MICROCONTROLLER BASED CONTROLLER
FOR HEATLESS DESICCANT DRYER

Project Report

Submitted by
B.Satheesh Kumar
M.Shankar

6? _] 2 %LY R.Anu Radha

P.Sandeep

* *

*x | ®

*
2001-2002

Under the guidance of
Prof.K.RamPrakash,M.E

In partial fulfillment of the requirements

for the award of the degree of

Bachelor of Engineering in

Electronics and Communication Engineering

of Bharathiar University, Coimbatore

Department of Electronics and Communication Engineering

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE - 641 006

Kumaraguru College Of Technology
Coimbatore — 641006

Department of Electronics and Communication Engineering

Certificate

This is to certify that this project entitled

Microcontroller Based Controller for Heatless Desiccant Dryer

has been submitted by

Iv. B-Satrees u kumaz, Mr. M. Shan kar, Ms-RAnuRAD A Mr- P.SANDE EP

In partial fulfillment of the requirements for the award of the degree of
Bachelor of Engineering in Electronics and Communication Engineering Branch
of Bharathiar University, Coimbatore — 641 046 during the
Academic year 2001 —2002

o pnosr ¢

(Guide) 13/3/ e >—

(Head of the Department)

Certified that the candidate was examined by us in the Project Work
Viva-Voce Examination heldon 14.¢3 -2002

University Register Number Q& 23ppz24 qe21pr22 1 AR2TIDOIET APTIVO 2 2 .

- e

(External Examiner)

(Internal Examiner)

{N.G. Pudur Road,
mpalayam P.Q. ‘
tore - 641 108. India. ‘ r ®
491 422 400492 ‘] IQII !I.— Il l Il'
1 +91 422 401376
: sales@tridentpneumatics.com
 www.tridentpneumatics.com PNEUMATICS PVT. LTD.,

TO WHOMSOEVER IT MAY CONCERN.
——— oL VERII MAY CONCERN.

This is to certify that the following final year BE Electronics & Communication
Engineering students of Kumaraguru College of Technology, Coimbatore have
completed the project in our organization:

R. Anuradha

P. Sandeep

B. Satheesh Kumar
M. Shankar

AW

Project Title Micro Controlier based Controller for Heatless
Desiccant Dryers,

Project period July 2001 to March 2002

Department Research & Development (Electronics)
During this project, their attendance, conduct and behaviour were found to be good.

Trident Pneumatics Pvt Ltd

R. Sivakumar
R&D Engineer

Coimbatore
8" March 2002

ACNOWLEDGEMENT:

We express our deep sense of gratitude to Dr.K.K.Padmanabhan,
Ph.D., Principal, Kumaraguru College of Technology, Coimbatore for

providing permission to carry out this project work.

With a deep sense of gratitude and regards, we acknowledge with
great pleasure the guidance, encouragement and support extended by
Prof.Muthuraman Ramasamy M.E., FIE., FIETE., M.LE.E.E (U.S.A),
M.LS.T.E, M.LLE, M.B.M.E.S.I, C.ENG. (I), Professor and Head of the
Department of Electronics and Communication Engineering and express
our thanks for his valuable time, guidance and kind encouragement during

the course of this project work.

It is our duty to express our thanks to our internal guide,
Prof.K.Ramprakash M.E., Asst.Proffessor, Department of Electronics and
Communication Engineering for his valuable guidance, keen suggestions,
innovative ideas, helpful criticisms and kind encouragement during all the

phases of this project work.

We will be failing in our duty if we don’t thank Mr.K.S.Natarajan,
Managing Director and Mr.R.SivaKumar, Trident Pneumatics Pvt. Ltd. for
providing us with an opportunity to do a project in their company. We
express our deep sense of gratitude for their proper guidance and constant

encouragement during the entire course of this project work.

We express our sincere thanks to all the staff members of the
Electronics & Communication Engineering Department, especially
Mr.G.C.Thiagarajan M.E., Lecturer, Department of Electronics and
Communication Engineering who gave us valuable guidance and helped us

in overcoming the barriers and problems we faced in our project.

We also thank all the staff members of Trident Pneumatics Pvt. Ltd.,

who helped us for the successful completion of the project.

Finally we express our deep sense of gratitude to our parents and

friends for their valuable help and consideration towards us.

//éﬂ/ 2

SYNOPSIS:

#

Microcontroller based controller for heatless Desiccant Dryers is a
system designed to control and monitor the various functions of the heatless
desiccant air dryer which is an industrial device used to remove the moisture
from the air and output the clean, dry and dust-free air.

The advantages of a microcontroller based control system are
versatility, less space requirements, less power requirements and a higher
speed of operation, reduced instruction set which leads to a much better
response time. This control system has got microchip's PIC16F877 as the
microcontroller. It is a 40-pin microcontroller, which is very versatile and

‘ occupies very less space and consumes very less power making it an ideal
choice for resource critical applications like these.

Our project involves the software part. The software is programmed
using the ‘C’ language developed specifically for the Microchip range of
PICs, but which adheres to the ANSI C specification. The software has been
designed using the minimum possible code and memory space so that
portability to different IC’s won’t be hampered much due to the lack of
program memory or data rﬁemory in those IC’s and also for making future

upgrades possible.

CONTENTS:

]

S.NO. Chapter Page No.
1. Introduction 1
2. Project description

2.1 Principle of dryer operation 3
2.2 Requirements 5
2.3 Strategy 8
3. PIC16F877 Microcontroller — An Overview
3.1 Microchip family — An introduction 10
3.2 The PIC16F877 11
3.2.1 Core features 11
3.2.2 Peripheral features 12
3.3 General description 12
3.4 Memory Organisation 13
3.4.1 Program memory Organisation 13
3.4.2 Data memory Organisation 13
3.4.3 EEPROM Memory 14
3.5 Special Function registers 15
3.6 EEPROM registers 16

3.7 1/O Ports 17

3.8 Timer Module 18

3.9 Interrupts 19

3.10 Pin Diagram 20
Implementation

4.1 Hardware description 21

4.2 Circuit Diagram 22

4.3 Software Description 23

4.3.1 ‘C’ — An Overview 23

4.3.2 Development mode 23

4.3.3 Program modules 24

4.3.3.1 Valve Control 25

4.3.3.2 KeyScan & Menu entry 29

4.3.3.3 Display Module 33

4.3.3.4 Alarm Module 36

4.3.4 Program Description 38

Conclusion 42

Bibliography 43

Source Code 44

Appendix 88

INTRODUCTION: Chapter1

A control system is one, which is designed to provide proper control
and ensure correct sequence of operations for the system or group of
devices it has to control. The control system may be completely
mechanical or electrical or electronic in nature or a combination of two or
more of the above mentioned types. This depends upon various factors.
This project is essentially an embedded control system. An embedded
control system refers to one that uses an embedded controller as its main
control system. Before going into further details a brief introduction of the
nature of the project is given as follows.

Tﬁis control system has been programmed to control and monitor the
operations of heatless desiccant dryer, which is an industrial device,
designed to provide clean, dry and compressed air. The controller has to
properly initialize the dryer on startup and then control the opening and
closing of the valves, which allow air into the dryer towers. This has to be
done on a fixed time basis. Additionally a LCD display unit has to display
the status of the towers of the dryer. The controller apart from driving the
LCD should also provide some menu functions which enables the user to

enter certain parameters, that are used to control the operation of the dryer.

The controller should store these parameters entered by the user. The
controller has to keep track of the running hours of the dryer and display
certain alarm messages after the specified duration.

Embedded controllers are specially designed microprocessors, which
have got additional functions included on the chip with the basic CPU, and
they have special instructions for dealing with individual bits in a word.
These additional functions, generally speaking, refers to memory (program
memory as well as data memory), timers, comparators, ADCs and other
essential and commonly used processing and detector elements which are
included on the chip along with the basic CPU.

This is in direct contrast compared to the microprocessors which do
not include most of the above mentioned additional functions along with
the basic CPU. The microprocessor chip is entirely devoted to the control
unit and ALU. But comparing the microprocessor and microcontroller
along these lines is not entirely justified, simply because these two were

designed and built for entirely different purposes.

DRYER DESCRIPTION Chapter2

2.1. PRINCIPLE OF DRYER OPERATION:
Pre-filteration:

In the moisture laden compressed air passes through the pre-filterl,
here moisture load is reduced through coalescence. Condensation is
removed through the drain valve ADV1. At the oil filter (2) oil vapors are
removed completely, small level of water condensation is purged through
the valve ADV2. Compressed air then passed through a 3-way valve into
tower.

Drying:

The two towers are filled with activated alumina, which acts as the
desiccant. When air passes through towerl, which consists of DRY
desiccant, it gets completely dried, and passes through check valve and
after fiter3. At the after filter, desiccant fines are removed. Therefore cool
dry compressed air passes out at outlet.

Regeneration:
The process of Regeneration takes place in two stages namely,
e De-pressurisation

¢ By passing dry air

Tower2 consists of fully moist desiccant at pressure. This is
suddenly depressurised by opening the purge valve. Water molecules weep
out of the desiccant and appear on the surface. Super dry purge air passes
through the regeneration nozzle and the desiccant bed there by completely
carrying away the water molecules. Tower2 gets regenerated and is ready

for the next drying cycle.

HEATLESS DESICCANT DRYER

AFTER FILTER

|
€

ADY1 ADV2
AUTO DRAIN YALYES

2.2. REQUIREMENT:

/

The project requires programming the controller to control the
valves, displaying the tower status, enable the user to enter some
parameters and to display some alarm messages at certain time instants as
desired by the user.

Initially the controller should scroll an advertisement for one
minute, and then it should display the status of the towers continuously
until the user presses some key to enter the menu functions described
below. The first line should display the drying status of the corresponding

tower and the second line should display the regeneration status of the

T1 DRY

T2 REGEN

other tower as shown.

To enter the menu functions, some form of password restriction has
to be made. Only after the password is entered by the user and it is found to
be correct, access to the menu functions are allowed. If the password is
incorrect then entry should be denied and the message “ACCESS

DENIED” has to be displayed to the user.

The main menu contains 3 divisions as follows:

1. FACTORY SETTING
2. FIELD SETTING
3. MAINTENANCE

The submenus for each of these menu functions are as follows. The
submenus have parameters and the user should be enabled to enter

numerical values for these parameters.

Inside factory setting,
CYCLETIME : - min
FLOW D e cfm
MODEL T s
DRAIN S sec
PRESSURE T e bar
ENABLE : Y/N

Similarly in field setting the parameters to be displayed are phone,

fax no., Pressure, flow and Pr.drop.

PHONE NO. e
FAXNO S
PRESSURE N
FLOW : Y/N
PR. DROP : Y/N

The parameters in the maintenance function are change filter, change

desiccant and change seal. Here also provision is made for data entry.

CHANGE FILTER 1 -—---- hrs
CHANGE DESSIC: -—---- hrs
CHANGE SEAL : -—----- hrs

The parameters in the maintenance function are actually alarm
values. These values are entered by the user in hours and after the

specified hours has elapsed the controller should display alarm messages.

2.3. STRATEGY

W

The controller used for this purpose is pic16f877 and to display the
different functions the LCD (LM16200) is used. Our project is concerned
with programming the microcontroller to control the opening and closing
of the valves and thereby controlling the flow of air through each tower.

Drain valve, Inlet valve, valve E1 and valve E2 are the valves to be
controlled.

After every five minutes the desiccant in the towers will get
saturated. The desiccant has to be regenerated after this time period.
Hence each tower has to be operated in drying mode for 5 minutes and the
desiccant has to be regenerated in the next 5 minutes. Hence in each ten-
minute cycle, when towerl is in drying condition the tower2 should be in
regeneration condition.

Airflow to both the towers is through the inlet valve, and hence the
inlet valve should remain open for the whole ten-minute cycle. The valve
E2 that corresponds to tower T2 should remain open during the first phase
of its regeneration period. During the second phase which is called as the
repressuristaion mode, valve E2 is closed. The same holds for the valve El
during the regeneration phase of tower T1. This repeats for every ten-

minute cycle.

The status of the towers and the status of the valves are tabulated

below for each timing interval.

STATUS OF THE TOWERS
Time(minutes) Towerl Tower2
0-4 Drying Regeneration
4-5 Drying Repressurisation
5-9 Regeneration Drying
9-10 Repressurisation Drying
(Table 1.1)
STATUS OF THE VALVES
Time(minutes) Inlet valve Valve E1 Valve E2
0-4 Open Close Open
4-5 Open Close Close
5-9 Open Open Close
9-10 Open Close Close

(Table 1.1)

PIC16F877 — AN OVERVIEW Chapter 3

/

3.1. MICROCHIP FAMILY —- AN INTRODUCTION:

Microchip, the manufacturer of the PICMicro'™™ range of
microcontrollers is one of the world’s leading manufacturers’s of RISC
microcontrollers. Their RISC MCU architecture has become a world wide
standard, with half a billion PIC micro devices and 100,000 development
systems shipped since 1990. Microchip offers a wide range of enhanced
flash, EEPROM and ROM products and continues to expand its product
breadth.

Short lead times, flexible technology and a high performance RISC
architecture which outperforms CISC based competitors provide key
design advantages for embedded system applications. All PIC micro
MCUs employ a modified RISC architecture and powerful instruction set
that dramatically reduce development cycle time and cost by combining
RISC features with a modified Harvard dual bus architecture, microchip’s
fast and flexible eight MIPS PICmicro core is the most popular architecture
for new MCU designs. Seamless migration between product families and a
simple instruction set make PIC micro MCUs the logical choice for designs

requiring flexibility and performance.

3.2. THE PIC16F877:
The microcontroller that was used in this application is Microchip’s

PIC16F877, a high performance RISC CPU.

FEATURES: \%%”(
< ,*"ﬁ’;\
3.2.1. Core Features: 0\.,;::’{;,’/“

» High performance RISC CPU

> Only 35 single word instructions to learn
» All single cycle instructions except for program branches which are two
cycle

» Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle

Up to 368 x 8 bytes of Data Memory (RAM)
Up to 256 x 8 bytes of EEPROM Data Memory

Interrupt capability (up to 14 sources)

>
>
>
» Watchdog Timer (WDT) with its own on-chip RC
» Oscillator for reliable operation

» Wide operating voltage range: 2.0V to 5.5V

» Programmable code protection

>

Power saving SLEEP mode

3.2.2. Peripheral Features:
» TimerQ: 8-bit timer/counter with 8-bit prescaler
» Timerl: 16-bit timer/counter with prescaler, can be incremented
during SLEEP via external crystal/clock
> Timer2: 8-bit timer/counter with 8-bit period register, prescaler and

postscaler

3.3. GENERAL DESCRIPTION:

The PIC16F87X microcontroller (MCU) family provides a migration
path from OTP to FLASH in 28 to 44 — pin packages with a wide range of
peripheral integration options. This family features a 14 — bit instruction, 5
to 8 channels of 10-bit Analog-to-Digital Converters, interrupt handling
capability, various serial interface capabilities, Capture/Compare/PWM,
Brown-out Detection and an 8-level deep stack.

The PIC16F87X family provides performance and versatility to meet
the most demanding requirements of today’s cost sensitive analog designs.
Plus, with FLASH program memory, PIC16F87X devices can be
reprogrammed over the entire operating voltage range. The PIC16F87x
family is ideally suited for applications ranging from smart card readers to

POS terminals and high-speed applications.

3.4. MEMORY ORGANISATION:
There are three memory blocks in each of the PIC16F877 MCUs.
The Program Memory and Data Memory have separate buses so that

concurrent access can OCccur.

3.4.1. Program Memory Organisation:

The PIC16F877 devices have a 13-bit program counter capable of
addressing an 8K x 14-program memory space. The PIC16F877 devices
have 8K x 14 words of FLASH program memory. Accessing a location
above the physically implemented address will cause a wraparound. The

RESET vector is at 0000h and the interrupt vector is at 0004h.

3.4.2. Data Memory Organisation:

The data memory is partitioned into multiple banks, which contain
the general Purpose Registers, and the Special Function Registers. Bits RP1
(STATUS<6>) and RPO (STATUS<5>) are the bank select bits. Each bank
extends up to 7Fh (128 bytes). The lower locations of each bank are
reserved for the Special Function Registers. Above the Special Function
Registers are General Purpose Registers, implemented as static RAM. All

implemented banks contain Special Function Registers. Some frequently

used Special Function Registers from one bank may be mirrored in another

bank for code reduction and quicker access.

3.4.3. EEPROM Memory:

The Data EEPROM and FLASH Program Memory are readable and
writable during normal operation. These operations take place on a single
byte for Data EEPROM memory and a single word for Program memory.
A write operation causes an erase-then-write operation to take place on the
specified byte or word. ~The EEADR register holds the address to be
accessed. Depending on the operation, the EEDATA register holds the data
to be written, or the data read, at the address in EEADR. The EEPROM
Data memory is rated for high erase / write cycles being accessed. Read
and write access to both memories take place indirectly through a set of
Special Function Registers (SFR). The six SFRs used are:

« EEDATA
« EEDATH
« EEADR

« EEADRH
*« EECON1

« EECON2

3.5. SPECIAL FUNCTION REGISTERS:

The Special Function Registers are registers used by the CPU and
peripheral modules for controlling the desired operation of the device.
These registers are implemented as static RAM. Some of the special
function registers used in our software are explained here.

PIE1 register:

It contains the individual enable bits for the peripheral interrupts.
OPTION_REG Register:

The OPTION REG Register is a readable and writable register,
which contains various control bits to configure the TMRO prescaler/WDT
postscaler, the External INT Interrupt, TMRO and the weak pull-ups on
PORTB.

PIR1 Register:

The PIR1 register contains the individual flag bits for the peripheral
interrupts.
INTCON Register:

The INTCON Register is a readable and writable register. It contains
various enable and flag bits for the TMRO register overflow, RB Port

change and External RBO/INT pin interrupts.

3.6. EEPROM REGISTERS:
EECON1 and EECON2 Registers:

The EECONI1 register is the control register for configuring and
initiating the access. The EECON2 register is not a physically implemented
register, but is used exclusively in the memory write sequence to prevent
inadvertent writes. There are many bits used to control the read and write
operations to EEPROM data and FLASH program memory. The EEPGD
bit determines if the access will be a program or data memory access.
When clear, any subsequent operations will work on the EEPROM data
memory. When set, all subsequent operations will operate in the program
memory.

Read operations only use one additional bit, RD, which initiates the
read operation from the desired memory location. Once this bit is set, the
value of the desired memory location will be available in the data registers.
This bit cannot be cleared by firmware. It is automatically cleared at the
end of the read operation. For EEPROM data memory reads the data will
be available in the EEDATA register in the very next instruction cycle after
the RD bit is set. For program memory reads, the data will be loaded into
the EEDATH: EEDATA registers, following the second instruction after

the RD bit is set.

3.7. /O PORTS:

There are five I/O ports in PIC16f877 namely PORT A, B, C, D and
E, which can be configured as input or output.

PORTA is a 6-bit wide, bi-directional port. The corresponding data
direction register is TRISA. Setting a TRISA bit (=1) will make the
corresponding PORTA pin an input (i.e., put the corresponding output
driver in a hi-Impedance mode). Clearing a TRISA bit (=0) will make the
corresponding PORTA pin an output

PORTB is an 8-bit wide, bi-directional port. The corresponding data
direction register is TRISB. Setting a TRISB bit (=1) will make the
corresponding PORTB pin an input (i.e., put the corresponding output
driver in a Hi-Impedance mode). Clearing a TRISB bit (=0) will make the
corresponding PORTB pin an output (i.e., put the contents of the output
latch on the selected pin).

PORTC is an 8-bit wide, bi-directional port. The corresponding data
direction register is TRISC. PORTC is multiplexed with several peripheral
functions. PORTC pins have Schmitt Trigger input buffers. When
enabling peripheral functions, care should be taken in defining TRIS bits

for each PORTC pin. Some peripherals override the TRIS bit to make a pin

an output, while other peripherals override the TRIS bit to make a pin
input.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin
is individually configurable as an input or output.

For port E the corresponding register is TRISE

3.8. TIMER MODULE:

The Timer0) module is 8-bit, readable and writable, 8-bit software
programmable prescaler, Internal or external clock select enabled
timer/counter. It has an Interrupt on overflow from FFh to 00h.

The Timerl module is a 16-bit timer/counter consisting of two 8-bit
registers (TMR1H and TMR1L), that are readable and writable. The TMR1
register pair (TMR1H: TMRI1L) increments from 0000h to FFFFh and rolls
over to 0000h. The TMRI1 Interrupt, if enabled, is generated on overflow,
which is latched in interrupt flag bit TMRI1IF (PIR1<0>). This interrupt
can be enabled/disabled by setting/clearing TMR1 interrupt enable bit
TMRIIE (PIE1<0>).

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be

used as the PWM time-base for the PWM mode of the CCP module(s). The

TMR?2 register is readable and writable, and is cleared on any device

RESET.

3.8. INTERRUPT:

The PIC16F87X family has up to 14 sources of interrupt. The
interrupt control register (INTCON) records individual interrupt requests in
flag bits. It also has individual and global interrupt enable bits. A global
interrupt enable bit, GIE (INTCON<7>) enables (if set) all unmasked
interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled,
and an interrupt’s flag bit and mask bit is set, the interrupt will vector
immediately.

When an interrupt is responded to, the GIE bit is cleared to disable
any further interrupt, the return address is pushed onto the stack and the PC
is loaded with 0004h. Once in the Interrupt Service Routine, the source(s)
of the interrupt can be determined by polling the interrupt flag bits. The
interrupt flag bit(s) must be cleared in software before re-enabling

interrupts to avoid recursive interrupts.

3.10. PIN OUT

ATER frrp —=
RAO/ANO weg—mtn- []

Rt [N — O

e N2frece - 4
RaghNTpeet w—-L
e et e [
RASANYTE -1
Re[Rp/ANS L]

fr1/ VR /AN =—w=]
l&@ﬁc_g/m? e[10

Vo —a- [t

V5§ —m] 12

oS fGUIN —= [13
U-SCL/CLKWWT*——E \%
RCO/TH050r ik w—e- (5
reyf/moseiferrz a—mOto
RCZLCP -] VY
ResfeR/sct -—e- 1
Roof Fp a— L] 19
&m/vsw -1 20

D B A oYy R~

C

PIC16F877

(] --— BT [0
29 [0~ RBL]PAC
3% {1 w—e RBS

27 [-—a P2

3¢] w—= EB3/PM
5[] 4—w K

34]] - rB)

323 [] = RBC/INT
22 [*— veo

2} [+—— Vo

30 [w— RDT [RsPT
29 1= Ro&[rsFE
2& [- KPS/'PS'?g
27 [] w—e RP4 [BSF4-
26 [0 e RC7/arfol
25 [—w RCEAXEK
2411 -—e ReS/SDO
23] w—e REGSPISIA
>3 [a—s RO3[PSP3
21 [s Rpz2[PSF2

IMPLEMENTATION: Chapter 4

4.1. HARDWARE DESCRIPTION:

In the existing hardware our software module controls two important

ICs namely

» PIC16F877 —the controller

» LM16200 — the LCD

In the controller out of the five ports only three ports are used by the

hardware. Port B drives the LCD, port D is connected to the relays, which

controls the valves and port C is connected to the keypad, hence configured

as input.

The LCD is a 16X2, 5%X7dots and a 2 line display LCD. The LCD

has got a backlight display, which will be useful in viewing in dark

surroundings. The LCD has been interfaced for 4-bit data transfer.

The circuit diagram has been shown in the next page.

\ vec hJJ.E"
1
1N4 148
VDD RBEL 3 2
321yop rEZ F5% H
RB3 4
po ¢ R2L ca Rea s
t 0. luf RES [33 &
oK 12 lygs REG 7
vES 2 vee
! ce = = Tto T
131 05¢1 -
22eF. PSPO z
i popL 2T 3
Qe PSP2 a
<7 P5P3 N H
05L2 PSP4 28 €
PSPS
sopr PF_23 | ryr 3
o vge ?
\ P11 2 L
1

REL WY SPDF

RELAY HFIT

EUAUNE

4.3. SOFTWARE MODULE:

4.3.1. C-AN OVERVIEW:

The software was programmed in Microchip’s version of ‘C’. C was
preferred because of its wide popularity, ease of use compared to assembly
language, good programming constructs and rich reference sources. It
ensures high performance and offers very good hardware interaction due to
its close relationship with assembly language programming and other high
level language programming by providing raw programming power of
assembly language and the understandable programming style of the other
high level languages. By suitably making changes in the compiler options
the same ‘C’ code can be easily ported to different microcontrollers by

making little or no changes in the source code.

4.3.2. DEVELOPMENT SUPPORT:

MPLAB-C is an ANSI-based ‘C’ compiler for the Microchip
technology incorporated PIC16/17 microcontroller families. ~Due to
restrictions imposed by the microcontroller architecture, MPLAB-C does
not support the full ANSI-C standard. The MPLAB IDE also offers a full-
featured macro assembler, a ‘C’ compiler and a simulator. In addition to

this various third part companies like Hi-tech Craft, CCS etc. are also

developing support tools in the form of various ‘C’ compilers and
debugging tools for Microchip thereby giving us a wide range of

development options.

4.3.3. PROGRAM MODULES:
Functionally the software can be divided into four modules each
carrying out a particular function. They are,
» Valve control
» Key scan and Menu entry
» Alarm module

» Display module

4.3.3.1. VALVE CONTROL

i START \)

\ —

INITIALIZE

PORTS

TINMER ON

ENABLE
INTERRUPTS

ON INTERRUFPT,

OPEN DRAIN
VALVE, E2 AND

u\f, CLOSEEL

DISFLAY
TOWER
STATUS

o
e

Y

DISPLAY
CLOSE VALVE
- TOWER
STATUS
(8)
) DISPLAY
OPEN VALVE
E‘i TOWER.
STATUS
x’&\\
(B)
DISPLAY
A
STATUS
.-’”{\
(B)
CTR=0
f&ﬁ\&
(&)

Description:

This module performs the task of controlling the valves i.e., opening
and closing the respective valves on a time basis. For timing this module
we use the timer0 interrupt routine.

The valves are controlled by the output of port D. The drain valve,
inlet valve (IV), valve E1 and E2 are controlled by pins 0,1,2 & 3 of port D
respectively. Initially all these pins are configured to be output pins by
setting logic high level. By changing the logic levels to high or low, the
valves can be opened or closed.

The timing cycle for the entire 10 minutes has been defined in the
previous section. As explained already, for the first four seconds drain
valve should remain open after which it should remain closed for the entire
10-minute cycle. To calculate the time initially the timerl is turned on by
configuring the TICON register. The Oth bit of TICON register is set so
that the timer is enabled. Next the timer] interrupt is enabled by setting the
0™ bit of PIE1 register. E\'fery time the timer overflows the TMRIF (0™ bit)
of PIR1 register is set and whenever this flag is set the control branches to
the vector location 0004h.In this vector location, the routine for controlling

the valves at the required time intervals is written.

In this interrupt service routine, a counter 1s incremented every time,
the control branches to that location. Every timer overflow consumes
(Including prescalar). At the beginning of each cycle 1V, drain valve &
valve E2 should be opened. So when the counter is 1 these valves are
opened. At this juncture the tower 1 is in drying status and tower 2 is in
regeneration status. This status is displayed by calling the display function.
Next, after duration of four seconds, i.e., when the count reaches 8 the
drain valve is closed by making the 0™ pin of port D low.

After closing this valve, the control branches back to the main
routine. The process of incrementation goes on and every time the control
goes to the ISR, the count is checked. When the count reaches 458 (which
is nothing but 4 minutes) the valve E2 is closed. Now the status of the
tower 2 changes to reprussurisation. The function to indicate this change in
the display is called.

Likewise after every time interval shown in table 1.1, the valve
control is changed by making the corresponding pins high or low. The
tower status is also updated regularly (table 1.2) by calling the

corresponding display functions.

4.33.2. KEYSCAN AND MENU ENTRY

(;\\——) KEYSCAN

-

e
rd
e e,
<7 DEEY N P
<~\\ PRESSED .~ B)
P
";Ii"

DISPLAY
(c j’ > cUB MENU -

_/‘/r" \\ e
e \\"’
ASK FOR
PASSWORD
N DISPLAY
PA;;&T{OTRD "ACCESS
DENIED"

DKEY S N (’g .|
- PRESSED//“ > B

\\v

DISPLAY MEXT |
PARAMETER.

l

CHAMNCE PARAMETER
¥ALUE ACCORDING TO
SCROLLED NUMBER

: +

WRITE CHANGED
VALUEIN
EEPROM

CHECK TIME
OUT AND GO
TO MAIN LOCP

Description:

This module involves continuously scanning the port connected to
the keypad (in our case pins 4,5,6 & 7 of port C) and displaying and
providing various functionality according to the key pressed. Under
normal conditions the tower status will be displayed. Firstly during a
keyscan if it is found that the down key is pressed i.e., if port C 5™ pin goes
high then, a function to display the first submenu i.e., FACTORY
SETTINGS is called. On further pressing the down key each of the
submenus are displayed one by one for each down key press by calling the
corresponding functions. If then the select key is pressed then a function to
verify the password is called.

Now if the password combination i.e., the up key and select key is
pressed together correctly the password is accepted. This is achieved by
checking continuously whether the corresponding ports are high and
subsequently allowing a delay for the required amount of time, and
checking whether the ports remain high throughout the delay. After the
password is accepted the function to display the parameters of the
corresponding submenu is called. Again the port corresponding to the
down key is scanned and for each key press the next parameter is

displayed.

All the display requirements in this module are accomplished using
the same functions, but using different arguments according to the display
details. Now for each parameter the values remain stored in the EEPROM.
These values are initially read from EEPROM and displayed. Now after
entering the submenu, to change these values the down/up key is made use
of. For each digit there are separate locations allotted in the EEPROM
memory. For each digit, by sensing the number of times the down/up key
is pressed the corresponding character code of the number being selected is
written in the EEPROM and the display module actually takes this value
and displays. The same procedure is repeated for all the digits. This task is
done by a separate function, which takes in the number of digits as an
argument. Another function is used to display the units for each parameter.

After entering all the digits if the down key is pressed then the
control goes to the next parameter which involves the same procedure.
Now if the escape key is pressed, the display goes back to the main menu.
If no key is pressed a delay loop is called and even after that no key is
pressed then the display or control goes to the main loop. There are three
sub menus and each of them can be accessed by pressing the down key and
then the select key. Thereafter using the same procedure the different

parameters are written to EEPROM and the same is read and displayed. At

any point of time a timeout will cause the controller to switch its control to

the main loop and therefore the tower status will be displayed.

4.3.3.3. DISPLAY MODULE

(START \)

INITIALIZE LCD

;-'f/
N |ENTER COMMAND
< DATA WORD FOR.

REGISTER
INSTRUCTION

ey
-~

¥

GET DATA

Description:

The LCD module is used to display the status of the towers, the
functions, the parameters and their values. The same algorithm is used to
display all these modules. To accomplish this, first the LCD should be
initialized.

To interface the LCD with the controller the LCD has to be
programmed accordingly. The process of initialization differs for both 4
bit and 8 bit data. For our requirement we use 4 bit data. To program the
LCD the instructions has to be written into the instruction register and to
display data, the corresponding character code has to be written into the
data register. The instructions for initialization are written into the
instruction register with delays as specified in the data manual (the process
of initialization has been explained in the data manual enclosed). These
instructions include instruction for display off, display on and entry mode
set.

The data / instruction register is chosen by giving a high / low pulse
to the 4™ pin of the LCD (LM16200). For displaying data, first the
instruction register is chosen by giving a high pulse to the corresponding
pin and the instruction words for clearing the display, the position of

display etc. are written into the instruction register.

Next the data register is chosen by changing the pulse level at the
corresponding pin. Then the character code for the data to be displayed is
fed into the data register. The LCD module then reads the character code
and displays the corresponding data. The LCD can also be used to scroll
messages. For this the instruction register is written with the instruction
word for scrolling messages, which is specified in the data manual. Before
writing the character code for the data, the instruction specifying the
DDRAM address and CGRAM address should be written into the
instruction register in order to indicate the position of display and the

position of the cursor.

4.3.3.4. ALARM MODULE

(/ START \)
N

INITIALIZE CTR

l

INCREMENT
CTR AFTER
EVERY CYCLE

A

<CTR= 5 >

Y

DECREMENT A
HRS

l

WRITE IN
EEPROM

DISPLAY
ALARM
MESSAGE

Y

Description:

The controller should give alarm messages regarding the change of
filters, desiccants and seal. The duration after which these messages are to
be displayed is previously entered by the user. This data is available in the
EEPROM. This value has to be decremented after every hour and finally
" the alarm message is displayed.

For this time control the counter used for the valve control module is
utilized. Each time the ten-minute cycle completes another counter
variable is incremented. When this counter reaches the value 6 it means
that one-hour has elapsed. After every hour the value in the EEPROM has
to be decremented. So whenever the counter reaches 6, read the value from
the EEPROM for each parameter, reduce it by one and again write the new
value in EEPROM.

Now check whether the value for all the parameters in the EEPROM
has reached zero. If any of the parameters has reached zero, it means that
the specified time duration has elapsed and the alarm for that particular
parameter should be displayed. This is done by calling the display function
that displays the corresponding alarm message.

After the alarm message is noted by the user and ESC key is pressed,

then the counter is initialized to 0 again and the same process is repeated.

4.3.4. PROGRAM DESCRIPTION:

Starting from the main menu, the main menu first initializes the ports.
In order to initialize the ports, the TRISA, TRIS B AND TRIS C registers
should be configured. The unused ports should be configured as output
ports.

After initializing the ports, next all the registers which are being used
are configured. The timerl is enabled by configuring the TICON register.
Next, the advt. should be displayed. For that the LCD is initialized for
startup by writing the required command words in the instruction register
with adequate delays in between. This is done by the lcd init() function.
Next the data register is chosen. Writing any 8 bit data into the data register
or instruction register is done by the lcd inst() function. This function
selects the corresponding register and then writes the MSB and LSB in the
register.

Next, the scroll display() function is called, which is used to display
the scrolling advertisement. This function takes text to be displayed as a
parameter and displays it. The function contains the character code for all

the characters. This function is put in a loop to run for a minute. All this

has to be done only once on startup. Hence after this an infinite loop to
scan for any key being pressed (keyscan()) is given.

When this is getting executed, parallely the timer runs. The timer
register increments from 0000h to FFFFh and rolls over to 00h. Timerl
interrupt is enabled and so interrupt is generated on overflow. As interrupt
is responded to, the return address is pushed onto the stack and the PC is
loaded with 0004h,where ISR has been written.

The ISR contains the code for valve control and maintenance
checking. The function open_valve is called after particular set values of a
counter based on the time. This function, according to the parameter
passed closes or opens the corresponding valves.

The time taken for an overflow in the timer registers 525
milliseconds. Hence the counter in ISR is incremented for every 525
milliseconds

After four seconds the drain valve has to be closed. The counter
should reach a value of 8 for 4 seconds to pass. When the count is 8, the
function “open_valve” is again called & the drain valve is closed.

In the same way, the count is checked for 4", 5, 9" and 10" minute

and the valve positions are changed as per the requirement.

As the valve positions are changed, the status of the tower gets
changed, which has to be displayed. For displaying the status, the function
“Display3” is called with the status as arguments. The arguments include
the status of towerl and tower2. In the function, each character of the
argument is checked and corresponding character code is given to the data
register using the lcd_inst() function which takes the job of displaying the
character on LCD. The status of the towers is continuously displayed until
any key is pressed.

The function keyscan() continuously checks for Key press. If down
key is pressed, “display2” function is called. If key press is for the first
time, then “FACTORY SETTINGS” is displayed. The display logic is
similar to that used in “display3” except for the number of arguments being
only one. With “FACTORY SETTINGS” on the display, for entering the
menu select key has to be pressed. When select key is pressed with a menu
on the display then the user is asked for a password. Password is given in
the form of key press of a predefined combination. Password is checked by
the password_check () function. It scans both the password keys for the
required time.

If the password is wrong then “access denied” will be displayed. If

the password is correct then submenu access will be allowed, displaying

the submenu. Again by scanning down key press and select key press by
corresponding check function, other sub menus can be selected and viewed.
If the value of the parameters have to be changed then value enter()
function is called. With up and down key presses, each digit can be
changed to the required value. The new value is then written to the
EEPROM. This is done by the function EEPROM_WRITE (). As escape
key is pressed, the display shows the menu. If again the escape key is
pressed, then status of the towers is displayed until another key press.

To display alarm for changing the filter, desiccant and the seal the
code is included in the ISR. The number of hours after which these have to
be changed is entered in the maintenance chart. This value is decremented
as each hour passes. The calculation of time is again done using the counter
that was used in valve control module. When the value becomes zero a
message is displayed informing that either the filter or the seal or the
desiccants have to be changed depending on the parameter whose value

becomes zero.

CONCLUSION:

The microcontroller based controller for heatless desiccant dryer has
been programmed and tested. It has successfully met the minimal design
objectives. Still there is room for improvement.

The minimum possible resources have been utilized by this project
thus making it economically viable and with necessary modifications in the
port this design can be adopted for a wide range of similar dryer control
applications.

Since the software is the main controlling entity in the project,
changes in the software can be more easily made as compared to making
changes in the hardware design. This is in line with the general design
policy for any microcontroller-based system. The above point has already
been validated by our choosing ‘C’ as the programming medium since
changes can be made more easily in ‘C’ than in assembly language and ‘C’
can be ported to other microcontrollers, with little or no changes, the

essential program logic remaining the same.

BIBILIOGRAPHY

» Microchip Technical Library CD-ROM, Microchip Technology Inc.,
USA

Microchip-Microcontroller Data Hand Book

Heatless Desiccant Dryer Catalogue

www.microchip.com

Microprocessors and Interfacing, Douglas. V. Hall, Tata Mc Grawhill

Programming in ‘C’, Gottfried, Schaum’s Series, Tata Mc Grawhill

v WV ¥V VWV V¥V V¥V

Let us ’C’, Yashwant kanitnar, BPB publications

e Contt

SOURCE CODE

#include<p16{877.h>
#include<b_struct.h>

#define PB(p,b)

#define LCD_ENABLE
#define LCD_REGSEL
#define upkey

#define selectkey

#define downkey

#define escapekey

#define drainvalve

#define inletvalve

#define valveE1

#define valveE2

#define downkey check_flag
#define ENABLE_FLAG
#define time units_flag
#define flow_units_flag
#define drain_units_flag
#define pressure_units_flag
#define hours_units_{flag
#define COMMAND REG 0
#define DATA_REG 1
#define COMMAND MODE
#define CLR DISPLAY
#define Cursor_Off

#define Shift_Disp

#define FUNCTIONI1

#define FUNCTION2

#define FUNCTION3

((unsigned) &(p)*8+(b));
PB(PORTB,6)
PB(PORTB,5)
PB(PORTC.4)
PB(PORTC,6)
PB(PORTC,5)
PB(PORTC.7)
PB(PORTD,0)
PB(PORTD, 1)
PB(PORTD,2)
PB(PORTD,3)
(((bits *)&flag2)->BIT4)
(((bits *)&flag2)->BIT0)
((bits *)&flag2)->BIT1)
(((bits *)&flag3)->BIT2)
(((bits *)&flag3)->BIT3)
(((bits *)&flag3)->BIT4)
((bits *)&flagd)->BIT1)

(((bits *)&flag)->BIT0)
0b00000001

0b00001100 //Cursor Off
0b00011000 //Shift Mode
0b00110011 //Initializing
0b00100010 //Initializing
0b10001010 //display Off

#define FUNCTION4 0b01110001 //display On
const unsigned char trident_add[]={" www.tridentpneumatics.com $"};
const unsigned char trident![}=

{" **Manufacturers of Compressed Air Dryers, Dessicant dryer, Dryspell,
Refrigeration dryer, Filters, Automatic Drain Valve, Level based drain valve,
Receivers, Projects** Phone no : +91 MMAMAMAEE Fax no ¢ +91 7T *E
Serial no : HHHEHERH** Model no @ ~~~~** Visit us at
www.tridentpneumatics.com** e-mail:tridentt@satyam.net.in** TRIDENT
PNEUMATICS PVT LTD, 5/232 , KNG Pudur Road , Somayampalayam Post ,
COIMBATORE. THANKS FOR SHOWING INTEREST IN OUR
PRODUCTS***$$$"};

const unsigned char trident2[}={"FACTORY SETTINGS $"};

const unsigned char trident3[]={"FEILD SETTINGS $"};

const unsigned char trident4[]={"MAINTANENCE CHART $"};
//***
unsigned char flag flag?. flag3, flag4 temp,templ.data,timeout flag;
unsigned char i,j,k,h,a,y,temp address,addr,n,m;

unsigned char maincounter,timeout,timeoutl,timeout2 units display;
unsigned char count flag;
//***
void Delay(void);

void BigDelay(void);

void led_init(void);

void lcd_inst(void);

void eeprom_read(unsigned char m);

void eeprom_write(unsigned char addr,unsigned char data);

void Scroll display(const unsigned char *cptrl,const unsigned char *cptr2);
void Display2(const unsigned char *cptr1);

void Display3(const unsigned char *cptrl,const unsigned char *cptr2);
void key press(unsigned char big, unsigned char small);

void open_valve(unsigned char,unsigned char,unsigned char,unsigned char);
void down_select_check(void);

void password_check(void);

void select_check(void);

void timeout_routine(void);

void down_check(void);

void enter value(unsigned char);
void units_display routine();
void keyscan();

void factor_settings_display();
void field settings display();

void maintenance chart();

ﬂ***

void Delay(void)
{
for(a=0;a<250;a++)
{
#asm
nop
clrwdt
#endasm
}
}
ﬁ***
void BigDelay(void)
{
for (y=0;y<90;y++)
{
Delay();
}

]
]

”***
void led_inst()

{
/I will get a 8-bit value & 1'st displays Isb then msb

#asm

clrwdt
#endasm
PORTB=0b00000000;
if(COMMAND_ MODE==1)

LCD REGSEL=COMMAND_REG;
else

LCD REGSEL-DATA_REG;
PORTB=PORTB&0x10;

#asm
clrwdt
#endasm
temp 1=temp&0xf0; //swapping temp value....get MSB
templ=temp1>>3; //rotating it right 3 shifts

PORTB=PORTBjtempl;
#asm

clrwdt
#endasm

LCD ENABLE=I; //becoz it displays at the falling
edge
#asm

nop
nop
clrwdt
#endasm
LCD _ENABLE=0;
PORTB=PORTB&0x{0;

temp 1=temp&0x0f;
templ=tempI<<I;
#asm

clrwdt

#endasm

#asm

nop

nop

clrwdt
#endasm
LCD ENABLE=I;
#asm

nop

nop

clrwdt;
#endasm
LCD ENABLE=0;
#asm

nop

nop

clrwdt;
#endasm
Delay();

}

//***
void led_init()
{
COMMAND MODE=1;
Delay();
Delay();
temp=FUNCTIONT,;
led_inst();
Delay();
temp=FUNCTION?2;
led_inst();
Delay();

temp=FUNCTION3;
led_inst();
Delay();
temp=FUNCTION4;
led_inst();

3

N***

void eeprom_read(unsigned char m)

{
EEADR=m;
EEPGD=0;
RD=1,
temp=EEDATA;
}

ﬁ***

void eeprom_write(unsigned char addr,unsigned char data)
{
while(WR==0)
{
EEADR=addr;
EEDATA=data;
EEPGD=0;
WREN=1;
GIE=0;
EECON2=0X55;
EECON2=0XAA;
WR=1;
GIE~=1;
WREN=0;
3
}

void Scroll_display(const unsigned char *cptrl,const unsigned char *cptr2)

unsigned char i,ee_val,ee_valZ,ee_vaB,ee_val4;

COMMAND_ MODE=1; //instruction/data register
temp=CLR_DISPLAY; //firstly clear the display

led_inst(); //load this instruction into ddram
temp=0x00;

lcd_inst(); //load this instruction into ddram
COMMAND_ MODE=0; //change the mode to data register mode
data = *cptrl; //first element put into data

while(data!="$' && escapekey!=0)

¢
1

temp=data; //data into temp
led_inst(); //load the instruction into ddram
cptrl-++; //increment then pointer
data=*cptrl; //data from the pointer is inserted into data
b
while(*cptr2!='$' && escapekey!=0)
{
BigDelay();
COMMAND MODE=1;
temp=0xb9;
lcd _inst(); //load this instruction into ddram
COMMAND MODE=0; //change the mode to data register
for(i=0,ee_val=0x0b,ee_val2=0x01 e val3=23.ee_val4=34;(i<=16 &&

*cptr2!="$' && escapekey!=0);i+)

{

temp = *cptr2; //data into temp
if(temp =="A")
temp=01000001;
elseif(temp == 'B")

temp=01000010;
elseif(temp == 'C")
temp=01000011;
elseif(temp == 'D")
temp=01000100;
elseif(temp == 'E")
temp=01000101;
elseif(temp == 'F")
temp=01000110;
elseif(temp == 'G')
temp=01000111;
elseif(temp == 'H')
temp=01001000;
elseif(temp == T
temp=01001001;
elseif(temp =='I")
temp=01001010;
elseif(temp == 'K)
temp=01001011;
elseif(temp == 'L")
temp=01001100;
elseif(temp == M)
temp=01001101;
elseif(temp == N')
temp=01000010;
elseif(temp == '0")
temp=01001011;
elseif(temp == 'P')
temp=01010000;
elseif(temp == 'Q")
temp=01010001;

elseif(temp == 'R’)
temp=01010010;
elseif(temp =='S")
temp=01010011;
elseif(temp == "T")
temp=01010100;
elseif(temp == "U")
temp=01010101;
elseif(temp == V")
temp=01010110;
elseif(temp =="W')
temp=01010111;
elseif(temp == 'X")
temp=01011000;
elseif(temp =='Y")
temp=01011001;
elseif(temp == 'Z')
temp=01011010;
elseif(temp == '0")
temp=00110000;
elseif(temp =='1")
temp=00110001;
elseif(temp == "2")
temp=00110010;
elseif(temp == '3")
temp=00110011;
elseif(temp == '4")
temp=00110100;
elseif(temp =='5")
temp=00110101;
elseif(temp == '6")

temp=00110100;
elseif(temp == '7")
temp=00110101;
elseif(temp == '8')
temp=00110100;
elseif(temp =="'9")
temp=00110101;
elseif(temp =="")
temp=00000000;
elseif(temp ==,
temp=00101100;
elseif(temp == ".")
temp=00101110:
elseif(temp == #)
temp=EEPROM_READ(ee_val++);
else if(temp == '~
temp=EEPROM_READ (ee_val2++);
else if(temp == ")
temp=EEPROM_READ(ee_vaI3 ++);

else if(temp =="")
temp=EEPROM_READ(ee_val4++);
led inst();
cptr2++; //increment then pointer
Delay(); //delay added

3
if(*cptr2=="%' || escapekey==0) return;
cptr2 = cptr2 - 16;
3
3

//***

void Display2(const unsigned char *cptrl)

{
COMMAND MODE=1; //instruction/data register
temp=CLR_DISPLAY; //firstly clear the display
led inst();
temp=0x00; //scroll in sec line =oxb9
lcd_inst();
COMMAND MODE=0; // to data register
data=*cptrl; //first element put into data
while(data!="$")
{
temp=data; //data into temp
if(temp = "A")
temp=01000001;

elseif(temp == 'B)
temp=01000010;
elseif(temp == 'C')
temp=01000011;
elseif(temp == 'D")
temp=01000100;
elseif(temp == 'E')
temp=01000101;
elseif(temp == 'T'")
temp=01000110;
elseif(temp == 'G")
temp=01000111;
elseif(temp == 'H')
temp=01001000;
elseif(temp =='I")
temp=01001001;
elseif(temp == "J")

temp=01001010;
elseif(temp == 'K')
temp=01001011;
elseif(temp == 'L")
temp=01001100;
elseif(temp == 'M')
temp=01001101;
elseif(temp == 'N')
temp=01000010;
elseif(temp == '0")
temp=01001011;
elseif(temp == 'P')
temp=01010000:
elseif(temp =="'Q")
temp=01010001;
elseif(temp == 'R")
temp=01010010;
elseif(temp =='S")
temp=01010011;
elseif(temp == 'T")
temp=01010100;
elseif(temp == "U")
temp=01010101;
elseif(temp =="V")
temp=01010110;
elseif(temp =="W')
temp=01010111,
elseif(temp == 'X')
temp=01011000;

elseif{temp =="Y')
tamn=N10T1 1001

elseif(temp == "Z")
temp=01011010;
elseif(temp =='0")
temp=00110000;
elseif(temp == '1")
temp=00110001;
elseif(temp == "2)
temp=00110010;
elseif(temp == "3")
temp=00110011;
elseif(temp == '4")
temp=00110100;
elseif(temp =='5")
temp=00110101;
elseif(temp == '6")
temp=00110100;
elseif(temp == '7")
temp=00110101;
elseif(temp == '8")
temp=00110100;
elseif(temp == '9")
temp=00110101;
elseif(temp =="")
temp=00000000;
elseif(temp == ",
temp=00101100;
elseif(temp =="")
temp=00101110;

led inst();

cptrl++; //increment then pointer

data=*cptrl; //first element into data

}
BigDelay();

}

//***

void Display3(const unsigned char *cptrl,const unsigned char *cptr2)
{
COMMAND MODE=1; //instruction/data register
if(clear_display==1)

temp=CLR_DISPLAY; //firstly clear the display
led_inst();
}
temp=0x00;
led_inst();
COMMAND_ MODE=0; //change to data register
data=*cptrl; //first element put into data
while(data!="$")
{
temp=data;
if(temp =="A")
temp=01000001;
elseif(temp =="B")
temp=01000010;
elseif(temp == 'C")
temp=01000011;
elseif(temp == 'D")
temp=01000100;
elseif(temp == 'E')
temp=01000101;
elseif(temp == 'F")

temp=01000110;
elseif(temp == 'G")
temp=01000111;
elseif(temp == 'H")
temp=01001000;
elseif(temp == 'T")
temp=01001001;
elseif(temp =="I")
temp=01001010;
elseif(temp == 'K')
temp=01001011;
elseif(temp == L")
temp=01001100;
elseif(temp == 'M’)
temp=01001101;
elseif(temp == N')
temp=01000010;
elseif(temp == '0")
temp=01001011;
elseif(temp == 'P")
temp=01010000;
elseif(temp =="'Q")
temp=01010001;
elseif(temp == 'R’)
temp=01010010;
elseif(temp =="'S")
temp=01010011;
elseif(temp == 'T")
temp=01010100;
elseif(temp == 'U")
temp=01010101;

elseif(temp =="V")
temp=01010110;
elseif(temp == "W")
temp=01010111;
elseif(temp == 'X")
temp=01011000;
elseif(temp =="'Y")
temp=01011001;
elseif(temp == "Z")
temp=01011010;
elseif(temp =='0")
temp=00110000;
elseif(temp =='1")
temp=00110001;
elseif(temp == 2")
temp=00110010;
elseif(temp == '3")
temp=00110011;
elseif(temp == '4")
temp=00110100;
elseif(temp =="'5")
temp=00110101;
elseif(temp =='6")
temp=00110100;
elseif(temp =="'7")
temp=00110101;
elseif(temp =='8')
temp=00110100;
elseif(temp =="9")
temp=00110101;
elseif(temp =="")

temp=00000000;
elseif(temp ==",")
temp=00101100;
elseif(temp ==".")

temp=00101110;

led_inst();

cptrl++; //increment then pointer

data=*cptrl; /Mirst element into data
}
COMMAND MODE=1;
temp=0xb9;
led _inst();
COMMAND_ MODE=0; //change to data register
data=*cptr2; //first element put into data
while(data!='$")
{

temp=data; //data into temp
if(temp =="A")
temp=01000001;

elseif(temp == 'B')
temp=01000010;
elseif(temp =="'C")
temp=01000011;
elseif(temp =='D")
temp=01000100;
elseif(temp == 'E")
temp=01000101;
elseif(temp == 'F')
temp=01000110;
elseif(temp == 'G")
temp=01000111;

elseif(temp == 'H')
temp=01001000;
elseif(temp == 'T")
temp=01001001;
elseif(temp == 'J")
temp=01001010;
elseif(temp == 'K')
temp=01001011;
elseif(temp == L")
temp=01001100;
elseif(temp == 'M’)
temp=01001101;
elseif(temp == N")
temp=01000010;
elseif(temp == "0")
temp=01001011;
elseif(temp == 'P')
temp=01010000;
elseif(temp =="'Q")
temp=01010001;
elseif(temp == 'R")
temp=01010010;
elseif(temp =="'S")
temp=01010011;
elseif(temp == "T")
temp=01010100;
elseif(temp == "U")
temp=01010101;
elseif(temp =="V")
temp=01010110;
elseif(temp == "W')

temp=01010111;
elseif(temp == 'X")
temp=01011000;
elseif(temp =="Y")
temp=01011001;
elseif(temp == 'Z")
temp=01011010;
elseif(temp == '0")
temp=00110000;
elseif(temp =="'1")
temp=00110001;
elseif(temp == "2')
temp=00110010;
elseif(temp == '3")
temp=00110011;
elseif(temp == '4")
temp=00110100;
elseif(temp =="'5")
temp=00110101;
elseif(temp == '6")
temp=00110100;
elseif(temp == '7")
temp=00110101;
elseif(temp =='8")
temp=00110100;
elseif(temp =='9")
temp=00110101;
elseif(temp =="")
temp=00000000;
elseif(temp ==",")

temp=00101100;

elseif(temp ==".")

temp=00101110;

led_inst();
cptr2++;

data=*cptr2;

}

//increment then pointer

//2™ element into data

”***

void key_press(unsigned char big,unsigned char small)

{
for (y=0;y<big;y++)
{
for(a=0;a<small;a++)
{
asm("clrwdt™);
asm("clrwdt");
}
}
}

[/ 3 3 3 3 sk sk ke ke sk ok ke ke ke oke ok ok ok s sk sk sk sk e sk e e sk ke ke ok sk sk ok ok ok sk ok ok sk sk sk ok o e sk sk st sk ok sk sk sk ok ok ok ok sk o ok ok ok ok sk ke sk ok

open_valve(unsigned char x,unsigned char y,unsigned char z,unsigned char d)

{
drainvalve=x;
inletvalve=y;
valveE1=z;
valveE2=(d;

}

N***

void down_select _check()

{

while((downkey==1)& &(selectkey==1)&&(timeout2<10))

{

while((downkey==1)&&(selectkey==1 Y& & (timeout1<250))
{
while((downkey==1 Y& &(selectkey==1)&&(timeout<250))
{
asm("clrwdt");
timeout++;
3
timeout=0;
timeoutl++;
}
timeout1=0;
timeout2++;
f
¥

”***

void password_check()
{
~ down_select_check();

Display2("...PLEASE WAIT.....$");

timeout=0;

timeout1=0;

timeout2=0;

whi1e((upkey==0)&&(selectkey==0)&&(downkey== D& &(timeout2<=10))

{
while((upkey==0)&&(selectkey==0)&&(downkey==1) && (timeout1<250))
{
whi1e((upkey==0)&&(selectkey==0)&&(downkey== 1)&&(timeout<250))
{
asm("clrwdt");

timeout++;

timéout=0;

timeout1++5

h
if(ﬁmeout2==l)

Display2("...VERIFYING $"):

timeout1=0;

timeout2+ 5

y

if(timeout2<1 0)

Display2(“ _ACCESS DENIED..$");

/**********************************

/
void select_check()

{
tmeout=0;
timeout1=();
timeout2=0;

while((selectke
4

y==0)&&(timeout2<10))

wh'ﬂe((selectkey=:0)&&(timeoutl <250))

{
(timeout<250))

while((selectkey==0)&&
{

asm("ch'wdt“);
timeoutt+;
¥
timeout=0:
timeout1++3
¥
timeout1=0;

timeout2++3

}

timeout2=0;

¥
N***
void timeout_routine()
{
while((downkey==1)&&(selectkey== 1)&&(timeout2<1 0))
{
while((downkey== 1)&&(selectkey== 1)&&(timeoutl <250))
{
while((downkey==1)&&(selectkey==l)&& (t meout<250))
{
asm(" clrwdt");
fimeout++;
¥
timeout=0;
timeoutl++;
}
timeout1=0;
timeout2++;
¥
¥

/******************

/
void down_check()

{
while(downkey==0)
{asm("clrwdt"); 3
timeout=0;
timeout1=0;
timeout2=0;
t2<10))

while((downkey==1)&&(timeou

{

while((downkey== 1)&&(timeoutl <250))
{
while((downkey==1)&&(timeout<250))
{
asm(“clrwdt");

fimeout++;

Iy
]

timeout=0;
timeoutl++;
3
timeout1=0;
timeout2++;
¥
¥

//***
void units_display_routine()

b1
L

//This is pasically used for displaying units for the displayed values
if(time_units_ﬂag==1)
{

COMMAND_MODE=0;

temp=0x20; /1

lcd_inst(;

COMMAND_MODE=1 ;

temp=0b000001 10;

lcd_inst(Q;

COMMAND_MODE=0;

temp=0x6d; //m

lcd_inst();

COMMAND_MODE=1 ;

temp=0b()00001 10;

led_inst();
COMMAND_MODE=O;
temp=0x69;
lcd_inst();
COMMAND_MODE=1 ;
temp=0b000001 10;
led_inst();
COMMAND_MODE=();
temp=0x6¢;
led_inst();
COMMAND_MODE=1 ;
temp=0b000001 10;
led_instQ):
3
elseif(ﬂow_units_ﬂag==1)
{
COMMAND_MODE=O;
temp=0%x20;
led_inst();
COMMAND_MODE=1 ;
temp=0b000001 10;
led_inst();
COMMAND_MODE=0;
temp=0x63;
lcd_inst()s
COMMAND_MODE=1 ;
temp=0b000001 10;
led_inst();
COMMAND_MODE=0;
temp=0x66;
led_inst();

/h

/n

/!

/lc

/1t

COMMAND_MODE=1 ;
temp=0b000001 10;
led_inst();
COMMAND_MODEZO;
temp=0x6d; /lm
lcd_inst();
COMMAND_MODE=1 ;
temp=0b000001 10,
jed_inst();
ki
else if(drain_units_ﬂag==1)
{
COMMAND_MODE=0;
temp=()x20; /
led_inst()s
COMMAND_MODE=1 ;
temp=0b000001 10;
led_inst();
COMMAND_MODEZO;
temp=0x73; /s
lcd_inst();
COMMAND_MODE=1 ;
temp=0b000001 10;
lcd_inst();
COMMAND _MODE=0;
temp=0x65; /e
led_inst();
COMMAND_MODE=1 ;
temp=0b000001 10;
led_inst();

COMMAND_MODE=0;
temp=0x63; /e
led_inst();
COMMAND MODE=1;
temp=0b0000011 0;
led_inst();
}
else if(pressure_units_flag==1)
{
COMMAND MODE=0;
temp=0x20; //
led_inst();
COMMAND_ MODE=1;
temp=0b00000110;
led_inst();
COMMAND MODE=0;
temp=0x62; //b
led_inst();
COMMAND_MODE=1;
temp=0b00000110;
led_inst();
COMMAND_ MODE=0;
temp=0x61; //a
led_inst();
COMMAND_MODE=1;
temp=0b00000110;
led_inst();
COMMAND_MODE=0;
temp=0x72; /It
led_inst();
COMMAND_MODE=1;

temp=0b00000110;
lcd_inst();
3
else if(hours_units_flag==1)
{
COMMAND_MODE=0;
temp=0x20; I
lcd_inst();
COMMAND_ MODE=1;
temp=0b00000110;
Icd_inst();
COMMAND_MODE=0;
temp=0x48; //h
led_inst();
COMMAND_MODE=1;
temp=0b00000110;
led_inst();
COMMAND_MODE=0;
temp=0x52; It
led_inst();
COMMAND_MODE=1;
temp=0b00000110;
led_inst();
COMMAND MODE=0;
temp=0x53; /s
led_inst();
COMMAND_MODE=1;
temp=0b00000110;
lcd_inst();

if((flow_units_flag==1) || (drain_units_flag==1) || (pressure units_flag==1)
[(time_units_flag==1))
{

for(h=1;h<=4-(drain_units_flag) ;h++)

{

COMMAND MODE=l;

temp=0b00010000;

led inst();

3

}

//***

void VALUE_ENTER(unsigned char count_value)
{
unsigned char Isb_value,LSB,count;
while(selectkey == 0)
{

asm("clrwdt");

h
k=0;

COMMAND MODE = 1;
temp = 0xb9;

led_inst();

temp = 0b00010100;
led_inst();

temp = 0b00010100;
lcd_inst();

COMMAND MODE = 0;
count = count_value;
downkey check flag=0;

timeout_flag=0;

//instruction/data register

// address of first line

//shift the display

temp_address=m;

m++;

for(h=0;h<=count-1;h++)

{

5

Isb=eeprom_read(m);
if(h==0) lsb_value=Isb;
m++;
COMMAND MODE=0;
temp=LSB;

led _inst();

COMMAND MODE=1;
temp=0b00000110;
lcd_inst();

asm("clrwdt");

units_display_routine();

for(h=1;h<=count-1;h++)

{

}

COMMAND MODE~1;
temp=0b00010000;
lcd_inst();

asm("clrwdt");

LSB=lsb_value;

h=1;

while(h<=count)

{

lcd_flag=0;

COMMAND MODE=1;

temp=0b00010000;

//get the data to display

//shift left

//msb back to Isb

//instruction/data register

//firstly clear the display

led_inst();

COMMAND_ MODE=0;
temp=LSB;
led inst();
timeout=0;
timeout1=0;
timeout2=0;

while((upkey==1)&&(downkey==1)& &(selectkey==1)&&(timeout2<1))
{
while((upkey==1)&&(downkey==1)& &(selectkey==1) &&(timeout] <250))

{
while((upkey==1)&&(downkey==1)& &(selectkey==1)& &(timeout<25 0))

{
asm("clrwdt");
timeout++;
3
timeout=0;
timeoutl-++;
h
timeout1=0;
timeout2++;
3
if(LSB>=0x30 && LSB<=0x39)
{
led flag=1;

if (upkey==0)
{
key press(1,250);
if(upkey==0 && LSB!=0x39)
{
LSB++;

register

the display

downkey check flag=I;

}
iffENABLE FLAG==1 && upkey==0 && LSB!=0x59)
{
LSB=0X4E;
downkey check flag=1;
b
3
if (downkey==0)
{
key press(2,100);
if(downkey check flag==0 && h==1) break;
if(downkey==0 && LSB!=0%x30) LSB--;
}
if (selectkey==0)
{
key press(4,220);
key press(2,240);
if(selectkey==0)
{
h++;
led_flag=0:;
timeout flag=0; //single digit timeout

downkey check flag=1;

COMMAND MODE=1; //instruction/data
temp=0b00010100; /Mirstly clear

led_inst();
COMMAND_ MODE=0;
address=h + temp address-1 ;

eeprom_write(address,LSB);

GIE=1;

eeprom_write(address,LSB);

GIE=1;
}
}
a=0; //sigle digit timeout
b=0;
c=0;
while(c<=250&&(downkey==0|lupkey==0||selectkey==0))
{
asm("clrwdt");
a++;
if (a==240) b++;
if (b==240) c++;
}
Delay();
key press(1,100);
h

timeout flag++;

if (timeout_flag>=100 || escapekey==0)

break;

j

if(led_flag==1)

{
COMMAND MODE-=I;
temp=0b00010000; //astly clear the display
led inst();
COMMAND_ MODE=0;

}

}

//***

void factor_settings_display()
{
maincounter=6;
for(i=1;i<=maincounter;i++)
{
down_check();
if(timeout2<=10)

{
switch(i)
{

case I:
Display3("CYCLE TIME $","$");
time units_flag=1;
VALUE ENTER(3);
time_units_flag=0;
break;

case 2:

Display3("FLOW $".,"$");
flow_units_flag=1;
VALUE_ENTER(S);
flow_units_flag=0;
break;

case 3:
Display2("MODEL $");
VALUE_ENTER(4);
break;

case 4:
Display2("DRAIN $");
drain_units_flag=1;
VALUE_ENTER(2);

drain_units flag=0;

break;

case 5:
Display2("PRESSURE §");
pressure_units_flag=1;
VALUE_ENTER(3);
pressure_units_flag=0;
break;
case 6:
Display2("ENABLE $");
enable flag=1;
VALUE_ENTER(2),
enable flag=0;
break;
}
}
b

COMMAND MODE=1;

temp=0B00001100;

led inst();

COMMAND_MODE=0;

}

//**
void field settings display()
maincounter=3;
for(i=1;i<=maincounter;i++)
down_check();
if(timeout2<=10)

78

switch(i)

{

case 1:
Display2("PHONE NUMBER §");
VALUE _ENTER(10);
break;

case 2:
Display2("FAX NUMBER §");
VALUE ENTER(10);
break;

case 3:
Display2("PRESSURE $");
pressure_units_flag=1;
VALUE ENTER(4);
pressure_units_flag=0;
break;

case 3:
Display2("FLOW $");
ENABLE _FLAG=I;
VALUE _ENTER(2);
ENABLE FLAG=0;
break;

case 3:
Display2("PRESSURE DROP §");
ENABLE FLAG=1,
VALUE _ENTER(2);
ENABLE_FLAG=0;
break;

COMMAND MODE=I;

temp=0B00001 100;
led _inst();
COMMAND MODE=0;
}
3

//**
void maintenance_chart()
maincounter=3;
for(i=1 ;i<=maincounter;i++)
down_check();
if(timeout2<=10)
switch(i)

{

case 1:
Display2("FILTER CHANGE $");
hours_units_flag=1; '
VALUE_ENTER(5);
hours_units_flag=0;
break;

case 2:
Display2("DESSICANT CHANGE §");
hours_units_flag=1;
VALUE ENTER(S);
hours_units_flag=0;
break;

case 3.
Display2("CHANGE SEAL)

hours_units_flag=1;

VALUE_ENTER(S);
hours_units_flag=0:
break;

}

}
COMMAND_MODE=1;

temp=0B00001100;
led_inst();

COMMAND_ MODE=0;
i

s

1
)

ﬁ**

void keyscan()

{
asm("clrwdt");
if(downkey==0)

{
Delay(); //these delays are required

Delay();
Delay();
Delay();
if(downkey==0)
{
press_flag=1;
switch (count_flag)
{
case 0:
count_flag=1;
Display2(trident2);
break;

case 1:

count flag=2;

Display2(trident3);
break;
case 2:
count_flag=3;
Display2(trident4);
break;
b
}
3
Delay();
Delay();
timeout2=0;
timeout1=0;
timeout=0;

if(press_flag==1)

{
press_flag=0;
down_select check();

H
if(selectkey==0& &timeout2<10)

{
timeout=0;
timeout1=0;
timeout2=0;
Display2("ENTER PASSWORDS$");
password_check();
if(timeout2>=10)
{
timeout2=0;

switch (count flag)

case 1:
m=0; //(0-21)
factor_settings display();
break;
case 2:
m=22; //(22-50)
field_settings_display();
break;
case 3:
m=50;
maintenance chart display();
break;
}
select_check();

}

timeout_routine();
if(count_flag==0 || timeout2>=10)
{
select_pressed_flag==1;
while(upkey==1)
{
Delay();
if(upkey==0)
{
Delay();
down_pressed flag2=1;
break;

——

-

timeout2=0;

normal flag=1;

enter flag=1;

b

[AR R R R R R R A R o s
void main(void)
{
PORTA=0X00;
PORTB=0X00;
PORTD=0X00;
TRISA=0x3F;
TRISB=0x00;
TRISC=0xFF,
TRISD=0x00;
PIE1=0B00000001; /tmrl overflow interrupt
OPTION=0B00001000; /fwdt prescalar 1:1
T1CON=0B00110001; //enables timer1 and prescalar 1:8
TMR1L=0xDB;
TMR1H=0x0B;
PIR1=0; /Itmrlif reset
INTCON=0B11000000; //gie and pie
Count_flag=0;
led_init();
COMMAND_ MODE=1;

temp=Cursor_Off; //instruction for cursor off
led_inst();
COMMAND_ MODE=I; //instruction/data register

temp=0B00000001; /I firstly clear the display

led_inst();
for(i=0;i<=250;1++)
{
Scroll display(trident add,tridentl);
for(i=0;1<=250;i++)
{
asm("nop");
asm("nop");
}
}
while(1)
{
keyscan();
}
}

//**

/INTERRUPT SERVICE ROUTINE:
{

i++;

2

switch(i)
{
case 1:
open_valve (1,1,0,1);
display3("T1 DRYS$","T2 REGEN$");
break:
case 8:
open_valve(0,1,0,1)
break;
case 458:
open_valve (0,1,0,0);
display3("T1 DRY$","T2 REPRUSS");

break;
case 572:
open_valve (0,1,1,0);
display3("T2 DRYS$","T1 REGENS$");
break;
case 1030:
open_valve (0,1,0,0);
display3("T2 DRYS$","T1 REPRUSS$");
break;
case 1144:
1=0;
it
if(j==6)
{
m=50;
m=m-+5;
n=eeprom_read(m);
while(n==0x30)
{
eeprom_write(m,0x39);
m--;
n=eeprom_read(m);
3
eeprom_write(m,n--);
1if(m==0x30 && m-1==0x30 && m-2==0x30 && m-3==0x30
&& m-4==0x30 & & escapekey==0)
Display2("TIME TO CHANGE FILTERS$");
m=m-+35;
n=eeprom_read(m);
while(n==0x30)
{

eeprom_write(m,0x39);
m--;
n=eeprom_read(m);
b
eeprom_write(m,n--);
if(m==0x30 && m-1==0x30 && m-2==0x30 && m-3==0x30
&& m-4==0x30 && escapekey==0)
Display2("TIME TO CHANGE DESSICANT §");
m=m-+S5;
n=eeprom_read(m);
while(n==0x30)
{
eeprom_write(m,0x39);
m--;
n=eeprom_read(m);
}
eeprom_write(m,n--);
if(m==0x30 && m-1==0x30 && m-2==0x30 && m-3==0x30
&& m-4==0x30 && escapekey==0)
Display2("TIME TO CHANGE SEALS$");

}
break

}

asm("'return")

j

Lot

MICRrROCHIP

PIC16F87X

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

+ PIC16F873 + PIC16F876
» PIC16F874 + PIC16F877

Microcontroller Core Features:

» High performance RISC CPU
* Only 35 single word instructions to learn

+ Ali singie cycle instructions except for program
branches which are two cycle
+ Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle

* Up to 8K x 14 words of FLASH Program Memory,
Up to 368 x 8 bytes of Data Memory (RAM)
Up to 256 x 8 bytes of EEPROM Data Memory

+ Pinout compatible to the PIC16C73B/74B/76/77
* Interrupt capability (up to 14 sources)

+ Eight level deep hardware stack

» Direct, indirect and relative addressing modes

* Power-on Reset (POR)

» Power-up Timer (PWRT) and

Oscillator Start-up Timer (OST)

Watchdog Timer (WDT) with its own on-chip RC
oscillator for reliable operation

* Programmable code protection

* Power saving SLEEP mode

+ Selectable oscillator options

» Low power, high speed CMOS FLASH/EEPROM
technology

« Fully static design

* In-Circuit Serial Programming™ (ICSP) via two
pins

+ Single 5V In-Circuit Serial Programming capability

* In-Circuit Debugging via two pins

+ Processor read/write access to program memory

» Wide operating voitage range: 2.0V to 5.5V

« High Sink/Source Current: 25 mA

» Commercial, Industrial and Extended temperature
ranges

» Low-power consumption:
- < 0.6 mA typical @ 3V, 4 MHz
- 20 pA typical @ 3V, 32 kHz
- <1 pA typical standby current

Pin Diagram

PDIP

v 40 [] -—= RB7/PGD
39 [] =—+ RB6/PGC
38 [] = RBS

37 [1 =—» RB4

36 [] =—= RB3/PGM
35 [] =—= RB2

34 [] +—s RB1

33 {J =—= RBO/INT
32 [-——— voo

31 [] -— vss

30 {J =—» RD7/PSP7
29 [1 =—» RD6/IPSPE
28 [] «—» RDS/PSP5
27 [] «—» RD4/PSP4

MCLRNPP ——» O
RAO/ANG ~—-[]
RAT/AN1 <—s[]

RA2/AN2/VREF- a—u [}
RAJ/ANINVREF+ —]
RA4/TOCKI <—e[_]
RAS/AN4/SS <+—]
REO/RD/ANS <+— []
RE1/WRIANG <+—[]
RE2/CS/AN7 <[]
VDD ——» [

Vss [
OSC1/CLKIN —— [13
OSC2CLKOUT w—[T 14

O~ HAWN =

=
o

PIC16F877/874

RCOT10SOMICKI «— [15 26 [] «— RCTRX/DT
RC1/T10SICCP2 w—[T 16 25 [7] e RCB/TX/CK
RC2/CCP1 [17 24 [] w—w RCS/SDO
RC3/SCK/SCL <— [T 18 23 {7 -w— RC4/SDI/SDA
RDO/PSPO <[] 19 22 [[] «—» RD3PSP3
RD1PSP1 «—»] 20 21 [] w—w RD2PSP2

Peripheral Features:

Timer0: 8-bit timer/counter with 8-bit prescaler

Timer1: 16-bit timer/counter with prescaler,
can be incremented during SLEEP via external
crystal/clock

Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and postscaler

Two Capture, Compare, PWM madules

- Capture is 16-bit, max. resolution is 12.5 ns

- Compare is 16-bit, max. resolution is 200 ns

- PWM max. resolution is 10-bit

10-bit multi-channel Analog-to-Digital converter
Synchronous Serial Port (SSP) with SPI™ (Master
mode) and I2C™ (Master/Slave)

Universal Synchronous Asynchronous Receiver
Transmitter (USART/SCI) with 9-bit address
detection

Parallel Slave Port (PSP) 8-bits wide, with
external RD, WR and CS controls (40/44-pin only)
Brown-out detection circuitry for

Brown-out Reset (BOR)

© 2001 Microchip Technology Inc.

D830292C-page 1

PIC16F87X

TABLE 3-3: PORTB FUNCTIONS
Name Bit# Buffer Function
RBO/ANT bitd TTL/STY input/output pin or external interrupt input. Internal software
programmable weak pull-up.
RB1 bit1 TTL Input/output pin. Internal software programmable weak pull-up.
RB2 bit2 TTL Input/output pin. Internal software programmable weak pull-up.
RB3/PGMEB) bit3 TTL Input/output pin or programming pin in LVP mode. Internal software
programmable weak pull-up.
RB4 bit4 TTL Input/output pin (with interrupt-on-change). Internal software programmabie
weak pull-up.
RB5 bits TTL Input/output pin (with interrupt-on-change). Internal software programmable
weak pull-up.
RB6/PGC hit6 TTLST@ | input/output pin (with interrupt-on-change) or In-Gircuit Debugger pin.
internal software programmable weak pull-up. Serial programming clock.
RB7/PGD bit7 TTUST | inputioutput pin (with interrupt-on-change) or in-Circuit Debugger pin.
Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB3 I/O function. LVP
must be disabled to enable RB3 as an 1/0O pin and allow maximum compatibility to the other 28-pin and
40-pin mid-range devices.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
Value on: | Value on
Address Name Bit7 | Bit6 | Bit5 | Bit4 | Bit3|Bit2|Bit1|Bit0| POR, all other
BOR RESETS
06h, 106h |PORTB RB7 RB6 RB5 | RB4 | RB3 | RB2 | RB1 | RBO | xxxx xxxx | uuun uuuu
86h, 186h | TRISB PORTB Data Direction Register 1111 1111 (1111 1111
81h, 181h |OPTION_REG | RBPU lNTEDG|TOCS [TOSE(PSA [PS2 [PS1 | PSO {1111 1111|1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

DS30292C-page 32

© 2001 Microchip Technoiogy Inc.

PIC16F87X

TABLE 3-5: PORTC FUNCTIONS
Name Bit# | Buffer Type Function
RCO/T10SO/T1CKI | bit0 ST Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T10Sl/CCP2 bit1 ST Input/output port pin or Timer1 oscillator input or Capture2 input/
Compare2 output/PWM2 output.
RC2/CCP1 bit2 ST Input/output port pin or Capture1 input/Compare1 output/
PWM1 output.
RC3/SCK/SCL bit3 ST RC3 can also be the synchronous serial clock for both SPI
and 1°C modes.
RC4/SDI/SDA bit4 ST RC4 can also be the SPI Data In (SP! mode) or data /O (°C mode).
RC5/SDO bits ST Input/output port pin or Synchronous Serial Port data output.
RCB/TX/CK bité ST Input/output port pin or USART Asynchronous Transmit or
Synchronous Clock.
RC7/RX/DT bit7 ST Input/output port pin or USART Asynchronous Receive or
Synchronous Data.

Legend: ST = Schmitt Trigger input

TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
Value on: | Value onall
Address| Name | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 POR, other
BOR RESETS
07h PORTC| RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RCO | xxxx xxxx | uuuu uuuu
87h TRISC |PORTC Data Direction Register 1111 1111 | 1111 1111

Legend: x = unknown, u = unchanged

DS30292C-page 34

® 2001 Microchip Technology Inc.

PIC16F87X

3.4 PORTD and TRISD Registers FIGURE 3-7: PORTD BLOCK DIAGRAM
(IN I/O PORT MODE)

PORTD and TRISD are not implemented on the

PIC16F873 or PIC16F876. Data Data Latch 110 pin?
PORTD is an 8-bit port with Schmitt Trigger input buff- Bz D Q ’
ers. Each pin is individually configureable as an input or ‘F’,VF; 1_
output. 2 CK ;
PORTD can be configured as an 8-bit wide micropro- TRIS Latch
cessor port (parallel slave port) by setting controi bit L 0 a
PSPMODE (TRISE<4>). In this mode, the input buffers WR
are TTL. TRIS Schmitt
input
1 Buflfjer }
RD]\1 |
TRIS
Q D

-
T

Note 1: /O pins have protection diodes to VoD and Vss.

TABLE 3-7: PORTD FUNCTIONS

Name Bit# Buffer Type Function
RDO/PSPO bit0 sTrTLt Input/output port pin or parallel slave port bit0.
RD1/PSP1 bit1 sTTL Input/output port pin or parallel slave port bitt.
RD2/PSP2 bit2 sT/TTL(M Input/output port pin or parallel slave port bit2.
RD3/PSP3 bit3 st Input/output port pin or parallel slave port bit3.
RD4/PSP4 bit4 sTTLY Input/output port pin or parallel slave port bitd.
RD5/PSPS bits sTTLY Input/output port pin or parailel slave port bit5.
RD6/PSP6 bit6 sTTLY Input/output port pin or parallel slave port bit6.
RD7/PSP7 bit7 sTaTLM Input/output port pin or parallel slave port bit7.

Legend: ST = Schmitt Trigger input, TTL = TTL input
Note 1: Input buffers are Schmitt Triggers when in /O mode and TTL buffers when in Parallel Siave Port mode.

TABLE 3-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Value on: | Value on
Address| Name | Bit7 | Bit6 | Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0 POR, all other
BOR RESETS

08h PORTD | RD7 | RD6 | RD5 RD4 RD3 RD2 RD1 RDO | xxxx xxxx | uuuu uuuu
88h TRISD |PORTD Data Direction Register 1111 1111 { 1111 1111
8%h TRISE IBF] OBF !IBOV{PSPMODEI —]PORTE Data Direction Bits | 0000 -111 | 0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0". Shaded cells are not used by PORTD.

© 2001 Microchip Technology Inc. DS30292C-page 35

PIC16F87X

2221 STATUS Register

The STATUS register contains the arithmetic status of
the ALU, the RESET status and the bank select bits for
data memory.

The STATUS register can be the destination for any
instruction, as with any other register. If the STATUS
register is the destination for an instruction that affects
the Z, DC or C bits, then the write to these three bits is
disabled. These bits are set or cleared according to the
device logic. Furthermore, the TO and PD bits are not
writable, therefore, the result of an instruction with the
STATUS register as destination may be different than
intended.

REGISTER 2-1:

For example, CLRF STATUS will clear the upper three
bits and set the Z bit. This leaves the STATUS register
as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF,
SWAPF and MOVWF instructions are used to alter the
STATUS register, because these instructions do not
affect the Z, C or DC bits from the STATUS register. For
other instructions not affecting any status bits, see the
“Instruction Set Summary.”

Note: The C and DC bits operate as a borrow
and digit borrow bit, respectively, in sub-
traction. See the SUBLW and SUBWF

instructions for examples.

STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

R/W-0 R/W-0 R/W-0 R-1 R-1 R/W-x R/W-x R/W-x
| _IRP RPt | RPO TO PO | z] bc c |
bit 7 bit 0
bit 7 IRP: Register Bank Select bit (used for indirect addressing)
1 =Bank 2, 3 (100h - 1FFh)
0 = Bank 0, 1 (00h - FFh)
bit 6-5 RP1:RPO0: Register Bank Select bits (used for direct addressing)

11 = Bank 3 (180h - 1FFh)
10 = Bank 2 (100h - 17Fh)
01 = Bank 1 (80h - FFh)
00 = Bank 0 (00h - 7Fh)
Each bank is 128 bytes

bit 4 TO: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

0 = A WDT time-out occurred
bit 3 PD: Power-down bit

1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction

bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero
0 = The resuit of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)

(for borrow, the polarity is reversed)

1 = A carry-out from the 4th low order bit of the result occurred
0 = No carry-out from the 4th low order bit of the result
bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred

Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two’s
complement of the second operand. For rotate {RRF, RLF) instructions, this bit is
loaded with either the high, or low order bit of the source register.

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
- n = Value at POR 1" = Bit is set ‘0’ = Bit is cleared X = Bit is unknown

DS30292C-page 18

© 2001 Microchip Technology Inc.

PIC16F87X

2223 INTCON Register

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit, GIE (INTCON<7>). User soft-
ware should ensure the appropriate inter-
rupt flag bits are clear prior to enabling an
interrupt.

The INTCON Register is a readable and writable regis-
ter, which contains various enable and flag bits for the
TMRO register overflow, RB Port change and External
RBO/INT pin interrupts.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

RW-0 RW-0 RMW-0 RW-0 R/W-0 RW-0 RW-0 RMW-x
| GE | PEE | TOE | INTE RBIE | TOF | INTF | RBIF
bit 7 bit 0
bit 7 GIE: Global interrupt Enable bit

1 = Enables all unmasked interrupts
0 = Disables all interrupts
bit 6 PEIE: Peripheral Interrupt Enable bit

1 = Enables all unmasked peripheral interrupts
0 = Disables all peripheral interrupts

bit5 TOIE: TMRO Overflow interrupt Enable bit
1 = Enables the TMRO interrupt
0 = Disables the TMRO interrupt
bit 4 INTE: RBO/INT External interrupt Enable bit
1 = Enables the RBO/INT external interrupt
0 = Disables the RBO/INT external interrupt
bit 3 RBIE: RB Port Change Interrupt Enable bit
1 = Enables the RB port change interrupt
0 = Disables the RB port change interrupt
bit 2 TOIF: TMRO Overflow Interrupt Flag bit
1 = TMRO register has overflowed (must be cleared in software)
0 = TMRO register did not overflow
bit 1 INTF: RBO/INT External Interrupt Flag bit

1 = The RBO/INT external interrupt occurred (must be cleared in software)
0 = The RBO/INT external interrupt did not occur
bit O RBIF: RB Port Change Interrupt Flag bit
1 = At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set
the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared
(must be cleared in software).
0 = None of the RB7:RB4 pins have changed state

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
- n = Value at POR 1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

DS30292C-page 20 © 2001 Microchip Technalogy Inc.

PIC16F87X

2224 PIE1 Register

The PIE1 register contains the individual enable bits for Note: Bit PEIE (INTCON<6>) must be set to
the peripheral interrupts. enable any peripheral interrupt.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

RW-0 RW-0 RW-0 RW-0 R/W-0 RW-0 RMW-0 RMW-0
| PSPE® | ADIE | RCIE | TXIE | SSPIE_ | CCPIIE | TMR2IE | TMRIIE |
bit 7 bit 0
bit 7 PSPIE(": Paraliel Slave Port Read/Write interrupt Enable bit

1 = Enables the PSP read/write interrupt
0 = Disables the PSP read/write interrupt

bit 6 ADIE: A/D Converter Interrupt Enable bit
1 = Enables the A/D converter interrupt
0 = Disables the A/D converter interrupt
bit 5 RCIE: USART Receive Interrupt Enable bit

1 = Enables the USART receive interrupt
0 = Disables the USART receive interrupt

bit 4 TXIE: USART Transmit interrupt Enable bit
1 = Enables the USART transmit interrupt
0 = Disables the USART transmit interrupt
bit 3 SSPIE: Synchronous Serial Port Interrupt Enable bit

1 = Enables the SSP interrupt
0 = Disables the SSP interrupt

bit 2 CCP1IE: CCP1 Interrupt Enable bit

1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt

bit 1 TMR2IE: TMR2 to PR2 Match interrupt Enable bit

1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt

bit 0 TMRI1IE: TMR1 Overflow Interrupt Enable bit

1 = Enabies the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt

Note 1: PSPIE is reserved on PIC16F873/876 devices; always maintain this bit clear.

Legend:
R = Readabie bit W = Writable bit U = Unimplemented bit, read as ‘0’
- n = Value at POR ‘1’ = Bit is set '0’ = Bit is cleared x = Bit is unknown

© 2001 Microchip Technology Inc. DS30292C-page 21

PIC16F87X

4.2 Reading the EEPROM Data
Memory

Reading EEPROM data memory only requires that the
desired address to access be written to the EEADR
register and clear the EEPGD bit. After the RD bitis set,
data will be available in the EEDATA register on the
very next instruction cycle. EEDATA will hold this value
until another read operation is initiated or until it is writ-
ten by firmware.

The steps to reading the EEPROM data memory are:

1. Write the address to EEDATA. Make sure that
the address is not larger than the memory size
of the PIC16F87X device.

2. Clear the EEPGD bit to point to EEPROM data
memory.

3. Setthe RD bit to start the read operation.

4. Read the data from the EEDATA register.

EXAMPLE 4-1: EEPROM DATA READ
BSF STATUS, RP1 ;
BCF STATUS, RPO ;Bank 2

MOVF ADDR, W
MOVWF EEADR

;Write address
ito read from

BSF STATUS, RPO ;Bank 3
BCF EECON1, EEPGD ;Point to Data memory
BSF EECON1, RD ;Start read operation

BCF STATUS, RPO ;Bank 2

MOVF BEDATA, W ;W = EEDATA

4.3 Writing to the EEPROM Data
Memory

There are many steps in writing to the EEPROM data
memory. Both address and data values must be written
to the SFRs. The EEPGD bit must be cleared, and the
WREN bit must be set, to enable writes. The WREN bit
should be kept clear at all times, except when writing to
the EEPROM data. The WR bit can only be set if the
WREN bit was set in a previous operation, i.e., they
both cannot be set in the same operation. The WREN
bit shoutd then be cleared by firmware after the write.
Clearing the WREN bit before the write actually com-
pletes will not terminate the write in progress.

Writes to EEPROM data memory must also be pref-
aced with a special sequence of instructions, that pre-
vent inadvertent write operations. This is a sequence of
five instructions that must be executed without interrup-

The steps to write to EEPROM data memory are:

1. If step 10 is not implemented, check the WR bit
to see if a write is in progress.

2. Write the address to EEADR. Make sure that the
address is not larger than the memory size of
the PIC16F87X device.

3. Write the 8-bit data value to be programmed in
the EEDATA register.

4. Clear the EEPGD bit to point to EEPROM data
memory.

5. Setthe WREN bit to enable program operations.

Disabte interrupts (if enabled).

7. Execute the special five instruction sequence:

« Write 55h to EECON2 in two steps (firstto W,
then to EECONZ2)

- Write AAh to EECONZ2 in two steps (first to
W, then to EECON2)

» Set the WR bit

8. Enable interrupts (if using interrupts).

9. Clear the WREN bit to disable program opera-
tions.

10. At the completion of the write cycle, the WR bit
is cleared and the EEIF interrupt flag bit is set.
(EEIF must be cieared by firmware.) If step 1 is
not implemented, then firmware should check
for EEIF to be set, or WR to clear, to indicate the
end of the program cycle.

o

EXAMPLE 4-2: EEPROM DATA WRITE
BSF STATUS, RP1l H

BSF STATUS, RPO ;Bank 3

BTFSC EECON1, WR ;Wait for

GOTO $-1 ;write to finish
BCF STATUS, RPO ;Bank 2

MOVF ADDR, W
MOVWF EEADR

;Address to
;write to

MOVF VALUE, W ;Data to
MOVWF EEDATA ;write
BSF STATUS, RPO ;Bank 3
BCF EECON1, EEPGD ;Point to Data memory
BSF EECON1, WREN ;Enable writes

;only disable interrupt
BCF INTCON, GIE ;if already enabled,

;otherwise discard

MOVLW 0x55 ;Write 55h to

MOVWF EECON2 ; EECONZ2

MOVLW OxABR ;Write AAh to

MOVWF EECON2 ; EECON2

BSF EECON1, WR ;Start write operation

;Only enable interrupts

tions. The firmware should verify that a write is not in BSF INTCON, GIE ;if using interrupts,
progress, before starting another cycle. jotherwise discard
BCF EECON1, WREN ;Disable writes
__

© 2001 Microchip Technology Inc.

DS$30292C-page 4

;"L‘AMPE'X

INSTRUCTION SET
TYPICAL
. CODE DESCRPTION EXECUTION
NSTRUCTION' 1 o T w [087 | 085 [085 [084 [083 | 062 | 081 | 082 L]
; Clears display and returas the cursor to home position 164ps
Cleardspiay (@10 |0 |0|0|01016|06]1 (Address @). Sets VD = 1 of Entry Mode.
Return the cyrsof to the home position (Address @ } Also returns L6tus
Rewnhome |G| @ | @1 G| B |G |G |G| 1| % | thedspay being shifted to the original position. DD RAM contents H4p
remain unchanged. Set DD RAM addresses to zero.
Set the cursor move direction and specifies or not to shdt lh:) aops
gloaleolo|l1 {w] s display. These operations are performed during data write and rea
Entry mode set| @ | O | O of DD RAM/CG RAM, FOR NORMAL OPERATION SET S T0 @
- ; Sets ON/OFF all display (D), cursor ON/OFF {C), and blink of 40ps
Ol)
Elm o e12|e|e|2|@ o L ~ cursor position character (B). .
. Moyes the cursor and shifts the display without changing DD RAM 40us
:m;“ 1010|001 |vcim|x|x | Mwsh W
Sels interface data length (DL) number of display ines (N} and 40ps
Functonset 101G |G 1G] 1 |OLIN|F|x]|x character font (F) '
Set the CG Sets the CG RAM address. CG RAM data is sent and received after 40ps
RAM address 2|02 1 MSB. ACG . LsB this setting.
Sets the CG RAM address. CG RAM data is sent and receied after
Set the DD
R::l address 2 : @ |1 [ms8 ADD Lss this setting. 40ps
Read busy flag " Reads Busy flag (BF) indicating internal operation is being
I3 addre:: $10 | 1 | eF fmss Ac LS8 performed and reads address counter contents. 40ns
Wite datato 1) | o fpeg LSB | Wiites data into DD RAM of CG RAM. 40ps
CG of DD RAM
2&':‘ ‘ggw 1| 1-fuss” LSB | Reads data into DD RAM of CG RAM. 40ps
S=1 . Accompanies display shift when data DO RAM : Display data RAM
is written. For normal operation, set to @ CGRAM : Character generator RAM
VD=1 Increment DL=1 :8 bits ACG : CG RAM address :
VD=3 Decrement DL=0 :4 bits ADD : DD RAM address vorresponds 1o cursor acdress
§C-1 Display shift N=l :2{)line AC : Address counter used for both DD and CG RAM address
s/C-0 Cursor Move N=@ 1 line B : 1=ON @ = OFF (Blinking Cursor)
RAs1 Shitt to the right F=1 :5x10 dots c : 1=ON @ = OFF (Cursor)
R=1 Shitt to the left F«@ :5x7 dots D : 1-ON O = OFF {Dispiay)
BF ~1 : Internally operating * Don't Care
BF=0 : Can accept instruction \
INITIALIZATION
The e aulomatically performed initialization when powered
on {using ;\ut’und reset circuit). The following instructions are t
executed during initiakzation ; -
LOERDSAY) 01ms € 1< 1oms 7t eims
The Busy Flag is kept in the Busy State {BF=1) ynit POWER ON TIMING DIAGRAM
initialization ends. The time is. 15ms. .
2. Function Set DL = 1 : Bbits iong interface data NOTE: - .
* 3 DISPLAY ON/OFF CONTROL __g:g ll)"s'p"“:yoggay When the above power supply condition is not satistied, the internal reset cir-
C=@ : Cursor OFF cuitry does not operate correctly. In this case, perform the needed initialization
B =@ : Blink OFF by sending function set instructions thrice from MPU after turning the power on.
4. ENTRY MODE =] . L X
SET Vg_ é ; gcl)(g;iﬂcFRTEMENT) For Example, to designate a 8-bits data length, send the following instructions
5. 0D RAM IS SELECTED thrice,
l:w:’mhw;zhau:nd:epends on :‘se timel of the supply Myen RS R/W ODB7 DB6 D85 ©DB4 0DB3 0B2 DBl DBO
ts on The wing time relationship must be satisfied, g @ %) P 1 1 * * * *
STANDARD TIME ﬁﬂﬂﬂll****
TEM SMBOL N TTVE TR UNT 2 @ 8 6 1 1 w % w o«
Power Supply Rise Time t Q1] - 110 [ms When this ends, the module enters 8-bits data length mode without fail. then
Power Supgly Off Time S . 1B~ - Ims enter 4-bits data length instruction for 4-bits data length interface.

3y

LAMPEX

A vy

iyt

MATRIX LG

2P ZETL0n 5 h o S BT

Rl

|LM16209 [16 x 2, 1/16 MUX]

DIMENSION IN MM

7 e n

5.5 [5.0)
' ‘j 250 -’] l
75— bl 254 3
® fz
A . o zv: LR 7 ol l
O © X EENYS a’a XY XY % X x P
pa. rgg (- T T — > I g laln
e] < Nl bl
aly j2s B A 45 8 als
~ > m—— —_—--_——_*—.-—__'—_.—-‘ o~ - |
'; -Ge) AX KX LA .0 8 ..\X‘&", X)_\Y"Y_ 'T':). }S.’) R s 5%
FTe7 o R e SRR 40
® @, — J
- 1.60
n “lf:.ﬁﬁo-! 4 x50 1.0 [0} | —> R-}122
n;"" < 166.7 * 0.5
L7 — 183.0¢ 0.3 N
150.0 ¥ 1.0 N 145
1y — 1.25
8] u‘_ g
BLOCK DIAGRAM S I ' 9000 o
oo O Q0
i 00000 N
£ ___Booog g
W= B _tco | gt 5
g 40 00068 8
080 To 0B7 D - 00008 g
o —i " |E 09090 8
Vo ——3 3 4 oRIvER Y _0ooes 8
vsi s v {. 7.05 ’
X > Bccklighlinq ‘] .50
My
(] DIMENSIONS FOR LED BACKLIGHT VERSION.
;. o) 2 o A g y'ﬁ}p e e : W 55
R T e
';:'MODEL“' DISPLAY FORMAT|FONT MATRIX DRIVING| DOT $12E | CHARACTER S12E VIEWING AREA | PCB SIZE
071 CHAR. x LINE WxH DUTY WxH Wx H WxH WaxH
LM16209 16x 2 5x8 1716 11.25 x 1.30 7.05 x 11.8(} 147.0 x 29.50 {190.0 x 54.0
i)

? STANDARD VALUES .
ITEM SYMBOL TEST CONDITION . Tom Mon. UNITS
Input High Voltage Vi . 2.2 Vid v
Input Low Voltage Vit - -0.3 - 0.6 . \%
Output High Voltage Vou o= 0.2maA 2.4 - - Y%
Output Low Voltage Voo ol = 1 2mA B - 0.4 A% -
Supply Curre:: o Vdd = :":.0'»7. i - 2.8 4.0 . mA]
VNI-':»l =00 o _;A7 \4)
Operating Voltage for LCD Vit - Vo l"ui - .!’: ;U' ”) ; V -
LED Backlight Current fLen) Vdd :1:.2—(—;\ 80 100

Wide configurations avail

able,

SYMBOL l
1 Gnd 6] E
2 Vee | 7w | DBO 1o DBY
3 | Vo [15] BL (K) !
4 ! RS] 16 | Ty T

Kindly consult
LAMPEX while ordering. Refer LAMPEX LCM Cata.
logue for more Information.

LAMPEX reserves all right. Specification might al-
ter without prior notjco.

Al

-AMPEX

A bk o

DEFINITION OF TERMINALS

INNO. SYMBOL FUNCTION

= (13) Vag Ground terminal of Module,

. 14 vdd Supply termina of Module, +5v,

o 12) vo er Supply for liquid Crystal Drive

. (11) RS Register Select
RSag., Instruction Register.
RS=1., Data Register

. (100 R/wW Read / Write

: R/W=1., Read
RIW=g Write

.) EEn Enable

‘14. (8-1) DBg. DB7 Bi-directiona) Data Bus,
Data Transfer is performed once, thry
DB®@-DB7?, in the case of interface data
length is 8-bits;and twice,thru DB4-pB7
in the case of interface data length
is 4-bits, Upper four bits first then
lower four bits,

: 83 m*?{l) } LED or EL, lamp power supply terminals

(15) (Eg) Enable

ate: () Pin Nos for model LM40400
T—==———==tLmocel LM40400

'PERATING SPECIFICATIONS

POWER SUPPLY REQUIREMENTS

* Wide Temperature Range Version
* Standard

® Super - Twist Display Versijon

Vdd 1

+5V or -12v
RL (Module
*R Equivalent Load)
3
Al Lcm -_j% 334
VR

IT

GND

When RL=23.5K . VR=10~20K, RL=5K - VRa 2-5K.
This circuit shows the typical power supply connection
for all dot matrix modules. The display Voltage (v

)
Leh
in slightly different for different vers

ion (ey, standard,

wide temp and Bupertwist.) Recomend end user to
STANDARD TEMP WIDE TEMP

»erating temperatur range -10°to ‘:‘:.(,TE _20',,0 to +70°0 use VARIABLE RESISTOR 48 shown in the circuit for
orage temperature range -20%C to +70°C -30°C to +80°C optimum V ool VeV,) adjuatment to obtain best dis-
erating relative humidity 90% MAX 90% MAX play contrast and viewing angle.*R Value see Note 4,

N

‘LECTRICAL CHARACTERISTICS

(Ta = +25°C)

PARAMETER SYMBOL CONDITION MIN TYP MAX UNIT
Supply Voltage VDD) 4.5 - 60 ' 5.6 A
LD Drive Voltage ’
Normal Temp Mode] VDD-Vo 3.3 4.2+ - A%
Wide Temp Model (Vi) 3.7 4.3+ - v
Super - Twist Display Model 3.5 4.1* - \%
Supply Current ‘ '
16x1 - 1.0 2.0 mA
16x2 IDD VDD = 5v - 1.0 3.0 mA
20x1, 20x2, 24x2 Vo= 0V MIN - 1.5 3.0 mA
20x1, 40x2, 40x1 - 2.5 1.0 mA
16x4 -~ 4.5 5.5 mA-
Input Voltage? VIL 0 - 0.6 v
VIH 2.2 vDD \%
Jutput Voltage? VoL I0L = 1.6 mA - - 0.6 v
VOH I0H = 0.2 mA 2.4 - — \'4 .
-ED Currentt '
6x1, 16x2 40 60 mA
4x2, 20x2 Iy, *Lito-L=5v 60 80 mA
Ox1, 40x1, 40x2, 20x4 150 250 mA
te ¢

LAMPEX

[ALPHANUMERIC DO MATF X ODULES

CHARACTER CODE MAP

Higher 4 Bit (D4 to D7) of Character Code (Hexadecimal)

012345.6789ABCDEF
(ﬁ?)u . ;:::g .:i_i :.:_l . i:. - -S! E i::l: Fi
AR EE AR
o | BRI [T
ARG RN REEE
gl (o | (DT T T IR TR 4152
i T T, i
gl | kU el | T RTHE
Eloj | [EIEFIUFTL ?H:ﬂpz
0] (TFELER T RS
s [CEHERE T AR
S CG % (g o .
SR R TR
ialm | 2T = il 11l
MG it e | LAl 1 F
oo |+ RIS =0 s
C6 T TS
o UL | e
8 o] : '
o | =AM | AR =
o | L MR T BRI
AN G RECRN

NOTE: Custom Font ROM Mask Can Be Tooled On Special Request.

23

LAMPEX

ALPHANUMERIC DOT MATRIX MODULE

NOTE :

Character code bits 0,2
correspond to CG RAM address bits 3,5
(3 bits : 8 types)

DOT CHARACTER PATTERNS
For 5x7 Dot Character Patterns
CG RAM Character Patterns
%ﬁ mi Address {DD RAM Data)
76543210 543210 7&22"43210
Highet het
¢ Lower u Lower Lower v
Iooo P l? Character
|°l° :u: N Paltern
' ?;; 4111 1 Example (1)
0000001 oool 1jo 0
|""l 1{o olilo
110 1looo Cursor
Jr ** {00000 | ¢ Position
looo "'IIOOOI Character
0c1 ?:?:? Pattern
so1foro loo'oo Example (2)
0000°11) 011
ERERE
l’°° Iooxoo
110 v looioo
pr ***oo0000
Tooo op el
00 1L
Nl bl
. ~~—T77]
0000° 111 vial ol .
110 No Effect
Ji1a o5

For 56x10 Dot Character Patterns

Characier Patieins
ﬁ%ﬁﬁﬁ:ﬁ.‘,‘ ﬁan:: monmn-mo
76543210 543210 7"“:“‘3“
Higher Higher
Lower Lowsr Lower
[oooo ***foo000¢
0001 00000
locto T | charac
0011 1o o) | Pattern
0000°00* oolg:8$ G 2ok} | examas
lor1o e
0111 et JiTTTO0
liooo Joooo
1001 ‘‘foooo Cur
llolo ooooLﬁ—Pos
' 11011 —T
0000 11 1100 I
IllOl
Illlo |
1111 « %
1 . L oo oo
- 70000 L
— —) ooonr—-\.!f\\
|1001 I.t.c-
0000 ° 1] * ,,:g:? . . .
lnoo l I No EH
1110
fivid A PP
NOTE :

Character code bits 1,2
correspond to CG RAM address bits 4,5
(3 bits ; 8 types)

| TIMING DIAGRAM

RS, w g

& ﬁh ..‘, "
IEW' ViH
w . w L
t = et 4 ' ——
oot Data Iy iy
— 2y
]

\

%

TIMING CHARACTERISTICS FOR ALLC

CONTROLLERS CHPs SAMSUNG | HITACHI | SANYD EPSON OKI RECOMMENDED.
PARAME KS0066 | HD44780 {LC7985NA SED1278 | MSM6222 TIMING UNT
Enable Cycle Time {1C (min) 1000 1000 1000 500 667 1000 RS
Enatle Pulse Width
High Level tWimn)| 450 450 450 220 | 280 450 ns
Low Level tL (min) 450 450 450 220 280 450 nS
E Raise Time tr (max) 25 25 25 25 25 25 nS
E Fal Time tf {max) 25 25 25 25 25 25 nS
Set-up Time 1B (min) 140 140 140 40 140 140 nS
Data Setup Time | t! (min) 195 195 195 60 180 195 1S
Data Delay Tume [1D (max) 320 320 320 120 220 320 n$

Address Hold Time | tA {max) 10 10 10 10 10 10 nS
Hold Time

input Data tH (min) 10 10 10 10 10 10 s
Output Data tO (min) 20 20 20 20 20 20 ns

OMPATIBLE CONTROLLER CHIPS,

NOTE :

2 MODULE INITIALIZATION DOE'S NOT
AFFECT BY USING HD44100,
OR KS006S, OR LC7930,
OR MSM5259, OR MSM5839,
OR MSM5260 DRIVER CHPS,

LAMPEX

ALPHANUMERIC [C7

T REK H{TDULE\S

INITIALIZATION

For 8 bit data interfacing

Wait for 15ms or more
after Vec rises to 4.5V

1 .
BF cannot be checked at this time

RS RW DB7 DB6 DB5 DB‘4 DB3 DB2 DBl DBO
‘ o 11 X _X_X x|
(R i‘%u—ti%’m:‘bt'-"ﬂ B bit'interface data,
DL must set at H during this initialization,

1
Mﬁt for 4.1 ms or mo;l

1
BF cannot be checked at this time
1
RS RW DB7 DB6 DB5 DB4 DBS DB2 DB1 DBo
P2 _08_ 9 1 1 X X_X X

Function Set : DL = 1, 8 bit interface data.
DL must set at H during this initialization.

bvait for 100 ns or moz:,

RS RW DB7 DB6 DBs DB4 DB3 DB2 DB1 DBo

] %] %] g _1 1 X X X X

[T Function Set DL = T8 Bit Toterface data, — —
DL must set at H during this initialization,

For 4 bit data interfacing

Wait for 15ms or more
after Vec rises to 4.5V

) U T
BF cannot be chetl:ked at this time

RS R/W DB7 DB6 DB5 DB4
.2 0 8 o 1 1 _ |
- Function Set : DL = 1, 8 bit interface data.

DL must set at H during this initialization.

Y ”
[Wait for 4.1 ms or more]

BF cannot be checked at this time

1
RS R/W DBT7 DB6 DB5 DB4
%] g o (%] 1 1
— ~Function Set: DL = T, 8bitInterlace data—
DL must set at H during this initialization.

Y -
|Wait for 100 ps or more|
BF can be checke:d at this time

RS RW DB7 DBé DB5 DB4
———2 .9 8_98__1 1

Function Set : DL = 1,_8'!;? interface data. |
DL must set at H during this initialization.

check for'not busy

BF can be clllecked at this
time, check for not busy
1

RS R/W DB7 DBs DBS DB4 DB3 DB2 DB1 DBo
L 2_92_¢ 6 1 1 F__X _X
Function Set : DL = 1, 8 bit infg;ﬁ%eat?: -
N = no. of line
P = character font

1
check for not bugy
1

~-2. . 8% 2 _o 1 o-

e —— —— ——— —

: A
Display off

check for not busy
[

°2_2_ 8 0 6 _0 1 5 % o

clears all disp)

——— e mmmn .

8y and return cursor to

hoine position

Y
checkfornot.b\;sy
.
g B 0 o o 2 1 g

TS T S wmn s - —— —

2 9

— —— — e —

Set the shift mod;

End of initialization

*Note : IN NORMAL OPERATION, SET § TO @

RS R/W DB7 DBs DBS5 DB4
% 8 06 o 1 o
“Function Set :-ﬁﬂatnmmmﬁ'mr'_

check for not busy

7 DB6 DBS DB3 '

2 o o 1 g,
————2 8 N _F_x _x'
Function Set: DL = @, 4 bit interface data.]
N = no. of line

=

F = character font
check for:not busy
RS R/W DB7 DBg DB5 DB4
9 9 9 g B o
08 _ 1 ¢ _p g
Digplay off]
check-forlnot busy
1
RS R/W DB7 DB6é DB5 DB1
2 © g g g o
(02 _0 o_g
Display on —
check forlnot busy
]
RS R/W DB7 DB6 DB5 DB4
g 90 o9 g g o
_g_g_a__l_UD _S
‘Entry mode Set

End of initiélization

LAM PEX ALPHANUVERIC DOT

DISPLAY CHARACTER POSITION AND DD RAM ADDRESS

8x1 DMM, 1/8 MUX -
N =@ : 1-LINE DISPLAY
F=0:5x7 DOTS

FIRST LINE <¢——DISPLAY POSITION
(6@l01|02|03(04|06]06|07| <@~——=DD RAM ADDRESS

' WHEN THE DISPLAY SHIFT OPERATION IS PERFORMED, THE DD RAM ADDRESS MOVES AS FOLLOW :
AFTER THE LEFT SHIF‘I‘ INSTRUCTION AFTER THE RIGHTSHIFT INSTRUCTION

2 3 5 6 -7 8 ¢=DISPLAY POSITION 1 2 78 4—DISPLAY POSITION
Iealm (2] as |¢4 T05]06] 07I<-DDRAM ADDRESS (@@ |@1 lazlasjm [¢5 [06]@"]4-DDRAM ADDRESS

16x1 DMM, V16 MUX
N=1:2.LINE DISPLAY
F=0:5x7DOTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 <¢—DISPLAY POSITION
FIRST LINE bﬂ 21/02|03104 |05 |06 ({07]40| 41| 42| 43| 44] 45| 46|47 |4—DD R.AM ADDRESS

WHEN THE DISPLAY SHIFT OPERATION IS PERFORMED, THE DD RAM ADDRESS MOVES AS FOLLQW :
AFTER THE LEFT SHIFT INSTRUCTION

~———172 3 4.5 6 7 8 9 10 11 12 13 14 15 16 HISPLAY POSITION
FIRST LINE | 01|02| 93|04(|05|06|07]08] 41| 42! 43 44 45| 46 47| 48 | 4—=DD RAM ADDRESS
AFTER THE RIGHT SHIFT INSTRUCTION

1 2 3 4 5 6.7 8 9 10111213 14 15 16 4—DISPLAY POSITION
FIRST LINE | 27,0001 62|03 8405|0607 40| 41| 42| 43] 44| 45| 46 [4—DD RAM ADDRESS

wxl DM]»L 18 MUX .
N =8 I-LINE DISPLAY ’
F = @ : 5X7 DOTS Ny

1 2 8 4 6 6 7 8 9 10 11 12 13 14 15 16 Q—DISPLAY POSITION

FIRST LINE GOID! IGZ]as ‘134 |05 lﬂB i¢7 ¥8|09|3A|0BlBCjoD|oE|oF ‘-—DD RAM ADDRESS

20x1 DMM, 1/8 MUX . =
N=©@: 1.LINE DISPLAY
F=0:5x7DOTS

1

2 8 45 6 7 8 9 1011 12 13 1415 16 17 18 1920 4—DISPLAY POSITIC
FIRST LINE 0990|0122 03 |04 |26 |26 |07 |08 29 lﬂA 2Bl|@C

oD|oE|eF|18|11 12 13 {4~—DD RAM ADDRESS

40x1 DMM, 1/8 MUX
N=3:1-LINE DISPLAY
F=0@:5X7DOTS

1 23 45 6 7 8 9 1011 12 13 33 34 35 36 37 38 39 40 ¢=—=DISPLAY POSITIO
FIRST

LINE 00101(02103|04|05|06|07|08|@9|oAleB ac

120121 22| 23124 | 25] 26| 27 <4—DD RAM ADDRESE

LAMPEX

ALPHANUMERIC [

DOT MATRIX

X MODULE

DISPLAY CHARACTER POSITION AND DD RAM ADDRESS (CONTINUE)

16x2 DMM, 1/16 MUX

N=1 :

2-LINE DISPLAY F=@ : 5x7 DOTS

1 2 3 4 6 6 7 8 9 1011 12 13 14 15 16 4—DISPLAY POSITION

FIRST LINE

20

21142

23|04

@5

06{@7| v8[B9|vAloBl@C

2D

OE

oF

<4—DD RAM ADDRESS

SECOND LINE

490

41} 42

43) 44

45| 461 47! 48] 49| 4A|4B{4C

4D

4E

4F

AFTER THE LEFT SHIFT INSTRUCTION

1

2 3

4 5

6 17

WHEN THE DISPLAY SHIFT OPERATION IS PERFORMED, THE DD RAM ADDRESS MOVES AS FOLLOW :

8 9 10 11 12 13 14 15 16 4—DISPLAY POSITION

FIRST LINE

21

02{03

94(06

06197|a8|B9]vAloBlacieD

OFE

@F

10

4—DD RAM ADDRESS

SECOND LINE

41

4243

44146

46147|48149|4A14B|4C|4D

4E

4F

50

AFTER THE RIGHT SHIFT INSTRUCTION
¢

1

2 3 4 5 6 7 8 9101112131415161'_—

DISPLAY POSITION

FIRST LINE | 27 100| 291] 22| 03] 24| 05| 96| 07| 25 @918 A OBl @C{@DIOE |4~ DD RAM ADDRESS -
SECOND LINE | €7 48| 41 42| 43] 44| 45] 46| 47| 48 49]4A| 4B[4C{4D{4E)
20x2 DMM, 1716 MUX Nul : 2.LINE DISPLAY PF=0 : 5x7 DOTS"
| 1 2.8 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 4—DISPLAY POSITION
FIRST LINE |08|01|02| 03] 04| 25] g6 g7 28)99|0A|2B|aCloD|oE|oF| 18] 11 12/13| 4—DD RAM ADDRESS
SECOND LINE [40|41[42{43] 44 45| 46 47]48|49]4A|4B4c|4D|4E]|4F]50[51 6253
24x2 DMM, 1/16 MUX N=l : 2.LINE DISPLAY F=@ : 5x7 DOTS
1 2 3 4 5 6 7 8 9 101112131415161718'192021222324*—
FIRST LINE |06|¢1|a2]|03] (4] a5 06/07|48|v9|aAlsB|aclop|pElor 10{11112113[14[15]16]17]¢—
Lsscouu LINE 40341742143 414145]46{47|48{49[4A[1B 0 4D[4E!4F (50|51 {52[53]54[55 56 57
40x2 DMM, 1/16 MUX N=1 : 2.LINE DISPLAY F=@ : 5x7 DOTS
23-456.78910111213 33 34 35 86 37 38 39 4 ¢—
FIRST LI:: |2 |01 |02 3] 34 05106| 07| 08| @9l@alanlac] ... 20| 21{22] 23] 24 26126 27] ¢ |
SECOND LIN!. :c.o Al P-';.s,u 45146{47148]49/4A|4Bl4c] .. 60|61/62]63|64(65]/66]67 J
J .
LM, V16 MUX N=1 : 2.LINE DISPLAY F=0 : 6x7 DOTS 7
123 45 6 7 4 9 10 11 12 13 14 15 16 4—DISPLAY POSITION
FIRST LINE |60]51]52] 03 04|05|06|07| as[os[oalon @C|OD|BE|6F | ¢—DD RAM ADDRESS
SECOND LINE [4&[41]42] 43 44145/46]47(48(49[4A 4D 4C|4D[4E[4F
THIRD LINE {16]11]12 13]14/15/16{17[18|19]1A 1B{1C[1D[1E|1F
FOURTH LINE [5p]51]52 53154|55]56{57]58]59 5A|5B|5C|5D|5E[sF
20x4 DMM, 1/16 MUX N=1 : 2.LINE DISPLAY F=0 : 5x7 DOTS
FIRST Ling ﬂlﬂ ;1 ;2 ‘;3 054 ;5 575 ;7 ;8 ;(; ;1 12 13 14 15 16 17 138 19 20 ¢—DISPLAY POSITION
SECOND LiNg og B e § A|OB|BC|oD[oE[GF 15 11112|13| ¢—Dp RaMm ADDRESS
48149|4A[4Bl4C[4D[4E[2F 50|51]62]53
THIRD LINE [14]15] 716 17/18/19{1A[1B[1C[1D[1E 1F|208]21]22]23]24[25| 26 27
FOURTH LINE (545556 57158)59154(5B]5C|5D|5E SFi6oi61]62]63]64| 6566 67

