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Synopsis

Presently, electroencephalography(EEG) is totally a hardware based
technique. So, when a machine with better accuracy and sophistication arrives in the
market, it is unaffordable for the rural hospitals. This work aims at converting the EEG
technique into a totally software based one. Neural networks are a valuable tool in
the software analysis of EEG wave patterns. Once this is achieved, up-to-date technology
can be transferred from research institutes to even the remotest hospitals. It is just a matter

of software version update.

Neural style processing represents a radical departure from traditional
based handling of digital information and provides acceptable solutions to processing
time. Identification of K-complex waveform from EEG is one such example. Neural
network is used as a pattern matcher to compare the observed value with ideal values
and detect the waveforms. This requires a definition of a set of features that adequately
describe the waveform .The coefficients of a 7" order linear prediction filter are used
as the feature set. The Artificial Neural Network (ANN) provides solution to problems
that are not amenable, to analytical methods or requiring huge amounts of processing
time. Tested simulation results show that the artificial neural network was able to

successfully recognize the K-complex pattern.

The charm of the neural network lies in its relative success over many
real world problems which were unapproachable all these years by conventional
techniques. The study of human brain is an ideal example. The beauty is that this
project work uses the computational technique inspired from the brain itself to

analyze the same magic stuff again !

In the urban areas, as the pace of industrialization and congestion increases
it is becoming increasingly difficult to prepare a site without electromagnetic disturbances
to install EEG machine. By designing a software based EEG machine, wide variety of

software filters can be designed to tackle this EM interference.
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1.1 ELECTROENCEPHALOGRAM

Electroencephalogram (EEG) represents the pattern of
minute changes in electrical potential of the scalp of a human. It
reflects the general functional state of brain, such as different
states of wakefulness and sleep of metabolic disturbances. Only in
very few cases it is possible to establish a diagnosis from EEG alone
and without having to use additional information on neurological
symptoms. About 15% of the population show EEG abnormalities but
do not suffer from any neurological disease. It is a noninvasive
diagnostic tool in a wealth of neurological disorders, e.g. , epilepsy,
early diagnosis and localization of brain tumors, coma assessment in

intensive care, and in the definition and assessment of sleep stages.

1.2 ANALYSIS
1.2.1 MANUAL ANALYSIS

A normal EEG recording session typically yields a paper
write-out of 18-36 meters of length of data. The analysis and
interpretation of such a large volume of data is not only very time
consuming but also mentally very taxing. However, the skilled
neurophysician does not seem to take much time for this job and does
it with relative ease. The reason for this becomes apparent when one
considers the fact that invariably the EEG record will exhibit a certain
stationarity known as “background activity”. From time to time the
stationary activity is interrupted by the occurrence of different but

special waveforms called “paroxysms”, if abnormal, “spindles” or if



they last longer than a couple of seconds “runs”, which in themselves

again have a stationary appearance.

Quite different kinds of non-stationarities that occur are
the transient phenomena-simple conspicuous waves called “spikes”
indicative of epileptic disorders. The neurophysician thus will spend
as much time with the usually rare stretches of abnormal activity as with
the background activity, which although predominant, carries little
information. The diagnostic information in reality is contained in the

above mentioned specific waveforms of the EEG.

1.2.2 AUTOMATED ANALYSIS

Recognition of these waveforms has been the subject of
much research. A 12 order low pass chebyshev filter has been
designed for EEG frequency bands separation. Its implementation using
the national semiconductor MF10 has been reported. Other techniques
used, range from statistical methods to syntactic and knowledge based
approaches. All these methods require the definition of the set of
features that adequately describe the waveform to be detected and a
pattern matcher to compare the observed values with the ideal ones.
The general scheme of pattern recognition has applied to EEG is as

shown below:

EEG - Features 2 Classification



Note now the problem of the detection of  specific
waveform in the EEG is reduced to that of a pattern recognition

problem.
1.3 ROLE OF ANN IN AUTOMATED ANALYSIS

Recent developments in the field of neural networks have
raised the possibility of using them for classification of patterns. A
number of artificial neural network (ANN) algorithms and models have
been published in the literature, both for continuous and binary data.
ANNs for K-complex (A qlinically important wave pattern in epileptic
diagnostics ) detection in EEG signal have been reported in using
bandpass filtered EEG dat.a. However, this study did not seem to be
adequate for the detection of K-complexes. One of the reasons adduced
is that the band pass filter did not perform location invariant detection.
Also that the classification was attempted on a single channel basis
when, in fact, the human detection is largely based on contextual

information i.e. inter and intra channel comparisons .

In this work an ANN that is based on the principle which
extracts features from the EEG by adaptive segmentation is constructed.
The entire length of EEG data is segmented adaptively using the
technique of Linear Prediction. A segment that corresponds to
stationary activity is specified by its linear prediction coefficients and
the non-stationary activity of typically 100 msec or less is specified by

the graph-elements.



1.3.1 NEURAL NETWORK ALGORITHMS
BACKPROPAGATION
For many years there was no theoretically sound algorithm
for training multilayer artificial neural networks.

The invention of the backpropagation algorithm has played a
large part in the resurgence of interest in artificial neural networks.
Backpropagation is a systematic method for training multilayer
artificial neural networks. It has a mathematical foundation that is
strong if not highly practical. Despite its limitations, backpropagation
has dramatically expanded the range of problems to which artificial
neural network has abplied ,and it has generated many successful

demonstrations of its power.

1.4 EEG SIGNAL PROCESSING

The EEG patterns are highly chaotic. The analysis of such
complex data by conventional " tools requires adequate description of
the features of the waveforms. Thus EEG signal processing constitutes
important part of the present work. The data processing involved the
study of various methods including Spectrum Analysis and other
conventional methods. Methods of feature extraction were studied and

finally it was decided to use the coefficients of a 7" order “LP” filter.
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1.4.1 FUNCTIONAL ANALYSIS

The electrodes are placed in the standard electrode positions on
the human head with the help of sophisticated EEG recorder and brain
waves are recorded. These recorded EEG waveforms are sampled at a
frequency of 50 Hz with the help of commercial scanner. These sampled
data points are then fed to a Linear Prediction Filter. The 7 “LP”
coefficients reduces the complexity of the neural network. The 7 data
points are then fed as input to the ANN in which the backpropagation
algorithm is implemented. This networks detects whether the input is K-

complex ,delta or other waveform.

1.5 SCOPE OF PRESENT WORK

Keeping in view that the human detection of K-
complex is largely based on contextual information, it is proposed
to use multichannel data of EEG for a better and more robust
detection of  K-complexes. The detection algorithm is the

Backpropagation algorithm.
1.6 STRATEGY OF PRESENT WORK

The work is carried out in three phases. Phase-I is devoted
to carry out in-depth study of K-complexes. Phase-II is concerned with

development of suitable data pre-processing strategy. Phase-III involves



designing a suitable ANN for single channel EEG detection of the

complexes and assessing the performance of the network.

OVERVIEW

The successive chapters will deal with the following
topics. The second chapter deals with the EEG signals and the clinical
importance of EEG waves. The third chapter gives an in-depth study of
K-complex and associated wave forms. The fourth chapter deals with
the data pre- processing strategies including Data collection and the

feature extraction by LPC.

ANN is introduced in the fifth chapter. Principles of
operations and designing principles are discussed. Sixth chapter deals
with backpropagation algorithm and the implementation of Neural Net
Simulator software. The Seventh chapter discusses the  results,

conclusion and future developments are also considered.



2.1 INTRODUCTION

It may have been more good fortune than prophetic insight
which led Hughlings Jackson in 1873 to define epileptic seizures as
occasional sudden, excessive, rapid and local discharges of grey
matter, for half a century was to elapse before it became possible to

record such discharges by means of the electroencephalogram, or EEG.

The fact that the brain exhibits spontaneous activity was
reported by Caton (1875,1887), who used Thomson’s reflecting
galvanometer connected to the electrodes applied to a variety of
different animals. It was about a half-century later when the electrical
activity of the human brain was recorded by Berger(1929), who
employed a string galvanometer connected to scalp electrodes. Bergers
first and succeeding papers were largely unnoticed until Adrian and
Mathewss (1934) in Great Britain and Jasper and Carmichael (1935) in
the United States reviewed them and confirmed Berger’s findings,
thereby introducing electroencephalography to the English-speaking

world.

2.2 EEG RECORDING

The electrical activity of the brain is recorded with

three types of electrodes - scalp, cortical, and depth.

10



2.2.1 SCALP RECORDING

With scalp electrodes the recording is called an
electroencephalogram(EEG). When electrodes are placed on the
exposed surface (cortex) of the brain, the recording is called an
electrocarticogram(ECOG). Electrodes also may be advanced into the
brain , in which case the term “depth recording” designates the
technique. It is interesting to note that there is surprisingly little
damage to the brain with depth recording. Whether obtained from the
scalp, cortex, or depths of brain. The potentials recorded represent the
activity of numerous neurons in which fluctuating membrane and action
potentials are occurring. These three different techniques are therefore

examples of extracellular recording.
2.2.2 CORTICAL & DEPTH RECORDING

Intracranial electrodes provide a clearer picture of the
electrophysiological events during a seizure than does the scalp EEG. In
humans, the occasions to insert intracranial electrodes arises only where
there is thought to be a possibility of neurosurgical treatment. An
electrode at the site where the seizure commences will typically show at
the onset of the attack a high frequency discharge, perhaps of 60/s or
faster, reflecting a highly synchronized activity within a very restricted
volume of surrounding brain. Sometimes seizure onset is characterized
by alternating spiky waveforms and slower components (spike &wave),
more commonly such activity appears only in a later phase of the
seizure .
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2.3 EFFECTS OF SLEEP

During sleep the EEG changes dramatically, showing first
the loss of alpha rhythm , and then with increasing depth of sleep,
progressively greater‘ amounts of slow activity. Sleep depth is
conventionally classified into four levels according to criteria proposed
by Dement & Klietmann in 1957. There is further stage of sleep
characterized by Rapid Eye Movements (REM) and associated with
dreaming. Interictal epliptiform discharges are often very sensitive to
changes in the state of awareness. With the onset of drowsiness and
stage-1 sleep, generalized spike wave activity may either disappear or
increase, but focal discharges will generally become more frequent or
may appear if absent in the alert state. In light(stagell) sleep the focal
epileptiform activity is generally most prominent, whereas generalized
discharges may attain a maximum in stage III. REM sleep is usually
associated with a reduction abolition of both generalized (Gastaut et al
1965, Ross et al 1966, Billiard 1982) and focal discharges (Batini et al
1963).

2.4 CLINICAL VALUE OF THE EEG

The EEG has its greatest value as an aid in the diagnosis
and differentiation of the many types of epilepsy, a condition in which

groups of neurons in the brain become hyperirritable and

12



depending on their location, produce both sensory, motor and
automatic manifestations. The epilepsies associated with cortical
lesions are often detected by the scalp EEG. The EEG in epileptics is
usually abnormal between the attacks. The EEG often provides
information on the localization of the area (areas) of abnormal neuronal
activity. In epilepsy in general, the characteristic finding is of spikes
(i.e. ,short duration waves), alone or in association with other waves.
For example, in petit-mal epilepsy, in which there is a transient
alteration of consciousness ( often not easily detected), the EEG shows

a characteristic spike and wave activity.

13



3.1 STUDY OF K-COMPLEXES

K-complexes were first described by Loomis et al (1938);
the reasons for calling them “complexes” remains obscure (there have
been reports that naming was made at the spur of the moment without

any significance to the letter K )

H. Davis et al (1939) gave an excellent description of the
single component of the K-complex. As to the topographic distribution,
the K-complex shows a maximum over the vertex, but there are also K-
complexes with the indubitable maximum over the frontal midline ( see

fig 2.1).

Brazier (1949) presumed two distinct generators : these
were area 6, corresponding to the vertex and area 9, corresponding to
the frontal midline. The distinction of these two types has important
epileptological implications. The sharp component was thoroughly

investigated by Roth et al (1956).
Modern descriptions and EEG glossaries have blurred the
dividing line between the K-complex originating from the vertex and the

frontal midline. Dutertre (1977) stresses the vertex maximum only.

The ontogenitic evaluation of the K-complexes has certain

epileptological implications. A distinction between spontaneous and

15



click evoked K-complexes was made by Halasz et al (1982), who

investigated the relation between these two.

3.2 K-COMPLEX WAVE MORPHOLOGY
DIVERSITY OF K-COMPLEX PATTERN

An in-depth study of K-complex from medical literature
revealed the following important features about K-complexes which
have a direct bearing on the design of optimal neural net topology for

their detection.
K-complexes make their appearance in stage II sleep

and constitute an impressive response to arousing stimuli. An ideal K-

complex consists of an initial sharp component followed by a slow

16



component that fuses with a superimposed fast component (fig 2.1).
The sharp component is biphasic and it shows greater complexity and
greater variation from complex to complex. The sharp component was
thoroughly investigated by Roth et al. who stated that the maximum
amplitude of this is about 200 microvolts. The slow component is
represented by a large slow wave that may exceed 1000 msec in
duration. Superimposed on the slow component are 12-14 Hz sleep
spindles that represent the fast component. Often, sleep spindles (delta
activity) are also found in the neighborhood of K-complexes. Apart
from the above description of the K-complex itself, the occurrence of

delta activity can also be used to detect it.

The age factor has a strong influence on the wave
morphology. The sharp component of the K-complex is particularly
prominent after the age of 4 and starts declining during second decade.
The K-complex is largest in older children and starts to decline in early
adolescence. With advancing age, the K-complex shows a decline of
voltage and often degenerates into an insignificant slow potential with
tiny superimposed .spindle like waves. Probably the brain needs

retirement !

Depending on the site of origin in brain, the K-complexes
are divided into 3 types, 1) frontal, 2)central and 3)vertex (fig-2.2).
These areas in the scalp are indicated in fig-2.3 showing the standard
EEG electrode positions approved by International Committee for EEG.
An EEG QUICK REFERENCE CHART (APPENDIX-III ) may be

useful in understanding the terminology of the EEG technique.

17



4.1 DATA COLLECTION

To account for the above mentioned variations of K-
complex depending on the age, the patients were selected from all age
groups in the years viz. 1, 5, 8, 10, 17 , 38 and 47. Apart from these,
two patients were included without age information. From their EEG,
thirty three K-complexes, thirty three non K-complexes and 16 delta
waveforms were taken for the experiment. The data was divided into

two sets of which one is training data and the other is testing data.

All the EEG data used in this experiment were obtained

from the frontal channels.

4.1.1 DATA REPRESENTATION

A brief background

Basically, neural networks need vectors of numbers as
inputs. So, our first task is to represent the K-complex as a vector of
numerical values. After this digitization process, an investigation is
needed to determine the way of representing this vector in an optimal

way because neural networks learn faster with lesser inputs.

19



Earlier works

The main problem encountered in previous attempts was
that the weights never converged even after long training sessions. This
is due to the large number of neurons required in the net which became
essential because of the large number of input points (500).This high
number of inputs was the result of taking 10 sec input data. The 10 sec
input data invariably contains a sleep spindle before K-complex which

was used as a confirmatory factor.

The first exercise was to cut down the number of input
points to design a neural net of moderate number of neurons. It was
observed that in all the data collected, all the three component of the
K-complex were pronounced in lsec interval. That 1 sec interval was
chosen in which the K-complex occurs and it was digitized at 50 Hz

using a laser scanner.

These scanners will convert the EEG waveform sheet into
an image. The format of the image can be PCX or BMP or any popular
image format. This image is displayed by the «paint Brush” utility in
windows. Then in the ‘view’ menu option, ‘cursor position’ option is
selected. In the top right corner of the screen X,Y co-ordinates will be
displayed. By dividing the 1 second interval into 50 points on X axis,
corresponding Y values can be noted by moving the cursor (co-

ordinates will be upside down .Appropriate scaling 1is needed). The

20



digitizing frequency of 50 Hz was chosen because the diagnostically
relevant spectral content of the EEG lies within the range of 1 to 25
Hz and this criterion satisfies the Nyquist sampling theorem also (

Minimum sampling frequency is twice the maximum signal frequency ).

Now the number of inputs is reduced from 500 to 50. Even
then, a large number of neurons is required. To solve this problem, it
was decided to use a 7" order linear prediction filter for 50 consecutive
data points and these 7 LP coefficients will form the feature set of

that particular 50 data points.

4.2 Feature Extraction Using Linear Prediction

Prediction  constitutes a special form of estimation.
Specifically, the requirement is to use a finite set of present and past
samples of a stationary process to predict a sample of the process in the
future. The difference between the actual sample of the process at the
future time of interest and the predictor output is called predictor error.
According to Wiener filter theory, a predictor is designed to minimize

mean-square value of the predictor error.

We shall assume that the signal is sampled at discrete

times, that is, we consider the time series,

21



(8.1 ={ s S8 Sis - -} e (2.1)

Suppose the requirement is to make a prediction of the

sample g, . Let § denote the random value resulting from this
prediction. We thus write ,

14
S,'= —kZ Qi Sns
=1

The coefficients ‘¢g,” are called the “predictor

coefficients ”, and ‘p’ is the filter length. The error made in this

estimation, the ‘prediction error’ (PE), is given by the equation

P
€,=8,-8,'=2a: S, Where g,=1 . (2.3)
k=0

Sn—l S"‘P+1 Sn—p

Sn Delay Delay

al_,C;( dpi a, 4{);
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Using the “autocorrelation method ”, minimization of the
rms prediction error over a finite interval of length N leads to the

normal equations for the predictor coefficients thus -

f\::ak'R(i—k)=—R(z'), i=1.p ..(2.9)

Where the autocovariance matrix R is defined by the

equation

N —Ji

|
RO=%-Zssow .. (2.5)
n=1
We will denote the set of coefficients {l’al""’ap} by

the “LP” filter.
4.3 FILTER IMPLEMENTATION

The fifty data points obtained by digitizing each of the one
second EEG data are converted -to the corresponding 7 LP filter

coefficients as follows -

23



Step- I: Determine the autocovariance matrix R( 1):

N-li

. |
R(i)=H%" 2 8. Snou i =0,.,7 ... (2.6)

where N= no. of samples (50)
.= EEG data points

and

Step II: Solve the autocorrelation normal equation :

(Ro R .. Rs\ (al\ ( R]\
R R . R a: R,

\R R ... R \a-/ \ R/

Qi---Q, are the desired LP coefficients. The program for

determination of LP coefficients was implemented in MATLAB.

24
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4.4 DATA STRUCTURE

The filter order should ensure that the predictor will yield
a sufficient feature set. A rule of thumb is that the predictor order
should be atleast twice the number of expected resonances in the
spectrum. Experience shows that rarely more than two resonances are
present in the EEG simultaneously. So an optimum number of 7 was

chosen as the filter order. We have arrived the following data structure.
No. of inputs -7 [LP coefficients ]
No. of outputs - 1 [whether a k-complex or

delta activity or other random

activity]

25



5.1 INTRODUCTION

Artificial neural net models or simply “neural nets” go
by many names such as connectionist models, parallel distributed
processing models, and neuromorphic systems. Whatever the names,
all these models attempt to achieve good performance via dense
interconnection of . simple computational elements. In these
respect, artificial neural network structure is based on our present

understanding of biological nervous system.

Neural network models have the greatest potential in
areas such as speech and image recognition where many hypotheses
are pursued in parallel and computation rates are required. It may
be noted that the current best systems are far from equaling from
human performance. Instead of performing a program  of
instructions sequentially as in a Von Neumann computer, neural net
models explore many competing hypotheses simultaneously using
massively parallel nets composed of many computational elements

connected by links with variable weights.

Computational elements or nodes used in neural net

models are nonlinear, are typically analog, and may be slow

27



compared to modern digital circuitry. Fig.3 shows two common
types of nonlinearities; threshold logic elements and sigmoidal
nonlinearity. More complex nodes may include temporal
integration or other types of time dependencies and more complex

mathematical operations than summation.

Neural net models are specified by the net topology,
node characteristics, and training or learning rules. These rules
specify an initial set of weights and indicate how weights should
be adapted during use to improve performance. Both design

procedures and training rules are topic of much current research.

The potential benefits of neural nets extend beyond
the high computational rates provided by massive parallelism.
Neural nets typically provide a greater degree of robustness or
fault tolerance than Von Neuman sequential computers because
there are many more processing nodes, each with primarily local
connections. Damage to a few nodes or links thus need not

impair overall performance significantly.

Most neural network algorithms also adapt connection
weights in time to improve performance based on current results.
Adaptation or learning is a major focus of neural net research.
The ability to adapt and continue learning is essential in areas
such as speech recognition where training data is limited and
new words, new words, new dialects, new phrases and new

environments are continuously encountered. Adaptation also

28



provides a degree of robustness by compensating for minor

variability’s in characteristics of processing elements.

Traditional statistical techniques are not adaptive,
but typically process all training datas simultaneously before
being used with new data. Neural net classifiers are also non-
parametric and make weaker assumptions concerning the shapes
of underlying distributions than traditional statistical classifiers.
They may thus prove to be more robust when distributions are
strongly non-gaussian. Designing artificial neural nets to solve

problems and lead to new insights and algorithmic improvements.

5.2 PRINCIPLE OF OPERATION OF ANN

The central element in neural network analysis, or
é‘neurocomputing” is the node which is analogous to a biologic
neuron. A network node receives inputs from any number of
nodes, sums them, and subjects this value to some function to
produce an output that can then be propagated to subsequent
nodes in the network (fig-3.2). The processing function can be as
simple as all or none activation once the sum of input reaches a certain
threshold. A more desirable function is a sigmoidal relationship,
which prevents small signals from being overwhelmed by larger
ones. Unless this property(sometimes referred to as a ‘squashing’
function) is present, multilayer networks perform no better than a single

layer network. Intermediate layérs of nodes are often called as hidden

29



layers. A network takes any number of inputs(which can be presented
as a vector)and processes these through the hidden layers to produce a

final output(which can also be represented as a vector).

At each connection in the network, inputs are multiplied
by a weighting factor before being summed. During training of a
network, the weighting factors at each connection in the network are
adjusted using well defined rules until the desired output is obtained.
Learning algorithms are designed so that the weighting factors of the
network changes slowly, but steadily, to a final set of values. This final

set may not be the optimal solution but acceptable.
5.3 DESIGN AND IMPLEMENTATION OF ANN

The design of ANN involves the following factors;

a) Choosing a neural net training algorithm from a wide
option available in the literature considering the nature of the problem

at the hand.

b)Deciding the network topology i.e. the number of

hidden layers.

c) Optimizing the number of nodes in the input layer and

the hidden layers.

30



d) Optimizing the network parameters viz. 1)type of non
linearity 2)gain term 3)momentum term and 4)tolerance term.
e) Optimizing the data representation strategy. In the

specific context of EEG analysis, this involves the number of channels.

Backpropagation algorithm was chosen because it had been
already applied to a number of pattern classifier problems successfully.
A three layered network architecture (fig-3.3) was selected due to its

ability to generate arbitrarily complex decision regions.

The backpropagation algorithm for training the neural net
was implemented in Neural Net Simulator, a neural network simulation
program developed in Turbo C ++. Neural net optimization was done as

outlined in forthcoming chapters.
5.4 ANN IN EEG ANALYSIS

Using the simple concept of nodes, networks of various
designs can be built to simulate a quite complex behavior, the most
common and well described application is that of pattern recognition.
Earlier we have seen that the problem of detection of specific
waveforms in the EEG is nothing but a pattern recognition problem.
The use of neural networks for pattern discrimination became possible
with the description of the backpropagation training algorithm for

multilayer networks.
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This algorithm uses the error between the desired output
and that which is produced by the network as the adjustment factor of
the set of weights acting on the inputs into the last layer of nodes. This
algorithm works backward through the network, adjusting the weighting
factors at each connection; hence the term “backpropagation”. There 1s
a minimum of one hidden layer in this type of network. The number of
nodes in this layer can be varied. Learning is completed when the
difference between the network and actual output values is less than a
selected value called the learning threshold. A network is trained
using a paired input/output data sets, and the process of training is

termed “supervised learning”.

When training is done using supervised learning, it must be
done on a known data set. To both train and test the network on the
same data set, one needs to divide the data set into training and testing
sets. The most common method is to use two thirds of the total data for

training and to test the network success on the remaining one third.
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6.1 INTRODUCTION

The feedforward backpropégation network is a very popular
model in neural networks. It does not have feedback connections, but
errors are backpropagated during training. Least mean squared error is
used. Many applications can be formulated for using a feedforward
backpropagation network, and the methodology has been a model for
most multilayer neural networks. Errors in the output determine
measures of hidden layer output errors, which are used as a basis
adjustment of connection weights between the input and hidden layers.
A momentum parameter can also be used in scaling the adjustments
from a previous iteration and adding to the adjustments in the current

iteration.
6.2 MAPPING

The feedforward backpropagation network maps the input
vectors to output vectors. Pairs of input and output vectors are chosen
to train the network first. Once training is completed, the weights are
set and the network can be used to find outputs for new inputs. The
dimension of the input vector determines the number of neurons in the
input layer, and the number of neurons in the output layer is determined
by the dimension of the outputs. Once trained, the network gives the

image of a new input vector under mapping.
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6.3 LAYOUT

The architecture of a feedforward backpropagation network 1is
shown in figure. The number of neurons in the input layer and that in
the output layer are determined by the dimensions of the input and the
output patterns, respectively. It is not easy to determine how many
neurons are needed for the hidden layer. The figure shows the layout
with five input neurons, three input neurons in the hidden layer and four
output neurons, with a few representative connections.

2 W13

FIELD C (OUTPUT LAYER)

W11

FIELD B (H!IDDEN LAYER)

W,

FIELD A (INPUT LAYER)

fig. LAYOUT OF A FEED FORWARD BACK PROPAGATION NETWORK

The network has three fields of neurons: one for input neurons,

one for hidden processing elements, and one for the output neurons. As
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already stated, connections are for feed forward activity. There are
connections from every neuron in field A to every one in field B, and,
in turn, from every neuron in field B to every neuron in field C. Thus,
there are two sets of weights, those figuring in the activations. In
training, all of these weights are adjusted by considering what can be
called a cost function in terms of the error in the computed output

pattern and the desired output pattern.

6.4 TRAINING

The feedforward backpropagation network undergoes
supervised training, with a finite number of pattern pairs consisting of
an input pattern and a desired or target output pattern. An input pattern
is presented at the input layer. The neurons here pass the pattern
activations to the next layer neurons, which are in a hidden layer. The
outputs of the hidden layer neurons are obtained by using perhaps a
bias, and also a threshold function with the activations determined by
the weights and the inputs. The hidden layer outputs become inputs to
the output neurons, which process the inputs using an optional bias and
threshold function. The final output of the network is determined by the

activations from the output layer.

The computed pattern and the input pattern are compared, a
function of this error for each component of the pattern is determined,
and adjustment to weight of connections between the hidden layer and
the output layer is computed. A similar computation, still based on the

error in the input, is made for the connection weights between the input
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and hidden layers. The procedure is repeated with each pattern pair
assigned for training the network. Each passing through all the training
patterns is called a cycle or an epoch. The process is then repeated as

many cycles as needed until the error is within a prescribed tolerance.
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FLOW CHART START

0

INPUT

VALUE

—
u
m

g

YES

INPUT
err_tol,
Irn_prmr,

max_cycles.

T~

CALL

get_layer info

CALL
setup_network
Is value =17 No l
CALL
) read_weights
YES
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CALL

randomize_weights

startup=1

Is ((value=1)

AND (app > err_tol) AND (tc <

max_cycles) AND (vectors {=0) } OR
((value=0) AND

(tc <1)) OR ({value=1) AND

(startup=1)) ?

Yes

v

startup=0
err last cycie=0
pattern per cycle=0

Is vectors
=maxvectors ?

Yes

CALL
Fill |O Buffer




vectors
=Fill 1O Buffer(data)

for i=0
to
vectors

CALL
setup _pattern (i)

tp=tp+1
pattern per cycle=
pattern per cycle+1

CALL
forward_ prop()

40




Is

value=07? ves
A
CALL
write_outputs
No
Yes

CALL
backward _prop

err last cycle=
err last cycle+err last
pattemn

CALL
update_ weights




CALL
list weights

next i

err last pattern=0

ave err per pattern

errlastcycle
patternpercycle

total err =total err +
err last cycle
total cycle=
total cycle+1




&

Output
total cycles,
ave err per

pattern

|s value =1 ?

"CALL
write_weights

1

CALL
write_outputs

ave err per cycle =

totalerror
totalcycles

Output
ave err per
cycle,err last
cycle,ave err
per pattern




output total
cycles,total
patterns

Stop )




FUNCTIONS

#void set_ training (constant unsigned &)

for training and O for This routine sets the value of private data to the

training value and uses 1 test mode.

# unsigned get_ training_ value ()

This routine gets the value of the training constant that gives the mode in

use and returns that value.

# Void get_ layer_ info()

This routine gets information about the number of layers and the sizes of

the layer namely for input & output layers used by the network from the user.

# Void set_up_ network ()

This routine constructs the layers by setting up the connections between
the layers by assigning pointers appropriately &also set inputs to previous layer output for

all layers except the input layer.

#Void randomize _weights( ):

This routine is used only in the training node . this routine uses random

number generation to randomize all of the weights in the network.
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# Void update_weights (constant float )

As part of training , this routine updates the weights according to the

learning law used in backpropagation.

#Void write_weights(FILE*)

This routine is used to write weights to a file.

#Void read_weights(FILE*)

This routine is used to read weights into the network from a file.

#Void list_weights()

This routine can be used to list weights while a simulation is in progress.

#Void write_outputs(FILE *)

This routine writes the outputs of the networks to a file.

#Void list_outputs( )

This routine can be used to list the outputs of the network while a
simulation is in progress.

#Void list_errors()

This routine lists errors for all layers while a simulation is in progress.



#Void forward_prop()

Performs the forward propagation

#Void backward_prop( float & )

Performs the backward propagation.

#int fill_Iobuffer(FILE *)

This routine fills the internal 10 buffer with data from the training or test
data sets.

#Void set_up_pattern(int)
This routine is used to set up one pattern from the 10 buffer for training.

#inline float squash (float input)

This function performs the sigmoid function.

#inline float randomweight (unsigned unit)

This routine returns a random weights between -1 and 1 ; use 1 to intialize
the generator, and O for all subsequent calls.



7.1 INTRODUCTION

The neural net simulation using the back propagation training
algorithm was implemented on a Pentium machine. In neural net optimization
process apart from other factors, the data representation strategy was expected to
be a dominant one. The current data representation strategy requires the definition
of a set of features that adequately describe the waveform (K-complex ) to be
detected and a pattern matcher to compare the observed value with the ideal
values. Linear prediction techniques was used to extract the features which

resulted in just 7 terms that describé one second EEG data.

7.2 DISCUSSION

7.2.1 SINGLE CHANNEL IMPLEMENTATION

As a first step, a search was made for the optimum network
topology and it was found that 12\18\1 and 12\6\1 configurations offer optimal
performance among those tried. Graph 3.1 shows the efficiency of each topology
( percentage of correctly identified samples over the total samples) for K-complex,
non K-complex and delta activity separately and graph 3.2, shows the same in the
combined way. The performance of different topologies tried in this effort is

outlined below.



The simulation was started with 9\6\1 ANN which offered
efficiency of 71.6%. Another hidden layer was added in this topology to see if this
could improve the efficiency. The topology tried was 9\6\3\1, a five layer ANN.
Efficiency droppedto 69.6%. . :

The 12\18\1 ANN with an efficiency of 82.8% emerged as the best
topology tried so far. The efficiency of this network (12\18\1) was 77.8% for K-

complex , 100% for delta activity and 70.6% for non K-complex activity.

The hidden layers of the 12\18\1 ANN were increased to
12\24\1.The performance dropped to 73.5%. Hidden layers were then decreased to
yield a 12\12\1 network that had improved efficiency of 77.2%. Further decrease
in the hidden layers led to a topology of 12\6\1 and this offered a combined
efficiency of 82.8% that matched the performance of the 12\8\1 ANN.

To analyze the effect of increased number of neurons over the
efficiency larger networks were tried. Implementation of the 28\14\1 topology
resulted in efficiency of 79.1%. Search for a better network led to the 40\20\1
network that offered best efficiency regarding to the detection of K-complex (
94.4%). The efficiency of this ANN was 88.9% for delta activity detection and

64.7% for non K-complex patterns.

Again the hidden layers of this network increased, which resulted
in 40\26\1 ANN. It had somewhat poor efficiency when compared to 40\20\1
ANN. The efforts in identifying the best ANN, had yielded to us the following

results :



I2\18\1 - 82.8%
12\6\1 - 82.8%

Maximum efficiencies for different waves are:

K-complex - 94.4% for 40\20\1
Delta - 100% for 12\18\1
Random Activity - 70.6% for 12\6\1

Thus we see that the basic result is that when there is a K-complex,
the probability of correct identification is high but when there is a non K-complex,

the probability is low. Hence the false probability is higher.

In the optimal neural network topology 12\18\1, 12\6\1, the neural

net parameter settings are as follows:

1

Sigmoid non- linearity, f{x) = ~————
(I+¢7)

Network topology -- Three layered architecture.

With these topologies, in each cycle of training, K-complex delta

activity and random activity were presented cyclically. The previous chapters dealt



with the strategies used to identify the EEG patterns. Now let us implement those
strategies and classify the K-complex, delta and other waveforms. Consider the

case of 3 waveforms, and it’s identification by the neural network.

7.2.2 INPUT DATA TO NEURAL NETWORK

Consider the case of the following 3 unknown waveforms :
ff1, dd1 & rr2 (the datapoints are included in the Appendix I)
The "LP" coefficients are given by:

Input Data Points Linear Predictor Coefficients
2 0.9735 0.0875 0.0268 0.0275 0.0050 -0.0307 0.0705
dd2 02791 0.1692 -0.1085 -0.1534 -0.3152 -0.2822 -0.6122

2 -0.9937  0.0666 0.0999 0.0010 -0.0453 -0.0120 -0.0571

These 3 sets of 7 "LP" coefficient are then stored into the file
‘test.dat’.

The contents of ‘test.dat’ is as follows:

-0.9735 0.0875 0.0268 0.0275 0.0050-0.0307 0.0705
-0.2791 0.1692-0.1085-0.1534-0.3152-0.2822-0.6122
-0.9937 0.0666 0.0999 0.0010-0.0453-0.0120-0.0571



This file contains no expected outputs and hence will constitute a
set of unknown inputs to the ANN. In order to identify the K-complex waveform
among those three wavepatterns, these datas are entered in ‘test.dat’ file and this
file is fed to neural network simulator. This simulator has already been trained with
set of known data to identify K-complex wave has '0" and other waveforms (delta

& background) as 1.

7.2.3 OUTPUT FROM THE NEURAL NETWORK

Let us consider four layer Neural Net with the topology
7\12\18\1.The Neural Network Simulator is run and it is tested for the inputs in
test.dat file. The results are stored in “output.dat” file

The contents of output.dat file is as follows :

for input vector:

-0.973500 0.087500 0.026800 0.027500 0.005000 -0.030700 0.070500
output vector is:

0.000273

for input vector:

-0.279100 0.169200 -0.108500 -0.153400 -0.315200 -0.282200
-0.612200 |

output vector is:

0.999999

for input vector:



-0.993700 0.066600 0.099900 0.001000 -0.045300 -0.012000
-0.057100

output vector is:

0.999998

Thus it is seen that the neural network has successfully identified

the K-complex waveforms.



CONCLUSION

By a different way of data representation, a reduction in the number
of neurons was achieved and resulted in a significant improvement of network
efficiency over 94%. An il shaped K-complex of a 47 year old patient which was

not included in the training set was detécted correctly by all these test nets.

The Neural net simulation had resulted in successful identification
of K-complex pattern( 94.4%). The Delta activity was identified in all the cases.
This significant reduction of input points has caused the “learning” process to be

much more efficient.

These are the conclusions which are made by the thorough study of

the project.



FURTHER DEVELOPEMENTS

In this work, a multichanne] approach can be demonstrated by
feeding EEG data to two channels parallely .This work could be extended to
optimize the other parameters viz. a) gain term and b) type of nonlinearity.

By giving more than two channels parallely to neural net as input.

By using alternate methods of feature extraction other than the
linear prediction technique.

Finally, it is very interesting to note that the neural net designed
here may represent a crude model of the visual processing section of the human
brain. Even though the inventors of the backpropagation algorithm themselves
state that this algorithm will not yield to brain model on the grounds that there is
no evidence of leaning by backpropagation of error in brain , the author feels the
other way because of the fact that same model can be arrived by many methods. In
brain, the mechanism of neural learning may be different but once the net is made ,
the function and the fundamental units are the same as the neural networks
designed in this work as far as the operation of identifying the K-complex is

concerned. An investigation in this direction may prove worthy.
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DATA SET :

TABLE 1: TRAINING DATA
AGE K-complex Delta & other waveforms
1 1F, 3F, SF, 7F 4R, 6R
5 9F, 11F, 13F 1D, 10R, 13R,
8 4F 3D
10 15F, 17F, 19F 4D, 6D, 16R
17 20F 8D
38 22F, 24F, 26F 10D, 12D, 22R




TABLE 11 : TEST DATA

AGE K-complex DELTA ACTIVITY &
OTHER WAVEFORM
1 2F, 4F, 6F, 8F IR, 2R, 3R, 5R
5 10F, 12F 2D
8 . 14R
10 16F, 18F 5D, 7D, 15R, 17R, 19R
17 21F 9D, 20R, 21R
38 23F , 25F, 27F 11D, 13D, 23R, 26R
UNKNOWN 28F, 29F 7R, 9R, 11R
UNKNOWN 30F, 31F, 32F 14D, 15D, 16D, 24R, 28R,
30R
47 33F 33R




ff1

-44.0476
-70.2381
-89.2857
-101.1905
-102.3810
-80.9524
-45.2381
-35.7143
-39.2857
-38.0952
-33.3333
-27.3810
-29.7619
-30.8524
-30.9524
-29.7619
-25.0000
35.7143
71.4286
77.3810
78.5714
77.3810
78.5714
78.5714
76.1905
71.4286
63.0952
44.0476
-3.5714
-9.5238
-14.2857
-10.7143
-9.5238
-8.3333
-4.7619
1.1905
3.5714
8.3333
11.9048
13.0952
11.9048
8.3333
7.1429
2.3810
-1.1905
-4.7619
-13.0952
-27.3810
-36.9048
-38.0952

ff2

-123.8095
-127.3810
-125.0000
-114.2857
-98.8095
-82.1429
-59.5238
-42.8571
-14.2857
22.6190
53.6714
69.0476
76.1905
88.0952
109.5238
120.2381
121.4286
119.0476
121.4286

120.2381

83.3333
72.6190
69.0476
46.4286
29.7619
20.2381
14.2857
3.5714
-3.5714
-14.2857
-23.8095
-32.1429
-39.2857
-45.2381
-46.4286
-41.6667
-34.5238
-30.9524
-36.9048
-47.6190
-60.7143
-71.4286
-83.3333
-88.0952
-83.3333
-71.4286
-61.9048
-60.7143
-51.1905
-46.4286

ff3

-85.7143
-47.6190

-32.1429

-17.8571
2.3810
25.0000
46.4286
78.5714
101.1805
115.4762
117.85671
117.8571
117.8571
116.6667
115.4762
113.0952
95.2381
30.9524
20.2381
20.2381
25.0000
25.0000
23.8095
16.6667
-13.0852
-41.6667
-50.0000
-54.7619
-55.9524
-59.5238
-57.1429
-53.56714
-40.4762
-39.2857
-42.8571
-44.0476

-36.9048-

-11.9048
-10.7143
-15.4762
-17.8571
-34.5238
-53.5714
-64.2857
-71.4286
-64.2857
-55.9524
-47.6190
-25.0000
-15.4762

4

-32.1429
-38.0952
-66.6667
-80.9524
-78.5714
-46.4286
-40.4762
-28.5714
-3.6714
9.5238
25.0000
34.5238
38.0952
40.4762
44.0476
45.2381
47.6190
47.6190
47.6190
46.4286
39.2857
29.7618
23.8095
20.2381
13.0952
2.3810
-3.5714
-20.2381
-28.5714
-35.7143
-35.7143
-33.3333
-29.7618
-25.0000
-19.0476
-11.9048
-4.7619
8.3333
226190
38.0952
48.8095
55.9524
47.6190
20.2381
-16.4762
-21.4286
-28.7619
-39.2857
-45.2381
-52.3810

ff5

-8.3333
-17.8571
-26.1905
-36.9048
-46.4286
-55.9524
-67.8571
-70.2381
-70.2381
-65.4762
-47.6190
-45.2381
-54.7619
-64.2857
-72.6190
-80.9524
-80.9524
-58.3333
-38.0952
-22.6190
-15.4762

-4.7619

15.4762

32.1428
44.0476
45.2381
34.5238
38.0952
440476
30.9524
23.8095
19.0476
47619
-26.1905
-29.7619
-32.1429
-29.7619
-27.3810
-22.6190
-11.9048
0.0000
19.0476
21.4286
5.9524

-2.3810
-17.8571
-33.3333
-44.0476
-44.0476
-38.0952

ffo

-42.8571
-47.6190
-48.8095
-52.3810
-55.9524
-63.0952
-67.8571
-71.4286
-46.4286
-39.2857
-7.1429
5.9524
14.2857
29.7619
40.4762
33.3333
14.2857
2.3810
1.1905
3.5714
21.4286
23.8095
22.6190
26.1905
28.5714
17.8571
-26.1905
-46.4286
-58.3333
-59.5238
-54.7619
-45.2381
-33.3333
-22.6190
-21.4286
-21.4286
-17.8571
-15.4762
-13.0952
-16.6667
0.0000
5.9524
11.9048
16.6667
27.3810
21.4286
13.0952
47619
-3.5714
-10.7143



ff7

0.0000
-10.7143
-19.0476
-35.7143
-44.0476
-50.0000
-53.5714
-57.1429
-71.4286
-77.3810
-80.9524
-82.1429
-92.8571
-06.4286
-95.2381
-90.4762
-73.8095
-57.1429
-47.6180
-36.9048
-10.7143

5.9524

20.2381
32.14289
356.7143
34.56238
33.3333
-22.6190
-39.2857
-40.4762
-40.4762
-26.1905
-26.1905
-356.7143
-45.2381
-45.2381
-44.0476
-41.6667
-33.3333
-21.4286
-14.2857
-5.9524
-4.7619

8.3333

8.3333

3.5714
-14.2857
-32.1429
-44.0476
-48.8095

ff8

-69.0476
-73.8095
-79.7618
-76.1905
-59.5238
-47.6190
-39.2857
-26.1805
-3.5714
11.9048
27.3810
36.9048
45.2381
55.9524
50.0000
29.7619
16.6667
-5.9524
-20.2381
-32.1429
-34.5238
-30.9524
-28.5714
-14.2857
-3.5714
7.1429
11.9048
4.7619
-9.5238
-10.7143
-13.0952
-21.4286
-27.3810
-29.7619
-28.5714
-28.5714
-29.7619
-34.5238
-36.9048
-40.4762
-41.6667
-32.1429
-21.4286
1.1905
9.5238
17.8571
13.0952
3.5714
-5.8524
-39.2857

ff9

-7.5000
-10.0000
-8.7500
0.0000
3.7500
8.7500
8.7500
0.0000
-16.2500
-32.5000
-41.2500
-45.0000
-156.0000
16.2500
30.0000
42.5000
53.7500
48.7500
45.0000
38.7500
31.2500
15.0000
-8.7500
-25.0000
-30.0000
-31.2600
-30.0000
-27.5000
-25.0000
-21.2500
-26.2500
-41.2500
-50.0000
-60.0000
-76.2500
-90.0000
-82.5000
-83.7500
-90.0000
-60.0000
-35.0000
-15.0000
0.0000
18.7500
30.0000
40.0000
43.7500
43.7500
45.0000
50.0000



ff10

-6.2500
-2.5000
-1.2500
-1.2500
-1.2500
-1.2500
-1.2500
8.7500
12.5000
10.0000
2.5000
-8.7500
-26.2500
-13.7500
-2.5000
6.2500
21.2500
36.2500
41.2500
41.2500
42.5000
21.2500
18.7500
21.2500
21.2500
21.2500
12.5000
-22.5000
-36.2500
-48.7500
-58.7500
-70.0000
-82.5000
-78.7500
-70.0000
-61.2500
-56.2500
-38.7500
-30.0000
-20.0000
-10.0000
10.0000
21.2500
30.0000
35.0000
35.0000
40.0000
47.5000
52.5000
55.0000

ff11

28.7500
31.2500
30.0000
26.2500
16.2500
12.5000
15.0000
23.7500
43.7500
41.2500
27.5000
5.0000
-15.0000
-31.2500
-41.2500
-48.7500
-50.0000
-47.5000
-40.0000
-38.7500
-33.7500
-11.2500
3.7500
18.7500
72.5000
92.5000
108.7500
116.2500
115.0000
102.5000
77.5000
61.2500
37.5000
26.2500
17.5000
16.2500
11.2500
0.0000
-22.5000
-33.7500
-33.7500
-37.5000
-42.5000
-48.7500
-53.7500
-55.0000
-40.0000
-38.7500
-36.2500
-28.7500

ff12

0.0000
0.0000
-5.0000
-2.5000
-1.2500
6.2500
22.5000
37.5000
42.5000
17.5000
-12.5000
-20.0000
-21.2500
-22.5000
-18.7500
-8.7500
17.5000
35.0000
43.7500
47.5000
50.0000
58.7500
63.7500
71.2500
73.7500
73.7500
61.2500
53.7500
50.0000
40.0000
12.5000
-18.7500
-25.0000
-28.7500
-37.5000
-41.2500
-41.2500
-41.2500
-41.2500
-37.5000
-36.2500
-36.2500
-45.0000
-46.2500
-48.7500
-47.5000
-46.2500
-51.2500
-51.2500
-48.7500

ff13

13.7500
-13.7500
-41.2500
-53.7500
-68.7500
-85.0000
-62.5000

27.5000

46.2500

73.7500

71.2500

62.5000

58.7500

58.7500

57.5000

57.5000

45.0000
-71.2500
-86.2500
-87.5000
-81.2500
-65.0000

-5.0000

22.5000

32.5000

32.5000

37.5000

41.2500

60.0000

68.7500

71.2500

62.5000

50.0000

42.5000

36.2500

32.5000

27.5000

20.0000

12.5000

2.5000

-3.7500

-6.2500
-15.0000
-12.5000
-11.2500

-5.0000

-7.5000
-12.5000

-7.5000

18.7500

ff14

-11.2500
-10.0000
-12.5000
-23.7500
-58.7500
-76.2500
-88.7500
-95.0000
-82.5000
46.2500
61.2500
81.2500
96.2500
102.5000
11.2500
-10.0000
-12.6000
-12.5000
-16.2500
-20.0000
-36.2500
-41.2500
-37.5000
-35.0000
-32.5000
-28.7500
-27.5000
-22.5000
-12.5000
-12.5000
-13.7500
-17.5000
-15.0000
-6.2500
2.5000
6.2500
7.5000
10.0000
11.2500
12.5000
17.5000
28.7500
30.0000
27.5000
26.2500
27.5000
27.5000
26.2500
28.7500
36.2500

ff15

-37.7778
-32.2222
222222
-18.8889
-23.3333
-13.3333
1.1111
3.3333
1.1111
-6.6667
-31.1111
-43.3333
-51.1111
-65.5556
-34.4444
7.7778
24.4444
32.2222
44.4444
61.1111
65.5556
73.3333
78.8889
85.5556
83.3333
43.3333
25.5556
7.7778
7.7778
2.2222
-8.8889
-15.5556
-35.5556
-28.8889
-20.0000
-35.5556
-52.2222
-17.7778
-1.1111
1.1111
-18.8889
-32.2222
-4.4444
-5.5556
-25.5556
-35.5556
-13.3333
-4.4444
-20.0000
27.7778



ff16

-3.3333
-1.1111
6.6667
31.1111
40.0000
0.0000
3.3333
-3.3333
-17.7778
-51.1111
-82.2222
-47.7778
-45.5556
-57.7778
-38.8889
-6.6667
-3.3333
~7.7778
2.2222
13.3333
222222
-5.5556
11,1111
-6.6667
-5.5556
-5.5556
-5.5556
-4.4444
-1.1111
7.7778
16.6556
12.2222
2.2222
-15.5556
-15.56556
-17.7778
-15.5556
-8.8889
1.1111
-10.0000
-26.6667
-16.6667
20.0000
37.7778
38.8889
-15.5556
-5.56556
25.5556
42.2222
-3.3333

ff17

411111
30.0000
7.7778
21111
37.7778
16.6667
-24.4444
-24.4444
-2.2222
38.8889
44.4444
44.4444
45.5556
53.3333
30.0000
22222
1111
-12.2222
<21.1111
-31.1111
-16.6667
-8.8889
-24.4444
-26.6667
-6.6667
1.1111
-3.3333
-14.4444
-5.5556
16.6667
27.7778
12.2222
12.2222
277778
7.7778
-12.2222
0.0000
211111
311111
8.8889
-2.2222
2.2222
7.7778
14.4444
23.3333
16.6667
-1.1111
-17.7778
-27.7778
-31.1111

f18

12.2222
6.6667
2.2222

12.2222

32.2222

47.7778

56.6667

64.4444

62.2222

62.2222

62.2222

52.2222

-32.2222
-36.6667
-42.2222
-47.7778
-53.3333
-54.4444
-58.8889
-64.4444
-58.8889
-53.3333
-50.0000
-40.0000
-28.8889
-15.5556

-2.2222
11111
2.2222
2.2222
5.5556

14.4444

17.7778

222222

222222

211111

17.7778

20.0000 -

27.7778
37.7778
41.1111
35.5556
13.3333
3.3333
6.6667
12.2222
15.5556
4.4444
-15.56556
-24.4444

ff19

-26.6667
-38.888%
-54.4444
-67.7778
-78.8889
-87.7778
-93.3333
-93.3333
-85.56556
-23.3333
62.2222
83.3333
95.5556
105.5556
108.8889
108.8889
97.7778
34.4444
6.6667
-8.8889
-7.7778
-10.0000
211111
-30.0000
-33.3333
-28.8889
-38.8889
-62.2222
-60.0000
-43.3333
-34.4444
-37.7778
-45.5556
-30.0000
111111
93.3333
-21.1111
211111
47.7778
47.7778
12.2222
-12.2222
18.8889
41.1111
15.5556
-5.5556
-15.5556
277778
41.1111
28.8889

ff20

-7.0000
6.0000
-19.0000
-60.0000
-79.0000
-95.0000
114.0000
121.0000
122.0000
117.0000
-89.0000
-70.0000
-55.0000
-37.0000
-15.0000
1.0000
17.0000
36.0000
45.0000
49.0000
55.0000
66.0000
77.0000
82.0000
84.0000
83.0000
80.0000
74.0000
71.0000
72.0000
71.0000
71.0000
66.0000
39.0000
33.0000
26.0000
19.0000
8.0000
-4.0000
1.0000
12.0000
11.0000
12.0000
12.0000
10.0000
1.0000
-10.0000
-10.0000
-1.0000
-1.0000

ff21

0.0000
18.0000
51.0000
76.0000
98.0000
118.0000
144.0000
164.0000
144.0000
124.0000

63.0000

27.0000

8.0000

-1.0000
-11.0000
-21.0000
-34.0000
-44.0000
-53.0000
-69.0000
-76.0000
-79.0000
-88.0000
-93.0000
-88.0000
104.0000
-99.0000
-68.0000
-89.0000
100.0000
-85.0000
-77.0000
-73.0000
-61.0000
-31.0000
-29.0000
-23.0000
-14.0000
-20.0000
-27.0000
-32.0000
-28.0000
-30.0000
-36.0000
-32.0000
-21.0000
-19.0000
-18.0000
-19.0000
-16.0000



ff22

-17.0455
27.2727
52.2727
67.0455
67.0455
65.9091
62.5000
56.8182
47.7273
39.7727
30.6818
18.1818

6.8182
3.4091
22727
22727
-1.1364
-4.5455
-7.9545

-11.3636

-18.1818

-19.3182

-21.5909

-22.7273

-27.2727

-36.3636

-39.7727

-44.3182

-46.5909

-48.8636

-48.8636

-46.5909

-48.8636

-46.58089

-45.4545

-44.3182

-38.6364

-36.3636

-29.5455

-28.4091

-26.1364

-22.7273

-19.3182

-17.0455

-13.6364
-4.5455
-7.9545
-9.0909

-10.2273
-3.4091

ff23

-21.5909
-9.0909
9.0909
21.5909
35.2273
40.9091
37.5000
31.8182
25.0000
1.1364
-4.5455
-12.5000
-15.9091
-20.4545
-23.8636
-29.5455
-35.2273
-42.0455
-46.5909
-46.5909
-46.5909
-45.4545
-42.0455
-38.7727
-36.3636
-37.5000
-39.7727
-39.7727
-39.7727
-39.7727
-39.7727
-37.5000
-39.7727
-35.2273
-29.5455
-25.0000
-21.5909
-17.0455
-9.0909
-7.9545
-10.2273
6.8182
0.0000
-1.1364
0.0000
56818
6.8182
3.4091
-1.1364
1.1364

ff24

17.0455
522727
61.3636

80.6818 |

90.9091
93.1818
80.6818
50.0000

28.4091 .

13.6364
4.5455
22727
-10.2273
-20.4545
-37.5000
-45.4545
-45.4545
-45.4545
-51.1364
-56.8182
-56.8182
-55.6818
-56.8182
55,6818
-53.4091
-48.8636
47.7273
-47.7273
-48.8636
-48.8636
47.7273
42,0455
-38.6364
-36.3636
-28.4091
-21.5909

-17.0455-

-12.5000
-7.9545
22727
-1.1364

1.1364
0.0000
1.1364
1.1364
22727

-10.2273

-12.5000
-9.0909

-6.8182

ff25

-19.3182
18.1818
32.9545
43.1818
46.5909
28.4091
15.9091

1.1364

-15.8091

-25.0000

-29.5455

-34.0809

-36.3636

-37.5000

-34.0909

-43.1818

-45.4545

-45.4545

-39.7727

-39.7727

-40.9091

-43.1818

-43.1818

-43.1818

-45.4545

-44.3182

-38.6364

-40.9091

-39.7727

-38.6364

-29.5455

-20.4545

-20.4545

-18.1818

-17.0455

-15.9091

-16.9091

-12.5000

-10.2273

-10.2273
-1.1364

0.0000
0.0000

22727

0.0000
7.9545
22727
-3.4091
0.0000
11.3636

ff26

-26.1364
-22.7273
227273
35.2273
522727
59.0909
57.9545
53.4001
46.5809
27.2727
18.1818
22727
-2.2727
-10.2273
-11.3636
-12.5000
-14.7727
-14.7727
-14.7727
-14.7727
-14.7727
-20.4545
-25.0000
-29.5455
-31.8182
-37.5000
-43.1818
-46.5909
-50.0000
-53.4091
-55.6818
-55.6818
-60.2273
-62.5000
-68.1818
-72.7273
-73.8636
-72.7273
-70.4545
-68.1818
-64.7727
-59.0809
-53.4001
-48.5909
-45.4545
-42.0455
-23.8636
-22.7273
-22.7273
-21.5809

ff27

-19.3182
42.0455
56.8182
727273
90.9091

101.1364

107.9545
90.9091
55.6818
32.9545
12.5000

0.0000

-12.5000

-22.7273

-28.4091

-36.3636

-42.0455

-48.8636

-52.2727

-56.8182

-59.0909

-62.5000

-65.9091

-69.3182

-70.4545

-69.3182

-68.1818

-62.5000

-61.3636

-61.3636

-61.3636

-53.4091

-42.0455

-39.7727

-31.8182

-23.8636

-19.3182

-18.1818

-18.1818

-18.1818

-18.1818

-17.0455

-19.3182

-25.0000

-30.6818

-23.8636

-23.8636

-30.6818

-26.1364

-20.4545



ff28

17.7778
16.0000
12.4444
10.6667
8.8889
0.0000
-11.6556
-24.8889
-16.0000
-12.4444
0.0000
3.5556
6.2222
16.0000
23.1111
32.0000
36.4444
36.4444
32.0000
24.0000
231111
-3.6556
-16.1111
-18.6667
-25.7778
-25.7778
-25.7778
-27.5556
-29.3333
-8.8889
0.8889
6.2222
71111
97778
15.1111
16.0000
16.0000
16.0000
19.5556
16.8889
15.1111
12.4444
11.5556
16.0000
16.1111
15.1111
14.2222
13.3333
15.1111
18.6667

ff29

-9.7778
-13.3333
-16.0000
-18.6667
-22.2222
-24.0000
-29.3333
-40.0000
-44.4444
-41.7778
-30.2222
-26.6667
-20.4444

-6.2222

9.7778

20.4444

32.0000

37.3333

38.2222

37.3333

37.3333

33.7778

16.0000

-2.6667
-29.3333
-38.2222
-42.6667
-48.8889
-49.7778
-49.7778
-42.6667
-32.8889
-27.5556
-26.6667
-22.2222
-16.8889
-16.0000
-15.1111

-8.8889

-3.5556

-3.5556

-3.5556

-3.56556

1.7778
3.5556
71111
8.0000
8.0000
7.1111
7.1111

ff30

-7.5000
38.5000
40.0000
43.0000
60.0000
59.5000
62.0000
61.0000
56.5000
44,5000

43.5000 -

48.5000
48.0000
38.0000
18.0000
1.5000
-2.5000
-0.5000
2.0000
-14.0000
-10.5000
-7.0000
-10.5000

-14.5000°

-30.0000
-48.0000
-56.0000
-51.0000
-49.0000
-60.0000
-62.0000
-58.0000
-60.0000
-68.5000
-63.5000
-51.0000
-57.0000
-60.5000
-48.0000
-41.0000
-37.5000
-32.5000
-19.0000
-14.5000
-10.0000
-12.5000
-14.0000
-12.0000
-12.5000
-14.0000

ff31

-21.0000
0.5000
21.5000
23.0000
26.5000
52.5000
47.5000
45.0000

" 41.5000

39.0000
37.5000
50.0000
50.0000
44.0000
24.5000
19.0000
17.0000
16.0000
15.0000
15.0000
-6.5000
-8.0000
-10.0000
-19.5000
-37.0000
-60.5000
-71.6000
-67.5000
-63.5000
-78.0000
-78.0000
-69.0000
-74.0000
-76.5000
-68.0000
-57.0000
-58.5000
-50.6000
-37.0000
-34.0000
-22.5000
-17.5000
-12.0000
-4.0000
-2.0000
-2.5000
-6.0000
-1.0000
0.0000
-9.5000

ff32

4.0000
17.5000
18.0000
41.0000
54.0000
54.0000
53.5000
55.5000
53.5000
50.5000
47.5000
48.0000
44.0000
35.0000
20.0000
11.0000

8.0000
10.0000

5.5000

0.0000

1.0000

0.0000
-3.0000

-20.0000
-32.0000
-31.5000
-27.5000
-35.0000
-48.0000
-45.5000
-38.0000
-44.5000
-48.5000
-31.0000
-37.5000
-45.5000
-41.5000
-36.0000
-41.0000
-41.0000
-36.5000
-32.0000
-30.0000
-31.0000
-34.5000
-36.5000
-31.5000
-31.0000
-33.0000
-34.5000

ff33

18.7500
13.7500
13.7600
12.5000
21.2500
23.7500
28.7500
32.5000
36.2500
35.0000
32.5000
28.7500
27.5000
27.5000
22.5000
21.2500
17.5000
12.5000
8.7500
6.2500
2.5000
-3.7500
-12.5000
-18.7500
-21.2500
-23.7500
-25.0000
-22.5000
-21.2500
-18.7500
-16.2500
-12.5000
-7.5000
-2.5000
0.0000
2.5000
6.2500
12.5000
13.7500
13.7500
13.7500
13.7500
13.7500
17.5000
17.5000
18.7500
20.0000
20.0000
18.7500
17.5000



Dd1

18.7500
13.7500
7.5000
-7.5000
-13.7500
-13.7500
-3.7500
2.5000
5.0000
3.7500
-1.2500
-7.5000
-11.2500
-3.7500
1.2500
3.7500
2.5000
0.0000
-2.5000
-6.2500
-5.0000
16.2500
21.2500
17.5000
0.0000
-6.2500
-14.2500
-6.2500
3.7500
15.0000
17.5000
10.0000
2.5000
-5.0000
-10.0000
-12.5000
-13.7500
-12.5000
1.2500
2.5000
0.0000
-5.0000
1.2500
6.2500
7.5000
1.2500
0.0000
10.0000
10.0000
6.2500

Dd2

-6.2500
5.0000
13.7500
13.7500
10.0000
6.2500
37500
6.2500
15.0000
21.2500
13.7500
-8.7500
-18.7500
~12.5000
-5.0000
-1.2500
-1.2500
-2.5000
~10.0000
~12.5000
-5.0000
1.2500
8.7500
0.0000
-2.5000
0.0000
12.5000
20.0000
22,5000
20.0000
12.5000
5.0000
2.5000
0.0000
-1.2500
-1.2500
-5.0000
-13.7500
-25.0000
-22.5000
-12.5000
2.5000
6.2500
5.0000
-1.2500
-28.7500
-37.5000
-22.5000
-3.7500
6.2500

Dd3

1.2500
-1.2500
-3.7500
-1.2500

2.5000

1.2500

0.0000
-1.2500

-11.2500
-16.2500
-11.2500
-3.7500
0.0000
-10.0000
-15.0000
-12.5000
-5.0000

2.5000
10.0000

6.2500

1.2500
-6.2500
-3.7500
10.0000
17.5000
31.2500
28.7500
13.7500

-20.0000
-17.5000
-10.0000
-6.2500
-1.2500
-1.2500
-10.0000
-16.2500
-18.7500
-12.5000
-5.0000
-2.5000
-1.2500
-3.7500
-8.7500
-12.5000
1.2500
5.0000

3.7500.

-3.7500
-8.7500
-13.7500

Dd4

-3.3333
-12.2222
-14.4444
-11.1111

-1.1111

1.1111

-3.3333
-23.3333
111111

15.5556

20.0000

7.7778
-12.2222
-1.111
77778
6.6667
2.2222
3.3333
12.2222
18.8889
4.4444
-1.111
7.7778

17.7778

14.4444
-12.2222

5.5556

111111

15.5556

-2.2222

-4.4444

-1.1111

4.4444

-5.5656

-8.8889

10.0000

3.3333

-1.111

111111

7.7778
20.0000
3.3333
-11.111
-15.6556
21111
-28.8889
-35.5556
-26.6667
3.3333
7.7778

Dd5

-10.0000
0.0000
3.3333
7.7778

12.2222
3.3333
6.6667

122222
4.4444

-2.2222
1.1111
77778
3.3333

-1.1111

-10.0000

-4.4444

-3.3333
11111
2.2222

-4.4444

-3.3333

13.3333
8.8889

-2.2222

-5.5556

10.0000

26.6667

-1.111

-18.8889

-11.111

-3.3333

-20.0000

-30.0000

-41.1111

-24.4444
11111

-2.2222

-26.6667

-28.8889
4.4444

111111

-5.56556

-10.0000

6.6667
14.4444
-2.2222
-8.8889

3.3333
24.4444
26.6667

Dd6

-13.3333
-10.0000
-8.8889
-10.0000
-17.7778
-22.2222
-7.7778
0.0000
-13.3333
-16.6667
-4.4444
8.8889
3.3333
-12.2222
-15.5556
-8.8889
-2.2222
-12.2222
-16.6667
-10.0000
-1 1111
-10.0000
-17.7778
-11.1111
-5.65566
-2.2222
-26.6667
-25.5556
-3.3333
11111
-14.4444
-24.4444
-23.3333
-16.5556
-17.7778
-18.8889
-12.2222
-4.4444
-13.3333
-14.4444
-5.5556
4.4444
-5.56556
-21. 1111
-22.2222
-15.5556
22222
-2.2222
-5.55656
-4.4444



Dd7

-5.5556
-11.1111
-13.3333
-14.4444
-14.4444
-12.2222
-12.2222
-10.0000

-1.1111

-7.7778
-17.7778
-11.1111
-16.5556
-20.0000
-27.7778

-8.8889

-2.2222
-12.2222
-20.0000
-15.6556

-6.6667

-2.2222

-8.6889
-20.0000

-8.8889

-1.1111
-27.7778
-35.5556
21.1111

5.5656

10.0000

-2.2222
-11.111

-1.1111

14.4444

16.6667

-6.6667

-7.7778

3.3333
7.7778
7.7778
5.5656
4.4444
1.1111
-3.3333
1.1111
2.2222

-1.1111

-3.3333

-8.8889

Dd8

-15.8333
-0.8333
10.8333
16.6667
10.8333

0.8333
-8.3333
-9.1667
-8.3333
-8.3333

-11.6667

-10.8333
-5.8333
-8.3333

-12.5000

-18.3333

-18.3333
-8.3333

0.8333
5.0000
-0.8333
-2.5000
-1.6667
5.0000
13.3333
10.8333
6.6667
5.8333
8.3333
10.0000
9.1667
5.8333
2.5000
10.0000
12.5000
7.5000
0.8333
-0.8333
-1.6667
-4.1667
-6.6667
-9.1667
-9.1667
-4.1667
2.5000
0.0000
-0.8333
-6.6667
-6.6667
-5.8333

DdS

1.6667
2.5000
8.3333
19.1667
5.0000
-1.6667
5.8333
10.8333
10.8333
6.6667
0.8333
-2.5000
-0.8333
-0.8333
0.8333
-3.3333
-8.3333
-9.1667
-5.8333
-2.5000
-8.3333
-14.1667
-15.8333
-12.5000
-12.5000
-18.3333
-21.6667
-15.8333
-8.3333
1.6667
4.1667

. 1.6667
2.5000
0.8333
0.8333
-1.6667
-8.3333
-11.6667
-7.5000
-2.6000
-0.8333
0.0000
-0.8333
-4.1667
-6.6667
-10.8333
-15.0000
-16.6667
-16.6667
-15.8333

Dd10

-14.7727
4.5455
-2.2727
-4.54565
-2.2727
18.1818
32.9545
26.1364
13.6364
-3.4091
-19.3182
-23.8636
-26.1364
-27.2727
-30.6818
-31.8182
-3.4091
-17.0455
-31.8182
-12.5000
6.8182
18.1818
10.2273
-9.0909
-11.3636
-13.6364
-5.6818
-2.2727
-2.2727
-1.1364
0.0000
56818
13.6364
6.8182
-1.1364
-7.9545
-1.1364
2.2727
4.5455
4.5455
3.4091
-1.1364
-12.5000
-18.1818
-14.7727
-11.3636
-6.6182
-3.4091
-1.1364
-2.2727

Dd11

-25.0000
-17.0455
-13.6364
-7.9545
-2.2727
-1.1364
-3.4091
-10.2273
3.4091
-7.9545
-19.3182
-12.5000
-2.2727
-18.1818
-27.2727
-19.3182
1.1364
3.4091
-4.5455
-10.2273
0.0000
22727
-11.3636
-13.6364
-1.1364
4.5455
13.6364
22727
1.1364
-13.6364
-26.1364
-22.7273
-18.1818
-27.2727
-37.5000
-19.3182
-14.7727
-22.7273
-14.7727
1.1364
12.5000
20.4545
2.2727
-2.2727
-6.8182
-13.6364
-11.3636
-10.2373
-7.9545
-7.9545

Dd12

©-17.0455
-22.7273
-26.1364
-27.2727
-30.6818
-38.7727
-36.3636
-34.0909
-39.7727
-51.1364
-43.1818
-26.1364
-21.5909
-23.8636
-23.8636
-21.5908
-11.3636
-18.1818
-26.1364
-13.6364
4.5455
56818
3.4091
1.1364
-4.5455
-13.6364
-20.4545
-19.3182
-28.4091
-32.9545
-26.1364
-4.5455
-20.4545
-23.8636
-10.2273
11.3636
7.9545
3.4091
1.1364
-5.6818
-10.2273
-11.3636
-10.2273
-18.1818
-19.3182
-18.1818
-12.5000
-15.9091
-18.1818
-18.1818



Dd13

-34.0909
-28.4091
-26.1364
-6.8182
-1.1364
-4.5455
-12.5000
-11.3636
-14.7727
-14.7727
-4.5455
-2.2727
-7.9545
-3.4091
1.1364
5.6818
6.8182
0.0000
-2.2727
4.5455
12.5000
3.4099
-9.0909
2.2727
26.1364
34.0909
17.0455
-26.1364
-14.7727
-35.2273
-28.4091
-28.4091
-36.3636
-44.3182
-23.8636
-12.5000
-22.7273
-40.9091
-26.1364
-7.9545
-10.2273
-14.7727
-21.6808
-30.6818
-27.2727
-26.1364
-29.5455
-36.3636
-44.3182
-48 8636

Dd14

-10.5000
-6.0000
-6.5000
-9.5000

-11.5000
-9.0000
-6.5000
-2.0000

-10.0000
-9.5000
-6.5000
-5.0000

-12.5000

-18.0000

-12.5000
-7.5000

-10.0000
-9.0000
-6.0000

-13.0000

-17.0000

-12.5000
-6.0000
-7.5000

-11.5000

-14.5000
-7.0000
-1.5000

2.5000
-7.5000
-4.5000

4.0000
-5.0000

-10.0000

-14.0000

-11.0000
-10.0000
-8.0000
-14.5000
-8.56000
-7.0000
-5.0000
1.0000
2.0000
4.5000
0.5000
-2.0000
-2.5000
1.5000
1.0000

Dd15

-7.5000
-9.5000
-11.0000
-12.0000
-11.0000
-9.5000
-9.5000
-13.5000
-15.0000
-11.0000
~13.0000
-17.0000
-19.5000
-12.0000
-9.0000
-17.0000
-22.0000
-19.5000
-15.0000
-14.5000
-8.5000
-3.5000
-8.0000
-14.0000
-16.0000
-10.5000
-6.5000
-2.0000
-8.5000
-2.5000
4.0000
"-4.5000

.-12.0000

-18.5000

.-13.0000

-12.5000
-14.0000
-11.5000
-6.0000
-8.0000
-12.0000
-10.0000
1.0000
2.5000

- -3.5000

-6.5000
-4.5000
-3.0000
-6.5000
-10.5000

Dd16

-3.0000
-6.0000
-7.0000
-7.0000
-8.0000
-10.0000
-5.0000
-4.0000
-4.0000
-4.5000
-5.0000
-6.0000
-9.0000
-12.0000
-8.5000
-6.5000
-9.5000
-17.5000
-20.0000
-16.5000
-12.5000
-11.0000
-8.0000
-7.0000
-13.0000
-17.0000
-10.5000
-5.0000
-4.5000
-12.0000
-7.5000
1.5000
-5.0000
-8.5000
-12.5000
-7.0000
-6.0000
-6.5000
-3.5000
-1.0000
-4.5000
-7.0000
-4.5000
-1.0000
4.5000
0.5000
-5.56000
-5.0000
-5.0000
-7.0000



Rr1

-23.5200
-31.0800
-33.6000
-36.9600
-36.1200
-33.6000
-26.8800
-19.3200
-156.1200
-16.8000
-21.8400
-24.3600
-26.8800
-29.4000
-32.7600
-32.7600
-32.7600
-32.7600
-28.5600
-24.3600
-20.1600
-20.1600
-16.8000
-12.6000
6.7200
-9.2400
-14.2800
-12.6000
-8.4000
-2.5200
0.8400
6.7200
7.5600
2.5200
-1.6800
-7.5600
-11.7600
-14.2800
-16.8000
-21.0000
-25.2000
-26.8800
-26.8800
-23.5200
-20.1600
-14.2800
-10.9200
-10.9200
-8.4000
-9.2400

Rr2

-36.1200
-30.2400
-28.5600
-26.0400
-21.0000
-18.4800
-18.4800
-20.1600
-22.6800
-24.3600
-24.3600
-24.3600
-20.1600
-16.8000
-15.1200
-15.1200
-16.8000
-19.3200
-19.3200
-18.4800
-13.4400
-10.0800
-7.5600
-5.0400
-4.2000
-4.2000
-5.0400
-4.2000
-156.9600
-23.5200
-27.7200
-31.9200
-33.6000
-31.9200
-29.4000
-16.8000
-10.0800
-7.5600
-5.8800
-5.8800
-11.7600
-10.0800
-8.4000
-3.3600
-1.6800
0.0000
0.8400
0.0000
-2.5200
-8.7200

Rr3

-13.0952
-15.4762
-20.2381
-22.6190
-23.8095
-23.8095
-22.6190
-23.8095
-21.4286
-20.2381
-14.2857
-13.0952
-13.0952
-15.4762
-25.0000
-28.5714
-39.2857
-44.0476
-46.4286
-47.6190
-46.4286
-44.0476
-39.2857
-35.7143
-26.1905
-21.4286
-15.4762
-8.3333
-7.1429
-5.9524
-2.3810
-2,3810
-2.3810
-10.7143
-13,0052
142857
-10.7143
-8.3333
-7.1429
-5.9524
-1.1905
0.0000
-2.3810
-3.5714
-10.7143
-21.4286
-23.8095
-22.6190
-16.6667
-11.9048

Rr5

41.6667
38.0952
38.0952
34.56238
30.9524
11.9048
5.9524
3.5714
2.3810
-1.1905
-4.7619
-5.9524
-8.3333
-13.0952
-19.0476
-20.2381
-23.8095
-28.5714
-26.1905
-26.1905
-26.1905
-26.1905
-26.1905
-28.5714
-26.1905
-17.8571
-9.5238
-7.1429
-3.5714
0.0000
0.0000
-2.3810
-4.7619
-9.5238
-9.5238
-7.1429
-2.3810
0.0000
-4.7619
-13.0952
-32.1429
-41.6667
-34.5238
-33.3333
-28.5714
-14.2857
-13.0952
-13.0852
-14.2857
-11.9048

Rr7

-45.2381
-40.4762
-39.2857
-42.8571
-41.6667
-42.8571
-42.8571
-44.0476
-44.0476
-44.0476
-35.7143
-33.3333
-34.5238
-34.5238
-34.5238
-33.3333
-28.5714
-21.4286
-20.2381
-20.2381
-27.3810
-30.9524
-36.9048
-42.8571
-45.2381
-48.8095
-52.3810
-53.5714
-54.7619
-55.9524
-53.5714
-51.1905
-41.6667
-33.3333
-27.3810
-25.0000
-21.4286
-21.4286
-25.0000
-36.9048
-46.4286
-50.0000
-51.1905
-51.1905
-52.3810
-59.5238
-64.2857
-63.0952
-63.0952
-48.8095

Rr9

7.5000
6.2500
5.0000
8.7500
15.0000
18.7500
20.0000
17.5000
15.0000
15.0000
10.0000
2.5000
-2.5000
-6.2500
-1.2500
3.7500
13.7500
17.5000
18.7500
22.5000
23.7500
18.7500
17.5000
15.0000
22.5000
23.7500
25.0000
15.0000
1.2500
-7.5000
-5.0000
-10.0000
-17.5000
-17.5000
-5.0000
1.2500
13.7500
10.0000
3.7500
0.0000
0.0000
0.0000
-1.2500
0.0000
5.0000
-2.5000
-11.2500
-7.5000
-3.7500
2.5000



Rr10

5.0000
5.0000
6.2500
7.5000
12.5000
16.2500
18.7500
18.7500
16.2500
15.0000
11.2500
6.2500
2.5000
-1.2500
-5.0000
1.2500
11.2500
16.2500
20.0000
20.0000
26.2500
26.2500
21.2500
16.2500
20.0000
27.5000
27.5000
23.7500
8.7500
-5.0000
-6.2500
-10.0000
-12.5000
-17.5000
-16.2500
-1.2500
8.7500
12.5000
8.7500
0.0000
-1.2500
2.5000
-1.2500
0.0000
3.7500
3.7500
-10.0000
-11.2500
-6.2500
0.0000

Rr11

20.0000
20.0000
20.0000
18.7500
13.7500
5.0000
-1.2500
-3.7500
-3.7500
-2.5000
-2.5000
2.5000
3.7500
2.5000
-7.5000
-11.2500
-11.2500
-13.7500
-15.0000
-11.2500
-2.5000
8.7500
7.5000
-1.2500
-1.2500
-1.2500
-1.2500
1.2500
1.2500
1.2500
1.2500
1.2500
0.0000
-1.2500
-2.5000
-2.5000
-6.2500
-12.5000
-15.0000
-5.0000
2.5000
6.2500
17.5000
21.2500
28.7500
30.0000
23.7500
20.0000
13.7500
10.0000

Rr13

-16.2500
-12.5000
-15.0000
-16.2500
-17.5000
-16.2500
-12.5000

-5.0000

6.2500

-7.5000
-7.5000
-7.5000
-5.0000
-1.2500

8.7500
17.5000
20.0000

3.7500°
2.5000

-2.5000
-2.5000
-7.5000
-7.5000
-6.2500
-1.2500
10.0000
13.7500
13.7500
8.7500
6.2500
6.2500
10.0000
12.5000
12.5000
11.2500
12.5000
11.2500
7.5000
2.5000
0.0000
0.0000
7.5000
11.2500
6.2500
-30.0000
-41.2500
-46.2500
-45.0000
-41.2500
-31.2500

Rr14

-11.2500
-11.2500
-7.5000
-5.0000
0.0000
-8.7500
-7.5000
-3.7500
2.5000
8.7500
11.2500
15.0000
21.2500
21.2500
20.0000
20.0000
21.2500
18.7500
10.0000
8.7500
10.0000
15.0000
22.5000
23.7500
23.7500
21.2500
20.0000
11.2500
-1.2500
-6.2500
-8.7500
-16.2500
-7.5000
-7.5000
-13.7500
-16.2500
-15.0000
-10.0000
-10.0000
-10.0000
-13.7500
-20.0000
-20.0000
-1.2500
3.7500
0.0000
-2.5000
-25.0000
-23.7500
-23.7500

Rr15

8.8889
22222
-6.6667
-16.6556
21111
-22.2222
-17.7778
-7.7778
0.0000
2.2222
7.7778
17.7778
211111
222222
17.7778
13.3333
16.6667
24.4444
17.7778
17.7778
16.6667
10.0000
3.3333
1.1111
1.1111
4.4444
23.3333
222222
15.5556
10.0000
6.6667
4.4444
5.5556
3.3333
-3.3333
-3.3333
-4.4444
-4.4444
-2.2222
-2.2222
-4.4444
-5.5556
-11.1111
-21.1111
-14.4444
-3.3333
6.6667
13.3333
10.0000
8.8889

Rr16

10.0000
15.565656
18.8889
14.4444
1.1111
4.4444
8.8889
2.2222
-3.3333
-4.4444
-2.2222
-1.1111
-2.2222
-4.4444
-4.4444
-2.2222
4.4444
5.6556
5.6556
0.0000
-12.2222
-13.3333
-13.3333
-13.3333
77778
10.0000
13.3333
14.4444
10.0000
111111
18.8889
24.4444
23.3333
15.5556
1.1111
-5.56556
-6.6667
-3.3333
-3.3333
-11.1111
-10.0000
-8.8889
-6.6667
111111
-156.5556
-16.6667
-16.6667
-16.6667
-11.1111
-14.4444



Rr17

11111
0.0000
0.0000
0.0000
4.4444
4.4444
3.3333
1.1111
2.2222
3.3333

11111
0.0000
1.1111
3.3333
22222

-4.4444

22222

-4.4444

-6.6667
0.0000

15.5556

16.6667

17.7778

12.2222
8.8889
0.0000

-5.5556

-5.5556

-6.6667

-8.8889

-6.6667

-4.4444

-3.3333

-5.5556
0.0000
1.1111

-2.2222

-5.5556

-4.4444

-4.4444

11111
6.6667

14.4444

15.5556

16.6667

14.4444

17.7778

15.5556

12,2222

11.1111

Rr19

20.0000
22,2222
20.0000
-5.5556
-22.2222
-23.3333
-18.8889
-14.4444
5.5556
25.5556
17.7778
15.5556
24.4444
37.7778
33.3333
26.6667
18.8889
14.4444
24.4444
34.4444
28.8889
20.0000
12.2222
22222
-1.1111
-4.4444
-71.7778
-6.6667
11111
-13.3333
-18.8889
-24.4444
-26.6667
-25.5556
-24.4444
-22.2222
-17.7778
-11.1111
-16.6667
-18.8889
-16.6667
-4.4444
-4.4444
-7.7778
-2.2222
1.1111
5.55656
5.5556
-1.1111
-11.1111

Rr20

-8.3333
-5.8333
-15.8333
-11.6667
-1.6667
-1.6667
-5.0000
-14.1667
-23.3333
-21.6667
-19.1667
-16.6667
-15.0000
-14.1667
-11.6667
-2.5000
-2.5000
-3.3333
-5.8333
-1.6667
-0.8333
1.6667
-0.8333
-0.8333
2.5000
6.6667
3.3333
1.6667
-0.8333
-5.8333
-6.6667
-6.6667
-6.6667
-6.6667
-6.6667
-7.5000
-7.5000
-6.6667
-5.0000
-2.5000
-12.5000
-15.0000
-14.1667
-12.5000
-8.3333
-10.8333
-13.3333
-13.3333
-13.3333
-11.6667

Rr21

17.5000
17.5000
12.5000
10.8333
15.8333
24 1667
25.8333
18.3333
15.8333
12.5000
7.5000
4.1667
4.1667
3.3333
0.8333
1.6667
5.0000
8.3333
5.0000
-0.8333
0.0000
2.5000
-8.3333
-18.3333
-19.1667
-19.1667
-20.0000
-22.5000
-18.3333
-16.6667
-15.8333
-15.0000
-13.3333
-10.0000
-2.5000
2.5000
3.3333
2.5000
2.5000
3.3333
8.3333
20.0000
15.0000
0.0000
6.6667
11.6667
18.3333
21.6667
0.0000
-6.6667

Rr22

-9.0909
-5.6818
-4.5455
-1.1364
0.0000
-1.1364
-1.1364
-1.1364
-1.1364
-6.8182
-6.8182
-5.6818
-2.2727
0.0000
0.0000
-1.1364
-5.6818
-13.6364
-14.7727
-19.3182
-21.5809
-20.4545
-16.9091
-13.6364
-14.7727
-15.9091
-22.7273
-28.4091
-27.2727
-22.7273
-19.3182
-18.1818
-17.0455
-14.7727
-14.7727
-18.1818
-18.1818
-14.7727
-10.2273
-10.2273
-10.2273
-4.5455
-4.5455
-1.1364
1.1364
4.5455
-6.8182
-11.3636
-6.8182
-11.3636

Rr23

-45.5556
-50.0000
-44.4444
42,2222
-34.4444
-30.0000
27.7778
-31.1111
-32.2222
-32.2222
32,2222
32,2222
-32.2222
32,2222
27.7778
-25.5556
-23.3333
-23.3333
21.1111
-15.5556
-6.6667
-6.6667
-6.6667
77778
14111
-20.0000
12,2222
A1.1111
-14.4444
-16.6667
-3.3333
11111
2.2222
2.2222
55556
8.8889
11.1111
7.7778
3.3333
1.1111
11111
11111
0.0000
22222
77778
21.1111
222222
-23.3333
-23.3333
-25.5556



Rr24

-3.4091
-5.6818
-6.8182
-7.9545
-9.0909
-9.0909
-12.5000
-20.4545
-21.5908
-22.7273
-23.8636
-23.8636
-17.0455
-19.3182
-18.3182
-17.0455
-17.0455
-15.9091
-15.9091
-19.3182
-22.7273
-22.7273
-22.7273
-23.8636
-25.0000
-25.0000
-20.4545
-15.9091
-15.9091
-11.3636
-4.5455
-1.1364
4.5455
3.4001
0.0000
-1.1364
1.1364
6.8182
15.9091
2.2727
-13.6364
-5.6818
-4.5455
-2.2727
-2.2727
7.9545
0.0000
-4.5455
-1.1364
-2.2727

Rr26

-31.8182
-32.9545
-31.8182
-31.8182
-31.8182
-34.0909
-32.9545
-36.3636
-34.0909
-32.9545
-31.8182
-35.2273
-31.8182
-30.6818
-30.6818
-22.7273
-18.1818
-156.9091
-18.1818
-17.0455
-15.9091
-14.7727
-14.7727
-12.5000
-11.3636
-13.6364
-18.1818
-15.8091
-17.0455
-13.6364
-9.0909
-7.9545
-10.2273
-11.3636
-7.9545
1.1364
3.4091
6.8182
7.9545
6.8182
1.1364
1.1364
-2.2727
0.0000
-5.6818
-13.6364
-4.5455
1.1364
-15.9091
-23.8636

Rr28

-11.5556
-10.6667
-9.7778
-8.8889
-8.8889
-9.7778
-10.6667
-10.6667
-11.5556
-10.6667
-6.2222
-1.7778
0.8889
1.7778
1.7778
0.0000
-3.5556
-9.7778
-10.6667
-11.5556
-11.5556
-12.4444
-13.3333
-16.8889
-17.7778
-14.2222
-13.3333
-11.5556
-8.8889
71111
-2.6667
-0.8889
0.8889
1.7778
1.7778
-2.6667
-4.4444
-3.5556
-0.8889
1.7778
2.6667
2.6667
2.6667
5.3333
6.2222
6.2222
5.3333
6.2222
1.7778
-0.8889

Rr30

-6.5000
-8.5000
-8.0000
-7.0000
-9.0000
-9.5000
-16.5000
-24.5000
-23.5000
-23.0000
-21.0000
-8.5000
-1.5000
-1.5000
-0.5000
1.0000
6.0000
8.0000
-1.0000
-1.5000
-2.5000
-3.5000
-5.5000
-8.5000
-8.0000
-8.0000
-8.5000
-9.5000
-10.5000
-43.0000
-15.0000
-15.5000
-6.5000
-8.0000
-8.5000
-6.0000
-4.0000
-10.0000
-11.5000
-18.0000
-22.0000
-21.0000
-16.0000
-14.5000
-17.5000
-18.5000
-21.0000
-20.0000
-18.0000
-16.0000

Rr33

4.5000
5.0000
4.5000
5.0000
5.0000
6.0000
6.5000
7.5000
7.5000
7.0000
6.5000
6.0000
5.5000
5.5000
6.5000
9.0000
9.5000
9.0000
9.0000
8.5000
8.5000
8.0000
8.5000
7.5000
6.0000
5.5000
5.0000
5.0000
4.5000
4.5000
4.5000
5.56000
7.0000
6.5000
5.5000
6.0000
6.0000
7.5000
7.0000
6.0000
6.5000
7.5000
8.0000
6.0000
5.5000
5.5000
5.5000
6.0000
6.5000
6.0000



efficiency of the network (%)

GRAPH 3.1

NETWORK PERFORMANCE ON TEST DATA
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GRAPH 3.2

NETWORK TOPOLOGY OPTIMIZATION
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FIG—2.2
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T0P OF HEAD

EEG electrode positions
F - Frontal,C - central
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FIG 3.3

i
>

OUTPUT

OO

OEWDALENAAREN 5 5

AORNAZRNAZ 1R
aVaCvaut

x x &



EEG QUICK REFERENCE CHART

TOP OF HEAD

EEG ELECTRODE POSITIONS

10-20 SYSTEM
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JRICULAR A1 - A2
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A representation of bipolar
longitudinal or AP direction. This mr
comparison of left-right differences in
area, but a montage with strict left-to-1
could provide the same information.
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