Pptimization of Dxygen in Yentilators
Using Benetic Algorithm

Project Report Submitted
by
GAYATHRI GANGADHARAN
V. JAISHREE
M.V. KAVITHA
P.V. PRABHA

P-1217

Under the guidance of Prof. K. RAMPRAKASH, M.E., MISTE.

Submitted in partial fulfilment of the requirements for the Degree of
BACHELOR OF ENGINEERING
in Electronics and Communication Engineering of

Bharathiar University, Coimbatore.

1996 - 97

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Kumaragueu Lollege of Technology

7232 2T A T/rSMY ot o ANE

Department of Electronics & Communication Engineering

Kumaraguru College of Technology

Coimbatore - 641 006.

CERTIFICATE

This is to certify that the Report entitled

OPTIMIZATION OF OXYGEN IN VENTILATORS USING
GENMETIC ALGORITHM .

has been submitted by

. ...-.u...n-.-......-........u-~....up..~...-n..-.---..

In partial fulfillment of the requirements for the award of Bachelor of Engineering in
Electronics and Communication Engineering Branch of Bharathiar University,

Coimbatore - 641046 during the academic year 1996 - ‘97 .

[t Pratearsi: \JAWWW’

i
GUIDE HEAD oaL TIHE rDZMP/‘I mmm«%f

Certified that the candidate was examined by us in the project work

Viva - Voce examination held on and the University

Register Number was

\X@K‘hﬂﬂﬂ%“ﬂ/ , [s
T sy f

INTERNAL EXAMINER, EXTERNAL EXAMINER,

CHAPTER

CONTENTS

ACKNOWLEDGEMENT

SYNOPSIS

LIST OF FIGURES

INTRODUCTION

THE FUNCTIONS OF RESPIRATORY SYSTEM

2.1
2.2
- 23
24
2.5

Introduction

Mechanics of respiratory system
Mechanics of ventilation’s
Ventilators and its types
Parameters involving respiration

PROGRAMMING LANGUAGE C++

3.1
3.2
3.3
3.4

GENETIC
4.1
4.2
4.3

4.4
4.5

Introduction

Object oriented programming
Classes and objects
Features of C++

ALGORITHM

introduction

Optimization

How do GA's differs from
traditional methods

Fundamental concepts

Comparison of natural system and
GA's terminology

4.6 Mechanics of GA

PAGE NO.

— —d b b
®w w N ®

24

24

25
26

32

36
37

38
38

41

DESIGN PROCEDURES
RESULTS
CONCLUSION

REFRENCES

APPENDIX - PROGRAMME LISTING

sS4

66

67

68

69

ACKNOWLEDGEMENT

We are grateful to Dr.S. SUBRAMANIAN M.Sc (Engg.), Ph.D. ,
SMIEEE , Principal, Kumaraguru College of Technology , for the ample

facilities made available to accomplish this project.

We are immensely thankful to our beloved Prof . M.RAMASAMY
M.E., MISTE , MIEEE , Head of Electronics and Communication

Engineering Department, Kumaraguru College of Technology for his help

to complete this project .

We express our deep sense of gratitudeto Prof K .RAMPRAKASH
., Asst.Professor,Electronics and Communication Engineering Department ,
Kumaraguru College of Technology (for his able guidance during the
project work .His constant encouragement and support placed us in

good stead, right through this work .

We are sincerely acknowledge our external guide Mr. K
.SUKESH KUMAR, Research Scholar, PSG Tech , for his valuable
suggestion to select this project and for having put in his effort | time

and cooperation in completion of this project work..

We are extremely thankful to Dr M. SARAVANAN M D .S. KMCH,
Mr.. M. SATHISH KUMAR , Bio - Medical Engineer, KMCH, Dr. SELVARAJ |
Chief Anaesthesiologist, KMCH, Dr. PREMA | ICU Incharge
KMCH , Dr .MANONMANI , KMCH , Dr . P. CHANDRA MOHAN, Dr.
NEELAVATHI ,Cardiothoracic Department , GKNM Hospital , Dr.RAJ PAUL ,
GKNM Hospital, Dr. VASISTA , Chief Anaesthesiologist, RAMAKRISHNA

Hospital , for their invaluable help in the completion of this project.

We also express our indebtedness to the teaching and non -
teaching staff of Electronics and Communication Engineering

Department who helped us during the course of the project.

We wish to express our sincere and heartfelt thanks to
our friends and well -wishers for their valuable suggestions and

enthusiastic help towards the successful completion of this

project .

SYNOPSIS

The use of Bio- Medical instruments has been increased in
recent times in he medical field for clinical and research purposes .
The advent of modern computing facilities has further enhanced the
utility of the same with higher degree of reliability nd accuracy .
An extensive use of computers in the Bio -Medical instruments

designed to perform routine clinical measurements .

This project work involves optimization of oxygen in ventilators
using genetic algorithm . Analysing the problems undergone by the
doctors during the fixation of oxygen to the patient, it was found
that they fix the oxygen using trial and error method. This leads to
lot of complications to the patient. In order to optimize the oxygen
level in the very first delivery we are using one of the

optimization technique called Genetic algorithm | which focus on

robustness .

In respiratory system the following & parameters are playing a

major role to fix the oxygen level,

(1) Total Lung Capacity (TLC)

(2) Tidal Volume (TV)
(3) Vital Capacity (VC)
(4) Forced Expiratory Volume (FEV)

(5) Respiratory Rate (RR)

| Using standard biological equations involving age , height ,
weight and sex the above 5 parameters are calculated and from
these parameters the required amount of oxygen is fixed by

performing iterations over the fitness function , tili the convergence is

achieved

This project is working satisfactorily for the tests conducted

under different conditions .The results obtained are found to be

correct and informative . This project has been implemented on

Turbo C++ .

LIST OF FIGURES

FIGURE NO.
2.1 THE RESPIRATORY SYSTEM
2.2 LUNG VOLUMES AND CAPACITIES
23 BLOCK DIAGRAM OF VENTILATION INTERFACE
2.4 VENTILATOR
4.1 BLOCK DIAGRAM - EVOLUTIONARY TECHNIQUE
4.2 ROULETTE WHEEL
43 CROSS OVER - DIAGRAMMATIC REPRESENTATION
4.4 MUTATION -DIAGRAMMATIC REPRESENTATION

PAGE NO

11
21
16
15
34
43
45

47

CHAPTER 1

INTRODUCTION

The' function of lungs is to promote the exchange of
blood gases , so that oxygen is taken up from the ambient air
and carbon di oxide is given off , thus keeping the threshold
level of gases in the blood . This is carried out by the process
of ventilation by which the lung is aerated. From this We can

infer that the lungs are playing a major role in all functions of

‘the human beings .

For patient needing ventilation , an external support to the

respiratory system is provided with the help of a VENTILATOR
It gives required oxygen to the patient after the process of
humidification . Fixing the amount of oxygen is the major problem

faced by anaestheseoligists . Let us try to solve it.

Analyzing the recent developments in medical science have

resulted in a situation where most physicians find it increasingly

difficult in making optimal clinical judgements even after specialization
Physicians usually fix the amount of oxygen in ventilators by
trial and error method . It leads to various complications in the

patients who are already in a critical condition .

This project is aimed at over coming such a difficulty .
The amount of oxygen given to the patient is optimized at the
very first delivery . This is achieved using a randomized technique
, yes it is GENETIC ALGORITHM . It is an optimization technique
, which focuses solely on convergence . It's goal is improvement

and is concerned Wwith doing better relative to others .

Chapter 2 deals with the functions of the respiratory
system, Chapter 3 deals with the programming language C++

Chapter 4 deals with the Genetic algorithm and Chapter 5 deals

with the Design procedure of the project.

CHAPTER -2

THE FUNCTIONS OF RESPIRATORY SYSTEM

2.1 INTRODUCTION :

The exchange of gases in any biological process is termed
respiration. . To sustain life , the human must take in oxygen , which
combines with carbon , hydrogen and various nutrients to produce heat
and energy for the performance of work.Asa result of this process of
metabolism , which takes place in the cells ,a certain amount of water is
produced along with the principal waste product carbon dioxide .The entire
process of taking in oxygen from the environment, transporting the oxygen
to the cells , removing the carbon dioxide from the cells and exhausting

this waste product into the atmosphere must be considered within the

definition of respiration. .

In the human body , the tissue cells are generally not in direct
contact with their external environment . Instead , the cells are batched in

fluid . This tissue fluid can be considered as the internal environment of

the body . The cells absorb oxygen from this fluid .The circulating blood

is the medium by which oxygen is brought to the internal environment .

Carbon dioxide is carried from the tissue fluids by the same mechanism .
The exchange of gases between the blood and the external environment

takes place in the lungs is external respiration .

The function of the lungs is to oxygenate the blood in a controlled
manner . During inspiration fresh air enters the respiratory tract , becomes
humidified and heated to body temperature , and is mixed with the gases
already present in the region comprising the trachea and bronchi. (see
figure 2.1) . This gas is then mixed further with the gas residing in the
alveoli as it enters these small sacs in the walls of the lungs. Oxygen
diffuses from the alveoli to the pulmonary capillary biocod supply , whereas
carbon dioxide diffuses from the blood to the alveoli . The oxygen is
carried from the lungs and distributed among the various cells of the
body by the blood circulation system , which also returns the carbon
dioxide to the lungs . The entire process of inspiring and expiring air ,

exchange of gases, distribution of oxygen to the cells , and collection of

carbon dioxide from the cells forms what is known as the pulmonary

function .

2.2 MECHANICS OF RESPIRATION

Air enters the lungs through the air passages, which include the

nasal cavities , pharynx , larynx , trachea , bronchi and bronchioles as

shown in figure 2.1.

The trachea is about 1.5 to 2.5cm in diameter and approximately
11 cm long , extending from larynx to the upper boundary of the chest .
Here it bifurcates (forks) into the right and left main stem bronchi .
Each bronchus enters into the corresponding lung and divides like the
limbs of a tree into smaller branches . The branches are unequal length
and at different angles , with over 20 of these non-symmetrical bi-furcations
normally present in the human body Further along with these branching
where the diameter is reduced to about 0.1 cm |, the air - conducting tubes
are called bronchioles . As they continue to decrease in size to about O
.05 cm in diameter ,they form the terminal bronchioles , which branch again
into the respiratory branchioles , here some alveoli are attached as small
air sacs increase in number , becoming the pulmonary alveoli. The alveoli
are each about 0.02 cm in diameter . It is estimated that , all told , some
300 million alveoli are found in the lungs .

Beyond about the tenth stage of branching , the bronchioles are

embedded within alveolar lung tissue ;and with the expansion and

Sphenoid
air sinus
Tongue Epiglottis
Larynx
Trachea
Clavicle

ght Bronchus

Left Bronchus

ight Lung

Left Lung

Diaphragm

FIGURE 2.1

THE RESPIRATORY SYSTEM

relaxation of the lung , their diameters are greatly affected by the lung
size or lung volume . Upto this point, the diameter of the air sacs are

greatly affected by the pleural pressure, the pressure inside the thorax.

23. THE MECHANICS OF VENTILATION

The‘function of the respiratory system is to secure gas exchange
between the blood and ambient air so that the arterial blood gas
pressures are kept within certain Iimits.Any departures from these
limits implies that there is a breakdown in the system at some
level .It is a function of the clinician to determine at what level

this has occured and what is the cause of the condition.

In order to understand how the respiratory system secures

this gas exchange, the various processes involved in respiration have

to be considered .

The first VENTILATION, the process by which the lung is
aerated .Ventilation is a cyclic activity with an inward flow of air
called inspiration and an outward flow called expiration. The forces

that cause the flow of gas are called the MECHANICS OF
VENTILATION

Ventilation is the most easily measured of the processes of
respiration . It is also the most important in that it is most frequently

involved in the breakdown of the respiratory process .

2.4 VENTILATORS AND ITS TYPES

Ventilators are equipments that gives an external support to
the respiratory system . We have the types of ventilators based
on the controlling operation . The first one isthea PRESSURE
controlled ventilator while the other one is called as the VOLUME
controlled ventilator and offcourse they are classified based on the
manufacturer . Ventilators may be classified according to their
functional components (table 1') and the control of minute ventilation

, tidal volume and respiratory timing (table 2)

TABLE 1 CLASSIFICATION OF VENTILATORS : FUNCTIONAL
COMPONENTS

1. POWER SOURCE ;
Pneumatic (compressed gas)
Electronic

Combination

2. POWER MECHANISM ;
Piston - driver ventilator
Rotary drive piston.
Linear drive piston (gear or spring)
Pneumatically driven ventilator.
High-pressure drive with high internal resistance
Low-pressure -driven bellows

Compressor- drive bellows.

3. TRANSMISSON OF POWER;
Direct or single - circuit

Indirect or double circuit .

4. CONTROL MECHANISMS ;
Pneumatic
Fluidic
Electronic

Combination

VENTILATOR

KEYBOARD

)
ERATOR DISPLAY PANEL

PATIENT

PATIENT SERVICE
SYSTEM

<4—— MICROPROCESSOR

.
PNEUMATIC SYSTEM =

l
GAS SUPPLY SYSTEM \
!
!
|

”IG 2.3 BLOCK DIAGRAM OF VENTILATOR INTERFACE

TABLE 2. CLASSIFICATION OF VENTILATORS : MECHANISM

CONTROL, PRESSURE , AND FLOW PATTERNS:

1. INITIATION OF INSPIRATORY PHASE ;

Controlled
Assisted

Controlled / assisted

2. PRESSURE PATTERN : Inspiration- Expiration
Positive- atmosphere
Positive- positive

Positive - negative

3.CONTROL OF MINUTE VENTILATION
Preset (a) minute ventilation

Preset (a) and frequency

Preset (a) and tidal volume

Minute volume divider
Preset tidal volume

Tidal volume (volume cycled)

Pressure limit (pressure cycled)

OF

Time limit (time cycled)

Inspiratory flow

25 PARAMETERS INVOLVING RESPIRATION

We first determine a reference level, chosen to be at the
end of a passive expiration . Here the respiratory muscle activity is
at a minimum . The volume of the lungs at this time is primarily
determined by the elastic forces in the lung tissue and the thorax .
This lung volume , the resting expirating level , is a convenient

reference point from which changes in lung volume can be

measured .(See figure 2.5.1)
2.5.1 LUNG VOLUMES
1. Tidal volume (TV)

The volume of air inspired and expired with each normal

breath (600 ml- 10 %).

2. Inspiratory reserve volume (IRV) :

The maximal volume of gas that can be inspired beyond the

end. of a normal tidal volume (3000 mI-50%).

3. Expiratory reserve volume (ERV) -

The volume of gas expired by forceful expiration after the end

of a normal tidal volume (1200ml-20 %) .

4. Residual volume :

The volume of air remaining in the lungs after a maximal

expiration (1200 ml -20 %).

25.2 LUNG CAPACITIES :

There are four capacities each of which includes two or more

of the primary volumes .These lung capacities are given as follows

1. Vital capacity (VC) :

Maximum amount of that can be expelled from the lungs by

forceful effort after inspiration (6000 mi-80 %)

VC = IRV + ERV + TV.

2. Total lung capacity (TLC) :

The amount of air contained in the lungs after maximal
inspiration (6000 ml - 100 %)

TLC = VC + RV .

3. Inspiration capacity (IC) :

The maximum amount of air that can be inspired after
reaching the end expiratory level (3600 ml-60 %).
IC = TV + IRV .

4 Functional residual capacity (FRC) :

The volume of air remaining after a normal expiration (24000
ml-40%)

FRC = ERV + RV .

All pulmonary volumes and capacities are about 20 to 25 %

less in females than in males .

sajroede) pue sawnoA JunT’

¢ JUNOIJ

. 4]

ﬁ'm

244 A¥T
T3IAZT

A¥CLIVYIdX3 are

o]
»
©
P
"3
0
.
3
A
JRNTOA Tvall —

ONILSTY T3AZ"
NOILW¥IdSNT aNg -

1L

voryeardsur

2.5.3 DYNAMIC VOLUMES AND CAPACITIES :

In addition to the static volumes and capacities already
given , several dynamic measures are used to assess pulmonary
mechanics . These measures are important because breathing is a
dynamic process and the rate at which gases can be exchanged

within the lungs is a direct function of the rate at which air can

be transported .

A measure of the overall output of the respiratory system
is the respiratory minute volume (RNV).This is the measure of the
amount of air inspired during 1 minute at rest. It is calculated by

taking the product of the tidal volume and the respiratory

frequency .

A number of forced breathing tests are also wused to
assess the muscle power associated with he breathing and the
resistance of the airway. Among them is the forced vital capacity
(FVC), which is nothing more than a vital capacity maneur
performed as quickly as possible. By definition ,the FVC is the total
amount of air that can be forcibly expired gas quickly as possible

after taking the deepest possible breath .If the measurement is made

with respect to the time required for the maneuer, it is called a
timed vital capacity . A measure of the maximum amount of gas

that can be expelled in a given number of seconds is called

the forced expiratory volume .

CHAPTER 3

PROGRAMMING LANGUAGE C ++

3.1 INTRODUCTION :

C ++ was developed by BJARNE STROUSTRUP at the
Bell laboratories in 1983 . Originally it was called as " C with
class ". C ++ as an enhancement to the C language was
developed primarily to facilitate managing programming and maintaining
large software projects . There are several C ++ products available
TURBO C ++, BORLAND C ++ ZORTECH C++ AT &T C++,SUN C ++
PREPROCESSOR . Turbo C ++ and Borland C ++ are the most widely
used among them . C ++ also uses arrays and pointers in order to

be advanced over the other high level languages.

3.2 OBJECT ORIENTED PROGRAMMING

OOPS is the most dramatic innovation in software
development in the last decade . It ranks in importance with the
development of the first higher level languages act the dawn of the

computer age . OOPS can be implemented in many languages , it

supports object oriented programming. The most important features
of OOPS are DATD HIDING , ENCAPSULATION POLYMORPHISM

INHERITANCE and REUSABILITY .

3.3 CLASSES AND OBJECTS :

Class is a new data type very similar to structures . A
structure is a wuser defined data type . It is a conglomerate of
logically related data items . Unlike arrays | they can be made of
members of different data types . A class contains data members
as well as the function members They can be defined either in
the public section for access to any function of the program or in
the private section , where access is allowed to member functions of
the class only . A class is a user defined data type and an object
is an instance of a class . Data members of different objects of
the same class occupy different memory area , but function members
of different objects of the same class share the same set of
functions . While designing a class , the designer can include within

the class , a special member function that is executed when ever

an object of the class is created . Such functions are called as

CONSTRUCTORS . A member function can be specified as a
constructor by assigning to it the same name as the name as the
name of the class. And in C++ we have the DESTRUCTORS | they
are the functions that are complementary to constructors . It cannot
take arguments or specify a return value = or explicitty return a
value . This is invoked either when an object of the class goes

out of scope , or when the memory occupied by it is deallocated

using the delete operator .

3.4 FEATURES OF OOPS :

3.4.1 DATA ABSTRACTION :

Structures as seen are used to represent the data in a
program like a list , of values or the description of the employee .
This logical picture hides the details of how the data is eventually
stored in the memory . Because of this only it is also called as

DATA HIDING. The computer stores the data in the form of binary

bits and bytes but humans can think about the information’s in the
form of characters .Data abstraction helps in separating the
computers view of data from that of human . It also represents the
information in terms of its interface with the user It protects the

integrity of the data when putting the data in the private section.

3.4.2 DATA ENCAPSULATION :

Class definition is used to specify a class design The
class definiton is modeled after a structure template and can
include data members and function members . This definiton has a
private section , and members declared in their section can be
accessed only through the member functions. The definition has also
a public section , and members declared there can be accessed by
an outside program . Typically , data members go into the private
section and the member functions go into the public section . Bundling
the data together with the member functions describing how the

data can be used is called as ENCAPSULATION .

3.4.3 POLYMORPHISM :

Polymorphism lets us create muitiple definitions for
operators and functions , with the programming context which definition
is used . The term polymorphism means having many forms . We

have two types of polymorphism's they are

(1) FUNCTIONAL POLYMORPHISM :

Functional polymorphism is also called as FUNCTIONAL
OVERLOADING because we can attach more function in the same
name , thus over loading the name . So function polymorphism lets a
function has many forms . We can use this function over loading to
design a family of functions that to essentially the same thing , but
using different argument lists _The functional approach , how ever, is
more powerful , for it enables us to use different data types of

arguments as well as different numbers of arguments .

(2) OPERATOR OVERLOADING :

Operator over loading is another example of C ++
polymorphism . [t extends the overloading concepts to operat.ors , to
assign multiple meanings to C ++ operators . Actually , many C ++
operators are already over loaded . C ++ extends the over loading to
user defined types . For example + symbol is used to add two
objects . Again, the compiler will use the number and type of
operands to determine which definition of addition to wuse . Over

loaded operators often can make code look more natural .

3.4.4. INHERITANCE :

A new classes are derived from the old class , with
the derived class inheriting the property of old ones , including the

methods of the old class , called a base class . It is easier than

designing a new class . We can add new properties and even Wwe

can redefine the member function as per our requirement .

3.4.5. REUSABILITY :

C ++ classes brings us 2a higher level reusability . Many
vendors now offer class libraries , which consists of class definitions
and implementations . Because a class encapsulates data representation
with class methods , it provides a more integrated packages than does
a class library . It is one of the main goals of oorPS . The
property of using the code which is already used in the project is
called as reusability . Employing old code saves time and, because it
has been used and tested , can help suppress the introduction of
bugs into program. With all the above we have a special function
called as friend function , it is a nonmember function that's granted
access to a class's private members similarly , @ friend class is a
class whose member functions can access another class's private

members .

The optimization of oxygen using genetic algorithm
can be implemented on Turbo C++ which is the most advanced

over other higher level languages.

CHAPTER 4

GENETIC ALGORITHM

4.1 INTRODUCTION :

The rapid growth in the field of computer has lead to the
development of the number of fields . Genetic algorithms was
developed in late 1960's . Genetic algorithms are search algorithms
based on the mechanics of natural selection and natural genetics
GA's have been developed by JOHN HOLLAND . Though it was
efficient in producing the required result, it was in decline because of
the numerous computations involved. Now this job is taken up by the
a computers and hence genetic algorithms are in the upcoming trend .
This uses the DARWINIAN PRINCIPLE of " survival to the fittest " .
The theme of GA's is the ROBUSTNESS , a balance between
efficiency and efficacy necessary for survival in many different
environments. Search methods like calculus based , enumerative and
random method are conventional methods which does not meet our
robustness requirement. Thus we go for GA's which has theoretically

and empirically proven to provide robust search in complex spaces.

Features of self repair , self guidance and reproduction are the
rule in biological systems. These are the features which make GA's

as a sophisticated optimization technique.

EVOLUTIONARY COMPUTATION

Evolutionary computations can be classified as based on the

evolution models they use as follows :

GENETIC ALGORITHMS (GA)

Genetics algorithms models evolution at the level of gene

propagation and this widely used in U.S.

EVOLUTION STRATERGIES (ES)

Evolution strategy models how evolution optimizes individuals to

exploit their environment. This has been developed and studied much

in West Germany.

Gnrated PopulatioH Fitness Function)——»(Rated Population)

b

@utation Operation > Selection Function /‘
Y ' >
. - v
Population Of : AV Population Of
(Parent Copies \Reproductlon Func‘uon/a— J Parents ¥

BLOCK DIAGRAM- EVOLUTIONARY TECHINIQUE

EVOLUTIONARY PROGRAMMING (EP)

This is one of the earliest methods and is still popular .It

models evolution based on multiple species competing for shared

resources .

All these evolutionary computational techniques used the
general procedure shown in Fig 4.1.First, every member of the given
set of candidates is rated as how good it is using a fitness
function . Evolutionary computation attempt to maximize this function
gradually to improve the solution. A subset of this set is selected
to act as parents and the choice of the method depend on’ many
factors . One simple method is to select the best half of the
members as parents . 'Roulette wheel selection ' method chooses a
members with a probability equal to fitness divided by the total
fitness of all the members and in ' tournament' method one selects

at random one subset from which a member with largest fitness

function is selected to be parent.

Next ,a set of operations are performed over the parents to
modify their contents and this is the most important features of
evolutionary computations. These operations are generally called as

mutations which may include inversion , point mutation or cross over

The resulting children become a part of subsequent population and
the cycle is repeated again and again till the value of fitness
function reaches a desired. One cycle of the process, called generation
is shown .Generally the initial population is chosen at random and
the problem is solved by several cycle of selection of the
parents and subsequent motivation. A typical algorithm for such

computational scheme is given below:

1. Choose a population based on the information the problem
domain or at random (If such information is available) such that
each individual many represent a possible solution to the problem .

2. Evaluate the fitness of each individual .

3. Select the parents from the population .

4. Perform cross over and mutations with the parents to produce

children and add to the ‘population .

5.Evaluate the children's fitness .

6. Output the solution if one is formed with the desired fitnesselse go

to step 3.

4.2 OPTIMIZATION

Optimization seeks to improve performance towards some optimal

point or points . The definiton has two parts (1) we seek

improvement to approach an (2) optimal point . In judging optimization
procedures we focus on convergence .

Genetic algorithms require the natural parameter set of the
optimization problem to be coded as a finite length string over some

finite alphabet. GA's use random choice as a tool to guide a search

towards the optimal point.

43 HOW DO GA'S DIFFER FROM TRADITIONAL
METHODS :

GA ' s differ from more normal optimization and search

procedures in four ways . They are ,

1. GA's work with a coding of parameter set and not the parameter

t

themselves .

2. GA's search from a population of points and not on a single
point .
3. GA's use objective function , not derivatives or other auxillary

knowledge .

4. GA's use probabilistic transition rules not deterministic rules.

4.4 FUNDAMENTAL CONCEPTS

GAs directly manipulate a population of strings. Let's see
what a string is and a lot more about it. Let wus consider a
seven bit string A=0110110 which can be represented

symbolically as A=al a2 a3a4 a5 a6 a7

Here ai represents a single binary features or detector. A
number '0O' or '1' taken by a gene is «called as the feature

value. A number of strings together constitute a population .

4.5 COMPARISION OF NATURAL SYSTEM AND

GAs TERMINOLOGY

Chromosomes are long stretches of DNA that carry the
genetic information needed build an organism . The strings of
artificial genetic systems are analogous to genes.Each gene is a
unit of information . Genes are located at positions called as LOCI .
At loci genes takes up different values and each is called an
ALLELES . In artificial systems , strings are composed of features
or detectors, that assume different values located at different

values located at different positions of a string.

The total genetic packages is called the GENOTYPE where
as it is called a structure in artificial genetic systems. In natural
systems , the organism formed by the interaction of the total
genetic package with its is called the PHENOTYPE. In artificial
genetic systems the structures decode to form a particular

parameter set or a possible solution.

Biological system Artificial genetic system
Chromosome String

Gene | Features of detector
Allele Featurg value

Locus String position
Genotype Structure

Phenotype Parameter set

A population can be represented with ease with the help of
schemata . Schemata is a similarity template . It describes a subset
of strings with similarities at certain string positions .Usually strings
are binary alphabets (01). Concept of schemata s brought in
by appending a ' * symbol which is a wild card . It can
assume the value of either ' 0 ' or '1'. Consider a schemata *
110*, this describes a subset with four members (01100 , Oﬁ1001
, 11100, 11101) for an alphabet with carnality K and strings
with length | there are (K+ 1) schemata . For a population with

n' strings there are n(K+1) schemata.

A schemata is described by two properties

(i) order

(ii) defining length
ORDER (O(H))

It is the number of fixed positions in the template (in
binary '0' or '1’)
example: 1**1Q**

order is 3

DEFINING LENGTH (& (H))

It is the distance between the first and last specific string
position .
example:1**10**

&(H)=4

46 MECHANICS OF GENETIC ALGORITHMS :

The mechanics of a simple GA's are surprisingly simple
involving nothing more complex than copying strings and swapping
partial strings .Simplicity of operation power of effect are two of

the main attraction of the GA's approach.

A simple GA that vyields good result in many practical is

composed of three operators,

1. Reproduction
2.Cross over

3.Mutation

4.6.1. REPRODUCTION :

Reproduction is a process in which individual strings are copied
according to their objective function values | f (fitness function) .
Copying strings according to their fitness function values means
that strings with a higher value have a higher probability of
contributing one or more offspring in the next string . The
reproduction operator may beimplemented in algorthermic form in a
number of ways. The weasiest is to create a biased ROULETTE
WHEEL where each current string in the population has a r;)ulette

wheel slot sized in proportion to its fitness .(Fig 4 .2) .

Figure 4.2 shows roulette wheel with percentages indicating
the fittness . As an example, string 1 is given 14.4% of the biased
roulette wheel , and each spin turns up string 1 with probability
0.144 . Each time we require another string has been selected for
reproduction, an exact replica of the string is made . This string is

then entered into a mating pool, a tentative new population

for further genetic operator action .

30.9%

FIG. 4.2
A BIASED ROULETTE WHEEL

4.6.2.CROSS OVER :

After reproduction , simple crossover may proceed in two steps
. First , members of the newly reproduced strings in the mating pool
are muted at random. Second, each pair of string undergoes crossing
over as follows ,an integer position K along the string is selected
uniformly at random between | and the string length less one [, 1]
Two new strings are created by swapping all characters between
positions K+1 and | inclusively . For example , consider strings A1

and A2 from our example initial population .

A1=0110 | 1

A2=1100 | O

Suppose in choosing a random number between 1 and 4.
We obtain a K=4 (as indicated by the seperator symbol |). The
resulting crossover yields two new strings where the prime (")

means the strings are part of the new generation .[Fig 4.3]

A1=01100

A2=11001

BEFORE CROSS OVER AFTER CROSS OVER

D

—

CROSS OVER D>

— 7

[

CROSS OVER SITE

FIG. 4.3

CROSS OVER - DIAGRAMMAT IC REPRESENTATION

The mechanics of reproduction and crossover both gives

GA's much of their power.

4.6.3. MUTATION

A mutation operator is included in most GA's . In simple GA
s a mutation is a random alteration of a value of the string
position. This operator helps to gain information that is not available
to the rest of the population . The purpose of the mutation operator
is to prevent loss of important information by effectively increasing
the population diversity. The frequency of mutation to obtain good

results in empirical GA studies is on the order of one mutation per

thousand bit (position) transfer.

GA also uses 'Point Mutation' by altering a single feature to
some other value at random and ‘Inversions' wherein a randomly
selecting portions of feature vector is reversed . Binary string |
called ' chromosome' , is commonly used for feature vector , though

string in any other format is permissible. (FIG 4.4)

NOI LY IN3S3dd3y 31 LYWAY¥OV 10 - NOILYLIAA

IR O R -

NOISYIANI

_ﬁr,m% > pa|9 o]

NOILVLNW INIOd

_ S = wﬁ\MJ < NWMHM 8 +# 9lg ¥ < <1

SIMULATION OF A GA:
Consider the problem of maximizing the function
f(x)=x -64x + 100,
where x varies from 0 to 63.

This function has a global maximum value of 100 at x=0,
as can easily computed. To wuse a genetic algorithm , decision
variables of the problem have to be <coded in strings of finite
length . Fbr this problem, we can encode the variables as a binary
string of length 6. We create an initial population with 4 samples
by randomly selecting them from thei interval O to 63 and encode
each sample. A binary string of length 6 can represent any value
from O to 63 ; hence string length is chosen as 6 for the example

Four encoded samples in

the initial population are :

5=000101

60=111100
33=100001
8=001000

These individuals are sorted according to their fitness values . (

They are arranged in the descending order of their fitness values).

In this case, the fitness value is the same as the cost function

value . These sorted individuals are given as:

NUMBER X STRING FITNESS VALUE
1 60 111100 -140
2 5 000101 495
3 8 001000 -348
4 33 100001 9

in the 1st generation ,the 1st and 2nd strings are crossed

over at site 3, (cross over site is randomly selected) to get two

new strings :

CROSS OVER SITE NEW STRING
111 /100 111101
000/ 101 000100
Similarly, the third and fourth strings
cross over site 2 , to get :
CROSS OVER SITE NEW STRING
00 /1000 000001
10/ 0001 101000
Sorting these new individuals we get
NUMBER X STRING
1 1 000001
2 61 111101
3 4 000100
4 40 101000

FITNESS VALUE
-83

-140

are crossed over at

FITNESS VALUE
37

-860

FITNESS VALUE
37
-83
-140

-860

We see that in onegeneration fitness is improved from -
140 to 37 (f(1) > f(60)).Before proceeding to the next step,
the weakest member of the population is replaced by the
fittest member of previous population, i.e., string 101000
that has fitness -860 is replaced by the string 111100,

whose fitness is -140 .

iIn the 2nd generation, the 1st and the 2nd strings

are crossedover at site 1, we get:

CROSS OVER SITE NEW STRINGS FITNESS VALUE
0 /00001 011101 -915
1711101 100001 -923

Similarly , the 3rd and 4th strings are crossed ovér at
crossover site 3 to get:
CROSS OVER SITE NEW STRING FITNESS VALUE
000/ 100 000100 -140

111 /100 111100 -140

Replacing the weakest member by the fittest member

of
the previous population and sorting them according to the fitness
values , we get :

NUMBER X STRING FITNESS VALUE

1 1 000001 37

2 4 000100 -140

3 60 111100 -140

4 29 011101 -915

In the 3rd generation, the above process of crossover is

repeated (not shown) . The new set of strings in the

population , after replacement of the weakest by the fittest

member of the previous population is given by

NUMBER X STRING FITNESS VALUE
1 0 000000 100,
2 1 000001 37
3 61 111101 -83

4 5 000101 -195

For simplicity , the probability of the mutation is chosen
as O .We see that as genetic operations continue from one
generation to the next, improved solutions evolve . At x=0, f(x)
= 100, which is the desired result . Here , the problem which
could have been solved using conventional optimization algorithms

s used to illustrate GA operations for the sake of simplicity

Nature has been using GAs for millions of years and
along the way it has produced complex , intelligent living
organisms capable of reproduction, self - guidance and repair
Although GAs are computationally simple , they have demonstrated
their power and capability in optimizing multi- modal , multi - dimensional
and multi - objective problems . Hence they should find widespread
applications in business, science and engineering .The price paid
for global optimization and robustness is the amount of
computation required , which is not a problem in the age of
fast/ parallel computers . GAs use simple computational operations

and yet are powerful tools for optimization . Several versions /

improvements in GAs are now emerging .

For its power and capability in optimizing objective problems
GAs is the best method for optimizing the oxygen level given to

the patient.

CHAPTER 5

DESIGN PROCEDURE

This chapter deals with the programming steps
involved in the design of the software . Object Oriented
Programming concept of Turbo C++ has been wused to optimise
the oxygen in ventilators. A random search tool " Genetic

Algorithm " has been used for optimisation

The lung parameters which mainly contribute to the
requirement of oxygen are
1. Total lung Capacity (TLC)

2. Tidal Volume (TV)

3. Vital Capacity (VC)
4. Forced Expiratory Volume (FEV)
5. Respiratory Rate (RR)

The formulae for these parameters are

1. TLC
For Males:

TLC = 0.78 (height in cms) -- 7.3

For Females:

TLC = 0.079 (height in cms) --(0.008 * age)--7.47

2. VC
For Males:
VC= 2763-- (0.112* age) height
For Females:

VC = 21.78 -- (0.101* age) height

3. FEV
For Males:
FEV= (0092 * height) - (0.032 * age) - 1.26
For Females:

FEV = (0.089 * height) - (0025 * age)-- 1.93

4 RR - 12/ min

5TV - (8-10) % of TLC

The algorithm of the program developed is as follows
1. The physical parameters of the patient i e. sex ,age ,. height

, weight are obtained .

2. The lung parameters are calculated using the
pre-existing standard formulae .
3. The population of individuals is initialised

4. The weightages of the five parameters are calculated

(i) The first eight bits of an individual of
a population gives the weight of TLC.

(i) The second eight bits of an individual
of a population gives the weight of TV .

(iiiy The third eight bits of an individual of
a population gives the weight of VC.

(iv) The fourth eight bits of an individual of
a population gives the weight of FEV.

(v) The last eight bits of an individual of

a population gives the weight of RR .

5. The fitness function is used to calculate the

oxygen value pertaining to each individual using the

formula
Oxygen= TLC * TLC weight + TV * TV weight

+ FEV * FEV weight + RR *
RR weight + VC* VC weight

6. Convergence checking is performed over the
population i.e. the difference between the maximum
and minimum fitness values should be negligible. If the

above condition is true stop generating

7. The individuals of the populations are selected two

at a time for reproduction at random.

8. Mutation is performed on the population of

individuals . The probability of mutation is 0.000 1

9. The crossover site is selected at random . The
crossover operation is performed on the old population
and the new population individuals are obtained. The

probability of crossover is 0.3. Steps 4,5 & 6 are

then carried out.

10. The optimal value of oxygen is displayed on the

screen .

For carrying out the above steps two

header files are defined with required classes and functions .

The two header files wused are

1. CLASS . H

2. RANDOM . H

CLASS . H

This header file has definitions of the

classes used . The classes used are

1. PATIENT CLASS
2. CHROMOSOME CLASS
3. INDIVIDUAL CLASS

4. POPULATION CLASS

PATIENT CLASS

The member variables of this class are

1. NAME
2. SEX

3.AGE

4 . HEIGHT

5. WEIGHT

The member functions of patient class include the

below functions along with constructors and destructors.

1. get_details ()

Gets details of the patient. It uses graphics header file .

2. tlc()

Returns total lung capacity of the patient using the

formula .
3.tv()
Returns tidal volume .
4.vc ()
Returns vital capacity .
5 fev ()

Returns forced expiratory volume .

6. operator << (ostream &, patient &)

'<<' operator overloading to print out the details of patient

CHROMOSOME CLASS

An array of ALLELE'S make up a chromosome .
Character is type defined as ALLELE An ALLELE takes up a

value of "0 ' or '1' as the «coding used for the programming
is binary coding. The coefficients of the fitness equation are

coded into a chromosome. The functions are

1. tle_wt ()

Returns the value of the coefficient of tic.

2.ve_wt()

Returns the coefficient of vc.

3.tvwt()

Returns the coefficient of tv.

4. fev_wt ()

Returns the coefficient of fev .

5 rm_wt()

Returns the coefficient of respiratory rate .
6 . ret_chrom ()

Returns the string of chromosome .

In this «class '<<' operator and ' ="' operator are
overloaded and a friend function (friend of patient class and
chromosome class) oxy() is used whichuses the parameter values
obtained in patient class , the coefficient vaiues obtained in

chromosome class and returns the value of oxygen.

INDIVIDUAL CLASS

The members of this class include variables

e N

. Chromosome chrom
2 . Fitness

3. Parent 1

4 . Parent 2

5. Crossover site

The functions used are

—

. get_oxy (patient &, chromosome &)

Returns the value of oxygen for an individual . This uses the

friend function oxy ().

2.get_p1()

Returns the index of the parent 1.
3.get_p2()

Returns the index of the parent 2.
4. get_xsite ()

Returns the value of crossover site .

'<<' operator is overloaded to

individual attributes .

POPULATION CLASS

display the values

of

The population class consists of an array of individuals of size

MAX_POP .
1. scene_fit
2 . max_fit
3 . min_fit
4. max_fit_index
5. min_fit_index
6. converge

7 . static patient p

The functions include

1. init_pop ()
Initialises all the attributes of population . Individuals are

initialised using flip () function.

2 . max_min_sum_fit ()

Itis the values of max_fit | min_fit and sum_fit.

3. get_sum_fit ()

Returns the value of sum_fit

4 . get_max_fit ()

Returns the value of max_fit .

5. get_min_fit ()

Returns the value of min_fit .

6 . get_max_fit_index ()

Returns the index of individual with max_fitness .

The functions include

1. init_pop ()
Initialises all the attributes of population . Individuals are

initialised using flip () function.

2 . max_min_sum_fit ()

Itis the values of max_fit | min_fit and sum_fit.

3. get_sum_fit ()

Returns the value of sum_fit

4 . get_max_fit ()

Returns the value of max_fit .

5. get_min_fit ()

Returns the value of min_fit .

6 . get_max_fit_index ()

Returns the index of individual with max_fitness .

Returns an integer value between the ulimit and limit.

4 flip (double probability)
Returns '0' or '1' representing the 'tail' or 'head '

of a cointoss .

5. advance_random ()

Alters the double values in random array .

HARDWARE & SOFTWARE CONFIGURATION

The hardware configuration required to run this software is
processor : 80486

CPU clock : 66 Mhz

Base memory : 640Kb

Extended memory : 4Mb

Monitor Type : monochrome

The software requirement to run this software is
OS : MS DOS Version 6 .22

Language : TURBO C++Ver2 . 0

OPTIMISATION OF OXYGEN

PATIENT DETAILS

NAME:
AGE : SEX! M F
HWEIGHT: HEIGHT:

oK: [yu/nl

MESS:

CONCLUSION

A ventilator is a support system for =2 respiratory
stem. Anaesthesiologists use it to fix the amount of
ygen to be given to the patient. The previous me thods
ing a trial and error was ineffective and error prone.
re the genetic algorithm which is randomised optimisation
achnique is incorporated. It comprehensively excels the
xisting system by providing accurate guidelines to
naesthesiologists to help them fix the optimum amount of
xygen. The doctors can easily detect the parameters which
s varying and also the amount of variation. Having this

ecord anaesthesiologists can give treatment accordingly.

In future this project can be implemented by having
wre number of parameters which involves in the respiratory

system.,

REFERENCES

Genetic Algorithm in search, optimisation & machine learning

-David E . Goldberg .

Genetic search : Analysis using fitness moments

-M . Srinivas & L. M. Patnaik
[EEE transaction on knowledge & Data Engineering Volume
No .1 February 1996.

Resonance - Aug. 1996.

Biomedical Instrumentation & Measurements
-Cromurell

C++ Primer Plus
-Stephen Prata

Respiratory System diagonosis through Windows
- A Sukesh Kumar & Dr. A . Kandasamy.
Technology - Journal of PSG College of Technology Mar . 1996.

B .R.Garbe and T. T. Chapman ,M D,

“ The simple measurements of Lung Ventilation”
Vitalograph Ltd., 10th Edition, Copyright, 1986.

Leslie Cromwell, Fred J. Weibell & Erich A Pfeiffer,

“Biomedical Instrumentation & Measurements”,2™edition,
Prentice Hall Of India.

Barry N. Feinberg, “ Applied Clinical Engineering”.

CHAPTER 9

SOURCE CODE

/ffront screen design/
#include <graphics.h>
#include<fstream.h>
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include<dos.h>

int main(void)

struct date d;

/* request auto detection */

int gdriver = DETECT, gmode, errorcode;

int left, top, right, bottom,left1,top1,right1,bottom1;
char colstr{80];

/* initialize graphics and local variables */
initgraph(&gdriver, &gmode, "c:\\tcplus\\bin");

/* read result of initialization */
errorcode = graphresult();
if (errorcode != grOk) /* an error occurred */

printf("Graphics error; %s\n", grapherrormsg(errorcode));
printf("Press any key to halt.");

getch();

exit(1); /* terminate with an error code */

left = getmaxx() / 2+300;
top = getmaxy() / 2 +200;
right = getmaxx() / 2 -300;
bottom = getmaxy() / 2 -200;

left1=640/2 +275;

top1=150/2 +50;

right1=640/2 -275,;

bottom1=150/2 -30;

/* draw a rectangle */
rectangle(left,top,right,bottom);
rectangle(left1,top1,right1,bottom1);

/* select a text style */
settextstyle(GOTHIC_FONT, HORIZ_DIR, 4);

/* move to the text starting position */
moveto(55, 50);

/* output some normal text */
outtext("OPTIMISATION *);
outtext(" OF ");

outtext(" OXYGEN ");

settextstyle(DEFAULT_FONT,HORIZ_DIR,2);
moveto(210,95);

outtext("PATIENT");

outtext(" DETAILS™);

left1=550/2 +280;

top1=200/2 +80;

right1=550/2 -225;

bottom1=375/2 -30;

/* draw a rectangle */

rectangle(left1,top1,right1,bottom1);
settextstyle(DEFAULT_FONT,HORIZ_DIR,2):
outtextxy(63,160,"PATIENT NO:");

left1=550/2 +280;

top1=300/2 +80;

right1=550/2 -225;

bottom1=475/2 -30;

/* draw a rectangle */

rectangle(left1,top1,right1,bottom1):
settextstyle(DEFAULT_FONT,HORIZ_DIR,2);
outtextxy(63,210,"NAME:"),

left1=550/2 +280;

top1=400/2 +80;

right1=550/2 -225;

bottom1=575/2 -30;

/* draw a rectangle */

rectangle(left1,top1,right1,bottom1):
settextstyle(DEFAULT_FONT,HORIZ_DIR,2);
outtextxy(63,260,"AGE:"):
outtextxy(300,260,"SEX: M/F");

left1=550/2 +280;

top1=500/2 +80;

right1=550/2 -225;

bottom1=675/2 -30;

/* draw a rectangle */

rectangle(left1,top1,right1,bottom1);
settextstyle(DEFAULT_FONT,HORIZ_DIR,2);
outtextxy(63,310,"WEIGHT:");
outtextxy(300,310,"HEIGHT:");

teft1=550/2 +150;
top1=600/2 +80;
right1=550/2 -150;
bottom1=775/2 -30;

#include<iostream.h>
#include<bios.h>
#include<graphics.h>
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<string.h>

main()

{
char *str,*str2;
char *str1="\0";
inti;

int gdriver = DETECT, gmode, errorcode;
* initialize graphics and local variabies */
initgraph(&gdriver, &gmode, "c:\\tcplus\\bin");

/* read result of initialization */
errorcode = graphresuit();
if (errorcode != grOk) /* an error accurred */

printf("Graphics error: %s\n", grapherrormsg(errorcode));
printf("Press any key to halt:"):
getch();
exit(1); /* terminate with an error code */
}
* select a text style */
IIsettextstyle(GOTHIC_FONT, HORIZ_DIR, 4);
moveto(10,200);

for(i=0 ; str{i]!=13 ; i++)
str{i]=bioskey(0);

il printf("%d", strii]);
strcat(str,str1);
printf("%s",*str);
str2=str1;

1/ cout<< *str2;
outtext(str);

/I char destination[25];

/lchar *blank =" ", *c = "C++", *turbo = "Turbo";
getch();
closegraph();
}

#include<iostream.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>

#define MAX_GEN 50
#define MAX_POP 240
#define MAX_STRING 40
#define TOO_SMALL 0.005

double p_cross=0.3; // * * probability of cross over
double p_mut=0.0001; /I * * probability of mutation
int n_cross,n_mut; /1** no. of cross over &mutation

#include "class.h"
void main(){

int i,j,k,mate1,mate2,j_cross;
int select(double sum_fit,population &p);
ALLELE mutation(ALLELE a);

double get_fit(patient &pt,chromosome &chrom);
population old_pop,new_pop;

/1 * * initialise the population * *
new_pop.init_pop();
/II'** Perform Genetic Operations on the Individuals of the population ***

for(i=0; i<MAX_GEN,new_pop.get_converge() > TOO_SMALL ;i++){
old_pop=new_pop; /l '=" operator overload

for(j=0;j<MAX_POP;j+=2){
I1* * reproduction using roulette wheel

mate1 =select(old__pop.get_sum_fit(),oId_pop);
mate2=se|ect(old_pop.get_sum_fit(),old_pop);

I** cross over && mutation simultaneously

if(flip(p_cross)==1){
jcross=i_rand(MAX_STRING-2,0);
Nn_Cross++;

}

else
j_cross=MAX_STRING-1;
for(k=0;k<=j_cross;k++){
new_pop.indi[j].chrom.aIIel[k]=mutation(old_pop[mate1],chrom[k]);
new_pop.indi[j+1].chrom.allel[k]=mutation(old_pop[mateZ].chrom[k]);

if(j_cross!=MAX_STRING-1){
for(k=j_cross+1;k< MAX_STRING k++){

new_pop.indi[j].chrom.allel[k]=mutation(old_pop[mate2].chrom[k]);
new_pop.indi[j+1].chrom.allei{kj=mutation(old_pop{mate1].chrom[k]):

/I * * plenish the population members

new_pop.max_min_sum_fit();
new_pop.indi[j].pt=mate1;
new_pop.indi[j].p2=mateZ2;
new_pop.indi[j+1].p1=mate1;
new_pop.indifj+1].p2=mate2;
new_pop.indi[jl.xsite=j_cross:
new_pop.indi[j+1].xsite=j_cross;
Ylend of j loop
} // end of main()

/I * * Roulette wheel selection

int select(double sum_fit,population &p){
double rand,sum=0.0;
int j;
rand=f_rand()*sum_fit;
for(j=0;j<MAX_POP,sum<rand;j++)

sum+=p[j].get_fit(;

return (j-1);

}

/I'* * Mutation
ALLELE mutation(ALLELE a){

short mutate;
mutate=flip(p_mut);

if(mutate){
n_mut++ ;
if(a=='1")
return '0";
else
return '1";
}
else
return a;

}

double get_fit(patient &pt,chromosome &chrom) {
double oxy(patient &, chromosome &):
return oxy(pt,chrom);

cout<<"WRONG ENTRY,ENTER AGAIN";
flag=0;
}

}while(flag==0);
getch();
exit(0);

#include"random.h"
#include<iostream.h>
#include<stdlib.h>
#include<string.h>

#define MAX_POP 240
#define MAX_STRING 40

class chromosome; //forward declaration

//PATIENT CLASS

class patient{

public:

/]

int pno;
char *pna;
char sex;
double ht;
double wt;
int rr;

int age;

patient() {pna=new char[30];}
~patient() { delete pna; }

void getdetails();

char* name() {return pna;}

int no() {return pno;}

char p_sex() {return sex;}

double p_htQ) {retumn ht;}

double p_wt() {return wt;}

int p_rrQ {return rr;}

int p_age() {return age;}

double tic(;

double vc¢();

doubile tv();

double fev();

friend chromosome;

friend ostream & operator<<(ostream &,patient &);
friend double oxy(patient & chromosome &);

|3

void patient::getdetails({

cout<<"enter no,name,sex,ht,wt,age,hb,rr'<<endl;

cin>>pno;

cin>>wt;
cout<<"eerammen \n";

cin>>age;

cout<<"emamnnnn \n";
/" cin>>hb;
1 cin>>rr;
I fstream finout("patient.dat" ios::app);
I finout.write((char*) &p1,sizeof p1),
7 finout.close();
}
double patient ::tic(){
if(sex=="f"
return (0.079*p_ht()-0.008*p__age()-7.49);
else
return (0.078*p_ht()-7.3);
}

double patient::tv(){
return ((0.08*tlc()+0.1*tIc())/2);

double patient::vc(){
if(sex=="")
return (4.664*p__ht()-0‘024*p_age()-3.284)'

)

else

}

double patient::fev(){
if(sex=='f")
return (0.089*p_ht()-0.025*p_age()-1 .93);

return(6.1 O3*p__ht()-0.028*p_age()-4,654);

eise
return(0.092*p__ht()-0.032'p_age()-1 .26);

I alil=pow(fh(i],0.725)*pow(fw(i] 0.425)*0.007184: /s

ostream & operator<<(ostream &0s,patient &p){
0s<<"name "<<p.name()<<endi:
0s<<"no "<<p.no(<<endl:
os<<"ht "<<p.p_htQ<<end!:
0s<<"wt <<p.p_wt(<<end!:

os<<"sex :"<<p.p_sex()<<end!:
os<<'age :"<<p.p_age()<<end!:
return os;

/ICHROMOSOME CLASS

typedef char ALLELE:;

class chromosomey{
public:

ALLELE *allei;

chromosome();
~chromosome();

chromosome ret_chrom();
void disp_chrom{);
/1 void get_chrom();
int tic_wt();
int tv_wt();
int fev_wt();
int ve_wt();
int rr_wt();

ALLELE operator{](int i) {return allel{i];}
void operator=(chromosome &);

1 friend ostream & operator<<(ostream &,chromosome &);
I friend patient;

friend double oxy(patient & chromosome &);

8

chromosome::.chromosome(){
allel=new ALLELE[MAX_STRING];
inti;
for(i=0;i<MAX_STRING;i++)
allel[i]='0';
}

chromosome::~chromosome(){
delete allel;

}

int chromosome::tic_wt(){

int i,acc=0;

int pow_2=1;

for(i=7;i>=0;i--){

if(allel[i]=="1"){

acc+=pow_2;
pow_2*=2;
}

pow_2*=2;

else

}
return acc;

int chromosome::tv_wi(){

int i,acc=0;
int pow_2=1;
for(i=15;i>=8;i--){
if(allelfi]=="1")
acc+=pow_2;
pow_2*=2:
}
else
pow_2*=2;

return acc;

}
int chromosome::vc_wt(){
int i,acc=0;
int pow_2=1;
for(i=23;i>=16;i--){
if(allel[i]!='0"){
acc+=pow_2,
pow_2*=2;
}
else
pow_2*=2;
}
return acc;
}
int chromosome::fev_wi(){
int i,acc=0,
int pow_2=1,
for(i=31;i>=24,i--){
if(allel[i]'='0"){
acc+=pow_2;
pow_2*=2;
}
else
pow_2"=2;
}
return acc;
}
int chromosome::rr_wt(}{
int i,acc=0;
int pow_2=1;
for(i=39;i>=32;i--){
if(allel{i}=="1"{
acc+=pow_2;
pow_2*=2;
}
else
pow_2*=2;
}
return acc;
}

ostream &operator<<(ostream &os,chromosome &c){
/ivoid chromosome::disp_chrom(){

1/ cout<<"chrosome is\n";
for(int i=0;i<40;i++)
os<<cli}; /loverloaded)’
return 0s;
}

void chromosome::.operator=(chromosome &cC){
int i

for(i=0;i<MAX_STRING;i++)
allelfi}=clil; /"{]"operator overioad

}

chromosome chromosome::ret_chrom(){
int i;
chromosome c;
for(i=0;i<MAX_STRING;i++)

c.alleli]=allel[i];

return c;

}

double oxy(patient &p,chromosome &c){
double fit;

fit=p.ticQ*c.tic_wtQ+p.tv(*c.tv_wtQ+p.vcQ*c.vc_wt(+ p.fev(*c.fev_wtQ+p.p_rrQ*c.rm_wt(

return fit;

}

// double get_oxy(patient & chromosome &);
/INDIVIDUAL CLASS

class individual{
public:
chromosome chrom;
1 double oxy; //from this fitness is to be calculated
doubile fit;
int p1,p2;
int xsite;

individual() {
~individual() {
void get_indi();
void disp_indi();

}
}

chromosome get_chrom() {return chrom;}
I doubie ret_oxy() {return oxy;}

double ret_fitQ) {return fit;}

int get_p10 {retum p1;}

int get_p2() {return p2;}

int get_xsite({return xsite;}

friend ostream &operator<<(ostream &,individual &);

double get_fit(patient &pt,chromosome &chrom) {
double oxy(patient &, chromosome &);
return oxy(pt,chrom); »

}
|3
void individual::get_indi({ /Iplenishes values of individual
int ace=0; {M'pt' & 'chrom’ the rest plenished
int pow_2=1; /fin population class
int i;
1 pt.getdetails();
" chrom.get_chrom();

chromosome c1;
c1=chrom.ret_chrom(); /loperator'=' overload

for(i=39;i>=0;i--)}{
if(c1[i}=="1" /loperator'[}' overload
acc+=pow_2;
pow_2%=2;
}
}

ostream &operator<<(ostream &os,individua! &i){
chromosome c;,
c=i.get_chrom() ;
os<<"chromosome is"<<c;

1 c.disp_chrom();

I os<<"oxy for that weightage: "<<i.ret_oxy()<<endl
os<<"fitness is << ret_fitQ)<<end!,
os<<"Parent 1 is "<<i.get_p1(Q<<endl;
os<<"Parent 2 is . "<<i.get_p20Q<<end!,
os<<"cross over site is : "<<i.get_xsite()<<endl;
return o0s,

}

/IPOPULATION CLASS

class population{
individual *indi;

1" double avg_oxy;
double converge;
double sum_fit;
double max_fit;
int max_fit_index;
double min_fit;
int min_fit_index;
static patient p;

public:
void init_pop();
population() {indi=new individuai[MAX_POP];}
~population() {delete indi;}

void max_min_sum_fitQ;
void disp_popQ;
void disp_fit();

double get_converge() {return converge;}
individual *get_indi() {return indi;}

double get_sum_fit) {return sum_fit;}
double get_max_fit) {retum max_fit;}

int get_max_fit_index() {return max_fit_index;}
double get_min_fit({return min_fit;}

int get_min_fit_index() {return min_fit_index;}

individual operator{](int i) {return indi[i];}
void operator=(population &p);
double get_fit(patient &p,chromosome &c);

void population::init_pop({

1

/"

1
"
1
i

int i,jk;
double get_oxy(patient &, chromosome &),
double max_fit,min_fit;
chars;
chromosome c;
patient p;
p.getdetails();
double d;
init_rand();
cout<<"initialise the individual pointer\n";
for(j=0;j<MAX_POP;j++){
cout<<"INDI "<<j<<endl,
for(k=0;k<MAX_STRING;k++) {
indi[j).chrom.allel[k]=flip(0.5)+'0";
cout<<"flip...allel["<<k<<"]="<<indifj].chrom[kj<<"\n";
cin>>s;

cout<<"chrom "<<;j;

cout<<indi[j].get_chrom()<<"\n"; //operator '<<' overload
c=indi[j].chrom.ret_chrom();

c.disp_chrom();

cout<<"oxy."<<j;

cin>>s;

indi[j].fit=get_fit(p,c); //write to class

cout<<"ret_fit after get_fit"<<indi[j].ret_fitQ)<<end!;

cin>>s;

indi[j].p1=0;

indifj}.p2=0; /finitialise members of indi
indi[j].xsite=0; llexcept for fitness
cout<<"indi["<<j<<"] initialised\n";

cin>>s;

}

[P fitness of individuals =

}

this->max_min_sum_fit();

cout<<"max fit"<<this->get_max_fit)<<endl;

cout<<"min fit"<<this->get_min_fit)<<end!;

cout<<"sum fit"<<this->get_sum_fit)<<end!, /ithis pointer
cin>>s;

void population::max_min_sum_fit({

/"

int i;
double d;
chars;
cout<<"chromosome 0 "<<indi[0].get_chrom()<<endi;
c.disp_chrom{); /{operator '<<' overload
cin>>s;
max_fit=min_fit=indi[0].ret_fit(); //getting from class
sum_fit=0;
for(i=1;i<MAX_POP;i++){
cout<<"chromosome "<<i<<" "<<indi[i].get_chrom()<<endl;

#inciude<iostream.h>
#include<string.h>
#include<math.h>

double old_rand[55], new_rand;
int init;

void init_rand(){
double f;
f=(double) 1/55;
cout<<"f= "<<f<<endl;
inti,j;
init=0;
old_rand[0]=f;
cout<<"old_rand[0]="<<old_rand{0]<<endI;
cin>>j;
for(i=1;i<55;i++)
old_rand[i}=old_rand[i-1]+f;

7 advance_rand();

}

void advance_rand(){
inti;

for(i=0;i<24;i++){
new_rand=old_rand]i]-old_rand{31+i];
if(new_rand<0.0)
new_rand++;
old_rand[i]=new_rand;

}
for(i=24;i<55;i++){
new_rand=old_rand{i}-old_rand[i-24}];
if(new_rand<0.0)
new_rand++,
old_rand[ij=new_rand;

}

}

doubie f_rand(){
init++;
if(init>54)

init=1,
advance_rand();
return old_rand([init};

}
int i_rand(int u_limit,int |_limit){
int i;
if(_limit>=u_limit)
i=l_limit;
else

i=int(f_randQ*(u_limit-I_limit+1)) + |_limit;
if(i>u_limit)
i=u_limit;

