Digital Image Processing

PROJECT REPORT 1986 - 97

i

| Submitted by

K. DHEVENDRAN
S. KARTHIKEY AN

V. PRAKASH
S. SANKAR
Guided by
Prof. K. RAMPRAKASH, M.E.
* *
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
* *
FOR THE AWARD OF THE DEGREE OF
BACHELOR OF ENGINEERING IN
*

ELECTRONICS AND COMMUNICATION ENGINEERING

OF THE BHARATHIAR UNIVERSITY, COJMBATCRE

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Kumaragueu Lollege of Technology

COIMBATORE . 641 006.



PIVIPRRVRBPRIIDIPBRBRIBIPIBILIIBIDBED

Kumaraguey Lollege of Technology

U oimbatore - 541 006G,

Department of Electronics and Lommunication Engineering

C%ﬂ@%%ah?

This is to Cswﬁﬁ/ that this Profect Entitled

DIGITAL IMAGE PROCESSING
04&14 besn submitted [;y

M. oo
in )ba’ttw,[ ﬁn[ﬁ[m.&nt of the 1Equinements ](o’z the award of %5‘9’1&5 of
Bachelon of 5}29&255%;’)19 in the Eleetronios and Communication 5)2302551025
Ewnaﬁ of the Bharathiar runiusuéty, Coim[;ato’ts-éz}wz}é qu’ng the
acadsmic yean 7996—’97.

HEOREPIEIPEIERRROIRRCRRRORRIPERODREIDE

(z CM@———- MM ‘\‘ s \N”\”Jy B B
(Guide) /407" (Head of Department) ~ °

cantiﬁ'al that the Candidats vas Examinsd 5‘9 us in the .(pw/'saf Work.
. Vica-Voes Examination beld on
\\’ (um'osuéty d?sgiitsz Nomben

,’// :

w\ Lo e e O N L
Mooy

(Internal Examkner) : (i (E"Xternal Examiner)

PRERENANERERNENERERCRNEROIPERCRCRRIVENERRROICBDIIVIREREBEDY
PBOEOEHHEHEESEESD H®

&
ZR2VIDHFIRIRRIRIPIZTLIIIILIEIBRIHIBE



Dedicated
to pur

Beloved parents




Acknowledgement




ACKNOWLEDGEMENT

First of all we wish to thank our respected principal Dr.S.Subramanian for

providing us with all the facilities .

We wish to express our sincere gratitude to the Head of the department of
Electronics and Communication Engineering, Prof. M.Ramasamy for his

encouragement and facilities he has provided us.

We are thankful to our project guide Assistant Prof. K.Ramprakash for his

guidance and support without which this project would not have been successful.

Our heartful thanks are due to Prof.P.Shanmugam and senior lecturer
P.Rajendran for providing us the required computer facilities and access to their
image scanner.We also thank Mr.R.Hariharan for his valuable suggestions on

this project.

We are indebted to all the staffs of our department who motivated us by all
means. Finally we thank our friends and all of those who have helped us to reach

this stage.



Bynopsis




SYNOPSIS

Digital Image Processing is one of the rapidly evolving field in science and
engineering Image Processing deals with the improvement of images for human

perception.

In this project we have tried to extract some features in the ever growing
field of Digital Image Processing. Generally Image Processing is used to

* Sharpen the image that is out of focus,

* Enlarge the image to view the picture clearly,

* View the image from different angles,

* Modify the image.

In this project effort has been made to implement the following image
processing algorithms:-

1. Negation ,colour detection, Histogram plotting, Contrast stretching in
point process.

2. Edge Enhancement,Smoothening,sharpening in area process.
3. Rotation and Mirroring of images in geometric process.
4. Morphing of two dimensional diagrams in frame process.

Borland c++ has been utilised for the software implementation in this project.



Lontents




CONTENTS

1. INTRODUCTION
2. ELEMENTS OF DIGITAL IMAGE PROCESSING
2.1 IMAGE PROCESSORS
2.2 DIGITIZERS
2.3 DIGITAL COMPUTERS
2.4 STORAGE DEVICES
2.5 REPRESENTATION AND MODELLING OF AN IMAGE
3. PROCESSING TECHNIQUES
3.1 POINT PROCESS
3.1.1 IMAGE NEGATION
3.1.2 COLOUR DETECTION
3.1.3 LUMINANCE
3.1.4 HISTOGRAM
3.1.5 CONTRAST STRETCHING
3.2 AREA PROCESS
3.2.1 IMAGE SMOOTHENING

3.2.2 IMAGE SHARPNENING

(%)

(o2



3.2.3. IMAGE SEGMENTATION
a) POINT DETECTION
b) LINE DETECTION
¢) EDGE DETECTION
3.3 GEOMETRIC PROCESS
3.3.1. ROTATION
3.3.2 IMAGE MIRRORING
3.4 FRAME PROCESS
4. APPLICATION
5. SOFTWARE IMPLEMENTATIONS
5.1 ALGORITHMS
5.2 FLOW CHARTS
5.3 SOURCE CODE
6. CONCLUSION

BIBLIOGRAPHY

20

9



Chapter 1

1nteoduction




1. INTRODUCTION

The term Digital Image Processing refers to processing of a two
dimensional picture or data in a digital computer. A Digital Image is an array of
real or complex numbers represented by a finite number of bits. An 1mage given
in the form of transparency, slide or photograph is first digitized and stored as a
matrix of binary digits in computer memory . This digitized image is then

processed and/or displayed.

For real time applications processing should be done at a speed of 30
frames per second which requires very high speed processors and parallel
processing should be implemented. Hence we are restricting our project to a

single frame in which only one image is processed and output 1s displayed.

Image processing functions can be broadly classified as two types viz.
individual pixel operations and neighbourhood pixel operations. In individual
pixel operations we need not care about other pixel i.e each pixels are processed
independently. In neighbourhood operations, other pixel values are taken into

account.



The mmage can be scanned in various formats like PCX and BIT MAP.
Most commonly in WINDOWS we use BIT MAP files. We will thus process only

bitmap files. In bitmaps certain number of bits are allocated for each picture

element or pixel.

If "n" is the number of bits allocated for each pixel, then that image can be
represented in 2" colours. In a monitors way, the image refers to a function of

space f(x,y). The value of f(x,y) denotes brightness or colour of the scene.



Lhapter 11

Flements of Digital Image Processing System




ELEMENTS OF A DIGITAL IMAGE PROCESSING
SYSTEM

The components of basic, general-purpose digital image processing system
are shown in Fig 1. The operation of each block is explained briefly below. The

sequence of operation is depicted in Fig 2.

2.1 Image Processors

A digital image processor is the heart of any image processing system. An
image acquisition, storage, low level(fast) processing, and display. Typically. the
image acquisition module has a TV signal as the input and converts this signal into
digital form, both spatially and in amplitude. Most modern image processors are
capable of digitizing a TV image in one frame time ( i.e) 1/30 of a second). For

this reason, the image acquisition module is often referred to as a frame grabber.

The storage module, often called a frame buffer, i1s a memory capable of
storing an entire digital image. Usually, several such modules are incorporated in
an image processor. The singled most distinguishing characteristic of an image
storage module is that the contents of the memory can be loaded or read at TV
rates(on the order of 30 images per second). This feature allows the image

acquisition module to deposit a complete image into storage as fast as it is being

LA



A DIGITAL IMAGE PROCESSING SYSTEM

LUNK TO OTHER

COMPUTERS
A
" mMAGE sCANNER ] PHOTO
—>»| XY DIGITIZER [T] (A/D_CONVERTERT* TRANSPARENCY
HIGH PHOTC
LARGE DISK RESOLUTION CRT T~ CAMERA 4
é .
y E
| 4 i
TERMINALS [ > LARGE DIGITAL
cPUy l6— |IMAGE BUFFER > M%?"LT%RRS
(NETWORK) AND PROCESSOR
v
HARDCOPY
TERMINAL
y v
GRAPHICS PRINTER —
WORKSTATION PLOTIER TAPE DRIVE DISKS

f

OBJECT

Fig.

A TYPICAL DIGITAL IMAGE PROCESSING SEQUENCE

OBSERVE

SAMPLE DIGITAL
AND STORAGE
QUANTIZE (Disk)

Dicmze

STORE

Fig.

OuTPUT

DIGITAL ONLINE _/_\'
COMPUTER BUFFER DISPLAY
PROCESS REFRESH/
STORE
RECORD

R




grabbed. Conversely the memory can be addressed at TV rates by display module.

which outputs the image to a TV monitor.

The processing module performs low-level functions such as arithmetic and
logic operations. Thus this module 1s often called an Arithmetic-Logic Unit
(ALU). It is a specialized hardware device designed specifically to gain speed by
processing pixels in parallel. The function of the display module is to read an
image memory. Convert the stored digital information into an analog video signal
and output this signal to a TV monitor or other video device. Typical additional
hardware display options include gray-level transformation functions and graphics,

as well as alphanumeric overlays.

2.2 Digitizers

A digitizer converts an image into a numerical representation suitable for
input into a digital computer. Among the most commonly used input devices are
micro densitometers, flying spot scanners, image dissectors. vidicon cameras. and
photosensitive solid-state arrays. The first two device require that the image to be
digitized be in the form of a transparency (e.g) a ﬁlm negative) or photograph.

Image dissectors, vidicon cameras, and solid-state arrays can accept images



recorded in this manner, but they have the additional advantages of being able to

digitize natural images that have sufficient light intensity to excite the detector.

Microdensitometer

In microdensitometers the transparency or photograph is mounted on a flat
bed or wrapped around a drum. Scanning is accomplished by focusing a beam of
light. In the case of transparencies the beam passes through the film. In
photographs it is photodetector and the gray level at any point in the image is
recorded by the detector based on the intensity of the beam. A digital image is
obtained by allowing only discrete values of intensity and position in the output.
Although microdensitometers are slow devices, they are capable of high degrees of
position accuracy due to the essentially continuous nature of the mechanical

translation used in the digitization process.

Flying Spot Scanners

It operates on the principle of focusing a transmitted or reflected source
beam on a photodetector. In this case the image is stationary and the light source
is a cathode ray tube(CRT) in which a beam of electrons, deflected by
electromagnets, impinges on a fluorescent phosphor surface. The beam thereby

produces a spot of light that moves in a scanning pattern on the face of the tube.



The fact that the beam is moved electronically allows high scanning speeds.
Flying spot scanners are also ideally suited for applications in which it is desirable
to control the beam scanning pattern externally (e.g. in tracing the boundaries of
objects in an image.) This flexibility is afforded by the fact that the position of
the electron beam is quickly and easily established by external voltage signals

applied to the electromagnets.

Image Dissectors And Vidicon Cameras

In image dissectors and vidicon cameras the image is focused directly on
the surface of a photosensitive tube whose response is proportional to the incident
light pattern. Dissector operation is based on the principle of electronic emission.
where the image incident on the photosensitive surface produces an electron beam
whose cross section is roughly the same as the geometry of the tube surface.
Image pickup is accomplished by using electromagnets to deflect the entire beam
past a pinhole located on the back of the dissector tube. The pinhole lets through
only a small cross section of the beam and thus "looks" at one point in the image
at a time. Since photo emissive materials are very inefficient, the time that the
pinhole has to look at the point source in order to collect enough electrons tends
to make image dissectors rather digitizers. Most devices mtegrate the emission of

each mput point over a specified time interval before yielding a signal that is

~1



proportional to the brightness of a point. This integration capability is beneficial
noise brightness of the point. This integration capability is beneficial in terms of
noise reduction, thus making image dissectors attractive in applications where
high signal to noise ratios are required. As in flying spot scanners, control of the
scanning pattern in image dissectors is easily varied by external voltage signal

applied to the electromagnets.

The operation of vidicon cameras is based on the principle of photo
conductivity . An image focused on the tube surface produces a pattern of
varying conductivity as image. An independent, finely focused electrons beam
scans the rear surface of the photo conductive target and, by charge neutralization.
this creates a potential difference that produces on a collector a signal proportional

to the input brightness pattern, position of the scanning beam.

Solid-state arrays are composed of discrete silicon imaging elements. called
photosites, that have a voltage output proportional to the intensity of the incident
light. Solid state arrays are organized in one of two principal geometrical
arrangements, Line Scan Sensors and Area Sensors. A line scan sensors consist of
a row of scene and the detector. An area sensor is composed of photosites and is

therefore capable of capturing an image in the same manner as. say a vidicon tube.



Vidicon and area sensors are typically packaged as TV cameras. Image
digitization 1s achieved by feeding the output of camera into the image acquisition
module as discussed in the previous section. Although TV cameras are in general
less accurate than the system discussed above, they have numerous advantages that
in many applications outweigh their relative lack of precision. Vidicon systems.
for example, are among the most inexpensive digitizers in the market. They also
have the distinct monitor. This capability being digitized can be viewed in its
entirety on a TV monitor. This capability, not available in any of the system

discussed above, is ideal for general purpose applications.

Digital Computers

An image processor may be equipped with internal processing capabilities,
the level of this processing is rather low in sophistication. Thus one usually finds
the image processors are interfaced to a general-purpose computer, which provides
versatility as well as case of programming. Computer systems used for image
processing range from microprocessor devices to large computer systems capable
of performing computationally intensive functions to large image arrays. The
principal parameters influencing the structure of a computer for image processing
are the intended application and the required data throughout. For dedicated

applications which normally dictate low cost, a well equipped microcomputer or



minicomputer will often be sufficient. If the application involves extensive

program then minicomputer will often be sufficient. If the application involves
extensive program development or is characterized by significant data throughput,
a mainframe computer or minicomputer will often be sufficient. If the application
involves extensive program development or is characterized by significant data
throughput, a mainframe computer would most likely be required. In this case. a
computer with virtual addressing makes disk peripheral storage available to the
user as if it were main memory. This feature which is transparent to the user. is of
crucial importance because digital images utilize large amounts of memory during
processing. The alternative to virtual addressing is a set of user-supplied complex
routines whose only function is to swap image segments is and out of peripheral

storage during processing.

Storage Devices

A digital image consisting of 512 x 512 pixels, each of which is quantized
into eight bits, requires 0.25 megabytes of storage. Thus providing adequate bulk
storage facilities is one of the most important aspects in the design of a general
purpose image processing system. The three principal storage media used in this
type of work are magnetic disks, magnetic tapes, and optical disks. Magnetic disks

with a capacity of 700 megabytes or more are common. A 700 Megabytes disk

10



would hold on the order of 2800 images of the size mentioned above.

High-density magnetic tapes (6400 bytes per inch) can store one such image in
approximately four feet of tape. Optic disks, which are based on laser writing and
reading technology, have recently become commercially available. The storage
capacity of a single optical disk platter can approach 4 gigabytes, which translates

into approximately 16,000 images per disk.

Image Representation And Modeling

In image representation one is concerned with characterization of the
quantity that each picture-element (also called pixel or (pel) represents. Am image
could represent luminance characteristics of a body tissue(X-ray imaging). the
radar cross section of a target (radar imaging), the temperature profile of a region
(infrared 1maging), or the gravitational field in an area(in geophysical imaging), In
general, any two dimensional function that bears information can be considered an
image. Image models give a logical or quantitative description of the properties of

this function.
An 1mportant consideration in image representation is the fidelity or

intelligibility criteria for measuring the quality of an image or the performance of a

processing technique.  Specification of such measures requires models of

11




perception of contrast, spatial frequencies, color, and so on. Knowledge of a
fidelity criterion helps in designing the image sensor, because it tells us the

variable that should be measured most accuracy.

The fundamental requirement of digital processing is that image must be
sampled and quantized. The sampling rate has to be large enough to preserve the
useful information in an image, it is determined by the bandwidth or raster
scanned common television signal is about 4 MHz. From the sampling theorem.
this requires a minimum sampling rate of 8 MHz. At 30 frames/s this means each
frame should contain approximately 266,000 pixels. Thus for a 512 line raster, the
means each image frame contains approximately 512 x 512 pixels. Image
quantization is the analog to digital conversion of a samples image to a finite

number of gray levels.

A classical method of signal representation is by an orthogonal series
expansion, such as the Fourier series. For image, analogous representation is
possible via two-dimensional orthogonal functions called basis images. For
sampled images, the basis images can be determined from unitary matrices called
image transforms. Any given image can be expressed as a weighted sum of the

basis images. Several characteristics of image, such as their spatial frequency

12



content, bandwidth, power spectrum, and application in filter design. feature

content, and so on , can be studied via such expansions.

Statistical models describe an image as a member of an ensemble, often
characterized by its mean and covariance functions. This permits development of
algorithms that are useful for an entire class or an ensemble of images rather than
for a single image. often the ensemble is assumed to be stationary so that the mean
and covariance functions can easily be estimated. Stationary models are useful in
data compression problems such as transform coding, restoration problems such as
wiener filtering, and in other applications where global properties of the ensemble
are sufficient. A more effective use of these models in image processing is to

consider them to be spatially varying or piece wise spatially invariant.

To characterize short-term or local properties of the pixels, one alternative
1s to characterize each pixel by a relationship with ifs neighbourhood pixels. For
example,a linear system characterized by a (low-order) difference equation and
forced by white noise or some other random field with known power spectrum
density 1s a useful approach for representing the ensemble. Figure shows three
types of stochastic models where an image pixel is characterized in terms of its

neighbouring pixels. If the image were scanned top to bottom and then left to right,



IMAGE REPRESENTATION AND MODELLING

PERCEPTION MODELS

LOCAL MODELS

VISUAL PERCEPTION OF CONTRAST,
SPATIAL FREQUENCIES, AND COLOUR

IMAGE FIDELITY MODELS
TEMPORAL PERCEPTION
SCENE PERCEPTION

\
\

IMA

LI A

TRAI

-

GE QUANTIZATION

DETERMINATION/UNITARY
SERIES EXPANSIONS/UNITARY

NSFORMS

STATISTICAL MODELS

Fig.

Imer = ay, Bn +Q,, Bu
// /
Fig.
j-1 i
i B . j
F1 & R Ca
i-1 F i+l
G
i i - A >
D A D
b1 H v
E
Fig.

+. .

A0,

|

GLOBAL MCDELS

SAMPLING AND RECONSTRUCTION * S'\CI:TENE ANALYSIS/QIE)TS:ICIAL

ELLIGENCE
* SEQUENTIAL AND CLUSTERING
* IMAGE UNDERSTANDING
MODELS

i1 i
-1 ‘C\ 2B
;D
! A
i+1 E A 4

14




the model of fig.3 would be called as causal model. This is because the pixel A is
characterized by pixels that lie in the "past”. Extending this idea, the model of
fig 4 is a noncasual model because the neighbours of A lie in the past as well as
the "future” in both the directions. In fig 5 we have a semicausal model because
the neighbours of A are in the past in the j-direction and are in the past as well as
future 1n the 1-direction.

Such models are useful in developing algorithms that have different
hardware realizations. For example, causal models can realize recursive filters,
which require small memory while yielding an infinite impulse response (IIR). On
the other hand, noncausal models can be used to design fast transform-based finite
impulse response (FIR) filters. Semicausal models can yield two-dimensional
algorithms, which are recursive in one dimension and none recursive in the other.
Some of the these stochastic models can be thought of a generalization of one
dimensional random processes represented by auto regressive (AR) and auto
regressive moving average (ARMA) models.

In global modeling, an image is considered as a composition of several
objects. Various objects in the scene are detected (for example, by segmentation
techniques), and the model gives the rules for defining the relationship among
various objects. Such representations fall under the category of image

understanding models.



Chapter

b
e
Yy

Processing Technigues




PROCESSING TECHNIQUES

We will first categorize the different image processing algorithms possibie.

*  If an algorithm changes a pixel value based on only on that pixel value
1s called a as "point process".

*  If an algorithm changes a pixel value based on the values of
neigbhouring pixels it is called as "area process".

*  If an algorithm changes the position or arrangement of pixels, it is
called as "geometric process".

*  Algorithm that change pixel value based on comparing two or more
1mages are called "frame process".

3.1 Point process

In point process we do not modify the spatial relationships within an image.
Hence these processes donot change the position of the image. The various point
processes on which we are concentrating are

1. Image negation

2. Colour detection

3. Histogram

4. Contrast stretching

Here while operating on a pixel, the other pixels are not taken into account.

186



Point operations are zero memory operations where a given grav level
u[0,1] is mapped into a gray level v[0,1) according to a transformation.

v=f(u)

3.1.1. Image Negation
A negative image can be obtained by reverse scaling of the gray levels
according to the transformation v=f(u).

v= L-u

VA

L

@) —» U
C

Fig.3.1 Digital Negative Transformation
Negative images are produced by inverting each bit of the image i.e. one's
are replaced by zeros and zeros by one's. Negation is used to notice minor details
of brighter portions of the image. When dark light falls on pupil of eye. it enlarges

allowing more light to fall into it, negation is necessary in such situations.

h w
Iflmage= X X I(i))
1=0 =0

Where I(i,j) = Intensity of image at the point (1))

17



h = height of image.

w = width of image.
h w

Then negative image = ~ X (255-1(1)))
1=0 j=0

3.1.2 Colour detection

The study of color is important in the design and development of color
video systems. Use of colour in image displays is not only more pleasing, but it
also enables us to receive more visual information. While we can perceive only a
few dozen gray levels, we have the ability to distinguish between thousands of
colours. The Perceptual attributes arecolour brightness, hue and saturation.
Brightness represents the perceived luminance as mentioned before. The hue of a
colour refers to redness, greenness, and so on. For monochromatic light source.
differences in hues are manifested by the differences in wavelengths. Saturation is
that aspect of perception that varies most strongly as more and more white light is
added to a monochromatic light. These definitions are somewhat imprecise
because hue, saturation, and brightness all change when either the wavelength. the

intensity, the hue, or the amount of white light in a color is changed.

18



Each wavelength in this range is perceived by the eye as a certain tint or
hue. All such hues are present in white sunlight, along with energies at other
wavelengths beyond this range- namely, infrared and ultraviolet. The color of an
object is a function of the unabsorbed wavelengths of light reflected from it. That
is why an object will have different colours depending on the light under which it
is viewed. An object viewed under sunlight will radiate a different color when

viewed under electric light.

The Red, Green and Blue (RGB) primaries are physical primaries that can
be used in actual experiments. These primaries are not unique and other primaries
can be selected instead. The main advantage of these 1s that luminance signal 1s
provided directly by only one of the primaries (Y). Y will provide a gray-level
image from the color image. These primaries are derived from the R,G.B physical
primaries through a linear transformation given by:

X =27690R ~ 1.7518 G + 1.300 B
Y= 1.0000R ~ 45907 (; ~ 0.0601 B
Z = 0.0000R + 0.0565 G + 5.5943 B
The user is given an option to choose a particular colour and in the image

only pixels with that colors are displayed and other are set dark. This process is

19



helpful in biological sciences for viewing microbes. In biomedical technology it is

used to trace for tracing foreign particles inside the body.

3.1.3 Luminance Signal

The luminance of a color image is basically the black-and-white version of
that same image. The luminance signal is given by

Y=R 45907 B

To illustrate that equation actually does produce a B&W we will develop
program to change the colour image to a luminance image. To correct for the
aspect ratio we will reduce the width of the luminance image to 256 x 256. The
luminance image will also be scaled to have levels from 0 to 255 (8 bits) The
scale factor multiplying Y is

255.00/ ((1+4.5907+0.0601) x 32.0)

This transforms the levels to lie between 0 and 255. An alternative colour

television signals to black and white is given by
Y =0.030R+ 059G 0.1l B

This equation was derived by taking into account the sensitivity of the eve

to the three primaries.

20



3.1.4 Histogram
The histogram of gray levels in an image is defined by
h(i) = n(i)'n
where n(i)= sum of gray levels in the image havihg the value 1 and n = total

number of gray levels in the 1mage.

The distribution p(i) or n(i) can provide information about the appearance
of the image. An image that has a gray-level distribution similar to that shown in
fig 6a has predominantly dark tones. On the other hand, fig 6b indicate an image
with predominantly light tones. Therefore, it should be clear that one should be
able to enhance the appearance of an image by modifying the distribution n(i) to

provide some balance between the various gray-level tones in the image.

Let the variable 't' represent the gray level of the pixels in the image to be
enhanced. For simplicity, it will be assumed in the following discussion that the

pixel values have been normalized so that they lie in the range

with r=0 representing black and r=1 representing white in the gray scale.
For any r in the interval [0,1], attention will be focussed on transformations of the

form



nGiy}
Fig

e

0 (@) 255

.y

(a) Histogram of an image with predominantly dark tones

201

h

0 , , ——
©) 255 |
(B) Histogram of an image with predominantly light tones

r 4

rmcx

(¢) linear gray-level scaling

v

0 255 s




s = 1),
which produce a level for every pixel value r in the original image. It is

assumed that the transformation function given in equation satisfies the conditions:

(a)  T(r) is single-valued and monotonically.increasing in the interval
0<r<1,and

(b) 0<T()<1for0<s<]

Condition (a) preserves the order from black and white in the gray scale.
while condition (b) guarantees a mapping that is consistent with the allowed range

of pixel values.

It 1s helpful in detecting the overall brightness of that image from the

histogram plot one can extract lots of information.

3.1.5 Contrast Stretching

Contrast is the difference between the lowest pixel value and the highest
pixel value. At low contrast, image cannot be distinguished clearly, it is either too
light or too dark. At high contrast we can have darkness along with the light. An
upper threshold value and a lower threshold value is fixed for stretching. If ( X.y)

exceeds upper threshold value, then that value is fixed as maximum. If f(x.v) is

23



below lower threshold, then it is set to zero. Pixel values between two threshold

values are scaled properly.

Linear gray stretching can be achieved by mapping the gray levels of the
original image through the linear mapping function shown in F 1g 6¢..

Thatis, s = ((r-r, ) /(v _-r ))x 255

Where r denotes a gray level in the original image and s the mapped gray
level. The mapped image will have gray levels that are stretched between and 255.

This operation can provide some improvement on the appearance of the image.

Low contrast images occur often due to poor or nonuniform lighting
conditions or due to nonlinearity or small dynamic range of the imaging sensor.
Figure shows a typical contrast stretching transformation, which can be expresses
as

{u, O<u<a
v={B(u-a)+v, a<u<b

{ (wb)+v, b<u<l

24



The slope of the transformation is chosen greater than unity in the region of
stretch,

The parameters a and b can be obtained by examining the histogram of the
image, For example, the gray scale intervals where pixels occur most frequently

would be stretched most to improve the overall visibility of a scene.

3.2 Area Process

We use a group of pixels for performing area process. usually we do the
operation with the neighbourhood pixels. We use a two dimensional matrix
containing pixels values with each dimension as an odd number. This matrix 1s
termed as neighbourhood matrix. The pixel of interest is at the centre of this
neighbourhood matrix. A Mask (a matrix which has same dimension as
neighbourhood) is moved through each pixels and calculated value replaces that
Pixel. In this process, we sharpen, smoothen and remove random noise from the

image. Edge detection is also done in this process.

3.2.1 Image Smoothening
Many image enhancement techniques are based on spatial performed on
local neighbourhoods of input pixels. often, the image is convolved with a finite

impulse response filter called spatial mask.



Here each pixel is replaced by a weighted average of its neighbourhood

pixels, that 1s

Vimn) =  ZZa(kl)y(m- kn-I
(k.Dew

Where y(m,n) and v(m,n) are the input and output images, respectively, W

1s a suitably chosen window, and a (k,1) are the filter weights, giving

V(m,n) = { LI y (m-k, n-l)
wik.e W

Where a(k,)=1/Nw and Nw is the number of pixels in the window W.

Another spatial filter used often is given by

vimn) = 2[y(mn) + Vi {y(m-1,n)+y(mLn) + yimn-1)+y(mn-1)}]

That 1s, each pixel is replaced by its average with the average of its nearest

four pixels. Figure shows some spatial averaging masks.

Spatial averaging is used for noise smoothing, low-pass filtering. and

sub-sampling of images. Suppose the observed image is given as



y(m,n) = u(mn) * n(mn)
Where n{m,n) is white noise with zero mean and variance ° . Then the

spatial average of yields.

v(mn) = § I u(n-kn-1) + n(m,n)

wi{k,)eW

Where n(m,n) is the spatial average of n(m,n). it is a simple to show that
n(m,n) has zero mean and variance “n/Nw, That is, the noise power is reduced by a
factor equal to the number of pixels in the window W. If the noiseless mmage
u(m,n) is constant over the window W, then spatial averaging results in the
improvement in the output signal-to-noise ratio by a factor of Nw. in practice the
size of the window W is limited due to the fact that u(m,n) is not really a constant,
so that spatial averaging introduces a distortion i the form of blurring. Figure

shows examples of spatial averaging of an image containing Gaussian noise.

1/9 1/9 1/9| | 1/10 1/10 1/10{ [1/16 1/8 1/16
1/9 1/9 1/9] | /10 1/5 1/10 | 1/8 1/4 1/8
1/9 1/9 1/9] [1/10 1/10 1/10] {1/16 1/8 1/16

Zak,D)=1

V(m,n) V(m,n)-LPF
—_—

Spatial Averaging

SPATIAL LOW PASS FILTER

27



3.2.2 Image Sharpening

The unsharp masking technique is used commonly in the printing industry
for crispening the edges. A signal proportional to the unsharp, or low-pass filtered.
version of the image is subtracted from the image. This is equivalent to adding the
gradient, or a high-pass signal, to the image. In general the unsharp masking
operation can be represented by

v(mn) = u(mn) - g(mn)
where u(m,n)>> 0 and g(m,n) is a suitably defined gradient at (m,n).

These accenuate high frequency details of an image. While leaving the low

frequency contents intact. In this process high frequency is alone highlighted.

Masks applied are

-1 -1-1]]10 -1 0 1 21
-1 9 —-1||-1 5 =1|{-2 5 =2
-1 -1-11]l0 -1 0 1 -2 1

Difference between centre element and all the other elements are high.
hence, when it is applied to images, it produces a high pass effect. Sum of all the

elements in the matrix is unity.

| A% -HPF
V(m,n) | Low Pass Filter —# + ﬂ)——b

SPATIAL HIGH PASS FILTER

28



3.2.4 Image segmentation

Segmentation is the process that subdivides an image into constituent parts
or objects. Segmentation is one of the most important elements in automated image
analysis because it is at this stage that objects or other entities of interest are
extracted from an image for subsequent processing such as description of isolated

points, detection of lines and edges of the images.

wl w2 w3 x] x2 x3
wd w5 wb x4 x5 x6
w7 w8 w9 X7 x8 x9
Let wl,w2,w3.......... ,W9 represent the coefficients of a 3x3 mask shown

below in first fig 3.2.4a. Let x1,x2,x3,.....x9 represents the gray levels of the pixels

under the mask.

wl w2 w3 x]l x2 x3
wd w5 w6 x4 x5 x6
w7 w8 w9 x7 x8 x9
3 x 3 mask 3 x 3 1mage region

with grey level

X=wIxl +w2x2+ ... + w9x9
Image is transformed using mask and X is calculated.
a) Point Detection
The problem of detecting and then segmenting isolated points in an image
applies in noise removal and particle analysis. A basic mask is used for detecting

isolated points in an image is shown in Figure. The centre of this mask is moved

29



from pixel to pixel in an image. At each mask region we compute the sum of

product given by the equation.,

=-x] -x2 -x3-x4+8x5-x6-x7-x8-x9

-1 -1 -1
~1 -1 -1
—1 -1 -1

This mask is used for detecting isolated points different from constant
background. In practice when one is interested only in strong responses we say
that an isolated point whose intensity is significantly different from the
background has been detected if

Xl - T,

Where T is a nonnegative threshold.
b) Line Detection

Consider the mask shown in fig 3.2.4b below. if the first mask 1s moved
around an image, it will respond more strongly to line (one pixel thick) oriented
horizontally with constant background, the maximum response will result when

the line 1s passed through the middle row of the mask

-1 -1 -1 -1 -1 2 -1 2 -1 2 -1 -1
2 2 2 -1 2 -1 -12-1{]-1 2 -1
=1 -1 ~1 2 -1 -1 -1 2 -1|1-1 -1 2

The second mask responds best to lines oriented at 45 degrees; the third

mask to vertical lines and the fourth mask to lines in the -45 degree direction.

30



These directions can also be established by noting that the preferred direction of

each mask 1s weighed with a larger coefficient other than the possible directions.

Although point and line detection certainly are elements of any discussion
on segmentation, edge detection is by far the most common approach for detecting
meaningful discontinuities in gray level. The reason for this is that isolated points
and thin lines are not frequency occurrences in most applications of practical

interest.

We define edge as a boundary between two regions with relatively distinct
gray level properties. We assume that the regions in question are sufficiently
homogeneous so that the transition between two regions can be described on the

basis of gray level discontinuities alone.

Basically the idea underlying most edge detection techniques is the
computation. An edge (transitions from dark to light) is modeled as ramp rather
than as an abrupt change of gray level.

This model is representation of the fact that edges in digital images are
generally slightly blurred as a result of sampling. The magnitude of the first

derivative can be used to detect the presence of an edge.

31



The gradient of an image f(x,y) at location (x,y) is defined as the two
dimensional vector.

Gy 815y

G[f(x,yn{ﬂ _ {@%x

For an edge detection we are interested in the magnitude of this vector,

generally simply refered as gradient and denoted by G/fix,y)/
where G[F(x,y)]= [[Gx * Gx+ Gy * Gy]

This quantity is equal to the maximum rate of increase of f(x,y) per unit
distance in the direction of G. it is common practice to approximate the gradient
by absolute values:

Glftxy)] = \Gx| + 1Gy

Computation of gradient is based on obtaining the practical derivaties
51/6x and 8f/5y at every pixel location. Pixels in 3x3 neighbourhood location

about point (x,y) can be formulated as follows. Consider the subimage area shown
in figure, where X5 represents the gray levels of eight neighbourhoods of ( X,V
We define the component of gradient in x-direction as

Gx = (X7+2X8+X9) - (X1-2X2- X3

and in y-direction Gy = (X3+2X6+X9) - (X1-2X4 1 X7)



X1l X2 X3

X4 X5 X6
X7 X8 X9
(a)

-1 -2 -1{ [-101
00 0 [202
1 2 1| (2101
(b) (c)

(a) 3x3 Image Region
(b) Mask used to compute at the center point of 3x3 region.

(c) mask used to compute Gy at the center point of 3x3 region.

The responses of the two sobel operators at any point (X,y) are combined
using equations written previously, to obtain gradient at that point. Convolving
these masks with an image f(x,y) yields the gradient at all points in the image. the

result is referred to as gradient image(edge detected image).

Compass gradient masks

These were developed by taking into consideration all the possible
orientations of an edge in a discrete image. Thus instead of utilizing just two
masks as in the previous two approach, eight masks are used, each providing an

edge strength along one of the eight possible directions of the compass as shown in

33



COMPASS DIRECTIONS

N
2
Nw | 3 A !
w < >
4 0
NW
5 v ;
6
s
Fig

NE

SE

34




Fig 7. Four different types of masks of this type are presented next. These were

developed on the basis of some underlying data model for the edges in the image.

Prewitt Operators

Two types of compass operators according to prewitt:

Type 1:
WO
W4
Type 2:
WO

111 111 11 -1 I —1 1]
1 2 1 [ W, =1 21| W,=[1 22 W3—1—2—11§
1 -1 -1 1 -1 -1 11 -1 11 1
1 -1 -1 1-11 11 1 11 1
1 2 1| W= 21| We=o1 2 1({W,5921 22
11 1 111 11 ] -]
1 1 1 11 0 10 -1 0 -1 -1
0 0 0[W,=[1 0 -1{W.=|10=1|W.=|1 0 -
1 -1 -1 0 -1 -1 10— 11 0
1 -1 -1 1 -10 101 0 1 1
0 0 0[We=[-1 0 1{W,=|-101|{W,=|_1 ¢ i
1 1 1 0 1 1 101 1 -190

With type 2 you will only need to use the first

symmetry between them and the last four.

35

maks because of the



Sobel Compass Operator

This is given by the following eight masks:

1 2 1 21 0 10 -1 0 -1 -2
W=0o o oW, =1 0 —-1|W,=]20-2]W, 10—11
-1 2 -1 0 -1-2 10 -1 2 1.0
-1 -2 -1 2 -10 -101 0 12
W=l0o 0 0|Ws[-10 1|W=202W~=|-1 0 1
1 2 1 0 12 -1 01 -2 10

and again because of the symmetry we need to use only the first four masks.

KIRSH COMPASS OPERATOR

This was proposed as homogeneity operator. it is sensitive to small changes

in gradients and generally tends to the superior in comparison trails to the methods

previously described, The eight masks are as follows:

=(-3 0 -3

-5 5 5

-3 -3 -3

-1 -2 -1
0 0 O

1 2 1

5 5 3
5 0 3
-3 -3 3
-2 -10
-1 0 1
0 1 2

5 -3 -3 -3 =3 -3
50 3W&=[5 0 3
5 -3 -3 5 5 -3
-1 01 0o 2
202 W =11 0 |
-1 01 -2 1 0

For the compass operators the edge-strength image can be calculated from

36




v(1,)) = max {|Yo(i,)ll,......Yr(1,j)|} Where Yo, Y1, etc.., are the cross

correlations of masks Wo, W1, etc, with the image.

3.3 Geometric Process

In this process positions and arrangements of pixels are manipulated.
Applying geometric process to image sometimes results in loosing the one to one
pixel correspondence between source and destination. In geometric process, one to
one mapping of source to destination pixel mapping is further complicated because
it must generally be performed from the destination image perspective instead of

from the source image perspective.

3.3.1 Rotation

The rotation geometric process allows an image to be rotated about its
center point through any arbitrary angle specified. A complete image is rotated by
separately rotating each pixel that makes up the image. The equations which
govern the transformation of the location of the pixel of the source image ('x old. y
old") into its new rotated location in the destination image ("'s new, U new:) are as
follows:

Xoew = Xog ¥ Cos (Angle) + Y, * Sin (Angle)

Y o = Yoo * Cos (Angle) - X, * Sin (Angle)

old



3.3.2 Image Mirroring

It 1s the rearrangement of pixels so that image appears as if it is viewed
through certain angle. Vertical mirroring generates mirror in vertical direction SO
that image looks from bottom to top instead of top of bottom. Horizontal muroring
generates mirror in horizontal direction so that image is viewed from right to left
instead of viewing from left to right. No complications are encountered n
application of the mirror function because of the maintenance of the one-for-one
mapping between source and destination pixels. For this reason neither aspect ratio

nor interpolation issues need to be considered.

3.4 Frame Process
In the process two different images are considered. This process 1s used for
comparing two images. For instance if two images are subtracted and the resujt 1S

zero, then the images are identical. Attempt has been made to implement morphing

in 18 type of process

In this process one image is made to disappear slowly and simultaneously
another image is made to appear. This process is done in two-dimensional

diagrams like ellipse, circle etc..

38



Chapter 1V

Applications




4. APPLICATIONS

Digital image processing has a broad spectrum appliceﬁion 1s, such as
* Remote sensing via satellites and other space crafts,
* Image transmission and storage for business applications,
* Medical processing,
* Radar and Sonar,
* Forensic science

* Acoustic 1mage processing

* Robotic and automated inspection of industrial process. Images acquired
by satellites are useful in

Tracking earth resources, Geographical mapping, Prediction of agricultural
crops, urban growth, Weather, Flood and fire control and many other

environmental applications.

Space image include recognition and analysis of objects contained in

images obtained from deep space probe missions.

Image transmission and storage applications occur in broadcast television.
teleconferencing, transmission of facsimile over computer networks. closed circuit

television based secutiry monitoring system, and in military communications.



In medical applications one is more concerned with processing of chest
X-rays, cineangiograms, projection images of transaxial tomography, and other
medical images that occur in radiology, nuclear magnetic resonance (NMR). and
ultrasonic scanning. These images may be used for patient screening and

monitoring or for detection of turmours or other disease in patient.

Radar and sonar images are used for detection and recognition of various

types of targets are in guidance and maneuvering of aircraft or missile systems.

In forensic science is used in finger print analysis, Analysis of blood marks,
Character recognition, Analysis of culprit profiles, reconstruction of crime scenes,

etc.

There are may other applications ranging from robot vision for industrial
automation to image synthesis for cartoon masking or fashion design, In other

8words, whenever a human or a machine or any other entity receives data of two

or more dimensions, an image is processed.

40



Chapter ¥

Software Implementation




5. SOFTWARE IMPLEMENTATION

VIDEO MODE
Video Graphic Adapter (VGA)

The VGA specification (Table 8) includes all video modes available with
MDA, CGA and VGA. When displaying in the 200-line modes, VGA double
scans each line. This makes each pixel twice as tall as it would be in CGA or low
scanning makes the image sharper, but also changes the aspect ratio. Drawings
created on a CGA screen will appear distorted on a VGA system operating in

exactly the same video mode.

As for performance, a key new feature in VGA is its connection between
the controller card and the monitor. CGA and EGA displays have a digital

connection. VGA has an analog connection allowing it to offer for more colors.

The frame buffer contains pointers to colors stores in a RAM look up table
in a converters (DACs) to convert the digital information (the color code mto an

analog signal for the monitor.

41



Higher the resolution (and the more frame memory used for pixel data. the
fewer colors that are possible. In its 640 x 480 mode, an 18-bit VGA used four
bits per pixel for color information, allowing it to address (and dispiay 16 colors
(2%). In the 320 x 480 mode, however, the color information for each pixel is eight

bits deep, allowing 256 (2°*) simultaneous colors.

42



VGA COLOURS

C3 C2 Cl1 Co COLOUR
0 0 0 0 Black

0 0 0 1 Blue

0 0 1 0 Green

0 0 1 1 Cyan(Blue Green)
0 1 0 0 Red

0 1 0 1 Brown

0 1 1 1 White

1 0 0 0 Dark Gray

1 0 0 1 Light Blue

1 0 1 0 Light Green

1 1 0 0 Light Red

| 1 0 I Light Magneta

1 1 1 0 Yellow

1 1 1 I Intensified White

Note: Bit planes Co, C1, C2 and C3 are blue, green, red, and intensified pixeis.
respectively.

43



VGA CHARACTERISTICS

BIOS |RESOLUTION| COLOURS TEXT/ CGA EGA

MODE GRAPHICS
0 40 x 25 16 8 x 8 text X X
0* 40 x 43 16 8 x 14 text X
0* 40 x 50 16 9 x 16 text X
1 40 x 25 16 8 x 8 text X
1* 40 x 43 16 8 x 14 text X
I* 40 x 50 16 9 x 16 text
1* 80 x 25 16 8 x 8 text X X
2 80 x 43 16 8 x 14 text X
2% 80 x 50 16 8 x 16 text
3* 80 x 50 16 9 x 16 text
3 80 x 25 16 8 x 8 text X X
3% 80 x 43 16 8 x 16 text X |
4 320 x 200 4 graphics X X
5 320 x 200 2 graphics X X :
6 640 x 200 2 graphics X X
7 80 x 25 0 9 x 14 text X
7 80 x 25 0 9 x 16 text 5
D 320 x 200 16 graphics X —
E 640 x 200 4 graphics X ;
F 640 x 350 graphics- X ‘:
10 640 x 350 16 graphics X
1 640 x 480 2 graphics :
12 640 x 480 16 graphics
13 320 x 200 256 graphics

Text mode with 350 vertical lines
Text mode with 400 vertical lines

44



ALGORITHMS

1. Negation
1. Initialise graphics
2. Read input image array
3. For y=0 to height
4. For x= 0 to width, begin
5. Get image (x,y)
6. Subtract it from 255
7. Plot image
8. End graphics
This function alters all the bits in the image i.e., all "1's are converted into

"0's and all "0's are converted into '1'.

2. Color Detection
1. Intialise graphics
2. Get color value
3. For 1=0 to height
4. For j=0 to width, begin
5. Get image value

6. It image value=color, plot at location (i,j)



7. If image value is not equal to color, blacken that location (i.j)
8. Close graphics
This algorithm detects a particular color, but this does not filter the

percentage context of that color in all the other colors.

3. Histogram
1. Intialise graphics
2. Reset all the elements of array of size 255 ie[255]=0
3. For 1=0 to height
4. For j= 0 to width, begin
5. Get value of image at location (i,j), say x
6. Increment value at x™ position in the array H[255]
7. Plot a graph with 0 to 255 in x axis and the value of H[x] s y axis
8. Close graphics
Histogram is used in analyzing the density of colors is that particular 1mage,

it gives a brief idea about contrast of that image.

4. Smoothening By Averaging
1. Intialise graphics and sum=0

2. Read input image array

46



3. For y=0 to height

4. For x=0 to width, begin

5. Get image (x,y)

6. Fori=-1 to +1

7. For j=-1to +1, begin

8. Sum = Sum +image(i,j)

9. Plot sum at (x,y)

10. End graphics

The function smoothes the image so that image will have uniform

variations. Non-uniformities are reduced.

S. Median
1. Intialise graphics
2. For i=0 to height
3. For j=0 to width
4. For K=0 TO §
5. For m=j-1 to j+1
6. For m=i-1 to 1+1, begin
7. Sort image (m,n) and store it in array of size a ie a[9]

8. Plot a[5] at location (1,j)

47



9. End graphics.
This function removes very low and very high noises. This algorithm,

when applied to image repeatedly it gives a pleasent appearance to the image.

6. Edge Detection Using Gradient Operators
1. Intialise graphics
2. Intialise two masks one for x direction and another for y direction.
3. for 1 =0 to height

4. for j = 0 to width, begin

5. Move mask over the image elements and calculate the sum of all
products of mask element and corresponding image element as sum.

6. Move mask over the image of mask element and corresponding image
element as sum 2.

7. Value = J/Sum12 + Sum?2?
8. Plot value at (1,3)

9. End graphics
This algorithm 1s based on differentiation i.e, by differentiating. constant

terms are eliminated and hence only the points having higher variations are

highlighted well.

7. Edge Detection Using Compass Operator

1. Intialise graphics

48



2. Initialise eight masks so that they are oriented in eight different
directions.

3. For 1=0 to height
4. for j=0 to width, begin
5. Apply each mask separately at the location (i,j).

6. A value is calculated by summing all the products of mask element and
corresponding image element.

7. Find the maximum value obtained from applying all masks.

8. Close graphics

This operator deals with eight directions and the direction is which edge 1s
very narrow 1s chosen to plot. Instead of 8 masks if only one mask is applied then
the above funciton acts as a Filter. According to the mask applied filter may be

high pass filter or low pass filter.

8. Rotation
1. Intialise graphics
2. Get the angle of rotation as
3. For 1=0 to height
4. For j=0 to width

5. Get pixel value as p

49



6. Find x=1 Cos + j sin

7. Find y=y cos +1sin

8. Put value p at location (x,y)

9. End graphics

In this process whole frame is moved through given angle. it gives different
views of an image buy at two dimensional level.
9. Mirror

1. Initialise graphics

2. Read the image array

3. Read the orientation of mirror

4. If orientation is horizontal do steps 6 through 8

5. If orientation is vertical do steps 9 through 11

6. For 1=0 to height

7. For j= width to 0, begin

8. Plot the image array, end graphics

9. For 1= height to 0

10. For j=0 to width, begin

11. Plot the image array, end graphics

This function places a mirror in two images appear as 1if they are mirror

1mages to each other.



Flow Chart




>

NEGATION

START

)

y

x=0 TO IMAGE LENGTH
y=0 TO IMAGE WIDTH

/

READ
IMAGE. I(x.y)

!

l

I(x.y)
=255-1(x.y)

y

DISPLAY
Ix.y)

/

END )

51




COLOUR DETECTION

-

START

D

,

GET THE
COLOR

J/

A

x=0 TO IMAGE LENGT;N
—_’@ TO IMAGE WIDTH 2%

/

READ

IMAGE. I(x.y) /

|

NO

YES

PLOT

COLOR

52




HISTOGRAM

o

A4

INITIALISE
H(255)=0

o x=0 TO IMAGE LENGTH
" y=D TO IMAGE WIDTH

i=1i.j)

HM=H{DH+1

x=0 to 255

l

PLOT HISTOGRAM

WITH x IN X axis
and HX) in y axis

y

C END U




SMOOTHENING BY AVERAGING

o

, x=0 TO IMAGE LENGTH

y=0 TO IMAGE WIDTH

READ IMAGE
I(x.y) AND
NEIGHBOURHOOD

y

FIND SUM
OF NEIGHBOURHOOD
ELEMENTS

SUM=SUM/9 ’

y

I

PLOT SUM
AT POINT (x.y)

Q END

N




MEDIAN

START \

!

v

C
_<

x=0 to
Imcge length
to
|mcge length

POSITIO N x.y)

f NEIGBOURHOOD

VALUES

NEIGHBOURHOOD

SORT
VALUES

REPLACE
VALUE AT
DESTINATION

PLOT
(x.y)

END }

n
&)




GRADIENT OPERATOR

(o

v

Initialise
2 masks g(2)

v

X=0 TO
image length

y=0 to
image length

g(D=mask fn(g(1))

y

g(@)=mask fn(g(2))

4

o= /912"'922

END

56




COMPASS OPERATOR

o

v

Initialise
8 masks m(8)=0

y

X=0 to
image iength
y=0 to
Image length

l

I=0 to 7

y

mMmax=maximum

of g(8)

gh=mask fn(m))

Plot
max

S /

End

(9]
-3




FILTERS

START

v

initialise
mask

x=0 to
image length

y=0 to
image length

g=mask fn{x)

END >

58




MASK SUBROUTINE

Mask fn(c)

i=0 to 9

Multiply mask

elements with

corresponding
neighbourhood elements

g=Add all products

C RETURN & >




ROTATION

(o)

Y

___,@TO IMAGE LENGTH

y=0 TO IMAGE WIDTH

GET
IMAGE
IX.Y)

new y = (oldy)cosO
+(oldx) sin)

new x = (oldy)cosD
(oldy)sin0

A 4

PLOT I(x.y)
at (new x, new y)

D

60




MIRROR

o)

x=0 TO IMAGE LENGTH
y=0 TO IMAGE WIDTH

READ POSITION
.y

VERTICAL

v

B

x=0 t
image Ien h
y—lmcge width

HORIZONTAL

A4

Plot
image

END

x= image length
to o
> y=0 to

image width

/ Plot

/ image

END )

61




Source Lode




GENERATING GRAY PALLETTE

/* Program for generating 256
gray-levels that can be used
as a palette for displaying
8-bit gray-level images on the
VGA screen. */

#include <stdio.h>
#include <conio.h>

main()
{
int 1,color,r,g.b;
float y,scale;
FILE *fptr,*fptrl,

clrser();
fptr=fopen("BWPAL DAT" "wb");
scale=255.0/63.0;
for(i=0;1<256;i++)
{
for(r=0;r<64,r++)
for(g=r-2;g<(r+2),g++)
for(b=r-2;b<(r+2);b++)
¢
1f{(g<0)||(b<0)) continue;
y=0.59*(float)g+0.30*(float)r+0.11*(float)b;
color=(int)(y*scale+0.5);
if{color==1)
{
putc(r, fptr);
putc(g,fptr);
putc(b, fptr);
if{ color==255) break;
goto st;
}
§
st:
}
fclose(fptr),
fclose(fptrl);
getch();

N
[A]



KIRSH'S EDGE DETECTION

# include <graphics.h>
# include <stdlib.h>
# include <stdio h>
# include <conio.h>
# include <math h>
# include <alloc. h>

# define x1 image[i-1][j+1]
# define x2 image[i][j+1]

# define x3 image[i+1][j+1]
# define x4 image[i-1][j]

# define x5 image[i+1][j-1]
# define x6 image[i+1][j]

# define x7 imagel[i-1][j-1]
# define x8 image[i][j-1]

# define x9 image[i+1][j+1]
# define x 275

# define y 375

unsigned char **image;
nt ij;

long int process(int M[8][9])
{

long int g;

unsigned max;

int b[9];

for(int k=0;k<8;k++)

{ b[k]=M[k][0]*x1 + MIK][17*x2 + M[Kk][3]*x3 + M[k][4]*

x4 + M[K][5]#x5 ~

MIK][6]*x6 + M[K][7]*x7 + M[K][8]*x8 + M[k][8]*x0-

blk]=abs(b[k]);

max=b[0];
for(int n=0;n<9:n++)
{ if(b[n]>max) max=b[n];
§
return(max);
}
main()
{



long int g;
int gd=DETECT,gm;
FILE *fp;

int M[8][9]={ {5,5,5,-3,0,-3,-3,-3,-3},
{5,5-3,5,0,-3,-3-3.31,
{5,-3,-3,5,0,-3,5,-3,-3},
{-3,-3,-3,5,0,-3, 5, 5.-3}.
{-3,-3,-3.-3,0,-3, 5,5, 51,
{-3,-3,-3,-3,0, 5,-3,-3, 51
{-3,-3,5,-3,0,5,-3,-3, 5}
{-3,5,5,-3,0,5-3,-3-3}

35
initgraph(&gd,&gm,"c:\\bc4\\bgi");
fp=fopen("c:\\image.dat","r");

/I ALLOCATE BUFFER
image = (unsigned char ** )farmalloc( y*sizeof(unsigned char *);
if(image==0)
{ printf("Unable to allocate image\n");
exit(0);
b
for(i=0; i<y;i++)
{ image[i]=(unsigned char *) farmalloc(x
* sizeof (unsigned char));
if(image[i]==0)

{ printf{("\nUnable to allocate image[%d]".i);
exit(0);
}
}
for(i=375;i>0;--i)

for(j=0;j<=275;++))

{ image[i][jl=getc(fp);
putpixel(j,i,image[i][j]);
printf("%d %d\n" i,j);

}
for(i=375;i>0;--1)
for(j=0:j<=275;++j)
{ g=process(M);
putpixel(j+250,i,g):
;
getch();
closegraph();

}



FILTER

# include <graphics.h>
# include <stdlib.h>

# include <stdio.h>

# include <conio.h>

# include <math h>

# define X 100

# define Y 100

# define lim 10

# define x1 image[i-1][j+1]
# define x2 image[i][j+1]

# define x3 image[i+1][j+1]
# define x4 image[i-1][j]

# define x5 image[i][j]

# define x6 image[i+1][j]

# define x7 image[i-1][j-1]

# define x8 image[i][j-1]

# define x9 image[i+1][j-1]

#define m1 m[0]
#define m2 m[1]
#define m3 m[2]
#define m4 m[3]
#define m5 m[4]
#define m6 m[5]
#define m7 m[6]
#define m8 m[7]
#define m9 m[8]
#define x 640
#define y 480
unsigned char **image;
int ij;
main()
{
int gd = DETECT, gm;
long int process(int*);
initgraph(&gd, &gm, "c:\e\Wbgi");
image = (unsigned char ** Yfarmalloc( y*
sizeof(unsigned char *)):
if(image==0)
{ printf("Unable to allocate image\n");

65



exit(0);
}

for(i=0; i<y;i++)
{ image[i]=(unsigned char *) farmalloc(x
* sizeof (unsigned char));
if(image[i]==0)

{ printf("\nUnable to allocate image[%d]".i);
exit(0);
b
}

int m{9]={-1,-1,-1 ,-1,9,-1,-1,-1 -1} /*HPF 1%/

for(i=0;i<=X-1 ;i)
{ for(j=0;j<=Y-1;j++)
a[i][j]=getpixel(i,j);

long int £.8X,8V;
for(i=0;i<=3 75;1++)
{ for(int J0,j<=275j++)

g=process(m);
putpixel(i,j.g):

1
5

closegraph();
}

long int process(int *m)
long int 8.8X,8V;
g=mI*x1 + m2*x2 + m3*x3 + m4*x4 +
m5*x5 + m6*x6 +m7*x7 Tm8*x8 + m9*x9:
putpixel(i,j,g);
getch();



NEGATION
# include <stdio.h>
# include <conio.h>
# include <graphics.h>
# include <math.h>
# include <process.h>
# include <alloc.h>
# define x 640
# define y 480
void main()
{
int 1,),gd=DETECT,gm;
unsigned char **image;
image = (unsigned char ** )farmalloc( y*sizeof{unsigned char *));
if(image==0)
{ printf("Unable to allocate image\n");
exit(0);
}
for(i=0; 1<y;i++)
{ image[i]=(unsigned char *) farmalloc(x
* sizeof (unsigned char));
if(image[i]==0)

{ printf("\nUnable to allocate image[%d]" i),
exit(0);
}

}
char infile[ 14];

FILE *fp;
initgraph(&gd,&gm,"c:\\bc4\\bin");
fp=fopen("c:\\image.dat" "r");
for(i=375;i>0;--i)
for(j=0;j<=275,++})
{  image[i][j]=fgetc(fp);
putpixel(j,i,image[i][j]);
}

tclose(fp);
tor(1=375;1>0;--1)
for(j=0;j<=275;+1))
{
putpixel(j+300,1,~(imagel[i][j]));
!
closegraph();
}



COLOUR DETECTION

# include <stdio .h>
# include <conio.h>
# include <graphics.h>
# include <math. h>
#include <process.h>
# include <alloc.h>
# define x 640
# define y 480
void main()
{
int 1,J,gd=DETECT,gm;
unsigned char **image,
image = (unsigned char ** )farmalloc( y*sizeof(unsigned char *));
if(image==0)
{ printf("Unable to allocate image\n");
exit(0);
}

for(i=0; i<y;it++)
{ image[i]=(unsigned char *) farmalloc(x
* sizeof (unsigned char));
if(image[i]==0)

{ printf("\nUnable to allocate image[%d]",i);

exit(0);
}
b
int ch;
char infile[ 14];
FILE *fp;

initgraph(&gd,&gm,"c:\\bc4\\bin");
fp=fopen("c:\\image.dat","r");
for(i=375;1>0;--1)
tor(j=0;j<=275.++})
{  image[i][j]=fgetc(tp);
putpixel(j,i,imagefi][j]);
)
fclose(fp);,
outtextxy(350,180,"Enter your choice "),
gotoxy(40,1);

n8



printf("BLACK=0 BLUE =1 GREEN=2");
gotoxy(40,2);
printf("CYAN =3  RED =4 MAGENTA=5");
gotoxy(40,3);
printf("BROWN=6  LIGHTGRAY=7 DARKGRAY=8");
gotoxy(40,4);
printf("LIGHTBLUE=9 LIGHTGREEN=10 LIGHTCYAN=11 ")
gotoxy(40,5);
printf("LIGHTRED=12 LIGHTMAGENTA=13 YELLOW=14 ")
gotoxy(40,6);
printf("WHITE=15 ");
gotoxy(65,12);
scanf("%d" &ch);
for(i=375;1>0;--1)
for(j=0;j<=275;++j)
{ if((image[i][j]%16)==ch) putpixel(j,i,ch);

else putpixel(j,i,0);
b
outtextxy(50,400,"after processing");
getch();
closegraph();

}

69



HISTOGRAM

# include <stdio.h>
# include<iostream.h>
# include <conio.h>
# include <graphics.h>
# include <math.h>
# include <process.h>
# include <alloc.h>
# define x 640
# define y 480
void hist(void)
{
int 1,J,gd=DETECT,gm;
int hist[255] k,r,data;
char infile[14];
FILE *fp;
unsigned char **image;
image = (unsigned char ** )farmalloc( y*sizeof(unsigned char *));
if(image==0)
{ printf("Unable to allocate image\n");
exit(0);
f

for(i=0; i<y;i++)
{ image[i]=(unsigned char *) farmalloc(x
* sizeof (unsigned char));
if(image[i]==0)

{ printf{("\nUnable to allocate image[%d]" i);
exit(0);

}

b
initgraph(&gd,&gm,"c:\\bc4\\bin");
tp=fopen("c:\\image dat","r");
for(i=375;1>0;--1)
for(j=0;j<=275;++j)

{  image[i][j]=fgetc(fp);
putpixel(j,i,image[i][j]);
b
tclose(fp);

outtextxy(300,200,"Press any key to plot histogram - plot"):

70



getch();
cleardevice();
fp=fopen( "c:\\display.dat","r"):
outtextxy(200,460,"Histogram plot"):
for(k=0:k<=255 ;k++)
hist[k]=0:
for(i=0;i<=375;++)
for(j=0;j<=275:++)
{ data=imagel[i][j];
hist[data]++;

for(kZO;k<=255;k++)

{
r=hist[k];
for(i=r;i>=1;--i)
bar(1 OO+k,440-i, 1 02+k,440);

}

{
void main()
{
hist();
getch();
h

71



SMOOTHENING

# include <stdio.h>
# include <conio.h>
# include <graphics.h>
# include <math h>
# include <process.h>
# include <alloc.h>
# define x 640
# define y 480
# define x1 image[i-1][j+1]
# define x2 imagel[i][j+1]
# define x3 image[it1][j+1]
# define x4 image[i-1][j]
# define x5 image[it+1]{j-1]
# define x6 imageli+1][j]
# define x7 image[i-1]{j-1]
# define x8 imageli]{j-1]
# define x9 imagefi+1][j+1]
void main()
{
int 1,j,gd=DETECT,gm;
unsigned char **image;
image = (unsigned char ** )farmalloc( y*sizeof(unsigned char *));
if(image==0)
{ printf("Unable to allocate image\n");
exit(0);
f
for(i=0; 1<y;1++)
{ image[i]=(unsigned char *) farmalloc(x

* sizeof (unsigned char));
if(image[i]==0)

{ printf("\nUnable to allocate image[%d]".i);

exit(0);
3
. }
it g;
char infile[14];
FILE *fp;

initgraph(&gd,&gm,"c:\\bc4\\bin"),

N |
)



fp=fopen("c:\\image. dat","r");
for(i=375:1>0;--1)
for(j=0,j<=275;++))
i image[i][j]=fgetc(fp);
putpixel(j,i,imagefi][j]);
}
fclose(fp);
for(i=375;1>0;--1)
for(j=0;j<=275;++))
{ g=(x1+x2+x3+x4+x5+x6+x7+x8+x9)/9 ;
putpixel(j+300.,i,g);
}

getch();
closegraph();

;



MIRRORING
# include <stdio.h>
# include <conio.h>
# include <graphics.h>
# include <math h>
#include <process.h>
# include <alloc.h>
# define x 640
# define y 480
void main()
{
int 1,,gd=DETECT, gm;
unsigned char **image;
image = (unsigned char ** Mfarmalloc( y*sizeof(unsigned char ),
if(image==0)
{ printf("Unable to allocate image\n");
exit(0);
H
for(i=0: 1I<y;i++)
{ image[i]=(unsigned char *) farmalloc(x
* sizeof (unsigned char));
if(image[i]:=0)
{ printf{"\nUnable to allocate image[%d]" ):
exit(0);
!

char infile[ 14];

FILE *fp;

initgraph(&gd,&gm, "c:\\bc4\\bin");

fp=fopen( "c:\\image dat", ),

for(i=3 75:1>0;--1)

for(j=0;j<=275;++j)

{ image[i][j]=fgetc(fp);
putpixel(j,i,image[i][j]);

fclose(fp);
for(i=375:i>0;--j)
for(j=0;j<275;++j)

s

[

putpixel(5 SO—j,i,image[i] liD:
}

getch();
closegraph();
}



ROTATION
# include <stdio.h>
# include <conio.h>
# include <graphics.h>
# include <math h>
# include <process.h>
# include <alloc.h>
# define x 640
# define y 480
void main()
{
int 1,j,gd=DETECT,gm,cal;
unsigned char **image;
image = (unsigned char ** )farmalloc( y*sizeof(unsigned char *)),
if(image==0)
{ printf("Unable to allocate image\n");
exit(0);
}

for(i=0; 1<y;1++)
{ image[i]=(unsigned char *) farmalloc(x
* sizeof (unsigned char));
if(image[1]==0)

{ printf("\nUnable to allocate image[%d]",1);

exit(0);
}
}
float ang,in,jn;
char infile[14];
FILE *fp;

initgraph(&gd,&gm,"c:\\bc4\\bin");
tp=fopen("c:\\image.dat","r");
for(i=375;1>0;--1)
for(j=0;<=275;++j)
{  image[i][j]=fgetc(fp);
putpixel(j,i,imagef[i][j]);
b
outtextxy(300,390,"Enter angle");,
gotoxy(50,25);
scanf("%f",&ang);
ang*=(3.14/180.0);
cleardevice();
rewind(fp);

~J
(%2



for(i=375;i>0;--1)
for(j=0;j<=275;+4j)

{
in=i*cos(ang)+j*sin(ang);
jn=j*cos(ang)-i*sin(ang);
putpixel(jn+450,in,image[i][j]);
h

outtextxy(300,420," After rotating");
getch();

closegraph();
}

~1
IRy



DISPLAYING BLACK & WHITE MAGE
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <conio.h>
#include <math. h>
#include <io.h>
#include <ctype.h>
#include <graphics.h>

#ifndef DAC256

#define _DAC256

typedef unsigned char DacPalette256[256][3];
#endif

extern int far _Cdecl Svga256_fdriver(];

/* These are the currently supported modes */
#ifndef SVGA320x200x256

#define SVGA320x200x256 0 /* 320x200x256 Standard VGA */
#define SVGA640x400x256 1 /* 640x400x256 Svga/VESA */
#define SVGA640x480x256 2 /* 640x480x256 Svga/VESA */
#define SVGA800x600x256 3 /* 800x600x256 Svga/VESA */
#define SVGA1024x768x256 4 /* 1024x768x256 Svga/VESA *,
#define SVGA640x350x256 5 /* 640x350x256 Svga */

#define SVGA1280x1024x256 6 /* 1280x1024x256 VESA */

#endif

#itndef XNOR_PUT

#define XNOR _PUT 5
#define NOR_PUT 6
#define NAND PUT 7
#define TRAN S_COPY PUTS
#endif

void display(void);

int prompt(void);

void clear_scr(void);

void del_chr(int x,int y):

FILE *fptrc:

int huge DetectVGA256(void);

void getvgapalette256(DacPalette2 56 *);



void setvgapalette256(DacPalette256 *);

int x,y,image_length,image_width,xstart,ystart;
int 1,],d,th,tw,W;

unsigned char ch;

unsigned char color;

char file_name[80];

float nsq;

FILE *fptri;

void main()
{
int graphdrv;
int graphmode;
int GA&=DETECT,Gm;
int ch;
int xasp,yasp,
DacPalette256 a,b;

clrser();
installuserdriver("Svga256" DetectVGA256),
nitgraph(&Gd.&Gm,"");
getvgapalette256(&Db);
fptrc=fopen("bwpal dat","rb"),
if(fptrc==NULL)
{
printf("\n Unable to locate the gray level pallette.");
printf{"\n Install \"bwpal dat\" in the same directory as"),
printf("\n this program.");
exit(1); '
}
for(1=0;1<256;1++)
{
a[1}[0]=(char)getc(fptrc);,
a[1]{ 1]=(char)getc(fptrc);
a[i][2]=(char)getc(fptrc);
}
fclose(fptre);
setvgapalette256(&a);,
settextstyle(TRIPLEX FONT,HORIZ DIR,1);
setcolor(200);
th=textheight("k");
tw=textwidth("k");
W=getmaxx();



getaspectratio(&xasp,&yasp);
setaspectratio(xasp,yasp);
/* Displaying image. */
while(1)
{
i=prompt();

if(i==1)
{
clear_scr();
display();
fclose(fptri),
outtextxy(1,1,"Press any key to continue. ESC to exit.");
ch=getch();
if{ch==27) break;
j
else

{
outtextxy(1,1.3*th,"Press any key to continue. ESC to exit.");
ch=getch();
clear scr();
if{(ch==27) break;
}

clear scr(),

}

fclose(fptri);
setvgapalette256(&b);
graphdefaults();
closegraph();

}

void clear_scr()
{
int poly[8];
poly[0]=0;
poly[1]=0;
poly[2]=W;
poly[3]=0;
poly[4]=W;
poly[5]=2.5%th;
poly[6]=0;
poly[7]=2.5*th;

79



setcolor(0);
setfillstyle(SOLID FILL,0);
fillpoly(4,poly);
setcolor(200);

}

void display(void)
{
clear scr();
for(y=0; y<image length; y++)
for(x=0; x<image width; x++)
{
color=getc(fptri);
putpixel(x+xstart,y+ystart,~color);
j
;
int prompt(void)
{
char f[2];
int k,i,x,y;

outtextxy(1,1,"Enter name of file -->"):
k=23*tw;
1=0;
y=1;
x=k:
while(1)
{
fl0]=(char)getch();
if(fl0]==27) return(0);
f1]="0",
if(f{0]==13) break;
file_name[i]=f[0];
if((f{0]==0)[/(f[0]==8))
{

if{(ff0]==0)
if(getch()!=75) continue;
I--
k-=tw:
x=k;
del chr(x,y);
continue;

}

1++;



outtextxy(k, 1,1);
k+=tw;
}
file name[i]="\0",
fptri=fopen(file_name,"rb");
clear_scr();
if(fptri==NULL)
{
clear scr();
outtextxy(1,1,"file does not exist.");
return O;
}
nsq=(float)filelength(fileno(fptri));
clear_scr();
outtextxy(1,1,"Is this a square image?");
while(((ch=tolower(getch()))!='y')&&(ch!=’n’));
f[0]=ch;
fl11=\0";
outtextxy(25*tw, 1,1);
switch(ch)
{
case 'y"
image_width=image§length=(int)sqrt((double)nsq);
break:
case 'n":
clear scr(),
outtextxy(1,1,"Enter image_width in pixels --> ")
x=32%tw;
image width=0:
while(1)
{
f{0]=(char)getch();
f11="0";
if(f[0]==13) break;
if((fl0]==0)/|(f]0]==8))
{

if(f{0]==0)

if(getch()!=75) continue:
image_width=image width/10:
X-=tw;
del_chr(xy);
f(x<(22*tw)) x=22%tw;
continue;

}

ow
RN



if{(fl0]<48)[|(f]0]>57))
{
del chr(x,y);
continue;
}
image width=image width*10+({f[0]-48);
outtextxy(x,y,f);
Xt=tw;

j

image_length=(int)(nsq/image width);

}

clear_scr();
outtextxy(1,1,"Enter x position --->");
x=22%tw;
xstart=0;
while(1)
{
fJ0]=(char)getch();
f[1]=\0",
if(fJ0]==13) break;
if((f{0]==0)||(fl0]==8))
{
if{f[0]==0)
if(getch()!=75) continue;
xstart=xstart/10;

X-=tw,

del chr(x,y);

f(x<(22*tw)) x=22*tw;

continue;

}
ig((f[0]<48)l}(f[0]>57))

del_chr(x,y);

continue;

j
xstart=xstart*10+({f]0]-48);
outtextxy(x,y,f);

X+=tw;
}
clear_scr();
outtextxy(1,1,"Enter y position --->");
x=22%tw;
ystart=0;



while(1)
{
fJ0]=(char)getch();
fl1]=\0";
if(f0]==13) break;
if((f01==0)I|(f[0]==8))

{
if(f10]==0)

if{ getch()!=75) continue;

ystart=ystart/10;

X-=tw,

del_chr(x,y);

f(x<(22*tw)) x=22*tw;

continue;

b
if((f10]<48)[|(f[0]>57))

{

del chr(x,y);

continue;

}
ystart=ystart*10+(f[0]-48);
outtextxy(x,y.f);

X+t=tw;
h

return 1;

j

void del_chr(int x,int y)
{
int poly[8];
poly[0}=x;
poly[1]=y;
poly[2]=x+tw;
poly[3]=y:
poly[4]=x+tw;
poly[S]=y+th;
poly[6]=x;
poly[7]=y+th;
setcolor(0);
setfillstyle(SOLID_FILL,0);

fillpoly(4,poly);
setcolor(200);

j
int huge Detect VGA256()



{
int Vid;

printf("Which video mode would you like to use? \n");
printf(" 0) 320x200x256\n");

printf(" 1) 640x400x256\n");

printf(" 2) 640x480x256\n");

printf(" 3) 800x600x256\n");

printf(" 4) 1024x768x256\n\n>");

scanf("%d",&Vid);

return Vid;

void getvgapalette256(DacPalette256 *PalBuf)

{
struct REGPACK reg;

reg.r_ax = 0x1017,
reg.r bx=0;
reg.r cx = 256,
reg.r_es = FP_SEG(PalBuf);
reg.r_dx = FP_OFF(PalBuf);
intr(0x10,&reg);

;

void setvgapalette256(DacPalette256 *PalBuf)

{
struct REGPACK reg;

reg.r_ax = 0x1012;

reg.r bx = 0;

reg.r_cx = 256,

reg.r_es = FP_SEG(PalBuf);
reg.r_dx = FP_OFF(PalBuf);
intr(0x10,&reg);



MEDIAN FILTER
# include <stdio. h>
# include <conio.h>
# include <graphics.h>
# include <math.h>
# include <process.h>
# include <alloc.h>
# define x 640
# define y 480
# define x1 image[i-1][j+1]
# define x2 image[i][j+1]
# define x3 image[i+1][j+1]
# define x4 image[i-1][j]
# define x5 image[i+1][j-1]
# define x6 image[i+1][j]
# define x7 image[i-1][j-1]
# define x8 image][i][j-1]
# define x9 image[i+1][j+1]
int 1j;
unsigned char **image;
void main()
{
unsigned process();
int gd=DETECT, gm,cal;
image = (unsigned char ** Yfarmalloc( y*sizeof(unsigned char )
if(image==0)
{ printf("Unable to allocate image\n");
exit(0);
j
for(i=0; i<y;i++)
{ image[i]=(unsigned char *) farmalloc(x

* sizeof (unsigned char)):
if{(image[i]==0)

{ printf{"\nUnable to allocate image[%d]" i);

exit(0);
J
}
unsigned long int £x,8vy,8;
char infile[14];
FILE *fp;

oo
Ji



initgraph(&gd,&gm,"c:\\bc4\\bin");
fp=fopen("c:\\image.dat","r");
tor(i=375;1>0;--1)
for(j=0;j<=275;++j)
{  imagel[i][jl=getc(fp);
putpixel(j,i,image[i][j]);
}

outtextxy(50,400,"Before processing");
outtextxy(350,400," After processing");

fclose(tp);
for(i=375;i>0;--i)
for(j=0;j<=275;++))

b[3]=x4;
b[7]=x8:

b[n]=b[n-1];
b[n-1]=t;

{
g=process();
putpixel(j+300,i,g);
3
§
getch();
closegraph();
;
unsigned process()
{ int b[9];
nt t;
b[0]=x1; b[1]=x2; b[2]=x3;
b[4]=x5; b[5]=x6; b[6]=x7;
b[8]=x9;
for(int m=0;m<9;m++)
{ for(int n=0;n<9;n-++)
1f(b[n-1]<b[n])
{ t=b[n];
}
H
return(b[S]);



READING BITMAP

#include<dos.h>
#include<graphics.h>
#include<stdio.h>
#include<string h>
#include<io.h>
#include<process.h>
#include<stdlib. h>
#include<conio . h>
#include<math.h>

struct head

{
char arrl;
char arr2;
long int size;
long int ul;
long int u2;
long int u3;
long int width;
long int height;
int u4;
int us;
5
struct head hi;

main()

{
int gd=DETECT, gm;

int 1,j;

detectgraph(&gd,&gm):

initgraph(&gd,&gm," ");
FILE *fp;

char bname[13];
settextstyle(0,0,3);
outtextxy(100,200,"Enter the file");
scanf("%s",bname);
if(fopen(bname, "r'"y==NULL)

{

printf{("no such file..");

exit(0);

}



fp=fopen(bname,"r");

fread(&h1 sizeof(struct head),1.fp);
cleardevice();

fseek(fp,1079,0),

int h,w;

unsigned char vall;

for(h=h1 height;h>0:h--)

{
for(w=0;w<h1. width;w++)
{
vall=fgetc(fp);
putpixel(w,h,vall);
§
}
- fclose(fp);
sleep(2);
closegraph();

88



EDGE DETECTION

# include <stdio h>
# include <conio.h>
# include <graphics.h>
# include <math.h>
# include <process.h>
# include <alloc.h>
# define x 640
# define y 480
# define x1 image[i-1]{j+1]
# define x2 image[i][j+1]
# define x3 image[i+1][j+1]
# define x4 image[i-1][j]
# define x5 image[i+1][j-1]
# define x6 image[i+1][j]
# define x7 image[i-1][j-1]
# define x8 image[i][j-1]
# define x9 image[i+1][j+1]
void main()
{
int 1,J,gd=DETECT,gm,cal;
unsigned char **image;
image = (unsigned char ** )farmalloc( y*sizeof(unsigned char *));
if(image==0)
{ printf("Unable to allocate image\n");
exit(0);
}

for(i=0; 1<y;i++)
{ image[i]=(unsigned char *) farmalloc(x
* sizeof (unsigned char));
if(image[i]==0)

{ printf("\nUnable to allocate image[%d]".i);

exit(0);
}
}
unsigned long int gx,gy,g;
char infile[ 14];
FILE *fp;

initgraph(&gd,&gm,"c:\\bc4\\bin");
tp=fopen("c:\\display.dat" "r");



for(i=0;1<325;++1)

for(j=0;j<=275;++})

{ imagel[i}[j]=fgetc(fp);
putpixel(j,i,image[i][j]);
}
fclose(fp);
cleardevice();
for(i=0;i<=325;++1)
for(j=0;j<=275;++))

{ gx=(x7+2*x8 +x4) - (x] + 2*x2 + x3);
gy=(x3 + 2*x6 + x4) - (x1 + 2%x4 + x7).
g=sqrt(gx*gx + gy*gy);
putpixel(i,},g);

getch();

e



Results. ..




Lonclusion




CONCLUSION

We have hereby successfully explored certain topics in this vast and ever
growing field of image processing. Algorithms relating to various image
processing techniques have been developed, studied and software has been

implemented in C language.

This is a topic of fundamental importance in image communications and

storage, thus project has paved us the way to enter into this field.

One restriction of our project 1s that it can be implemented only for 2356

color bit map. In future these algorithms can be implemented in real time

applications if parallel processing is used.

91



Bibliography




W

wn

BIBLIOGRAPHY

. Fundamentals of Digital Image Processing
. Image Processing

. Digital Image Processing

. Exploring C

. C++and C.-Graphics

. C. Trilogy

- Anil K. Jain

- M. A.Sid-Ahmed

- Pratt

- Yashwant Khanetkar
- Vijay Mukhi

- Bloom






