioVec+ 0S5V
-30 MA 10 +5SMA
05V ioVec+ 05V
2001 v

DC input Voltage

DC Input Current

DC Output of VYO Pin Volage
Siate Discharge Voitage
Stresses above those bsind under Absokie Maxmum Rat-
iNgs May cause permanant devce larhwe. Functionalty at or
above these hvnits 1s nol imphed £ xposwure 10 Absolute Max:

mum Ratings lor extended penods may alect Gewce rekabs
ny Programmng conditons may dife:

OPERATING RANGES
Ambient Temperature (Ta)
Operaling in Free Au

Supply Voltage (Vc)
wih Respect to Ground

0Cto+75C

+475V 104525V

Operating ranges delne those mits beiween whh the func
wonalgy ol the device is guaranteed

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise

specified
Parameter
Symbol Parameler Description Test Conditions Min. Max. | Unit
Vo Output HIGH Voltage o= -32MA Ve Veor Ve 24 v
Vce = Min
Vo Output LOW Vohage I »24mA V= VeorVa 05 v
Vee = Min
Vi Input HIGH Voltage Guaranteed Input Logical HIGH 20 \%
Voltage for all inputs (Note 1)
Va Input LOW Voltage Guaranteed Input Logcal LOW 08 Y
Vokage for all Inpuls (Nole 1)

Vi input Clamp Volage low= —18 MA, Vce = Min. -12 \

s Input HIGH Current Vi = 2.7 V. Ve = Max. (Note 2) 25 MA

3 Input LOW Current Vi = 0.4 V_ Vcc = Max (Note 2) =250 | pA

U Maxmum Input Current V=55V, Vcc = Max. 1 mA

lom Ofi-Siate Output Leakage Vout = 2.7 V, Voo = Max 100 | uA
Current HIGH Ve = Vior Ve (Nole 2)

oz Ot1-State Output Leakage Vout = 0.4 V, Ve = Max =100 | pA
Current LOW Ve = Ve OF Vo {NOtE 2)

Isc Output Shon-Circuit Current Vout = 05 V. Vec = Max (Note 3) -30 | -130 | mA
e Supply Current V= 0V, Qutputs Open licur = C MA} 21c, TA
; Vcc = Max |
Notes:

These are absOlute vaiues wih 1¢sDect 10 device ground and ail Overshoots due 10 System and0r 18519 ~C 58 378 :NCiLCeC

> 1O pin 9akage 1$ the woist Case Of i 3nd 1071 {Of les and to2~:

i NOtMOre than one oulpul shoud De lesied at atime Duraton of the shont £ turt showd not QICOEC 0@ SuCONT W' = C OV
nas Den Chosen 10 avoid 195t Drobiems Caused Dy 19ster Ground CeQradalor

X

-16

PAL16R8-4/5 (Com'))



CAPACITANCE (Note 1)

Psrameter
Symbol Parameter Description Test Conditions Typ. Unht
Cw Input Capacitance | CLk, OF Ve« 20V Vee - 50V |8 ]
_ h-ls Ta - 25C 5 oF
Cout Qutput Capacitance Voui =20V 1«1 MHZ 8
Note:

1 These patameters diw no! 100% 1931ed. but 3@ evalualed al (N3l Characten alor 4nd dl dany 1@ the desgn 3 mocilied
whete Capacnance may bu allected

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

-5 -4
Parameter Min, Min.
Symbol | Parameter Description (Note 3)] Max. |(Note 3)| Max. | Unit
tep Input or F eedback 10 16L8. 16R8, 1 5 1 45 | ns
Combinatonal Output 16R4
4 Setup Time trom input or 45 45 ns
Feedback 1o Ciock o
| Hold Time . B | 0 0 ns
1co Clock 1o Output 1 40 1 35 ns
tsxt wh Skew Butween Regestered 1 05 | ns
Quiputs (Note 4)
Tw oo Wt 1LOW A ne o4 1 o
e lock Wath 0 GH P4 4 ns
Maxomum  |External Feedback [ 1/ts + 1co) [ 7 125 MH2
Ttz Frequency |internal Feedback {lcw1) 125 125 M2
{Note 5) No Feedback l 1{twr » ) 12% 125 MH2z
lp2x ﬁ to Outpul Enable 1 65 1 65| ns
Px2 OF 10 Output Disable 1 [ 1 5 | ns
Fa Input 1o Oulput Enable Using 2 65 2 65| ns
Product Term Control 16L8. 16R6
tee Input 10 Output Disable Using 16R4 2 S 2 5 ns
Product Term Control

Notes:

2 S_e Switching Test Circurt 101 test condtions

53 Detay muumums for 1P, ICO. 1PZX, 1PXZ, 1EA. 3N A 278 CHOSEN DASEO CF Iwd CONSCOrAONT IFJy Mus: Alow 07 the 1arge
Aumber of varnadies that geline Des! Case’ cONIMIONS, 3nd they Mus! lempl 10 ANIC OALE POSSO9 fulure DIICEsS enhance

mants that may increase perlormance X s possdie that such process MPIOVvEMeNnts May SOMeday Dushthe Min:mum delays
DOYONd whatl was 01 ginally AnLCPaled 1herelore Minimums Should DO Used wi™ Care arC 3¢ reCOMMended prmarnly 1or

S L aton

3 Saew 1eshing 1ares NIC 3TCO. NI PANEIN AN SWACHAG O eCION CNe@ Ces Detwaar 0D
i~ece paramelers 3re ¢ TO0Y. tesied DL 3e ZaiCLeC AT :‘. B INAITEISIVT e a3 e © Ve IeeCm s oG e
amels e lrequency Moy e altecled

PAL16RB-4.5 (Com'l} 217

BT PR © &Y



amp £

CURRENT VS. VOLTAGE (I-V) CHARACTERISTICS for the PAL16R8-4/5

Vec =50V, Ta = 25°C

lot. mA :(
15 T i
0T
s +

+ + + Vou. V
04 02 o 04 06
_6-0-

Output, LOW

10240 UC38

20T lon. mA

' 1 L : d
-2 -1 1 2
+ -20

Vo, V

4+ —40

80 -v’//////

~90 -

Output, HIGH

102400040

-+

w4
[
4
]
8+
p
+

Vi V

- 100

b 150

4+ -200

102 40-005A

PAL16R8 Family

L 1OSA FRATIIV

243

[ 3

Lo s ol MRS

&1 P ENNY) <) Yemby by i)

2.4



219 40

NcC D 45V
18 &—— bata Deo-D7 RT — 39
q RCLk RLSD —— 38
e S DSR, 4—— 37
" sour CTSH—— 36
12 CcSo MR, — 35

16
17
19
q
21
22

23

—>
—_—
‘__._.
—>
—»
—)
5 ¢—
—
—_—
—
—»
—
—»
4—

CS&

XTAaLl

XTALZ
LDOS8TR
LOSTR
DISTR,
DISTR.

0DIS

8AUD ouT 8250

OUT| —F 34
DTR ——> 33
RTS —> 32

OLﬂ'I, —_— 31

INTRPT }———» 80

AOU—— 28
Al f—— ¥
AL fp— 26
ARS 4— 25

CSOUT——P 24

A250

Pinout Dagram



