
Wireless Surviellance of Energy

Project Report

Submitted By

Sriram.K.M.

Shanthakumar.R.

Sudhakar.K.

Mohankumar.N.S.

Guided By

Prof . Muthuraman Ramasamy, M.E., MISTE., (Ph.D)

Head of the ECE Department

2002 - 2003

In partial fulfillment of the requirements for the award of the Degree of

BACHELOR OF ENGINEERING IN ELECTRONICS & COMMUNICATION ENGINEERING

Of the Bharathiar University, Coimbatore

Department of Electronics & Communication Engineering

Kumaraguru College of Technology

Coimbatore - 641 006.

Kumaraguru College of Technology

Department of Electronics & Communication Engineering

Coimbatore – 641 006

CERTIFICATE

This is to certify that the contents of the project report entitled				
'WIRELESS SURVEILLANCE OF ENERGY'				
has been submitted by Mr/Ms				
In partial fulfillment of the requirem	ent for the award of the			
Degree of BACHELOR OF I	ENGINEERING			
IN ELECTRONICS & COMMUNICATION ENGINEERING				
Branch of the Bharathiar Unive	ersity, Coimbatore.			
During the academic year	2002 – 2003			
Internal Guide				
Internal Guide	Head of the Department			
Certified that the candidate with University R	egister Number			
was examined by us in Project Viva – Voce Ex	xamination held on			
hamproprise and	35 18h			

External Examiner

Internal Examiner

ACKNOWLEDGEMENT

We express our sincere thanks to our beloved Principal, Mr.K.Padmanaban B.Sc. (Engg), M.Tech., Ph.D., for all the facilities provided in carrying out this project work.

We express our gratitude and indebtedness to our respected guide Prof. Muthuraman Ramasamy M.E., FIE. FIETE., MIEEE (USA)., MISTE., MBMESI., C.Eng.(I)., Head of the department of Electronics and Communication engineering for his full fledged technical guidance, constant encouragement and suggestions in carrying out this project.

We also take this opportunity to thank our Assistant Professors Mr.K.Ramprakash M.E., and Mr.S.Govindaraju M.E., for sharing their in depth knowledge on the subject and providing us with tips as and when required.

We would also like to thank all the teaching and non-teaching staff for guiding us throughout, without which our project would not have been a great success.

SYNOPSIS

This project is microcontroller based Energy Monitor and transmission of energy through wireless to an EB substation This Project deals with the transmission of the various parameters automatically to the Computer based server through wireless media. The various parameters that would be transmitted are:

- Voltage Reading
- Current Reading
- Power Factor
- Power
- Energy Consumed

The mode of transmission used is wireless, but depending on the economy and various factors it could be done with the help of a telephone line or power line too. Our project uses 89C52 micro controller effectively for reading the above mentioned parameters by efficient programming. Since the core component is the micro controller it is cost effective as well as accurate, which is one of the main criteria for any measuring device. The parameters measured are displayed using LCD display through 8255 PPI. For the conversion of analog signal to digital signal ADC is used.

The measured parameter readings are transmitted using Frequency Shift Keying (FSK) Technique. This FSK technique uses two frequencies of lower range. So in order to transmit without attenuation this frequencies are modulated with high frequency carrier signal. By having server based control the main advantages like 24- Hour Surveillance, automatic fault detection, preventing illicit usage, reduced man power can be achieved.

On the receiver end the received signal is demodulated using a technique which then converted in to 0's and 1's in order to receive at the computer. We have used C as a front-end tool, which displays various parameters. With the help of a computer based server we can calculate the Bills for the used electricity, which could be received like the telephone bills of the present days.

CONTENTS

ACKNOWLEDGEMENT SYNOPSIS	PAGE NO
1. INTRODUCTION	
1.1 NEED FOR THIS PROJECT	2
1.2 OVERVIEW	2
1.3 BLOCK DIAGRAM	4
2. POWER SUPPLY UNIT	
2.1 TRANSFORMER	6
2.2 RECTIFIER	6
2.3 FILTER	6
2.4 REGULATOR	7
2.5 CURRENT TRANSFORMER	8
2.6 POTENTIAL TRANSFORMER	9
2.7 DIFFERNCE BETWEEN C.T AND P.T	9
3. PRECISION RECTIFIER AND ZERO CROSSING DETECTOR	
3.1 PRECISION RECTIFIER	11
3.2 ZERO CROSSING DETECTOR (ZCD)	13
3.3 ZCD FOR PHASE MEASUREMENT	15
4. MICROCONTROLLER BOARD DETAILS	
4.11 MICROCONTROLLER 89C52	18
4.12 PIN DIAGRAM	19
4.13 ARCHIECTURE	20
4.14 MEMORY ORGANISATION	23

4.20 ANALOG TO DIGITAL CONVERTER (ADC0809)

25

4.3	DM74LS138 DECODER	27
4.4	DM7414 HEX INVERTER	27
4.5	DM74LS373 TRANSPARENT LATCH	28
4.6	74LS393 COUNTER	29
4.71	8255-PROGRAMMABLE PERIPHERAL INTERFACE	30
4.72	PIN DIAGRAM	30
4.73	BLOCK DIAGRAM	31
5. AM T	RANSMITTER	
5.1	FSK GENERATOR (555 TIMER)	34
5.2	AMPLITUDE MODULATION	<i>3</i> 6
5.3	CD4011 NAND GATE	37
6. AM R	ECEIVER	
6.1	ENVELOPE DETECTOR	38
6.2	PHASE LOCK LOOP (IC 565)	39
7. 89C5	2 MICROCONTROLLER PROGAMMING	42
8. 'C' C	DDING	75
9. CON	CLUSION	79
10. BIB	LIOGRAPHY	81
11. APF	PENDIX	83

1. INTRODUCTION

1.1 NEED FOR THIS PROJECT

This project is microcontroller based Energy Monitor and transmission of energy through wireless to an EB substation. This project will be very much useful to EB distribution system. This project will not only useful to monitor and transfer energy, and also it can show the electricity theft.

If suppose we implement the project for a complete network in an area, that will be consuming very huge amount and it can calculate the energy transmission and energy consumption. By using the above two values we can calculate the transmission loses we are going to implement an energy meter with wireless transmission for single house.

1.2 OVERVIEW

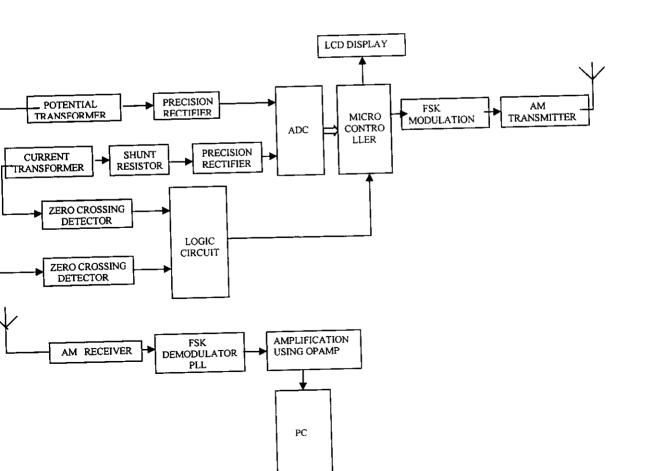
In a house to calculate the energy we need the following parameters to be measured. They are voltage, current, power factor, power with power and time we can calculate the energy. By using potential transformer we can measure voltage, the potential transformer (P.T.) will give a step down AC output. That AC output will be converted into DC with the help of a rectifier. The rectifier is actually a precision rectifier. The precision rectifier will give you a pure DC output according to the input voltage. The precision rectifier is based on operational amplifiers. Then the converted Analog DC voltage will be given to an ADC.

The current transformer is used to measure the current with the help of the precision rectifier as described earlier. The only difference between voltage measurement and current measurement is we can directly measure the voltage from P.T., to measure the current. The C.T has to connect with a shunt resistor. Then the rectified current output will also be given to the ADC.

The ADC is an eight bit eight channel ADC (ADC0809). This will convert the analog voltage into digital data and those digital data will be fed into the microcontroller.

Then the microcontroller will display the voltage and current output in an LCD display. The accuracy for voltage will be 1V and the current will be 0.1 Amps. If you want to increase the accuracy just we have to increase the number of bits.

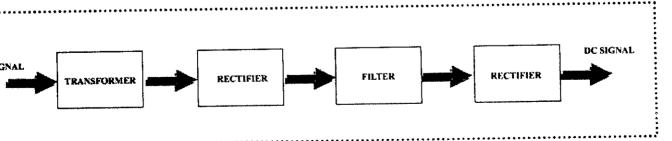
Then the power factor will be measured with the help of both C.T & P.T. The P.T & C.T output will be given to a zero crossing detector and the zero crossing detector output will be given to a logic circuit, that will detect the phase difference between voltage and current waveform. The voltage and current waveform output will be given to a timer program that will calculate the power factor.


After measuring the voltage, current, power factor we can easily calculate the power with the help of a multiplication program. Then by using power and timer we can calculate the energy.

While transmitting it, we have to transmit all the above parameters, that is voltage, current, power, power factor and energy, the transmission will take place through FSK modulation. FSK modulation IC XR2206 will produce two different

frequencies for two logic levels and that will be given to an AM transmitter board. The AM output will be transmitted through air.

At the receiver end the AM demodulation take place with the help of diode demodulation technique. Then the AM demodulated output will be given to PLL, the PLL will give '1's and '0's for the frequencies. Then the TTL output will be converted into RS232 output and that will be given to a PC there we have to write a 'C++' program there we can monitor all the measured parameters.


1.3 BLOCK DIAGRAM

2. POWER SUPPLY UNIT

Since all electronic circuits work only with low D.C. voltage we need a power supply unit to provide the appropriate voltage supply. This unit consists of transformer, rectifier, filter and regulator. A.C. voltage typically 230V rms is connected to a transformer which steps that AC voltage down to the level to the desired AC voltage. A diode rectifier then provides a full-wave rectified voltage that is initially filtered by a simple capacitor filter to produce a DC voltage. This resulting DC voltage usually has some ripple or AC voltage variations. A regulator circuit can use this DC input to provide DC voltage that not only has much less ripple voltage but also remains the same DC value even the DC voltage varies some what, or the load connected to the output DC voltages changes.

LOCK DIAGRAM:

2.1 TRANSFORMER

A transformer is a static (or stationary) piece of which electric power in one circuit is transformed into electric power of the same frequency in another circuit. It can raise or lower the voltage in a circuit but with a corresponding decrease or increase in current. It works with the principle of mutual induction. In our project we are using step down transformer for providing a necessary supply for the electronic circuits. In our project we are using a 15-0-15 center tapped transformer.

2.2 RECTIFIER

The DC level obtained from a sinusoidal input can be improved 100% using a process called full-wave rectification. It uses 4 diodes in a bridge configuration. From the basic bridge configuration we see that two diodes (say D2 & D3) are conducting while the other two diodes (D1 & D4) are in "off" state during the period t=0 to T/2. Accordingly for he negative of the input the conducting diodes are D1 & D4. Thus the polarity across the load is the same.

2.3 FILTER

The filter circuit used here is the capacitor filter circuit where a capacitor is connected at the rectifier output, and a DC is obtained across it. The filtered waveform is essentially a DC voltage with negligible ripples, which is ultimately fed to the load.

2.4 REGULATOR

The output voltage from the capacitor is more filtered and finally regulated. The voltage regulator is a device, which maintains the output voltage constant irrespective of the change in supply variations, load variation and temperature changes. Here we use two fixed voltage regulators namely LM 7812, LM 7805 and LM7912. The IC 7812 is a +12V regulator IC 7912 is a -12V regulator and IC 7805 is a +5V regulator.

VOLTAGE & CURRENT TRANSFORMERS

Transformers are used in a.c. systems for the measurement of current, voltage, power and energy. They are also used in connection with measurement of power factor, frequency and for indication of synchronism. The transformer used for measurement of current is called a "Current Transformer" or simply "C.T". Transformers used for voltage measurements are called "Voltage Transformers" or "Potential Transformers" or simply "P.T."

2.5 CURRENT TRANSFORMER

The current transformer is used with its primary winding connected in series with line carrying the current to be measured and, therefore, the primary current is dependant upon the load connected to the system and is not determined by the load (burden) connected on the secondary winding of the current transformer. The primary winding consists of very few turns and, therefore, there is no appreciable voltage drop across it. The secondary winding of the current transformer has larger number of turns, the exact number being determined by the turn's ratio. The ammeter, or wattmeter current coil, are connected directly across the secondary winding terminals. Thus a current transformer operates its secondary winding nearly under short circuit conditions. One of the terminals of the secondary winding is earthed so as to protect equipment and personnel in the vicinity In the event of an insulation breakdown in the current transformer.

2.6 POTENTIAL TRANSFORMER

Potential transformers are used to operate voltmeters, the potential coils of wattmeters and relays from high voltage lines. The primary winding of the transformer is connected across the line carrying the voltage to be measured and the voltage circuit is connected across the secondary winding.

The design of potential transformers is quite similar to that of a power transformer but the loading of a potential transformer is always small, sometimes only a few volt-amperes. The secondary winding is designed so that a voltage of 100 to 120 V is delivered to the instrument load. The normal secondary voltage rating is 110 V.

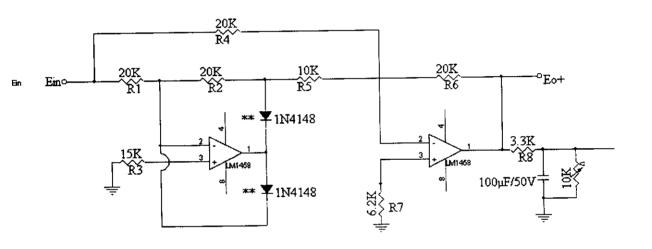
2.7 DIFFERENCE BETWEEN C.T. AND P.T.

There are a few differences in the operation of a current transformer and a potential transformer.

1. The potential transformer may be considered as' parallel' transformer with its secondary winding operating nearly under open circuit conditions whereas the current transformer may be thought as a 'series' transformer under virtual short circuit conditions. Thus the secondary winding of a P.T. can be open-circuited without any damage being caused either to the operator or to the transformer.

- 2. The primary winding current in a C.T. is independent of the secondary winding circuit conditions while the primary winding current in a P.T. certainly depends upon the secondary circuit burden.
- 3. In a potential transformer, full line voltage is impressed upon its terminals whereas a C.T. is connected in series with one line and a small voltage exists across its terminals. However, the C.T. carries the full line current.
- 4. Under normal operation the line voltage is nearly constant and, therefore, the flux density and hence the exciting current of a potential transformer varies only over a restricted range whereas the primary winding current and excitation of a C.T. vary over wide limits in normal operation.

3. PRECISION RECTIFIER AND ZERO CROSSING DETECTOR

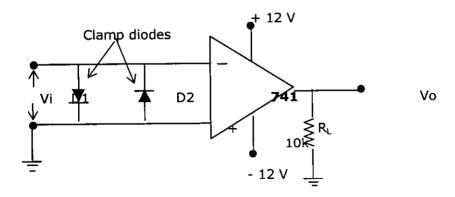

3.1 PRECISION RECTIFIER

An absolute-value circuit, or full-wave precision rectifier, can be implemented by summing the output of a half-wave rectifier and its input with the proper phase and amplitude relations. Such a circuit in its basic form is shown in figure. This circuit will be the starting point for a number of other absolute-value circuits, which have evolved from this basic form.

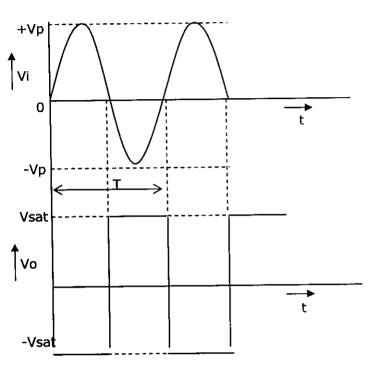
In this circuit given below, A1 is an inverting rectifier similar to the figure. The output from A1 is added to the original input signal in A2 (a summing mixer) with the signal amplitude and phase relations shown. Negative alterations of Ein feeds A2 through 20-k Ω resistor, and E1 feed A2 through a 10-k Ω resistor. The net effect of this scaling is that, for equal amplitudes of Ein and E1, E1will provide twice as much current into the summing point.

This fact is used to advantage here, as the negative alteration of E1 produces twice the input current of that caused by the positive alternation of Ein. This causes a current of precisely half the amplitude, which E1 alone would generate due to the subtraction of Ein. It is the equivalent of having E1 feed through a $20\text{-k}\Omega$ input receiver and having Ein non-existent during this half cycle, and it results in a positive going output at A2. During negative alterations of Ein, E1 is absent and Ein produces the alternate positive output swing that, in summation, produces the desired full-

wave rectified response. As before, operation with the opposite output polarity is possible by reversing D1 and D2.

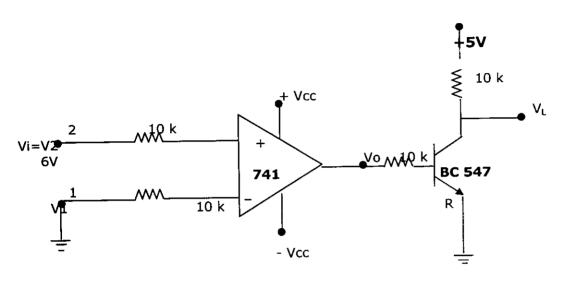


Precision Rectifier Circuit


The general –purpose dual-741 type is used in the above circuit. The relation-ships between resistors for proper circuit operation are noted in the illustration, and may be satisfied best by a single network. Note that resistor R6 can be used as an overall gain trim, or for scaling to net gains of (n) other than unity.

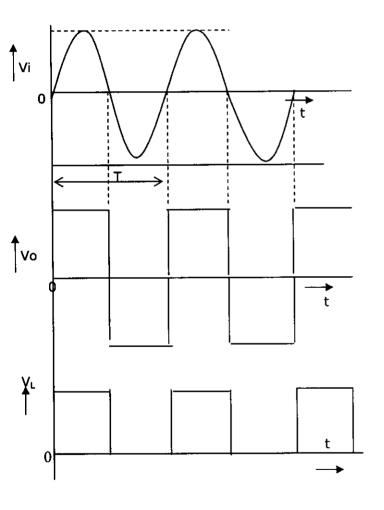
3.2 ZERO CROSSING DETECTOR

An important application of comparator is the zero crossing detector or sine wave to square wave converter. The basic comparator may be used as zero crossing detector provided that V_R is set to zero. With V_i in the form of a sine wave, fig shows the output waveform. It is clear from fig that the output voltage V_o is driven into negative saturation when the input signal V_i passes through zero and goes in positive direction. Similarly when V_i passes through zero and goes in negative direction, the output voltage V_o is driven into positive saturation. This idealized waveform has vertical sides which in reality, should extend over a range of few mV of input voltage V_i .


Zero Crossing Detector

Input and output waveforms

In some cases, the input voltage Vi may be a slowly changing waveform i.e. a signal low frequency. Then it takes Vi more time to cross zero level. Hence Vo may not be able to switch quickly from one saturation level to other saturation level. On the other hand, noise present at the op-amp input may cause Vo to fluctuate between the two saturation levels +Vsat and -Vsat, thus detecting zero crossing for noise voltages also in addition to Vi. Both the above problems may be overcome by using positive or regenerative feedback which causes the output Vo to change faster thereby eliminating the possibility of any false zero crossing due to noise voltages at the Op-amp input.


3.3 ZERO CROSSING DETECTOR FOR PHASE MEASUREMENT

Zero Crossing Detector for phase angle measurement

Circuit of zero crossing detector of the figure is used for measurement of phase angle between two voltages or between voltage and current. In our project this is used to measure the phase angle between voltage and current to calculate the power factor of the circuit. Both the voltage and current are converted into square waves using the above circuit and this is given to the transistor to get only the positive half cycles. Then time interval between the voltage and current wave is measured using an NAND gate (DM 7400) which produces an output of 1 & 0. These outputs are given to 89c52 Microcontroller which with help of timer calculates the

time interval that is proportional to the phase difference between the voltage and current.

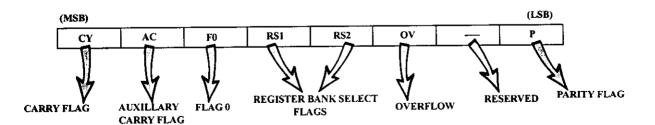
Pulse Waveforms for phase angle measurement

4.1 MICROCONTROLLER 89C52

4.11 ABOUT THE MICROCONTROLLER

The microcontroller 89C52 is widely used in the electronic and almost all industries. Since the microcontroller controls all the operations it is essential to discuss about its architecture. The special function registers (SFRs) are described below.

ACCUMULATOR

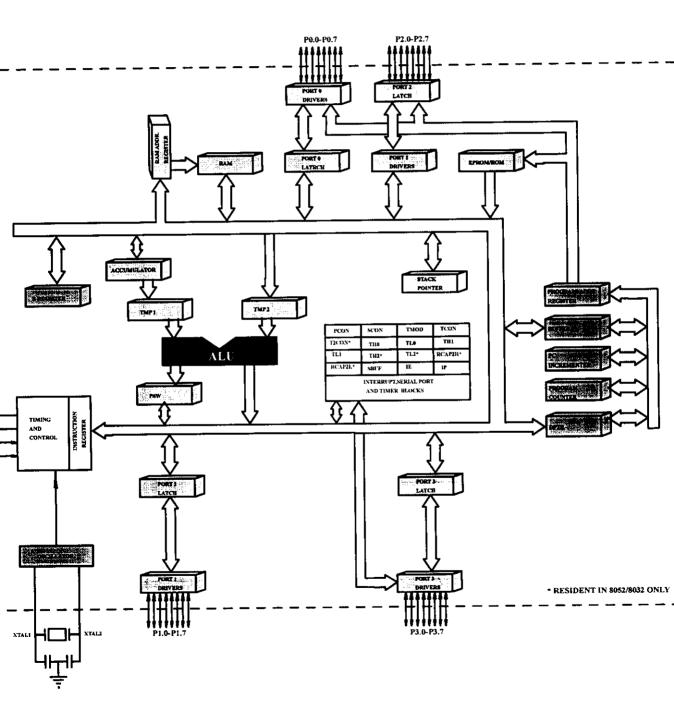

ACC is the accumulator register. The mnemonics for accumulator specific instructions, however, refer to the accumulator simply as **A.** The accumulator is one of the important register.

B REGISTER

The B register is used during multiply and division operations. For other instructions, it can be treated as another scratch pad register.

PROGRAM STATUS WORD (PSW)

The program status word register contains the information regarding program status as described in the figure.



Program Status word

4.12 89C52 PIN DIAGRAM

	منت.					
PORTEBITO [l	FIU	Ver	40	vcc ∢sv
PORTEBITA [2	P4.1	(रक्षिक्र स्था	34	PORT 0 BET (I (AEDIRESS/DATA 0)
MORTE BITE		3	P1.3	DPROBES	38	PORTOBET ((ADDRESS/DATA ()
FORT FROM		4	P1.3	\D2) % 2	37	PORT 9 BIT 2 (ADDRESS/DATA 2)
PORT LBIT 4		5	PIA	(5333) Paul	,36	PORTOBETS (ADDRESS/DATA))
PORT FBIT 5		ó	rl.s	(AD4) Pk4	75	(ADDRESS/DATA/4)
PORT 1 BIT 6		7	å.14	(ADS) P4.5	34	POKTOBIT 5 (ADDRESS/DATA 5)
PORTEBILT		*	P1.7	(AD6) P\$.0	33	PORT 0 BIT 0 (ADDRESS/DATA 6)
RESETINATUT		¥	R ST	(AD7) PA7	32	PORT 0 BIT 7 (ADDRESS/DATA 7)
PORT 3 BIT 0 (RECEIVE DATA)		ŭ1	PAR (XRXD)	(Vpp) E4	31	EXTERNAL ENABLE
PORT J BIT I TRANSMIT DATA)		T.	P3J (TXD)	(FROG) ALE	34	AUDRESS LATCH ÉNABLE
FORT JETT 1 INTERRUPTIO		12	P3.2 (INTV)	PSES	24	PROGRAM STROBE ENABLE
PORT 3 BIT 3 (INTERRUPT I)		ß	PLI (NTI)	(A15) F1.7	28	HORT 2 BIT 7 (ADDRESS 15)
PORT 3 BIT 4 (TIMER 4 INPLIT)		14	P3.4 (TV)	(A14) P26	27	PORT 2 BST 6 (ALMERERS 14)
PORT 3 BIT 5 (TIMER) INPUT)		1.5	P35 (Tn	(A13) #25	26	FORT 2 BAT 5 (ADDRESS 13)
PORT LBIT 6 (WRITE STROBE)		Į h	P3.4 (WR)	(A32) P2.4	75	FORT 2 BIT 4 (ADDRESS 12)
PORT 1 BUT 7 (READ/STROBE)		17	PX7 (KB)	(A1D P2.3	24,	PORT 2 BIT 3 (ADVIRENS 11)
CRYSTAL INPUT		LŔ	XTAL i	(410) P2.2	23	FORT 2 BIT 2 - (ADDRESS 19)
ryșial input 1		Ţ¥	NEAL#	(A9) P2.1	72	PORT 2 BIT 1. (ADDRESS 9)
GROUND		19	Ves	 (48) P2JJ	21.	PORT 2 BIT 0 (ADDIRESS 8)
	-					

4.13 89C52 ARCHITECTURE

STACK POINTER

The stack pointer register is 8 bits wide. It is incremented before data is stored during PUSH and CALL executions. While the stack may reside anywhere in on chip RAM, the stack pointer is initialized to 07H after a reset. This causes the stack to begin at location 08H.

DATA POINTER

The data pointer consists of 2 bytes which can be accessed as two separate bytes as DPH and DPL or as a single 16 bit register as a whole. It is being used to hold the 16 bit address to refer any data in the data memory.

PORTS

P0, P1, P2 and P3 are the special function registers (SFR) which are having the RAM address of 80H, 90H, A0H and B0H respectively. These registers can be bit addressable also.

SERIAL DATA BUFFER

The serial data buffer is actually two separate registers, a transmit buffer and a receive buffer register. When data is moved to SBUF, it goes to the data buffer where it is held for serial transmission. When data is moved from SBUF, it comes from the receiver.

TIMER/COUNTER REGISTERS

The microcontroller 89C52 has two timer registers namely T0 and T1 which are 16 bit up counters. The counters are being used to monitor both external and internal events and to provide accurate delays. These registers can be accessed as single byte registers also. (TH0, TL0, TH1 and TL1).

CONTROL REGISTERS

Special function registers IP, IE, TMOD, TCON, SCON and PCON content control and status bit for the interrupt system, the timer/counter, and the serial ports.

SERIAL INTERFACE

The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive buffered, meaning that it can commence the reception of second byte before a previously received byte has been read from the receive register. The serial port receive and transmit register are both accessed at special function register SBUF. Writing from SBUF loads the transmit register, and reading SBUF accesses a physically separate register. The serial port can operate in following four modes as shown in figure which can be controlled by SCON register.

SM0	SM1	MODE	DESCRIPTION
0	0	0	Shift register : baud = f/12
1	1	1	8 bit UART : baud = variable
0	0	2	9 bit UART : baud = f/32 or f/64
1	1	3	9 bit UART : baud = variable

Four serial Modes Of 89c52

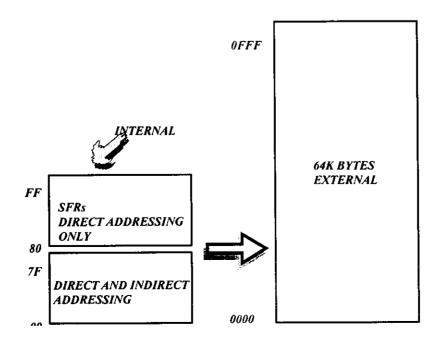
INTERRUPTS


The 89c52 microcontroller consists of five interrupt sources in which three are internal and two are external. The two external interrupts are INTO and INT1 which can be level activated or transition activated, depending on bits of ITO and IT1 in register TCON. The other three interrupts, which are internal, are the Timer1, Timer2 interrupts and the serial port interrupt.

The Timer0 and Timer1 interrupts are generated by TF0 and TF1, which are set by a rollover in their respective timer/counter registers. The serial port interrupt is generated by the logical OR of RI and TI.

4.14 MEMORY ORGANISATION

PROGRAM MEMORY


The 89c52 has separate address spaces for program and data memory. The program memory can be up to 64K bytes long. The lower 8K can reside on-chip. The figure shows the map of the 89c52 program memory.

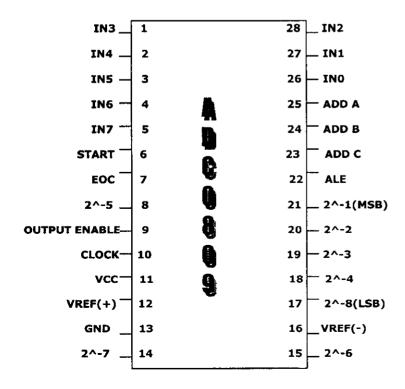
DATA MEMORY

The 89c52 has 128 bytes of on-chip RAM, plus a number of Special Function Registers (SFRs). The lower 128 bytes of RAM which can be accessed by both direct and indirect addressing can be divided into three segments as,

1. Register Banks 0-3, 2. Bit Addressable Area, 3. Scratch Pad Area.

4.2 ANALOG TO DIGITAL CONVERTER (ADC0809)

The ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital converter, 8-channel multiplexer and microprocessor compatible control logic. The 8-bit A/D converter uses successive approximation as the conversion technique. The 8-channel multiplexer can directly access any of 8-single-ended analog signals. The device eliminates the need for external zero and full-scale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE outputs. The ADC0809 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications.


The device contains an 8-channel single-ended analog signal multiplexer. A particular input channel is selected by using the address decoder. Table below shows the input states for the address lines to select any channel. The address is latched into the decoder on the low-to-high transition of the address latch enable signal.

SELECTED	ADDRESS LINES			
ANALOG CHANNEL	Ç	В	Α	
IN0	L	L	L	
IN1	L	L	Н	
IN2	L	Н	L	
IN3	L	Н	Н	
IN4	Н	L	L	
IN5	Н	L	Н	
IN6	H	Н	L	
IN7	Н	Н	Н	

In our project the analog inputs namely Voltage and Current are to be converted in to digital outputs in order to access by the 89c52 microcontroller. At regular intervals one of the inputs is selected and converted to digital 8-Bit output data. The converted digital output is given to 89c52 through port 0.

The clock at which this ADC0809 is to be operated is 750 KHz. This clock signal comes from the external crystal oscillator operating at a frequency of 12 MHz. This 12 MHz clock is used for 89c52 microcontroller. By using counter this clock frequency of 12 MHz is divided to obtain 750 KHz and given as clock input for ADC0809. During each clock period the conversion take place.

Pin details of ADC0809 is shown below

Pin diagram of ADC0809

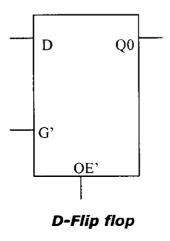
4.3 DM74LS138 DECODER

These Schottky-clamped circuits are designed to be used in high performance memory-decoding or data-routing applications, requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When used with high-speed memories, the delay times of these decoders are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible. The LS138 decodes one-of-eight lines; based upon the conditions at the three binary select inputs and the three enable inputs.

The decoder is used to select 8255-PPI and ADC0809 depending upon the address lines input of 89c52. By default the output of the decoder is high. As the chip is selected the output turns low which selects either ADC or 8255.

4.4 DM7414- HEX INVERTER WITH SCHMITT TRIGGER INPUTS

This device contains six independent gates each of which performs the logic INVERT function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.


The function is given by Y=A'

Input	Output	
A	Y	
L	H	
H	L	

H=High Logic Level L = Low Logic Level

4.5 DM74LS373-TRANSPARENT LATCH

These 8-bit registers feature 3-STATE outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. The eight latches of the DM54/74LS373 are transparent D-type latches meaning that while the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was set up.

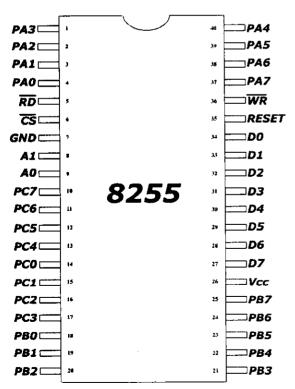
Function Table

Output Control	Enable G	D	Output
L	Н	Н	Н
L	Н	L	L
L	L	X	Į Q0
! н \	Χ	X	j Z

H=High Level (Steady State), L = Low Level (Steady State), X = Don't Care

Z = High Impedance State, Q 0 = The level of the output before steady-state input conditions were established.

4.6 74LS393 COUNTER

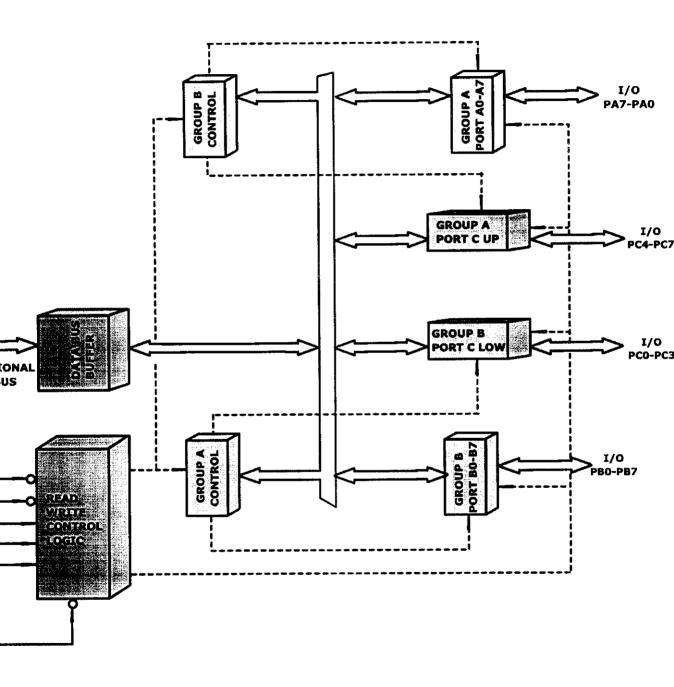

The **74LS39** is actually dual 4-bit binary ripple counter. It consists of two 4-bit binary counters. There are separately two master resets to clear each 4-bit counter separately. Each counter has separate clock so that they can operate independently. The counters are triggered by a HIGH-to-LOW transition of the clock inputs.

We are using a master crystal of generating 12MHz signal for the microcontroller and our ADC operates at the 750 KHz. There is a requirement of generating 750 KHz frequency signal for ADC using the same crystal. This can be achieved by applying the master crystal signal to this counter and by loading the counter with proper count value before ADC begin operations.

4.6 8255-PROGRAMMABLE PERIPHERAL INTERFACE

4.61 DESCRIPTION

The 8255 is general purpose I/O interfacing device. It provides 24 I/O lines organized as three 8-bit I/O ports labeled A, B, and C. It is a very versatile device in the means that this can be programmed to look like three simple I/O ports (mode0), two handshaking I/O ports (mode1), or a bidirectional I/O port with five handshaking signals (mode2). There is also a bit reset/set mode that allows individual bits of port C to be set or reset for control purposes. Pin definitions and a block diagram are provided in the following figures.


PIN NAMES

D7-D0	DATA BUS (BIDIRECTIONAL)
RESET	RESET INPUT
CS	CHIP SELECT
RD	READ INPUT
WR	WRITE INPUT
A0,A1	PORT ADDRESS
PA7-PA0	PORT A (BIT)
PB7-PB0	PORT B (BIT)
PC7-PC0	PORT C (BIT)
Vcc	+5 VOLTS
GND	0 VOLTS
· · · · · · · · · · · · · · · · · · ·	

4.62 PIN DIAGRAM

PIN DETAILS

4.63 BLOCK DIAGRAM

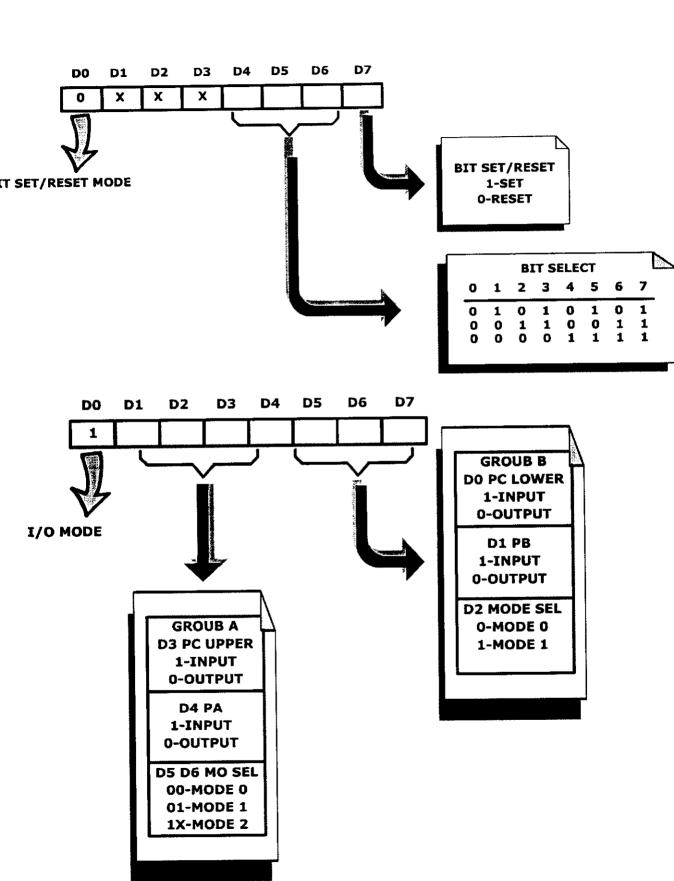
CONTROL WORD

As mentioned above the programmable peripheral interface 8255 can be operated in three different modes as well as bit SET/RESET mode. The mode of operation can be controlled by a word, which is going to be stored in control register of the 8255, called as control word. The format of the control word is shown below.

MODE 0 (BASIC I/O)

When there is no need for conditional or handshaking I/O mode 0 can be selected. In this mode of operation all the ports are simply treated as I/O ports.

MODE 1 (STROBED I/O)


This mode of operation is mainly intended for handshaking and interrupt driven I/O interfaces. Here, ports A and B are programmed as data ports and pot C is programmed to carry status signals.

MODE 2 (STROBED BIDIRECTIONAL I/O)

When operated in mode 2, port A of the 8255 becomes a bidirectional data port supported by five handshaking signals. Port B can operate in mode 0 or mode 1.

BIT SET/RESET MODE

When bit 7 of the 8255 control word is a 0, the bit set/reset mode is active. In this mode any one bit of port C can be set to a logic 1 or reset to a logic 0. Only one bit can be set or reset at a time. This feature of 8255 can be taken advantage of to generate strobe signals.

5. AM TRANSMITTER

5.1 FSK GENERATOR

In digital data communication, binary code is transmitted by shifting a carrier frequency between two preset frequencies. This type of transmission is called frequency shift keying technique. A 555 timer in astable mode can be used to generate FSK signals. When the input is high, transistor Q is cutoff and 555 timer works in the normal astable mode of operation. The frequency of the output waveform is given by

$$F0 = 1.45/(RA + 2RB) C$$

When the input is low ${\tt Q}$ goes on and connects the resistance RC across Ra. The output frequency is given by

$$F0 = 1.45/((RA|RC)+2RB)C$$

The resistance is used to get the desired output frequency.

Frequency shift keying (FSK) is the mostly used method for transmitting digital data over telecommunications links. In order to use FSK a modulator-demodulator (modem) is needed to translate digital 1's and 0's into their respective frequencies and back again.

In FSK modulation, the carrier frequency is shifted in steps (or) levels corresponding to the levels of the digital modulating signal. In case of binary signal, two carrier frequencies are used, one was corresponding to binary '0' and another to binary '1'.

TIMER

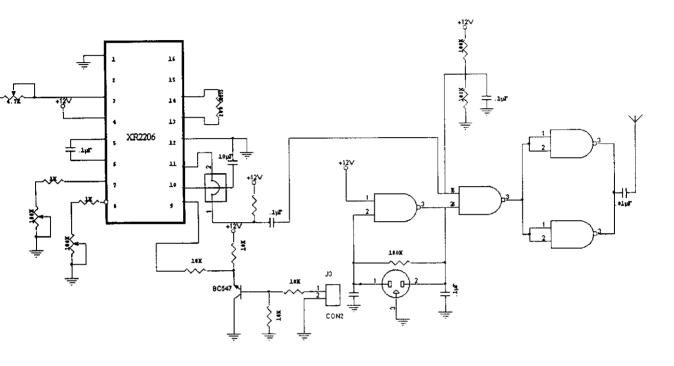
The 555 timer used in the above circuit is highly stable for generating time delays or oscillations. A single 555 timer can provide a time delay ranging from microseconds to hours where as counter timer can have maximum timing range of days. The 555 timer can be used with supply voltage in the range of +5volts to +18volts and can drive load up to 200milli ampere. It is compatible with both TTL and CMOS logic circuits. Because of wide range of supply voltage the 555timers are versatile and easy to use in various applications. The various applications include oscillator, pulse generator, ramp generator, square wave generator, monoshot multivibrator, burglar alarm etc. In our circuit, astable mode of 555 timers is used.

MODULATION

The purpose of a communication is the source and user being physically separate from each other. To do this, the transmitter modifies the message signal into a suitable form for transmission over the channel. This modification is achieved by a process known as modulation, which involves varying some parameters of a carrier wave in accordance with the message signal. The receiver recreates the original message signal from a degraded version of the transmitted signal after propagation through the channel.

A process known as demodulation, which is a reverse process of modulation used in the transmitter, achieves the recreation. However owing to the unavoidable presence of noise and distortion in the received signal, we find that the receiver cannot recreate the original message signal exactly. The type of modulation scheme used influences the resulting degradation in the overall system performance. Specifically we find that some modulation schemes are less sensitive to the effects of noise and distortion than others.

5.2 AMPLITUDE MODULATION


The amplitude of the carrier wave is varied in a ccordance with the amplitude of the modulating signal. Consider a sinusoidal carrier wave c (t)_ defined by,

$$C(t) = Ac Cos (2*Pi*Fc*t+\phi),$$

where Ac is the carrier amplitude and Fc is the carrier frequency. We have assumed that the phase of the carrier wave is zero for specification of the message. The source of the carrier wave c (t) is physically independent of the source responsible for generating m (t). An amplitude-modulated wave may thus describe, in its most general form, as a function of time.

In the circuit shown, schmitt trigger NAND gate CD4011 is used. The carrier frequency is generated using the ceramic filter of value 10.7 MHz. The resistor R1 and R2 provide the necessary biasing. The modulated output is than transmitted through the antenna after passing through a capacitor. The antenna used is of aerial type. In our project the transmitted frequency is 5.5 MHz. The maximum distance to

Which we can transmit is around 30ft to 40ft, the distance to which it can be transmitted can be improved further by providing some amplification at the output of the amplitude modulation circuit.

AM Transmitter

4.3 CD4011-CMOS NAND GATES

The XR2206 IC generates two frequencies namely 1200 Hz and 1000 Hz representing the digital data 1 and 0 respectively. These generated frequencies get attenuated while transmitting. In order to avoid that, we are padding up those frequencies with the high frequency carrier of 5.5 MHz. This transmission is carried out using the CD4011- NAND GATES where the inputs are 5.5MHz carrier and one of the two low frequency signals. The presence of logic 1 is represented as 5.5MHz carrier output and logic 0 as zero Hz signal.

6.AM RECEIVER

The encoded message has to now be decoded. The encoded message is received by receiving antenna and than given to demodulator circuit. This is then given to a DFSK circuit where 0's and 1's are separated out by using carrier at two different frequencies. Then the output is given to a P.C where message is decoded using the same algorithm as in encrypment process and the original message is taken out.

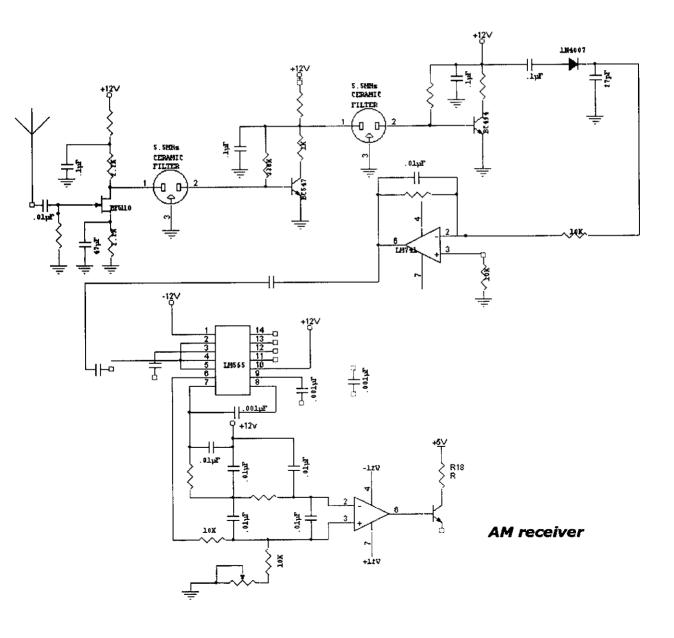
6.1 ENVELOPE DETECTOR

An envelope detector is a simple and yet highly effective device that is well suited for the demodulation of a narrow band AM wave, for which the percentage modulation is less than 100%. Ideally, an envelope detector produces an output signal that follows the envelope of the input signal waveform.

Envelope detector consists of a diode and a resistor-capacitor filter. The operation is as follows. On the positive half-cycle of the input signal, the diode is forward-biased and the capacitor C charges up rapidly to the peak value of the input signal. When the input signal falls below this value, the diode becomes reverse biased and the capacitor C discharges slowly to the load resistor RI. The discharging process continues until the next positive half cycle. When the input signal becomes greater than the voltage across the capacitor, the diode conducts again and the process is repeated. Thus the demodulation is carried out. In our circuit we are using 0A79 diode.

In digital data communication and computer peripheral, binary data is transmitted by means of a carrier frequency, which is shifted between two preset frequencies. This type of data transmission is called frequency shift keying (FSK) technique. The binary data can be retrieved using FSK demodulators at the receiving end.

The 565 PLL is a very useful as a FSK demodulator. As the signal appears at the input, the loop locks to the input frequency and tracks it between the two frequencies with a corresponding and the DC shift at the output. A three-stage filter removed the carrier component and the output signal is made logic compatible by the voltage comparator.


6.2 IC PLL 565

The phase detector of this PLL is comprised of differential amplifier pairs provided with current sink bias source. The output voltage phase detector is limited by diodes to maximum of ± 0.7 V.

This limiting action helps to minimize the effect of high amplitude noise pulses and other transient effects on the operation of the PLL. The phase detector has a balanced output and is supplied to the differential amplifier pair, which serves an amplifier stage in amplifying the phase detector; output a single ended output is taken from this stage from across the load resistor R1 and connected internally to the VCO.

Connection of an external capacitor C between Pin 7 and ground will produce a first order low-pass (lag) network. A capacitor C and a resistor R2 connected in series between pin 7 and ground will result in lag lead network.

The VCO consists of a voltage controlled current source, which supplies equal magnitude of charging and discharging currents to an externally connected (pin 9) timing capacitor CO. A timing resistor is connected between pin8 and positive power supply. The rest of the VCO circuit is Schmitt trigger with a differential amplifier output circuit. This controls the turn-on and turn-off for the switching action of the current source for the charging and discharging.

MICROCONTROLLER PROGRAMMING

```
; #pragma src;
 #include<reg51.h>
 #include<math.h>
 void htdt();
 void dist();
 void cal();
 void disr();
 void htdp();
 void htdp1();
 void ser_init();
 void ser_out();
  void ser_out0();
  void ser_out1();
  void ser_out2();
  //void serout();
  void lcd_init();
  void lcd_dis(unsigned char*,unsigned char);
  void del();
  void delay();
  void read();
  void write();
  void adc0();
  void htd0();
 ; void dis0();
 void adc1();
  void htd1();
 ; void dis1();
  void power();
  void htd2();
  void dis2();
  void powf();
  void htd3();
  void dis3();
  sbit pul=P3^2;
  pdata unsigned char ch0 _at_ 0x08;
  pdata unsigned char ch1 _at_ 0x09;
  pdata unsigned char soc _at_ 0x10;
  pdata unsigned char_porta _at_ 0x18;
  pdata unsigned char portb _at_ 0x19;
pdata unsigned char portc _at_ 0x1a;
   pdata unsigned char cwr _at_ 0x1b;
   idata unsigned char a0,b0,c0,d0,a1,b1,c1,d1,a2,c2,e2,f2,g2,h2,i2,j2;
   idata unsigned char i,j,x,dat0,dat1,ser_data;
   idata unsigned int s,b2,d2;
   unsigned int mask, mask2;
   unsigned char mask1,data2;
   //float pow_f,pow,dat;
   unsigned int pow_f,pow,dat;
   idata\ unsigned\ int\ countr=0, ix, b1p, d1p, f1p, h1p, bp, dp, fp, hp, reg=0, tt;
   unsigned long av;
   //float ttemp1,ttemp2,count1,energy=0,date;
   unsigned int ttemp1,ttemp2,count1,energy=0,date;
   idata unsigned char a1p,c1p,e1p,g1p,ap,cp,ep,gp,l;
   idata unsigned int be,de,fe;
   idata unsigned char ae,ce,ge,he,ee;
   idata unsigned int bt, dt, ft;
   idata unsigned char at,ct,gt,ht,et;
  ; main()
                            RSEG ?PR?main?KCT_PF
  main:
                            USING
                                           ; SOURCE LINE # 59
  ; {
                                            ; SOURCE LINE # 60
  ; lcd_init();
                                            ; SOURCE LINE # 61
                            LCALL
                                            Icd_init
  ; porta=0x80;
                                            ; SOURCE LINE # 62
  ; read();
```

```
; SOURCE LINE # 63
                        LCALL
                                     L?0059
; delay();
                                     ; SOURCE LINE # 64
                        LCALL
                                     delay
                         ",16);
; lcd_dis(" PARAMETER
                                     ; SOURCE LINE # 65
                                     R2,#HIGH (?SC_0)
                        MOV
                        MOV
                                     R1,#10W (?SC_0)
                        LCALL
                                     L?0062
; porta=0xc0;
                                     ; SOURCE LINE # 66
                                     RO, #LOW (porta)
                        MOV
                        MOV
                                     A,#GCOH
                        MOVX
                                     @RO,A
; read();
                                     ; SOURCE LINE # 67
                        LCALL
                                     read
; delay();
                                      ; SOURCE LINE # 68
                        LCALL
            DISPLAY
; lcd_dis("
                       ",16);
                                      ; SOURCE LINE # 69
                        MOV
                                      R3,#0FFH
                        MOV
                                      R2,#HIGH (?SC_17)
                        MOV
                                      R1, #LOW (?SC_17)
                        MOV
                                     R5,#010H
                        LCALL
                                      _lcd_dis
; del();
                                      ; SOURCE LINE # 70
                        LCALL
                                      del
; del();
                                      ; SOURCE LINE # 71
                        LCALL
                                      del
; del();
                                      ; SOURCE LINE # 72
                        LCALL
                                      del
; del();
                                      ; SOURCE LINE # 73
                        LCALL
; del();
                                      ; SOURCE LINE # 74
                        LCALL
                                      del
; del();
                                      ; SOURCE LINE # 75
                        LCALL
; porta=0x80;
                                      ; SOURCE LINE # 76
; read();
                                      ; SOURCE LINE # 77
                        LCALL
                                      L?0059
; delay();
                                      ; SOURCE LINE # 78
                        LÇALL
                                      delay
; lcd_dis("
                    ",16);
                                      ; SOURCE LINE # 79
                        LCALL
                                      L?0061
; porta=0xc0;
                                      ; SOURCE LINE # 80
                        MOV
                                      R0,#LOW (porta)
                        MOV
                                      A,#0C0H
                        MOVX
                                      @R0,A
; read();
                                      ; SOURCE LINE # 81
                        LÇALL
                                      read
 ; delay();
                                      ; SOURCE LINE # 82
                        LCALL
                                      delay
                    ",16);
 ; lcd_dis("
                                      ; SOURCE LINE # 83
                        LCALL
                                      L?0061
; EA=1;
                                      : SOURCE LINE # 84
                        $ETB
                                      EΑ
; TH0=0x00;
                                      : SOURCE LINE # 85
```

```
CLR
                       MOV
                                     TH0.A
; TL0=0x00;
                                     ; SOURCE LINE # 86
                                     TL0,∧
                       MOV
; TMOD=0x01;
                                     ; SOURCE LINE # 87
                                     TMOD,#01H
                        MOV
; ET0=1;
                                     ; SOURCEOLINE # 88
                        SETB
                                     ET0
; TR0=1;
                                     ; SOURCE LINE # 89 TRO
                        SETB
?C0001:
; while(1)
                                      ; SOURCE LINE # 91
                                      ; SOURCE LINE # 92
; ser_init();
                                      ; SOURCE LINE # 93
                        LCALL
                                      ser_init
; ser_data=0xff;
                                      ; SOURCE LINE # 94
                        MOV
                                      RO,#LOW (ser_data)
                        MOV
                                      @RO, #OFFH
; ser_out();
                                      ; SOURCE LINE # 95
                        LCALL
                                      ser_out
; for(ix=1;ix<=50;ix++)
                                      ; SOURCE LINE # 97
                        MOV
                                      RO,#LOW (IX)
                                      @RO, # 00H
                        MOV
                        INC
                                      R0
                                      @R0,#01H
                        MOV
 ?C0003:
 ; {
                                      ; SOURCE LINE # 98
 ?C0006:
 ; while(pul==0);
                                      ; SOURCE LINE # 99
                        JNB
                                      pul,?C0006
 ?C0008:
 ; while(pul==1);
                                      ; SOURCE LINE # 100
                         JB pul,?C0008
 ?C0010:
 ; while(pul==0);
                                      ; SOURCE LINE # 101
                         JNB
                                      pul,?C0010
 ;
; bb:
                                       ; SOURCE LINE # 103
 ?main?bb:
 ; if(pul==1)
                                       ; SOURCE LINE # 104
                                       pul,?C0005
                         JNB
 ; {
                                       ; SOURCE LINE # 105
 ; countr=countr+1;
                                       ; SOURCE LINE # 106
                                       RO,#LOW (countr+01H)
                         MOV
                                       @R0
                         INC
                         MOV
                                       A,@R0
                         DEC
                                       R0
                         JNZ
                                       ?main?bb
                         INC
                                       @R0
 ?C0054:
  ; goto bb;
                                       ; SOURCE LINE # 107
?main?bb
                         SJMP
 ; }
                                       ; SOURCE LINE # 108
 ; }
```

```
0
                                   ; SOURCE LINE # 109
?C0005:
                      MOV
                                   R0,#LOW (ix+01H)
                      INC
                                   @R0
                      MOV
                                   A,@80
                                   R0
                      DEC
                                   ?C0055
                      JNZ
                      INC
                                   @R0
?C0055:
                      MOV
                                   R0,#: OW (ix+01H)
                                   A,@R0
                      MOV
                      XRL
                                   A,#033H
                       D€C
                                   R0
                                   A,@R0
                       ORL
                                   2C0003
                       JNZ
?C0004:
; count1=countr/50;
                                    ; SOURCE LINE # 110
                       MOV
                                   RO,#I.OW (countr)
                                   A,@R0
                       MOV
                       MOV
                                    R6,A
                                    RO
                       INC
                       MOV
                                    A,@R0
                                    R7,A
                       MOV
                                    R4,#00H
                       MOV
                       MOV
                                    R5,#032H
                                    ?C?UIDIV
                       LCALL
                       MOV
                                    count1,R6
                       MOV
                                    count1+01H,R7
; cal();
                                    ; SOURCE LINE # 111
                       LCALL
; if(ttemp1>10000)
                                    ; SOURCE LINE # 112
                       SETB
                                    A,ttemp1+01H
                       MOV
                       SUBB
                                    A,#010H
                       MOV
                                    A,ttemp1
                       SUBB
                                    A,#027H
                       JC ?C0014
;{
                                    ; SOURCE LINE # 113
 ; ttemp1=10000;
                                    ; SOURCE LINE # 114
                                    ttemp1,#027H
                       MOV
                       MOV
                                    ttemp: +01H,#010H
 ; ttemp2=1;
                                    ; SOURCE LINE # 115
                       MOV
                                    ttemp2,#00H
                                    ttemp2+01H,#01H
                       MOV
 ; }
                                    ; SOURCE LINE # 116
 ?C0014:
 ; if(ttemp1<2000)
                                    ; SOURCE LINE # 117
C
                        CLR
                        MOV
                                    A,ttemp1+01H
                        SUBB
                                    A,#0D0H
                        MOV
                                    A,ttemp1
                                    A.#071-
                       SUBB
                                    ?C0015
                        JNC
                                    ; SOURCE LINE # 118
 ; ttemp1=10000;
                                    ; SOURCE LINE # 119
                                    ttemp1,#027H
                        MOV
                                    ttemp1+01H,#010H
                        MOV
 ; ttemp2=1;
                                     ; SOURCE LINE # 120
                                     ttemp2,#00H
                        MOV
                                     ttemp2+01H,#01H
                        MOV
 ; }
                                     ; SOURCE LINE # 121
 ?C0015:
 ; tt=ttemp1;
```

; SOURCE LINE # 122

```
RO,#LOW (tt)
                       MOV
                        MOV
                                     @R0,ttemp1
                                     ŔΟ
                        INC
                                     @R0,ttemp1+01H
                        MOV
; htdp();
                                      ; SOURCE LINE # 123
                        LCALL
                                     htdp
; disr();
                                     ; SOURCE LINE # 124
                        LCALL
                                     disr
; mask=tt;
                                     ; SOURCE LINE # 125
                        MOV
                                     R0, #LOW (tt)
                        MOV
                                     A,@R0
                        MOV
                                     mask,A
                        INC
                                      R0
                                     A,⊚R0
                        MOV
                        MOV
                                      mask +01H,A
; ser_out2();
                                      ; SOURCE LINE # 126
                        LCALL
                                      ser_out2
  adc0();
                                      ; SOURCE LINE # 128
                        LCALL
                                      adc0
; htd0();
                                      ; SOURCE LINE # 129
                        LCALL
; dis0();
                                      ; SOURCE LINE # 130
                        LCALL.
                                      dis0
; del();
                                      ; SOURCE LINE # 131
                        LCALL
                                      del
; ser_out0();
                                      ; SOURCE LINE # 132
                        LCALL
                                      ser_out0
  adc1();
                                      ; SOURCE LINE # 134
                        LCALL
 ; htd1();
                                      ; SOURCE LINE # 135
                        LCALL
                                      htd1
 ; dis1();
                                      ; SOURCE LINE # 136
                        LCALL
                                      dis1
 ; del();
                                      ; SOURCE LINE # 137
                        LCALL
 ; ser_out1();
                                      ; SOURCE LINE # 138
                        LCALL
                                      ser_out1
 ;
; del();
                                      ; SOURCE LINE # 140
                        LCALL
 ; del();
                                      ; SOURCE LINE # 141
                                      del
                        LCALL
 ; del();
                                      ; SOURCE LINE # 142
                        LCALL
                                      del
 ; del();
                                      ; SOURCE LINE # 143
                        LCALL
                                      del
 ; del();
                                       ; SOURCE LINE # 144
                        LCALL
 ; del();
                                       ; SOURCE LINE # 145
                         LCALL
 ; del();
                                       ; SOURCE LINE # 146
                         LCALL
                                       del
 ; del();
```

```
; SOURCE LINE # 147
                       LCALL
                                    dei
 power();
                                    ; SOURCE LINE # 149
                       LCALL
                                    power
; powf();
                                    ; SOURCE LINE # 150
                       LCALL
                                    iwoq
; htd2();
                                     ; SOURCE LINE # 151
                       LCALL
; dis3();
                                     ; SOURCE LINE # 152
                                     dis3
                       LCALL
; mask=dat;
                                     : SOURCE LINE # 153
                       MOV
                                     mask,dat
                       MOV
                                     mask+01H,dat+01H
; ser_out2();
                                     ; SOURCE LINE # 154
                       LCALL
                                     ser_out2
  date=energy;
                                     ; SOURCE LINE # 156
                       MOV
                                     date, energy
                                     date+01H,energy+01H
                       MOV
; htd3();
                                     ; SOURCE LINE # 157
                        LCALL
                                     htd3
; dis2();
                                     ; SOURCE LINE # 158
                        LCALL
                                     dis2
; mask=date;
                                     ; SOURCE LINE # 159
                        MOV
                                     mask,date
                                     mask + 01H,date+01H
                        MOV
; ser_out2();
                                     ; SOURCE LINE # 160
                        LCALL
                                     ser_out2
; del();
                                     ; SOURCE LINE # 161
                        LCALL
; del();
                                     : SOURCE LINE # 162
                        LCALL
; del();
                                     ; SOURCE LINE # 163
                        LCALL
                                     del
; del();
                                     ; SOURCE LINE # 164
                        LCALL
                                     del
 ; del();
                                     ; SOURCE LINE # 165
                        LCALL
 ;}
                                      ; SOURCE LINE # 167
                        ⊔MP
                                      ?C0001
 ; END OF main
 CSEG
                        AT 0000BH
                        ⊔MP
                                     timer0
 ;}
 ; void timer0(void) interrupt 1
                      • RSEG ?PR?timer0?KCT_PF
                        USING
 timer0:
                        PUSH
                                      ACC
                        PUSH
                                      В
                                      PSW
                        PUSH
                                      PSW, # 00H
                        MOV
                        PUSH
                                      AR0
```

```
PUSH
                                   AR4
                      PUSH
                                   AR5
                      PUSH
                                   AR6
                                   AR7
                      PUSH
                      USING
                                   0
                                   ; SOURCE LINE # 170
; unsigned char reg1;
 TR0=0;
                                    ; SOURCE LINE # 173
                      CLR
                                    TR0
; reg1++;
                                   ; SOURCE LINE # 174
                       INC
                                   reg1?140
; if(reg1==0x10)
                                    ; SOURCE LINE # 175
                                    A,reg!?140
                       MOV
                       CUNE
                                    A,#010H,?C0017
; {
                                    ; SOURCE LINE # 176
  reg1=0;
                                    ; SOURCE LINE # 177
                       MQV
                                    reg1?140,#00H
  energy=energy+(pow_f/3600);
                                    ; SOURCE LINE # 178
                       MOV
                                    R6,pow f
                                    R7,pow_f+01H
                       MOV
                      MOV
                                    R4,#0EH
                                    R5 #010H
                       MOV
                       LCALL
                                    ?C?UIDIV
                       MOV
                                    A,R/
                       ADD
                                    A,energy+01H
                       MOV
                                    energy+01H,A
                       MOV
                                    A,R6
                       ADDC
                                    A,energy
                       MOV
                                    energy,A
; }
                                    ; SOURCE LINE # 179
?C0017:
; TH0=0x00;
                                    ; SOURCE LINE # 180
                       MOV
                                    TH0,#00H
; TL0=0x00;
                                    ; SOURCE LINE # 181
                       MOV
                                    TL0,#00H
; TR0=1;
                                    ; SOURCE LINE # 182
                       SETB
                                    TRO
; }
                                    ; SOURCE LINE # 183
                       POP
                                    AR /
                       POP
                                    AR6
                       POP
                                    AR5
                       POP
                                    AR4
                       POP
                                    ARC
                                    PSW/
                       POP
                       POP
                                    В
                       POP
                                    ACC
                       RÉTI
; END OF timer0
; void ser_init()
                       RSEG ?PR?ser_init?KCT_PF
ser_init:
                       USING
                                    ; SOURCE LINE # 186
; {
                                    ; SOURCE LINE # 187
; TH1=0x72;
                                    ; SOURCE LINE # 188
                       MOV
                                    TH1,#072H
; TMOD=0x20;
                                    ; SOURCE LINE # 189
```

```
MOV
                                    TMOD,#020H
; TR1=1;
                                    ; SOURCE LINE # 190
                       SETB
; delay();
                                    ; SOURCE LINE # 191
                                    delay
                       LCALL
; SCON=0x40;
                                    ; SOURCE LINE # 192
                     <sup>⊖</sup> MOV
                                    SCON, #040H
; }
                                    ; SOURCE LINE # 193
                       RET
; END OF ser_init
; void ser_out()
                       RSEG ?PR?ser_out?KCT_PF
ser_out:
                       USING
                                    0
                                     ; SOURCE LINE # 195
; {
                                     ; SOURCE LINE # 196
; SBUF=ser_data;
                                     ; SOURCE LINE # 197
                      پ MO۷ پ
                                     RO,#LOW (ser_data)
                       MOV
                                     A,@RO
                       MOV
                                     SBUF, A
; delay();
                                     ; SOURCE LINE # 198
                       LCALL
                                     delay
; SCON=0x40;
                                     ; SOURCE LINE # 199
                       MOV
                                     SCON, #040H
;}
                                     ; SOURCE LINE # 200
                        RET
; END OF ser_out
; void adc0()
                        RSEG ?PR?adc0?KCT PF
adc0:
                        USING
                                     ; SOURCE LINE # 202
; {
                                     ; SOURCE LINE # 203
; x=ch0;
                                                                                  O
                                     ; SOURCE LINE # 204
                        MOV
                                     RO,#LOW (ch0)
                                     A,@R0
                        MOVX
                        MOV
                                     RO,#LOW(x)
                        MOV
                                     @R0,A
; delay();
                                     ; SOURCE LINE # 205
                        LCALL
                                     delay
; dat0=soc;
                                     ; SOURCE LINE # 206
                        MOV
                                     RO,#LOW (soc)
                        MOVX
                                     A,@R0
                                     R0,≈LOW (dat0)
                        MOV
                        MOV
                                     @R0,A
, }
                                     ; SOURCE LINE # 207
                        RET
; END OF adc0
; void htd0()
                        RSEG ?PR?htd0?KCT PF
htd0:
                        USING
```

; 50 RCE LINE # 209

```
; {
                                    ; SOURCE LINE # 210
; a0=dat0/0x64;
                                    ; SOURCE LINE # 211
                       MOV
                                    R0,#LOW (dat0)
                                    A,@R0
                       MOV
                       MOV
                                    R7 A
                     ∪ MOV
                                    B,#064H
                       DIV
                                    AB
                       MOV
                                    R0,#LOW (a0)
                       MOV
                                    @RC,A
; b0=dat0%0x64;
                                    ; SOURCE LINE # 212
                       MOV
                                    A,R7
                       MOV
                                    B,#064H
                       DIV
                                    AΒ
                       MOV
                                    R0,#10W (b0)
                       MOV
                                    @R0,8
; c0=b0/0x0a;
                                    ; SOURCE LINE # 213
                       MQV
                                    A,@R0
                       MOV
                                    ŔŹ,∧
                       MOV
                                    B,#0Aii
                       DIV
                                    AΒ
                                    R0, = LOW (c0)
                       MOV
                       MOV
                                    @R0,A
; d0=b0%0x0a;
                                    ; SOURCE LINE # 214
                       MOV
                                    A,R7
                                    B,#CAH
                       MOV
                                    AΒ
                       DIV
                                    R0,#LOW (d0)
                       MOV
                       MOV
                                    @R0,B
; }
                                    ; SOURCE LINE # 215
                       RET
; END OF htd0
;
; void dis0()
                       RSEG ?PR?dis0?KCT PF
dis0:
                       USING
                                    ; SOURCE LINE # 217
: {
                                    ; SOURCE LINE # 218
; porta=0x89;
                                    ; SOURCE LINE # 219
                       MOV
                                    R0,#LOW (porta)
                       MOV
                                    A,#089H
                       MOVX
                                    @R0,A
; read();
                                    ; SOURCE LINE # 220
                       LCALL
                                    read
; delay();
                                    ; SOURCE LINE # 221
                       LCALL
                                    delay
; porta='V';
                                     : SOURCE LINE # 222
                       MOV
                                    R0,#LOW (porta)
                       MOV
                                    A,#056H
                       MOVX
                                     @R0,A
; write();
                                     ; SOURCE LINE # 223
                       LCALL
                                     write
; delay();
                      0
                                     ; SOURCE LINE # 224
                       LCALL
 ; porta=1:1;
                                     ; SOURCE LINE # 225
                        MOV
                                     RO,#LOW (porta)
                                     A,#03AH
                        MOV
                        MOVX
                                     @R0, A
; write();
                                     ; SOURCE LINE # 226
```

;	delay();	LCALL	write
	porta=a0+0x30;	LCALL	; SOURCE LINE # 227 delay
		MOV MOV ADD MOV MOVX	; SOURCE LINE # 228 RO,#LOW (a0) A,@RC A,#030H R1,#LOW (porta) @R1,A
,	write();	LCALL	; SOURCE LINE # 229 write
;	delay();	LCACL	; SOURCE LINE # 230
;	porta=c0+0x30;	LCALL	delay
	write();	MOV MOV ADD MOV MOVX	; SOURCE LINE # 231 R0,#LOW (c0) A,@R0 A,#030H R1,#LOW (porta) @R1,A
•	write(),	LCALL	; SOURCE LINE # 232 write
;	delay();		; SOURCE LINE # 233
;	porta=d0+0x30;	LCALL	de lay
;	write();	MOV MOV ADD MOV MOVX	; SOURCE LINE # 234 R0,#LOW (d0) A,@R0 A,#030H R1,#LOW (porta) @R1,A
	4-1	LCALL	; SOURCE LINE # 235 write
;	delay();	JLCALL	; SOURCE LINE # 236 delay
	porta='';		; SOURCE LINE # 239
,	write();	LCALL	; SOURCE LINE # 238 L?0057
;	delay();	LCALL	; SOURCE LINE # 239
;	porta=' ';	LCALL	delay ; SOURCE LINE # 240
;	write();		; SOURCE LINE # 241
;	delay();	LCALL	L?0057
;	porta='';	LCALL	; SOURCE LINE # 242 delay
;	write();		; SOURCE LINE # 243
	delay();	LCALL	; SOURCE LINE # 244 L?0058
;	- "	L CALL	; SOURCE LINE # 245 delay
;	porta='';		; SOURCE LINE # 246
;	write();	LC ALL	; SOURCE LINE # 247 L?0058
;	delay();		; SOURCE LINE # 248
:	porta='':	LCALL	delay

; porta='';

```
; SOURCE LINE # 249
; write();
                                     ; SOURCE LINE # 250
                       LCALL
                                     L?0058
; delay();
                                    ; SOURCE LINE # 251
                      JLCALL
                                     delay
; porta='';
                                     ; SOURCE LINE # 252
; write();
                                     ; SOURCE LINE # 253
                       LCALL
                                     L?0058
; delay();
                                     ; SOURCE LINE # 254
                       LÇALL
                                     delay
; porta='';
                                     ; SOURCE LINE # 255
; write();
                                     ; SOURCE LINE # 256
                       LCALL
                                     L?0058
; delay();
                                     ; SOURCE LINE # 257
                       ⊔MP
                                     delay
; END OF dis0
; }
; void ser_out0()
                       RSEG ?PR?ser_out0?KCT_PF
ser_out0:
                       USING
                                     ; SOURCE LINE # 260
; {
                                     ; SOURCE LINE # 261
; ser_data=dat0;
                                     ; SOURCE LINE # 262
                       MOV
                                     R0,#LOW (dat0)
                       MOV
                                     A,@R0
                       MOV
                                     R0,#LOW (ser_data)
                       @R0,A
; ser_out();
                                     ; SOURCE LINE # 263
                       IJMP
                                     ser_out
; END OF ser_out0
;}
; void adc1()
                       RSEG ?PR?adc1?KCT_PF
adc1:
                       USING
                                     ; SOURCE LINE # 266
                                     ; SOURCE LINE # 267
; x=ch1;
                                     ; SOURCE LINE # 268
                       MOV
                                     R0,#LOW (ch1)
                       MOVX
                                     A,@RJ
                       MOV
                                     R0,#LOW (x)
                       MOV
                                     @R0,A
; delay();
                                     ; SOURCE LINE # 269
                       LCALL
                                     delay
; dat1=soc;
                                     ; SOURCE LINE # 270
                       MOV
                                     RO, #LOW (soc)
                       MOVX
                                     A,@R0
                       MOV
                                     R0,#LOW (dat1)
                       MOV
                                     @R0,A
;}
                                     ; SOURCE LINE # 271
                       RET
; END OF adc1
```

```
;
; void htd1()
                       RSEG ?PR?htd1?KCT_PF
htd1:
                       USING
                                    ; SOURCE LINE # 273
; {
                                    ; SOURCE LINE # 274
; a1=dat1/0x64;
                                    : SOURCE LINE # 275
                       MOV
                                    R0, #LOW (dat1)
                                    A,@R0
                       MOV
                                    R7,A
                       MOV
                       MOV
                                    B,#064H
                       DIV
                                    AB
                      MOV
MOV
                                    R0,#LOW (a1)
                                    @R0,A
; b1=dat1%0x64;
                                    ; SOURCE LINE # 276
                       MOV
                                    A,R7
                       MOV
                                    B.#064H
                       DIV
                                    ΑB
                                    R0,#LOW (b1)
                       MOV
                       MOV
                                    @R0,B
; c1=b1/0x0a;
                                    ; SOURCE LINE # 277
                       MOV
                                    A,@R0
                       MOV
                                    R7,∧
                                    B,#0AH
                       MOV
                       DIV
                                    AB
                       MOV
                                    R0,#LOW (c1)
                       MOV
                                    @R0,A
; d1=b1%0x0a;
                                    ; SOURCE LINE # 278
                       MOV
                                    A,R7
                                    B,#0AH
                       MOV
                       DIV
                                    ΑB
                                    R0,#LOW (d1)
                       MOV
                       MOV
                                    @R0,B
; }
                                    ; SOURCE LINE # 279
                       RET
; END OF htd1
; void dis1()
                       RSEG ?PR?dis1?KC1 PF
dis1:
                       USING
                                    ; SOURCE LINE # 281
;{
                                     ; SOURCE LINE # 282
; porta=0xc0;
                                     ; SOURCELINE # 283
                       MOV
                                     RO,#LOW (porta)
                                     A,#0C0H
                       MOV
                       MOVX
                                     @R0,A
; read();
                                     ; SOURCE LINE # 284
                       LCALL
 ; delay();
                                     ; SOURCE LINE # 285
                       LCALL
                                     delay
 ; porta='I';
                                     ; SOURCE LINE # 286
                        MOV
                                     R0,#LOW (porta)
                        MOV
                                     A,#049H
                        MOVX
                                     @R0,A
 ; write();
                                     ; SOURCE LINE # 287
                        LCALL
 ; delay();
                                     ; SOURCE LINE # 288
                        LCALL
                                     delay
```

```
; porta=':';
                                    ; SOURCE LINE # 289
                       MOV
                                    R0,#1.OW (porta)
                       MOV
                                    A,#03AH
                       MOVX
                                     @RO,A
; write();
                                    ; SOURCE LINE # 290
                       LCALL
; delay();
                                     ; SOURCE LINE # 291
                       LCALL
                                     delay
; porta=a1+0x30;
                                     : SOURCE LINE # 292
                       MOV
                                     R0,#LOW (a1)
                                    A,@R0
                       MOV
                                     A,#030H
                       ADD
                       MOV
                                     R1,=LOW (porta)
                       MOVX
                                     6,13@
; write();
                                     ; SOURCE LINE # 293
                        LCALL
; delay();
                                     ; SOURCE LINE # 294
                       LCALL
                                     delay
; porta=c1+0x30;
                                     ; SOURCE LINE # 295
                        MOV
                                     R0,#LOW (c1)
                        MOV
                                     A,@R0
                                     A,#030H
                       OADD
                        MOV
                                     R1,#LOW (porta)
                        MOVX
                                     @R1,A
; write();
                                     ; SOURCE LINE # 296
                        LCALL
; delay();
                                     ; SOURCE LINE # 297
                        LCALL
 : porta='.:
                                     ; SOURCE LINE # 298
                                     RO,#LOW (porta)
                        MOV
                                     A,#02EH
                        MOV
                        MOVX
                                     @R0,A
 ; write();
                                     ; SOURCE LINE # 299
                        LCALL
 ; delay();
                                     ; SOURCE LINE # 300
                        LCALL
                                     delay
 ; porta=d1+0x30;
                                     ; SOURCE LINE # 301
                                     R0,#LOW (d1)
                        MOV
                        MOV
                                     A,@R0
                        ADD
                                      A,#030H
                        MOV
                                     R1,#LOW (porta)
                        MOVX
                                      @R1,A
 ; write();
                                      ; SOURCE LINE # 302
                        LCALL
                                     write
 ; delay();
                                      ; SOURCE LINE # 303
                        LCALL.
 ; porta='';
                                      ; SOURCE LINE # 304
 ; write();
                                      ; SOURCE LINE # 305
                        JCALL
                                      L?0058
 ; delay();
                                      ; SOURCE LINE # 306
                        LCALL
 ; porta='';
                                      ; SOURCE LINE # 307
 ; write();
                                      ; SOURCE LINE # 308
                         LCALL
                                      L?0058
 ; delay();
```

; SOURCE LINE # 309

```
LCALL
                                     delay
; porta=' ';
                                      ; SOURCE LINE # 310
; write();
                                      ; SOURCE LINE # 311
                        LCALL
; delay();
                                      ; SOURCE LINE # 312
                        LCALL
                                     delay
; porta=' ';
                                      ; SOURCE LINE # 313
 write();
                                      ; SOURCE LINE # 314
                        LCALL
                                      L?0058
; delay();
                                      : SOURCE LINE # 315
                        LCALL
; porta='';
                                      ; SOURCE LINE # 316
; write();
                                      ; SOURCE LINE # 317
                        LCALL
                                      L?0058
; delay();
                                      ; SOURCE LINE # 318
                        LCALL
                                      delay
; porta=' ';
                                      ; SOURCE LINE # 319
; write();
                                      ; SOURCE LINE # 320
                        LCALL
                                      L?0058
; delay();
                                      ; SOURCE LINE # 321
                        LCALL
                                      delay
; porta=' ';
                                      ; SOURCE LINE # 322
; write();
                                      ; SOURCE LINE # 323
                        LCALL
; delay();
                                      ; SOURCE LINE # 324
                       dLCALL
                                      delay
; porta='';
                                      ; SOURCE LINE # 325
; write();
                                      ; SOURCE LINE # 326
                        LCALL
                                      L?0058
; delay();
                                      ; SOURCE LINE # 327
                        LIMP
                                      delay
; END OF dis1
;}
; void ser_out1()
                        RSEG ?PR?ser_out1?KCT_PF
ser_out1:
                        USING
                                      ; SOURCE LINE # 330
: {
                                      ; SOURCE LINE # 331
; ser_data=dat1;
                                      ; SOURCE LINE # 332
                        MOV
                                      R0,#LOW (dat1)
                        MOV
                                      A,@R0
                                      RO,#LOW (ser_data)
                        MOV
                        MOV
                                      @R0,A
; ser_out();
                                      ; SOURCE LINE # 333
                        LIMP
                                      ser_out
; END OF ser_out1
; }
; void power()
```

o

```
RSEG ?PR?power?KCT PF
power:
                        USING
                                     ; SOURCE LINE # 336
; {
                                     ; SOURCE LINE # 337
; float volt, cur;
; volt=dat0;
                                     ; SOURCE LINE # 339
                       MOV
                                     R0,#LOW (dat0)
                       MOV
                                     A,@RO
                       MOV
                                     R4,A
                       CLR
                       LCALL
                                     ?C?FCASTC
                       MOV
                                     volt?:241+03H,R7
                       MOV
                                     volt?:241+02H,R6
                       MOV
                                     volt?1241+01H,R5
                                     volt?1241,R4
                       MOV
; cur=(float)dat1/10;
                                     ; SOURCE LINE # 340 R0,#LOW (dat1)
                       MOV
                       MOV
                                     A,@R0
                       MOV
                                     R4,A
                       CLR
                       LCALL
                                     ?C?FCASTC
                       CLR
                                     R3,A
                       MOV
                       MOV
                                     R2,A
                       MQV
                                     R1,#020H
                                     R0,#041H
                       MOV
                       LCALL
                                     ?C?FPDIV
;---- Variable 'cur?1242' assigned to Register 'R4/R5/R6/R7' ----
; pow=voit*cur;
                                     ; SOURCE LINE # 341
                       MOV
                                     R3, volt?1241+03H
                       MOV
                                     R2, volt?1241+02H
                       MOV
                                     R1,volt?1241+01H
                       MOV
                                     R0, volt?1241
                                     ?C?FPMUL
                       LCALL
                       LCALL
                                     ?C?CASTF
                       MOV
                                     pow,R6
                       MOV
                                     pow+01H,R7
; dat=pow*100;
                                     ; SOURCE LINE # 342
                       MOV
                                     R4,#00H
                       MOV
                                     R5,#064H
                       LCALL
                                     ?C?IMUL
                       MOV
                                     dat,RG
                       MOV
                                     dat +G1H,R7
; }
                                     ; SOURCE LINE # 343
                       ♥
RET
; END OF power
; void htd2()
                       RSEG ?PR?htd2?KCT PF
htd2:
                       USING
                                    ; SOURCE LINE # 345
;{
                                    ; SOURCE LINE # 346
; a2=dat/0x2710;
                                    ; SOURCE LINE # 347
                       MOV
                                    R6,dat
                       MOV
                                    R7,dat+01H
                       CIOV
                                    R4,#027H
                       MOV
                                    R5,#010H
                       LCALL
                                    ?C?U:DIV
                       MOV
                                    R0,#LOW (a2)
                       MOV
                                    @R0,AR7
; b2=(unsigned long)dat%0x2710;
                                    ; SOURCE LINE # 348
                       MOV
                                    R6,dat
                       MOV
                                    R7,dat+01H
```

```
ÇLR
                     MOV
                                  R4,A
                     MOV
                                  R5,A
                     MOV
                                  R3.#010H
                     VON
                                  R2, #027H
                      MOV
                                  R1.A
                                  R0,A
                      MOV
                      LCALL
                                  ?C?ULDIV
                      MOV
                                  R6,AR2
                      MOV
                                  R7,AR3
                      MOV
                                  R0,#LOW (b2)
                      MOV
                                  @R0,AR6
                      INC
                                  Ř0
                                  @R0,AR7
•
                      MOV
; c2=b2/0x3e8;
                                  ; SOURCE LINE # 349
                      DEC
                                  R0
                                  A,@RO
                      MOV
                      MOV
                                  R2,A
                      INC
                                  RO
                                  A,@RC
                      MOV
                      MOV
                                  R3,A
                      MOV
                                  R4,#03H
                      MOV
                                  R5,#058H
                      MOV
                                  R7.A
                                  R6,AR2
                      MOV
                      LCALL
                                  ?C?UIDIV
                      MOV
                                  R0,#LOW (c2)
                      MOV
                                  @R0,AR7
; d2=b2%0x3e8;
                                  ; SOURCE LINE # 350
                      MOV
                                  R4,#03H
                      MOV
                                  R5,#0E8H
                      MOV
                                  R7,Ak3
                      MOV
                                  R6,AR2
                      LCALL
                                  ?C?UIDIV
                      MOV
                                  R0,#LOW (d2)
                      MOV
                                  @R0,AR4
                      INC
                                  R0
                      MOV
                                  @R0,AR5
; e2=d2/0x64;
                                  ; SOURCE LINE # 351
                      DEC
                                  RO
                                  A,@R0
                      MOV
                      MOV
                                  R2,A
                                  R0
                      INC
                      MOV
                                  A,@RO
                      MOV
                                  R3,A
                      MOV
                                  R4,#00H
                      MOV
                                  R5,#064H
                      MOV
                                  R7,A
                      MOV
                                  R6,AR2
                      LCALL
                                  ?C?UIDIV
                                  R0,#LOW (e2)
@R0,AR7
                      MOV
                      MOV
; f2=d2%0x64;
                                  ; SOURCE LINE # 352
                      MOV
                                  R4,#00H
                      310V
                                  R5,#064H
                      MOV
                                  R7,AR3
                      MOV
                                  R6,AR2
                      LÇALL
                                  VICIUSDS
                      MOV
                                   R0,#LOW (f2)
                      MOV
                                   @R0,AR5
; g2=f2/0x0a;
                                   ; SOURCE LINE # 353
                      MOV
                                  A,@RO
                      MOV
                                  R7,∧
                                  B.#0AH
                      MOV
                      DIV
                                  AΒ
                      INC
                                  R0
                      MQV
                                   @RO,A
; h2=f2%0x0a;
                                  ; SOURCE LINE # 354
                      MOV
                                  A,R7
                      MOV
                                  B,#0AH
```

```
DIV
                                   AΒ
                      INC
                                   R0
                      MOV
                                   @R0,B
; }
                                   ; SOURCE LINE # 355
                      RET
; END OF htd2
; void htd3()
                      RSEG ?PR?htd3?KCT_PF
htd3:
                      USING
                                    : SOURCE LINE # 357
; {
                                    : SOURCE LINE # 358
; ae=date/0x2710;
                                    ; SOURCE LINE # 359
                       MOV
                                    R6,date
                       MOV
                                    R7,date+01H
                       MOV
                                    R4,≑027H
                       MOV
                                    R5.#010H
                       LCALL
                                    ?C?UIDIV
                       MOV
                                    RO,#LOW (ae)
                                    @R0,AR7
                       MOV
; be=(unsigned long)date%0x2710;
                                    ; SOURCE LINE # 360
                       MOV
                                    R6,date
                                    R7,date+01H
                       MOV
                       CLR
                                    R4,A
                       MOV
                                    R5,A
                       MOV
                       MOV
                                    R3.#010H
                                    R2,#027H
                       MOV
                       PIOV
                                    R1,A
                       MQV
                                    RO,A
                       LCALL
                                    ?C?ULDIV
                       MOV
                                    R6,AR2
                       MOV
                                    R7,AR3
                                    RO,#LOW (be)
                       MOV
                       MOV
                                    @R0,AR6
                                    \bar{R}0
                       INC
                                    @RO,AR7
                       MOV
 ; ce=be/0x3e8;
                                    ; SOURCE LINE # 361
                       DEC
                                    R0
                                    A,@R0
                       MOV
                                    R2,A
                       MOV
                       INC
                                    RO
                       MOV
                                    A,@RC
                                    R3,A
                       MOV
                                    R4,#03H
                       MOV
                                    R5,#0ESH
                       MOV
                                    R7,A
                        MOV
                        MOV
                                    R6,AR2
                                    ?C?UIDIV
                        LCALL
                        MOV
                                    RO,#LOW (ce)
                                     @R0,AR7
                        MOV
 : de=be%0x3e8;
                                     : SOURCE LINE # 362
                                     R4,#03H
                        MOV
                        MOV
                                     R5,#0E8H
                        MOV
                                     R7,AR3
                        MOV
                                     R6,AR2
                        LCALL
                                     ?C?UIDIV
                                     R0,#LOW (de)
                        MOV
                        MOV
                                     @R0, AR4
                                     RO
                        INC
                                     @R0,AR5
                        MOV
 ; ee=de/0x64;
                                     ; SOURCE LINE # 363
RC
                        DEC
                                     A,@R0
                        MOV
                                     R2,A
                        MOV
                        INC
                                     R0
```

```
MOV
                                   A,@R0
                      MOV
                                   R3,A
                      MOV
                                   R4,#00H
                      MOV
                                   R5,#064H
                      MOV
                                   R7,A
                      MOV
                                   R6, AR2
                                   ?C?UIDIV
                      LCALL
                      MOV
                                   R0,#LOW (ee)
                      MOV
                                   @R0, AR7
; fe=de%0x64;
                                   ; SOURCE LINE # 364
                      MOV
                                   R4,#00H
                      MOV
                                   R5,#064H
                                   R7,AR3
                      Mov
                      MOV
                                   R6, AR2
                      LCALL
                                    ?C?UIDIV
                                    R0,#LOW (fe)
                      MOV
                      MOV
                                    @R0,AR4
                      INC
                                    R0
                      MOV
                                    @RO,AR5
; ge=fe/0x0a;
                                    ; SOURCE LINE # 365
                       DEC
                                    R0
                       MOV
                                    A,@R0
                       MOV
                                    R2.A
                       INC
                                    R0
                       MOV
                                    A,@R0
                                    R3,A
                       MOV
                       MOV
                                    R4,#00H
                       MOV
                                    R5,#0AH
                       MOV
                                    R7,A
                                    R6,AR2
?C?UIDIV
                       MOV
                       LCALL
                       MOV
                                    R0,#LOW (ge?)
                                    @R0_AR7
                       MOV
; he=fe%0x0a;
                                    ; SOURCE LINE # 366
                       MOV
                                    R4,#00H
                       MOV
                                    R5,#0AH
                       MOV
                                    R7,AR3
                       MOV
                                    R6,AR2
                                    ?C?UIDIV
                       LCALL
                       MOV
                                    R0,#LOW (he)
                       MOV
                                    @R0,AR5
}
                                    ; SOURCE LINE # 367
                       RET
; END OF htd3
; void dis2()
                       RSEG ?PR?dis2?KCT_PF
dis2:
                       USING
                                    ; SOURCE LINE # 369
; {
                                    ; SOURCE LINE # 370
; porta=0xc0;
                                    ; SOURCE LINE # 371
                       MOV
                                    R0,#LOW (porta)
                                    A,#0C0H
                       MOV
                                    @R0,A
                       MOVX
; read();
                                    ; SOURCE LINE # 372
                       LCALL
                                    read
; delay();
                                    ; SOURCE LINE # 373
                       LCALL
                                    delay
; porta='E';
                                    ; SOURCE LINE # 374
                       MOV
                                    R0,#LOW (porta)
                       MOV
                                    A,#045H
                       MOVX
                                    @R0,A
; write();
                                    ; SOURCE LINE # 375
```

```
LCALL
                                     write
; delay();
                       Q
                                     ; SOURCE LINE # 376
                       LCALL
                                     delay
; porta=':';
                                     ; SOURCE LINE # 377
                                     R0,#LOW (porta)
                       MOV
                       MOV
                                     A,#03AH
                       MOVX
                                     @R0,A
; write();
                                     ; SOURCE LINE # 378
                       LCALL
; delay();
                                     ; SOURCE LINE # 379
                       LCALL
                                     delay
; porta=ae+0x30;
                                     ; SOURCE LINE # 380
                       MOV
                                     R0,#LOW (ae)
                                     A,@R0
                       MOV
                       ADD
                                     A,#030H
                       MOV
                                     R1,#LOW (porta)
                       йо∨х
                                     @R1,A
; write();
                                     ; SOURCE LINE # 381
                       LCALL
                                     write
; delay();
                                     ; SOURCE LINE # 382
                       LCALL
                                     delay
; porta=ce+0x30;
                                     ; SOURCE LINE # 383
                       MOV
                                     R0,#LOW (ce)
                       MOV
                                     A,@R0
                       ADD
                                     A,#030H
                       MOV
                                     R1,#LOW (porta)
                       MOVX
                                     @R1, A
; write();
                                     ; SOURCE LINE # 384
                       LCALL
                                     write
; delay();
                                     ; SOURCE LINE # 385
                       LCALL
; porta=ee+0x30;
                                     ; SOURCE LINE # 386
                                     R0,#LOW (ee)
                       MOV
                       MOV
                                     A,@R0
                       ADD
                                     A,#030H
                                     R1,#LOW (porta)
                       MOV
                       MOVX
                                     @81,A
; write();
                                     ; SOURCE LINE # 387
                       LCALL
                                     write
; delay();
                                     ; SOURCE LINE # 388
                       LCALL
; porta='.';
                                     ; SOURCE LINE # 389
                       MQV
                                     R0,#LOW (porta)
                       MOV
                                     A,#02EH
                       MOVX
                                     @R0,A
; write();
                                     ; SOURCE LINE # 390
                       LCALL
                                     write
; delay();
                                     ; SOURCE LINE # 391
                       LCALL
                                     delay
; porta=ge+0x30;
                                     ; SOURCE LINE # 392
                       MOV
                                     R0,#LOW (ge?)
                       MOV
                                     A,@RO
                       ADD
                                     A,#030H
                       MQV
                                     R1,#LOW (porta)
                       MOVX
                                     @R1,A
; write();
                                    ; SOURCE LINE # 393
                       LÇALL
                                     write
; delay();
```

; porta=he+0x30; CALL SOURCE LINE # 394			
SOURCE LINE # 395 MOV AQRO AQ	. north—ho : 0×20;	₽ L CALL	
CALL SOURCE LINE # 396 Write	; porta=ne+0x30;	MOV ADD MOV	RO,#LOW (he) A,@RO A,#030H R1,#LOW (porta)
LCALL write	; write();		
LCALL delay ; SOURCE LINE # 398 ; write(); ; SOURCE LINE # 399 ; delay(); ; SOURCE LINE # 400 delay ; SOURCE LINE # 400 delay ; SOURCE LINE # 401 ; SOURCE LINE # 401 ; SOURCE LINE # 402 ; SOURCE LINE # 402 ; SOURCE LINE # 402 ; SOURCE LINE # 403 delay ; SOURCE LINE # 403 delay ; SOURCE LINE # 404 ; SOURCE LINE # 405 ; SOURCE LINE # 405 ; SOURCE LINE # 405 ; SOURCE LINE # 406 delay ; SOURCE LINE # 406 delay ; SOURCE LINE # 407 ; SOURCE LINE # 408 ; SOURCE LINE # 408 ; SOURCE LINE # 409 delay ; SOURCE LINE # 409 delay ; SOURCE LINE # 410 ; SOURCE LINE # 411 ; SOURCE LINE # 411 ; SOURCE LINE # 411 ; SOURCE LINE # 412 delay ; SOURCE LINE # 414 ; SOURCE LINE # 414 ; SOURCE LINE # 415 delay(); LCALL ; SOURCE LINE # 415 delay(); ; SOURCE LINE # 416 ; SOURCE LINE # 417 ; SOURCE LINE # 417 ; SOURCE LINE # 418 delay ; SOURCE LINE # 418 delay ; SOURCE LINE # 418 delay ; SOURCE LINE # 419 ; SOURCE LINE # 420 ; SOURCE LINE # 419 ; SOURCE LINE # 420 ; SOURCE LINE # 419 ; SOURCE LINE # 420 ; SOURCE LINE # 419 ; SOURCE LINE # 420 ; SOUR	; delay();	LCALL	write
; write(); ; delay(); ; delay(); ; delay(); ; porta=''; ; write(); ; delay(); ; delay(); ; delay(); ; delay(); ; delay(); ; delay(); ; porta=''; ; write(); ; delay(); ; source line # 405 clall line # 406 clay line # 406 clay line # 407 clall line # 408 clall line # 408 clall line # 408 clall line # 409 clall line # 409 clall line # 409 clall line # 410 clall line # 411 clall line # 411 clall line # 412 clall line # 413 clall line # 414 clall line # 415 clall line # 415 clall line # 416 clall line # 417 clall line # 418 clall line # 418 clall line # 419 clall line # 419 clall line # 418 clall line # 419 clall line # 418 clall line # 419 clall line # 419 clall line # 419 clall line # 419 clall line # 418 clall line # 419 clall line # 410	, aarta-U	LCALL	
; delay(); ; delay(); ; porta=''; ; write(); ; delay(); ; bounce Line # 400 delay ; porta=''; ; write(); ; counce Line # 401 ; porta=''; ; write(); ; counce Line # 403 delay ; porta=''; ; write(); ; counce Line # 404 ; porta=''; ; write(); ; counce Line # 405 ; counce Line # 406 delay(); ; counce Line # 406 delay(); ; sounce Line # 407 ; sounce Line # 408 ; delay(); ; counce Line # 409 delay ; porta=''; ; write(); ; counce Line # 410 ; counce Line # 411 ; delay(); ; counce Line # 412 delay ; porta=''; ; write(); ; counce Line # 413 ; counce Line # 414 ; counce Line # 414 ; counce Line # 415 delay(); ; sounce Line # 416 ; sounce Line # 416 ; sounce Line # 417 ; counce Line # 416 ; counce Line # 417 ; counce Line # 417 ; counce Line # 418 delay(); ; sounce Line # 416 ; sounce Line # 417 ; counce Line # 417 ; sounce Line # 418 delay(); ; sounce Line # 418 delay ; sounce Line # 418 delay(); ; sounce Line # 418 delay ; sounce Line # 419			; SOURCE LINE # 398
CALL SOURCE LINE # 400		LCALL	
; write(); ; SOURCE LINE # 401 ; delay(); ; CALL		LCALL	•
CALL ; SOURCE LINE # 402 ; delay(); CALL ; SOURCE LINE # 403 delay ; porta=' '; ; SOURCE LINE # 404 ; SOURCE LINE # 405 ; SOURCE LINE # 405 ; SOURCE LINE # 406 delay ; SOURCE LINE # 406 delay ; SOURCE LINE # 407 ; Write(); ; SOURCE LINE # 408 LCALL ; SOURCE LINE # 408 L20058 ; SOURCE LINE # 409 delay ; SOURCE LINE # 410 ; SOURCE LINE # 411 L20058 ; SOURCE LINE # 411 L20058 ; SOURCE LINE # 412 delay ; SOURCE LINE # 413 ; Write(); ; SOURCE LINE # 414 ; SOURCE LINE # 415 ; SOURCE LINE # 416 ; SOURCE LINE # 416 ; SOURCE LINE # 417 ; SOURCE LINE # 417 ; SOURCE LINE # 418 ; SOURCE LINE # 418 ; SOURCE LINE # 419 ; SOURCE LINE # 420 ; SOURCE LINE # 419 ; SOURCE LINE # 420 ; SOURCE			; SOURCE LINE # 401
; SOURCE LINE # 403 delay; ; porta=''; ; write(); ; delay(); ; delay(); ; write(); ; write(); ; call call call call call call call cal	; write();	LCALL	
; write(); ; class Call Ca	; delay();	LCALL	•
; delay(); ; delay(); ; call	; porta=' ';		; SOURCE LINE # 404
; SOURCE LINE # 406 delay ; porta=''; ; write(); ; cellay(); ; cellay(); ; porta=''; ; write(); ; cellay(); ; cel	; write();	LCALL	
; write(); ; call loops ; delay(); ; delay(); ; porta=''; ; write(); ; porta=''; ; write(); ; call loops ; porta=''; ; write(); ; call loops ; call	; delay();	L ČALL	•
; SOURCE LINE # 408 LCALL	; porta=' ';		; SOURCE LINE # 407
; delay(); ; porta=''; ; write(); ; delay(); ; telay(); ; counce Line # 410 ; sounce Line # 411 ; sounce Line # 411 ; sounce Line # 412 ; porta=''; ; write(); ; counce Line # 413 ; sounce Line # 414 ; sounce Line # 414 ; sounce Line # 414 ; sounce Line # 415 ; counce Line # 415 ; sounce Line # 416 ; sounce Line # 416 ; sounce Line # 416 ; sounce Line # 417 ; counce Line # 417 ; sounce Line # 418 ; sounce Line # 419 ; sounce Line # 420	; write();		; SOURCE LINE # 408
; porta=''; ; SOURCE LINE # 410 ; write(); ; SOURCE LINE # 411 ; delay(); ; SOURCE LINE # 412 delay ; porta=''; ; SOURCE LINE # 413 ; write(); ; SOURCE LINE # 414 L?0058 ; delay(); ; SOURCE LINE # 415 delay ; porta=''; ; SOURCE LINE # 416 ; write(); ; SOURCE LINE # 417 LCALL delay ; borta=''; ; SOURCE LINE # 417 LCALL colors ; delay(); ; SOURCE LINE # 418 delay ; porta=''; ; SOURCE LINE # 418 delay ; porta=''; ; SOURCE LINE # 419 ; write(); ; SOURCE LINE # 419 ; write(); ; SOURCE LINE # 420	; delay();	LCALL	
; write(); ; delay(); ; delay(); ; porta=' '; ; write(); ; delay(); ; tCALL	; porta='';	LCALL	**
; SOURCE LINE # 411 ; delay(); ; porta=' '; ; write(); ; delay(); ; LCALL	; write();		; SOURCE LINE # 410
; SOURCE LINE # 412 delay ; porta=''; ; write(); ; LCALL	; delay();	LCALL	
; SOURCE LINE # 413 ; write(); ; delay(); ; call L?0058 ; porta=' '; ; write(); ; delay(); ; call LCALL SOURCE LINE # 415 ; call LCALL SOURCE LINE # 416 ; source LINE # 417 ; call LCALL L?0058 ; source LINE # 418 delay ; porta=' '; ; write(); ; source LINE # 419 ; source LINE # 420		L &ALL	
; SOURCE LINE # 414 LCALL			; SOURCE LINE # 413
; SOURCE LINE # 415 delay ; porta=' '; ; write(); ; delay(); ; delay(); ; porta=' '; ; porta=' '; ; write(); ; SOURCE LINE # 418 delay ; source Line # 419 ; source Line # 420	•	LCALL	
; SOURCE LINE # 416 ; write(); ; CALL		LCALL	
; SOURCE LINE # 417 LCALL			; SOURCE LINE # 416
; SOURCE LINE # 418 delay ; porta=''; ; write(); ; SOURCE LINE # 419 ; SOURCE LINE # 420		LCALL	
; SOURCE LINE # 419 ; write(); ; SOURCE LINE # 420	· ·	LC ALL	· ·
; SOURCE LINE # 420		J	; SOURCE LINE # 419
	; write();	LCALL	

```
; delay();
                                    : SOURCE LINE # 421
                       ⊔МР
                                    delay
; END OF dis2
; void ser_out2()
                       RSEG ?PR?ser_out27KCT_PF
ser_out2:
                       ÚSING
                                     : SOURCE LINE # 424
; {
                                     ; SOURCE LINE # 425
; mask1=(unsigned char)mask;
                                     ; SOURCE LINE # 426
                       MOV
                                     mask1,mask+01H
; ser_data=mask1;
                                     ; SOURCE LINE # 427
                       MOV
                                     R0,#LOW (ser_data)
                       MOV
                                     @R0,mask1
; ser_out();
                                     ; SOURCE LINE # 428
                        LCALL
                                     ser_out
; del();
                                     ; SOURCE LINE # 429
                        LCALL
; del();
                                     ; SOURCE LINE # 430
                        LCALL
; del();
                                     ; SOURCE LINE # 431
                        LCALL
; mask2=mask&0xff00;
                                     ; SOURCE LINE # 432
                        MOV
                                     mask2,mask
                                     mask2+01H,#00H
                        MOV
; mask2=mask2>>8;
                                     ; SOURCE LINE # 433
                        MOV
                                     A,mask2
                        MQV
                                     mask2+01H,A
                                     mask2,#00H
                        MOV
; data2=mask2;
                                     ; SOURCE LINE # 434
                        MOV
                                     data2,mask2±01H
 ; ser_data=data2;
                                     ; SOURCE LINE # 435
                        MOV
                                     R0,#LOW (ser_data)
                        MOV
                                     @R0.data2
 ; ser_out();
                                     ; SOURCE LINE # 436
                        LCALL
                                     ser_out
 ; del();
                                     ; SOURCE LINE # 437
                        LCALL
                                     ₫el
 ; del();
                                     ; SOURCE LINE # 438
                        LCALL
 ; del();
                                     ; SOURCE LINE # 439
                        LJMP
                                     del
 ; END OF ser_out2
 ; }
 ; void powf()
                        RSEG ?PR?powf?KCT_PF
 powf:
                        USING
                                      ; SOURCE LINE # 443
 ; {
                                      ; SOURCE LINE # 444
 ; pow_f=pow*ttemp2;
```

```
; SOURCE LINE # 445
                       MOV
                                    R4,ttemp2
                                    R5,ttemp2+01H
                       MOV
                       MOV
                                    R6,pow
                                    R7,pow+01H
                       MOV
                       LCALL
                                    ?C?IMUL
                       MOV
                                    pow f,R6
                                    pow_f+01H,R7
                       MOV
; dat=pow_f*100;
                                    ; SOURCE LINE # 446
                       MOV
                                    R4,#00H
                                    R5,#064H
                       MOV
                       LCALL
                                    ?C?IMUL
                                    dal,R6
                       MOV
                                    dat+01H,R7
                       MOV
: }
                                    ; SOURCE LINE # 447
                       RET
; END OF powf
; void dis3()
                       RSEG ?PR?dis3?KCT_PF
dis3:
                       USING
                                    ; SOURCE LINE # 449
; {
                                    ; SOURCE LINE # 450
; porta=0x80;
                                    ; SOURCE LINE # 451
; read();
                                     ; SOURCE LINE # 452
                       LCALL
                                    L?0060
; delay();
                                     ; SOURCE LINE # 453
                                    delay
                        LCALL
; porta='P';
                                     ; SOURCE LINE # 454
                        MOV
                                     R0,#LOW (porta)
                                     A,#050H
                        MOV
                                     @R0,A
                        WOAX
 ; write();
                                     ; SOURCE LINE # 455
                        LCALL
                                     write
 ; delay();
                                     ; SOURCE LINE # 456
                        LCALL
                                     de:ay
 ; porta=':';
                                     : SOURCE LINE # 457
                                     R0,#LOW (porta)
                        MOV
                        MOV
                                     A,#03AH
                                     @R0,A
                        MOVX
 ; write();
                                     ; SOURCE LINE # 458
                        LÇALL
 ; delay();
                                     ; SOURCE LINE # 459
                                     delay
                        LCALL
 ; porta=a2+0x30;
                                     ; SOURCE LINE # 460
                                     RC,#LOW (a2)
                        MOV
                        MOV
                                     A,@R0
                        ADD
                                     A,#030H
                                     R1,#LOW (porta)
                        MOV
                        MOVX
 ; write();
                                     ; SOURCE LINE # 461
                        LCALL
                                     write
 ; delay();
                                      ; SOURCE LINE # 462
                        LCALL
                                     delay
 ; porta=c2+0x30;
                                      ; SOURCE LINE # 463
                        MOV
                                      R0,#LOW (c2)
                        MOV
                                      A,@R0
```

	_w	
	ADD MOV MOVX	A,#030H R1,#LOW (porta) @R1,A
; write();	LCALL	; SOURCE LINE # 464 write
; delay();	LCALL	; SOURCE LINE # 465
; porta=e2+0x30;	LCALL	delay ; SOURCE LINE # 466
; write();	MOV MOV ADD MOV MOVX	A,@RO A,@RO A,#030H R1,#LOW (porta) @R1,A
, write(),	LCALL	; SOURCE LINE # 467 write
; delay();	LCALL	; SOURCE LINE # 468 delay
; porta='.';	MOV MOV MOVX	; SOURCE LINE # 469 R0,#LOW (porta) A, #02EH @R0,A
; write();	1.0011	; SOURCE LINE # 470
; delay();	LCALL	write ; SOURCE LINE # 471
; porta=g2+0x30;	LCALL	delay ; SOURCE LINE # 472
T. O.	MOV MOV ADD MOV MOVX	R0,#LOW (g2) A,@R0 A,#030H R1,#LOW (porta) @R1,A
; write();	LCALL	; SOURCE LINE # 473 write
; delay();	LCALL	; SOURCE LINE # 474 delay
<pre>; porta=h2+0x30; ; write();</pre>	MOV MOV ADD MOV MOVX	; SOURCE LINE # 475 RO,#LOW (h2) A,@RO A,#030H RI,#LOW (porta) @R1,A
; delay();	LCALL	; SOURCE LINE # 476 write
; porta='';	LCALL	; SOURCE LINE # 477 delay
; write();		; SOURCE LINE # 478
; delay();	LCALL	; SOURCE LINE # 479 L?0058
; porta=' ';	LCALL	; SOURCE LINE # 480 delay
; write();		; SOURCE LINE # 481 ; SOURCE LINE # 482
; delay();	L⊖ALL	; SOURCE LINE # 482 L?0058 ; SOURCE LINE # 483
; porta='';	LCA LL	delay

```
; SOURCE LINE # 484
; write();
                                      ; SOURCE LINE # 485
                        LCALL
                                      L?0058
; delay();
                                      ; SOURCE LINE # 486
                        LCALL
                                      delay
; porta='';
                                      ; SOURCE LINE # 487
  write();
                                      ; SOURCE LINE # 488
                        LCALL
                                      L?0058
; delay();
                                      ; SOURCE LINE # 489
                        LCALL
                                      delay
; porta='';
                                      ; SOURCE LINE # 490
; write();
                                      ; SOURCE LINE # 491
                        LCALL
                                      L?0058
; delay();
                                      ; SOURCE LINE # 492
                        LCALL
                                      delay
; porta='';
                                      ; SOURCE LINE # 493
; write();
                                      ; SOURCE LINE # 494
                        LCALL
                                      L?0058
; delay();
                                      ; SOURCE LINE # 495
                        LCALL
                                      delay
; porta='';
                                      ; SOURCE LINE # 496
; write();
                                      ; SOURCE LINE # 497
                        LCALL
                                     L?0058
; delay();
                                      ; SOURCE LINE # 498
                        LCALL
                                     delay
; porta=' ';
                                     ; SOURCE LINE # 499
; write();
                                      ; SOURCE LINE # 500
                        LCALL
                                     L?0058
; delay();
                                     ; SOURCE LINE # 501
                        LJMP
                                     delay
; END OF dis3
; void lcd_init()
                        RSEG ?PR?Icd_init?KCT_PF
lcd_init:
                        USING
                                     ; SOURCE LINE # 505
; {
                                     ; SOURCE LINE # 506
; cwr=0x80;
                                     ; SOURCE LINE # 507
                       MOV
                                     R0,#LOW (cwr)
                       MOV
                                     A,#080H
                                     @R0,A
                       MOVX
; porta=0x38;
                                     ; SOURCE LINE # 508
                       M₽V
                                     R0,#LOW (porta)
                       MŌV
                                     A,#038H
                       MOVX
                                     @R0,A
; read();
                                     ; SOURCE LINE # 509
                       LCALL
; delay();
                                     ; SOURCE LINE # 510
```

LCALL

delay

;}

```
; porta=0x08;
                                     ; SOURCE LINE # 511
                       MOV
                                     RO,#LOW (porta)
                                     A,#08H
                       MOV
                       MOVX
                                     @RO,A
; read();
                                     ; SOURCE LINE # 512
                        L-ALL
                                     read
; delay();
                                     ; SOURCE LINE # 513
                                     delay
                        LCALL
; porta=0x01;
                                     : SOURCE LINE # 514
                        MOV
                                     RO,#LOW (porta)
                                     A.#01H
                        MOV
                        MOVX
                                     @R0,A
; read();
                                     ; SOURCE LINE # 515
                        LCALL
                                     read
; delay();
                                     ; SOURCE LINE # 516
                        LCALL
                                     delay
; porta=0x06;
                                      ; SOURCE LINE # 517
                        MOV
                                     R0,#LOW (porta)
                        MOV
                                     A,#06H
                                      @R0,A
                        MOVX
; read();
                                      ; SOURCE LINE # 518
                        LCALL
                                      read
 ; delay();
                                      ; SOURCE LINE # 519
                        LCALL
                                      delay
 ; porta=0x0c;
                                      ; SOURCE LINE # 520
                        MOV
                                      R0,#LOW (porta)
                        MOV
                                      A,#0CH
                                      @R0,A
                        MOVX
 ; read();
                                      ; SOURCE LINE # 521
                         LCALL
 ; delay();
                                      ; SOURCE LINE # 522
                         LCALL.
                                      delay
 ; porta=0x45;
                                      ; SOURCE LINE # 523
                                      RO,#LOW (porta)
                         MOV
                         MOV
                                      A,#045H
                                      \Lambda, 0 \Omega
                         MOVX
 ; read();
                                      ; SOURCE LINE # 524
                         LÇALL
                                      read
 ; delay();
                                      ; SOURCE LINE # 525
                         LJMP
                                      delay
 ; END OF lcd_init
 ;}
 ; void lcd_dis(unsigned char *mess,unsigned char n)
                         RSEG ?PR?_lcd_dis?KCT_PF
 L?0061:
                         USING
                         MOV
                                       R2,#HIGH (?SC_34)
                                       R1,#LOW (?SC_34)
                         MOV
 L?0062:
                                       R3,#0FFH
                         MOV
                                       R5,#010H
                         MOV
  _icd_dis:
                         USING
                                       0
                                       ; SOURCE LINE # 528
                                       mess?2043,R3
                         MOV
                                       mess??043+01H,R2
                         MOV
                                       mess?2043+02H,R1
                         MOV
                                       n?2044,R5
                         MOV
```

```
; {
                                    ; SOURCE LINE # 529
; for(i=0;i<n;i++)
                                    ; SOURCE LINE # 530
                       CLR
                                    R0,#LOW (i)
                       MOV
                       MOV
                                    @R0.A
?C0037:
                       MOV
                                    R0,#LOW (i)
                                    A,@R0
                       MOV
                                    R7,A
                       MOV
                       ÇLR
                                    A,n?2044
                       SUBB
                       JNC
                                    ?C0040
; {
                                    ; SOURCE LINE # 531
; porta=mess[i];
                                    ; SOURCE LINE # 532
                                    R3,mess/2043
R2,mess/2043+01H
                       MOV
                       MOV
                       MOV
                                    R1,mess?2043+02H
                       MOV
                                    DPL,R7
                       MOV
                                    DPH,#00H
                       LCALL
                                     ?C?ĆLDOPTR
                                     RO,#LOW (porta)
                       MOV
                       MOVX
                                     @R0,A
; write();
                                     ; SOURCE LINE # 533
                       LCALL
; delay();
                                     ; SOURCE LINE # 534
                       LCALL
                                     delay
; }
                                     ; SOURCE LINE # 535
                       MOV
                                     R0,#LOW (i)
                       INC
                                     @R0
                        SJMP
                                     ?C0037
; }
                                     ; SOURCE LINE # 536
?C0040:
                        RET
; END OF _lcd_dis
; void read()
                        RSEG ?PR?read?KCT PF
L?0059:
                        USING
L?0060:
                        MOV
                                     RO, #LOW (porta)
                        MOV
                                     A,#080H
                        MOVX
                                     @R0,A
read:
                        USING
                                     ; SOURCE LINE # 538
                                     ; SOURCE LINE # 539
; portc=0x04;
                                     ; SOURCE LINE # 540
                        MOV
                                     R0,#LOW (portc)
                        MOV
                                     A,#04H
                        M-DVX
                                     @R0,A
; delay();
                                     ; SOURCE LINE # 541
                        LCALL
                                     delay
; portc=0x00;
                                     ; SOURCE LINE # 542
                        CLR
                        MOV
                                     RO, #LOW (portc)
                        MOVX
                                     @R0,A
; delay();
                                     ; SOURCE LINE # 543
                        LJMP
                                     delay
```

; END OF read

```
; }
: void write()
                       RSEG ?PR?write?KCT_PF
L?0057:
                       USING
                                    0
L?0058:
                       MOV
                                    R0,#LOV (porta)
                       MOV
                                    A,#020H
                       MOVX
                                    @R0,A
write:
                       USING
                                    ; SOURCE LINE # 546
; {
                                    ; SOURCE LINE # 547
; portc=0x05;
                                    ; SOURCE LINE # 548
                       MOV
                                    R0,#LOW (portc)
                       MOV
                                    A,#05H
                       MOVX
                                    @R0,A
; delay();
                                    ; SOURCE LINE # 549
                       LCALL
                                    delay
; portc=0x01;
                                    ; SOURCE LINE # 550
                                    RO,#LOW (portc)
                       MOV
                       MOV
                                    A,#01H
                       MOVX
                                    @R0,A
; delay();
                                    ; SOURCE LINE # 551
                       ⊔MP
                                    delay
; END OF write
; }
; void delay()
                       RSEG ?PR?delay?KC"_PF
delay:
                       USING
                                    ; SOURCE LINE # 554
; {
                                    ; SOURCE LINE # 555
; for(j=0x00;j<=0xfe;j++)
                                    ; SOURCE LINE # 556
                       CLR
                       MOV
                                    R0,#LOW (j)
                       MOV
                                    @R0,A
?C0043:
; {}
                                    ; SOURCE LINE # 557
                       MOV
                                    R0,#LOW (j)
                       INC
                                    @RO
                       MOV
                                    A,@R0
                       SETB
                                    ď
                       SUBB
                                    A,#OFEH
                       JC ?C0043
;}
                                    ; SOURCE LINE # 558
?C0046:
                       RET
; END OF delay
;
; void del()
                       RSEG ?PR?del?KCT_H
del:
                       USING
                                    ; SOURCE LINE # 560
; {
                                    ; SOURCE LINE # 561
; for(s=0;s<=30000;s++)
                                    ; SOURCE LINE # 562
                       CLR
```

```
R0,#LOW (s)
                      MOV
                      MOV
                                    @R0,A
                      INC
                                   R0
                      MOV
                                    @R0, A
?C0047:
; {}
                                    ; SOURCE LÎNE # 563
                       MOV
                                    R0,#LOW (s+01H)
                                    @RO
                       INC
                       MOV
                                    A,@R0
                       DEC
                                    RO
                       INZ
                                    ?C0056
                                    @R0
                       INC
?C0056:
                       MOV
                                    R0,#LOW(s)
                       CJNE
                                    @RO,#075H,?C0047
                       INC
                                    RO
                       CINE
                                    @R0,#031H,?C0047
;}
                                    ; SOURCE LINE # 564
?C0050:
                       RET
; END OF del
; void cal()
                       RSEG ?PR?cal?KCI_PF
cal:
                       ပ္
USING
                                    ; SOURCE LINE # 566
                                    ; SOURCE LINE # 567
; reg=count1;
                                    ; SOURCE LINE # 568
                       MOV
                                    R0,#LOW (reg)
                       MOV
                                    @R0,count1
                       INC
                                    ŘΟ
                       MOV
                                    @R0,count1+01H
; count1=count1*216;
                                    ; SOURCE LINE # 569
                       MOV
                                    R6,count1
                       MOV
                                    R7,count1+01H
                       MOV
                                    R4,#00F
                       MOV
                                    R5,#0D8H
                       LCALL
                                    ?C?IMUL
                       MOV
MOV
                                    count1,R6
                                    count1+01H,R7
; count1=count1/1000;
                                    ; SOURCE LINE # 570
                       MOV
                                    R4,#03H
                       MOV
                                    R5,#0ESH
                       LCALL
                                    ?C?UIDIV
                       MOV
                                    count1,R6
                       MOV
                                    count1+01H,R7
; ttemp2=((count1*2*3.14)/180);
                                    ; SOURCE LINE # 571
                                    A,count1+01H
                       MOV
                                    A,ACC
                       ADD
                       MOV
                                    R5,A
                       MOV
                                    A,count1
                       RLC
                       MOV
                                    R4,A
                       CLR
                       LCALL
                                    ?C?FCASTI
                       MO∀
                                    R3,#0C3H
                       MOV
                                    R2,#0F5H
                       MOV
                                    R1,#048H
                                    R0,#040H
                       MOV
                       LCALL
                                    ?C?FPMUL
                       CLR
                       MOV
                                    R3,A
                       MOV
                                    R2,A
                       MOV
                                    R1,#034H
                       MOV
                                    R0,#043H
```

LCALL

?C?FPDIV

```
LCALL
                                    ?C?CASTE
                       MOV
                                    ttemp2,R6
                       MOV
                                    ttemp2+01H,R7
; ttemp2=cos(ttemp2);
                                    ; SOURCE LINE # 572
                       NOV
                                    R4,ttemp2
                       MOV
                                    R5,ttemp2+01H
                       ÇLR
                       LCALL
                                    ?C?FCASTI
                       LCALL
                                    _cos
                       LCALL
                                    ?C?CASIF ...
                       MOV
                                    ttemp2,R6
                       MOV
                                    ttemp2+01H.R7
; ttemp1=ttemp2*10000;
                                    ; SOURCE LINE # 573
                       MOV
                                    R4,#027H
                       MOV
                                    R5,#010H
                       LCALL
                                    ?C?IMUL
                       MOV
                                    ttemp1,R6
                       MOV
                                    ttemp1±01H,R7
;}
                                    ; SOURCE LINE # 574
                       ROT
; END OF cal
; void htdp()
                       RSEG ?PR?htdp?KCT PF
htdp:
                       USING
                                    0
                                    ; SOURCE LINE # 576
; {
                                    ; SOURCE LINE # 577
; ap=tt/0x2710;
                                    ; SOURCE LINE # 578
                       MOV
                                    RO,#LOV/(tt)
                       MOV
                                   A,@R^
                       MOV
INC
                                   R2,A
                                   R0
                       MOV
                                   A,@RC
                       MOV
                                   R3,A
                       MOV
                                   R4,#027H
                       MOV
                                   R5,#010H
                       MOV
                                   R7.A
                       MOV
                                   R6,AR2
                       LCALL
                                   ?C?UIDIV
                                   R0,#LOW (ap)
                       MOV
                       MOV
                                   @R0,AR7
; bp=tt%0x2710;
                                   ; SOURCE LINE # 579
                       MOV
                                   R4,#027H
                      MOV
                                   R5,#010H
                       MOV
                                   R7, AR3
                       MOV
                                   R6, AR2
                       LCALL
                                   ?C?UIDIV
                      MOV
                                   R0,#LOW (bp)
                                   @R0,AR4
                      INC
                                   R0
                      MOV
                                   @R0,AR5
; cp=bp/0x3e8;
                                   ; SOURCE LINE # 580
                      DEC
                                   R0
                                   A,@R0
                      MOV
                      MOV
                                   R2,A
                      INC
                                   R0
                      MO∀
                                   A,@Ra
                      MOV
                                   R3,A
                      MOV
                                   R4,#031
                      MOV
                                   R5,#CLSH
                      MOV
                                   R7,A
                      MOV
                                   R6,ARD
                      LCALL
                                   ?C?U1a1V
                                   R0,≠LCW (cp)
                      MQV
                      MOV
                                   @R0,AR7
; dp=bp%0x3e8;
```

```
; SOURCE LINE # 581
                      MOV
                                   R4,#03H
                      MOV
                                   R5,#0E8H
                      MOV
                                   R7,AR3
                                   R6,AR2
                      MOV
                      LCALL
                                   ?C?UIDIV
                      MOV
                                   R0,#LOW (dp)
                      MOV
                                   @R0,AR4
                      INC
                                   R0
                      MOV
                                   @R0,AR5
; ep=dp/0x64;
                                   ; SOURCE LINE # 582
                                   R0
                      DEC
                                   A,@R0
                      MOV
                      MOV
                                   R2,A
                      INC
                                   R0
                      MOV
                                   A,@Ro
                      MOV
                                   R3,A
                      MOV
                                   R4,#00H
                      MOV
                                   R5,#064H
                                   R7,∧
                      MOV
                      MOV
                                   R6,AR2
                      LCALL
                                   ?C?UIDIV
                      MOV
                                   R0,#LOW (ep)
                      MOV
                                   @R0,AR7
; fp=dp%0x64;
                                   ; SOURCE LINE # 583
                      MOV
                                   R4,#00H
                      NOV
                                   R5,#064H
                      MOV
                                   R7,AR3
                                   R6,AR2
                      MOV
                      LCALL
                                   ?C?UIDIV
                                   R0,#LOW (fp)
                      MOV
                      MOV
                                   @R0,AR4
                      INC
                                   Ř0
                      MOV
                                   @R0,AR5
; gp=fp/0x0a;
                                   ; SOURCE LINE # 584
                      DEC
                                   RO
                      MOV
                                   A,@RC
                      MOV
                                   R2,A
                      INC
                                   R0
                      MOV
                                   A,@RO
                      MOV
                                   R3,A
                      MOV
                                   R4,#00h
                      MOV
                                   R5,#CAH
                      MOV
                                   R7,A
                                   R6,AR2
                      MOV
                      LCALL
                                   ?C?UTDIV
                                   R0,#LOV/ (gp)
                      MOV
                      MOV
                                   @RO,ARZ
; hp=fp%0x0a;
                                   ; SOURCE LINE # 585
                      MOV
                                   Ř4,#001:
                      MOV
                                   R5,#CAL
                      MOV
                                   R7,AR3
                                   R6,AR2
                      MO₹
                                   ?C?UDITV
R0,#LOW (hp)
                      LCALL
                      MOV
                      MOV
                                   @R0,AR4
                      INC
                                   @R0,AR5
                      MOV
;}
                                   ; SOURCE LINE # 586
                      RET
; END OF htdp
; void disr()
                      RSEG ?PR?disr?KCT PF
disr:
                      USING
                                   0
                                   ; SOUPCE LINE # 589
; {
```

```
; SOURCE LINE # 590
; porta=0x80;
                                     ; SOURCE LINE # 591
; read();
                                     ; SOURCE LINE # 592
                       LCALL
                                    L20060
; delay();
                                     : SOURCE LINE # 593
                       LCALL
                                    delay
; porta=0xec;
                                     ; SOURCE LINE # 594
                       MOV
                                     R0,#LOW (porta)
                                     A,#0ECH
                       MOV
                       MOVX
                                     @R0,A
; write();
                                     ; SOURCE LINE # 595
                       LCALL
; delay();
                                     ; SOURCE LINE # 596
                       LCALL
                                     delay
; porta=':';
                                     ; SOURCE LINE # 597
                       MOV
                                     RO,#LOW (porta)
                       MOV
                                     A,#03AH
                       MOVX
                                     @R0, A
; write();
                                     ; SOURCE LINE # 598
                       LCALL
; delay();
                                     ; SOURCE LINE # 599
                       LCALL
                                     delay
; porta=ap+0x30;
                                     ; SOURCE LINE # 600
                                     R0,#10W (ap)
                       MOV
                       MOV
                                     A,@RG
                       ADD
                                     A,#030H
                                     R1,#1- W (porta)
                       MOV
                       MOVX
                                     @R1,A
; write();
                                     ; SOURCE LINE # 601
                       LCALL
; delay();
                                     ; SOURCE LINE # 602
                       LCALL
; porta='.';
                                     ; SOURCE LINE # 603
                                     RO,#LOW (porta)
A,#025H
                       MOV
                       MOV
                       MOVX
                                     @R0,A
; write();
                                     ; SOURCE LINE # 604
                       LCALL
; delay();
                                     ; SOURCE LINE # 605
                       LCALL
                                     delay
; porta=cp+0x30;
                                     ; SOURCE LINE # 606
                                     R0,#LOW (cp)
                       MOV
                       NO∨
                                     A,@R0
                       ADD
                                     A,#030H
                       MOV
                                     R1,#LOW (porta)
                       MOVX
; write();
                                     ; SOURCE LINE # 607
                       LCALL
; delay();
                                     ; SOURCE LINE # 608
                       LCALL
                                     delay
; porta=ep+0x30:
                                     ; SOURCE LINE # 609
                                     R0,#LOV/ (ep)
                       MOV
                       MOV
                                     A,⊚R∪
                                     A.#030a
                       ADD
                       MOV
                                     R1,#LOW (porta)
                       MOVX
                                     @R1,A
; write();
```

c

	LCALL	; SOURCE LINE # 610 write
; delay();	L CALL	; SOURCE LINE # 611 delay
; porta=gp+0x30;	MOV MOV ADD MOV MOVX	; SOURCE LINE # 612 RO,#LOW (gp) A,@RO A,#030H R1,#LOW (porta) @R1,A
; write();	LCALL	; SOURCE LINE # 613 write
; delay();	LCALL	; SOURCE LINE # 614 delay
; porta=hp+0x30;	MOV MOV ADD MOV MOVX	; SOURCE LINE # 615 R0,#LDW (hp+01H) A,@R:- A,#030H R0,#LOW (porta) @R0,A
; write();	LCALL	; SOURCE LINE # 616 write
; delay(); · ; porta=' ';	LCALL	; SOURCE LINE # 617 delay
		; SOURCE LINE # 618
; write();	LCALL	; SOURCE LINE # 619 L?0058
; delay(); : END OF disr	⊔ M P	; SOURCE LINE # 620 delay
, LITE OF GIST		

₽ND

Here we use 'C' language as a front end to display the various parameter readings that have been transmitted. By using 'C' the ports can be easily accessed by IN and OUT instructions and hence gets the use in this project. Once the initial test data is checked and the program starts reading the data (parameters) using interrupt command. Simultaneously the data are stored in a file and can be viewed in future when needed. So we use port accessing commands and file storage related commands in our 'C' programming. The coding is as follows:

```
Generates Interrupt 14 to Check Serial Port

If any new data in serial port the first bit

of 'ah' register will go high.
```

```
#include <stdio.h>
#include <dos.h>
#include <conio.h>
#include <process.h>
void main()
 int ah, al;
 int f:
 int hour, min, sec;
 int year, month, day;
  struct time ti;
  struct date d;
  float temp=0.0;
  float pfr, vol, ct, powr, ene, ene1;
  //float energy=0.0;
  char x;
  unsigned char a, ch;
  FILE *stream, *str, *kct;
  unsigned char pf=0,volt=0,cur=0,pow=0,ener=0,tariff=0;
  double long pf1:
  unsigned char t1=0,t2=0,tt1=0,tt2=0,ttt1=0,ttt2=0,tttt1=0,tttt2=0;
  int i=0, j=0, no=0;
 int t;
 int flag=0;
 int count=0;
  clrscr();
  f=system("mode com1 110 n 8 1");
  gotoxy(28,3);
 printf("WIRELESS SURVEILLANCE OF ENERGY");
  gotoxy(25,5);
  printf("Power Factor %6.5f",(t2*256+t1)/10000.0);
```

```
gotoxy(25,6);
                    %d",volt);
 printf("Voltage
 gotoxy(25,7);
 printf("Current
                    %2.1f",cur/10.0);
 gotoxy(25,8);
 printf("Power
                   %5.2f",(tt2*256+tt1)/100.0);
 gotoxy(25,9);
                   %5.2f",(ttt2*256+ttt1)/100.0);
 printf("Energy
 _AH=0x03;
 _DX=0x00;
 geninterrupt(0x14);
 ah=_AH;
 al=_AL;
 if( (ah & 0x01) == 0x01)
  a=inportb(0x3f8);
                     // reads data from serial port
  if(a!=0xff)
  goto aa;
  i=0;
bb:
  _AH=0x03;
  _DX=0x00;
  geninterrupt(0x14);
  ah=_AH;
  al=_AL;
  if( (ah & 0x01) == 0x01)
  i=i+1;
  a=inportb(0x3f8);
  if(i==1)
  t1=a;
  if(i==2)
  t2=a;
  if(i==3)
  volt=a;
  if(i==4)
  cur=a;
  if(i==5)
  tt1=a;
  if(i==6)
  tt2=a;
  if(i==7)
  ttt1=a;
  if(i==8)
```

```
ttt2=a:
 if(i<8)
 goto bb;
 str = fopen("sri.dat", "r+");
 ch=fgetc(str);
 if(ch!='\n')
 fscanf(str,"%f",&pfr);
 fscanf(str,"%f",&vol);
fscanf(str,"%f",&ct);
fscanf(str,"%f",&powr);
 fscanf(str, "%f", &ene);
 fclose(str);
  str = fopen("sri.dat", "w+");
  ene=ene-temp+(ttt2*256+ttt1)/100.0;
 temp=(ttt2*256+ttt1)/100.0;
  fprintf(str,"%6.5f %d %2.1f %5.2f
%5.2f",(t2*256+t1)/10000.0,volt,cur/10.0,(tt2*256+tt1)/100.0,ene);
 fclose(str);
  str = fopen("sri.dat", "r+");
 //ch=fgetc(str);
 //if(ch!='\n')
 //{
 fscanf(str,"%f",&pfr);
  fscanf(str,"%f",&vol);
  fscanf(str,"%f",&ct);
  fscanf(str,"%f",&powr);
 fscanf(str,"%f",&ene);
  //}
  fclose(str);
  stream = fopen("result.dat", "w+");
  fprintf(stream,"%f\n",pfr);
 fprintf(stream,"%f\n",vol);
  fprintf(stream,"%f\n",ct);
 fprintf(stream,"%f\n",powr);
  fprintf(stream,"%f\n",ene);
  fclose(stream);
  if(volt==0 \&\& i==0)
  kct = fopen("log.dat", "a+");
  getdate(&d);
  year=d.da_year;
  day=d.da_day;
  month=d.da_mon;
  gettime(&ti);
  hour=ti.ti_hour;
  min=ti.ti_min;
  sec=ti.ti_sec;
  fprintf(kct,"POWER SHUT DOWN TIME %d: %d: %d DATE %d: %d: %d
\n",hour,min,sec,day,month,year);
 fclose(kct);
  }
 goto aa;
```

9. CONCLUSION

This project is microcontroller based Energy Monitor and transmission of energy through wireless to an EB substation. This project can be implemented for a complete network in an area, that will be consuming very huge amount and it can calculate the energy transmission and energy consumption. By using the above two values we can calculate the transmission loses as well.

This project design is cheap, efficient and showed an excellent performance. This project is very flexible and it can also be implemented using telephone or power lines depending on various criteria.

The implementation of the project will be an excellent way of reducing the man power involved in the field work today. Also this extends 24 – Hour surveillance which is a standout quality. Hence such qualities ensure that this is a practically feasible project.

10. BIBLIOGRAPHY

ROY CHOUDHARY - "LINEAR INTEGRATED CIRCUITS"
PUBLISHED BY NEW AGE INTERNATIONAL

DALLAS SEMICONDUCTORS - "SYSTEM EXTENSION DATABOOK" 1995

YASHWANTH KANITKAR - "LET US C"
PUBLISHED BY TATA MCGRAW HILL 2ND EDITION

WWW.ATMEL.COM

POWER IC'S DATABOOK
PUBLISHED BY NATIONAL SEMICONDUCTORS

ANOLOG MODULATION TECHNIQUES
PUBLISHED BY RAJ PAPERS

March 1998

DM74LS373/DM74LS374 3-STATE Octal D-Type Transparent Latches and **Edge-Triggered Flip-Flops**

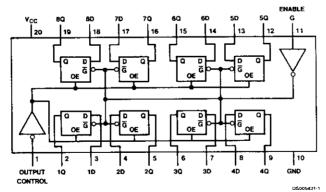
General Description

These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the DM54/74LS373 are transparent D-type latches meaning that while the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was set up.

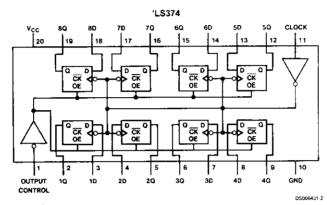
The eight flip-flops of the DM54/74LS374 are edge-triggered D-type flip flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.


The output control does not affect the internal operation of the latches or flip-floos. That is, the old data can be retained or new data can be entered even while the outputs are off.

Features

- Choice of 8 latches or 8 D-type flip-flops in a single package
- 3-STATE bus-driving outputs
- Full parallel-access for loading
- Buffered control inputs
- P-N-P inputs reduce D-C loading on data lines


Connection Diagrams

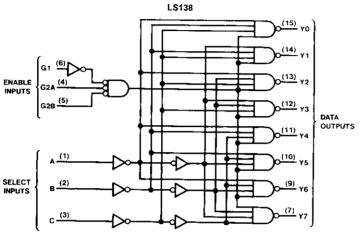
Dual-In-Line Packages 'LS373

Order Number DM54LS373J, DM54LS373W, DM74LS373N or DM74LS373WM See Package Number J20A, M20B, N20A or W20A

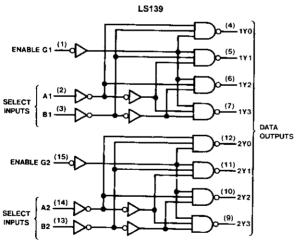
Connection Diagrams (Continued)

Order Number DM54LS374J, DM54LS374W, DM74LS374WM or DM74LS374N See Package Number J20A, M20B, N20A or W20A

Function Tables DM54/74LS373


Output	Enable	D	Output
Control	G	· ·	
L	Н	Н	H
L	н	L	L
L	L	×	Q _o
н	x	х	Z

H = High Level (Steady State), L = Low Level (Steady State), X = Don't Care T = Transition from low-to-high level, Z = High Impedance State Q_0 = The level of the output before steady-state input conditions were established.

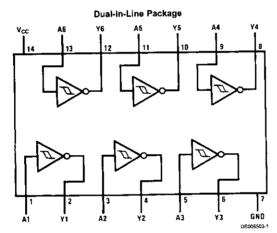

DM54/74LS374

Output Control	Clock	D	Output
L	1	Н	H
L	↑	L	L
L	L	x	Q _o
н	×	×	z

Logic Diagrams

DS006391-3

DS006391-4


DM7414

Hex Inverter with Schmitt Trigger Inputs

General Description

This device contains six independent gates each of which performs the logic INVERT function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

Connection Diagram

Order Number DM5414J, DM5414W or DM7414N See Package Number J14A, N14A or W14B

Function Table

$$Y = \overline{A}$$

Input	Output
Α	Y
L	Н
lн	l L

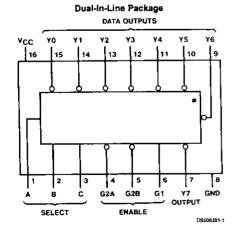
H = High Logic Level

DM74LS138, DM74LS139 Decoders/Demultiplexers

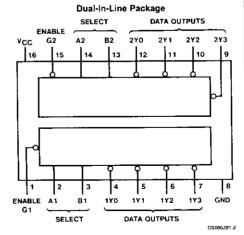
General Description

These Schottky-clamped circuits are designed to be used in high-performance memory-decoding or data-routing applications, requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When used with high-speed memories, the delay times of these decoders are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

The LS138 decodes one-of-eight lines, based upon the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented with no external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.


The LS139 comprises two separate two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

All of these decoders/demultiplexers feature fully buffered inputs, presenting only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design.


Features

- Designed specifically for high speed:
 Memory decoders
 Data transmission systems
- LS138 3-to-8-line decoders incorporates 3 enable inputs to simplify cascading and/or data reception
- LS139 contains two fully independent 2-to-4-line decoders/demultiplexers
- Schottky clamped for high performance
- Typical propagation delay (3 levels of logic)
 - LS139 21 ns
- Typical power dissipation LS138 32 mW
 - LS139 34 mW
- Alternate Military/Aerospace devices (54LS138, 54LS139) are available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagrams

Order Number 54LS138DMQB, 54LS138FMQB, 54LS138LMQB, DM54LS138J, DM54LS138W, DM74LS138M or DM74LS138N See Package Number E20A, J16A, M16A, N16E or W16A Dual-in-Line Package

Order Number 54LS139DMQB, 54LS139FMQB, 54LS139LMQB, DM54LS139J, DM54LS139W, DM74LS139M or DM74LS139N See Package Number E20A, J16A, M16A, N16E or W16A

'LS139 Switching Characteristics at $V_{\rm cc}$ = 5V and $T_{\rm A}$ = 25°C

		From (Input)	·		Units		
Symbol Parameter	To (Output) C _L = 1		= 15 pF C _L =			50 pF	
		Min	Max	Min	Max		
t _{PLH}	Propagation Delay Time	Select to		18		27	ns
,	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Select to		27		40	ns
	High to Low Level Output	Output]				
t _{PLH}	Propagation Delay Time	Enable to		18		27	ns
	Low to High Level Output	Output		<u> </u>			
t _{PHL}	Propagation Delay Time	Enable to		24		40	ns
, , , ,	High to Low Level Output	Output		l			

Function Tables LS138

	Inputs			Outputs								
	Enable	Ş	ele	ct								
G1	G2 (Note 8)	C	В	Α	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
х	Н	X	X	X	Н	Ħ	Н	Н	Η	Н	Н	н
Ŀ	x	×	×	x	Н	н	Н	н	н	H	Н	н
Н	L	L	L	L	L	Н	Н	н	Н	Н	Н	Н
н	L	L	ļ∟	н	Н	L	Н	Н	Н	н	н	H
н	L	L]н	L	н	н	L	н	н	н	Н	н
н	L	L	н	н	н] н	Н	L	н	Н	н	н
н	L	н	L	L	н	н	н	Н	L	н	H	н
н	L	[H	L	н	н	н	Н	н	н	L	н	н
Н	L	н	н	L	н	Н	Н	Н	Н	Н	L	Н
Н	L	Н	Н	н	Н	н	Н	н	Н	H	<u> </u>	L

H = High Level, L = Low Level, X = Don't Care

Note 8: G2 = G2A + G2B

LS139

In	puts		Outputs			
Enable	Sel	ect				
G	В	A	Y0	Y1	Y2	Y3
Н	Х	Х	н	н	I	Н
<u> </u> _	L	L	L	н	н	Н
L	L	Н	н	L	 H	Н
	Н	L	н	н	L	Н
L	н	н	н	н	н	L

H = High Level, L = Low Level, X = Don't Care

Logic Diagrams L\$138 (13) Y2 ENABLE INPUTS (12) Y3 DATA OUTPUTS SELECT INPUTS DS006391-3 LS139 SELECT INPUTS DATA OUTPUTS DS006391-4

TEXAS STRUMENTS

neet acquired from Harris Semiconductor

OS NAND GATES

Voltage Types (20-Volt Rating)

2 Input - CD4011B 4 Input — CD4012B 3 Input - CD4023B

CD4011B, CD4012B, and CD4023B gates provide the system designer direct implementation of the NAND ion and supplement the existing family IOS gates. All inputs and outputs are

CD4011B, CD4012B, and CD4023B are supplied in 14-lead hermetic duale ceramic packages (D and F suffixes), ad dual-in-line plastic packages (E sufnd in chip form (H suffix).

CD4011B, CD4012B, CD4023B Types


Features:

- Propagation dalay time = 60 ns (typ.) at CL = 50 pF, VDD = 10 V
- Buffered inputs and outputs
- Standardized symmetrical output characteristics
- Maximum input current of 1 μA at 18 V over full package temperature range; 100 nA at 18 V and 25°C
- 100% tested for quiescent current at 20 V
- 5-V. 10-V. and 15-V parametric ratings
- Noise margin (over full package temperature range:

1 V at V_{DD} = 5 V 2 V at VDD = 10 V

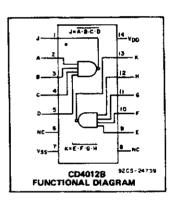
2.5 V at VDD = 15 V

■ Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of "B" Series CMOS Devices"

IUM RATINGS, Absoluts-Maximum Values:

PPLY-VOLTAGE RANGE, (VDD)

ages referenced to Vgs Terminal)-0.5V to +20V VOLTAGE RANGE, ALL INPUTS-0.5V to VDD +0.5V

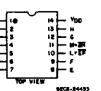

R DISSIPATION PER PACKAGE (PD):

r_A = -55°C to +100°C 500mW r_A = +190°C to +125°C...... Derate Linearity at 12mW/°C to 200mW

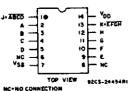
E DISSIPATION PER OUTPUT TRANSISTOR

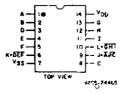
ATING-TEMPERATURE RANGE (TA).....-55°C to +125°C AGE TEMPERATURE RANGE (Tato)-65°C to +150°C

TEMPERATURE (DURING SOLDERING):

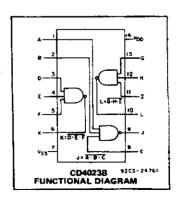

DMMENDED OPERATING CONDITIONS

neximum reliability, nominal operating conditions should be selected so that


tion is always within the following ranges:


	LIM	LANTE	
CHARACTERISTIC	MIN.	MAX.	UNITS
ppiy-Voltage Range (For T _A = Fuil Package Temperature Range)	. 3	18	V

TERMINAL ASSIGNMENTS

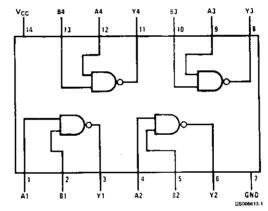

CD4011B

CD40238

March 1998

DM7400

Quad 2-Input NAND Gates


General Description

This device contains four independent gates each of which performs the logic NAND function.

Features

■ Alternate Military/Aerospace device (5400) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 5400DMQB, 5400FMQB, DM5400J, DM5400W or DM7400N See Package Number J14A, N14A or W14B

Function Table

 $Y = \overline{AB}$

lnp	Inputs		
Α	В	Y	
L	L	H	
L	н	н	
н	L	н	
Н	н	L	

H = High Logic Level L = Low Logic Level

May 2000

LM78XX Series Voltage Regulators

General Description

The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

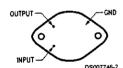
The LM78XX series is available in an aluminum TO-3 package which will allow over 1.0A load current if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expanded to make the LM78XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the out-

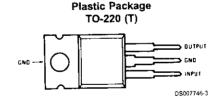
put, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For output voltage other than 5V, 12V and 15V the LM117 series provides an output voltage range from 1.2V to 57V.

Features

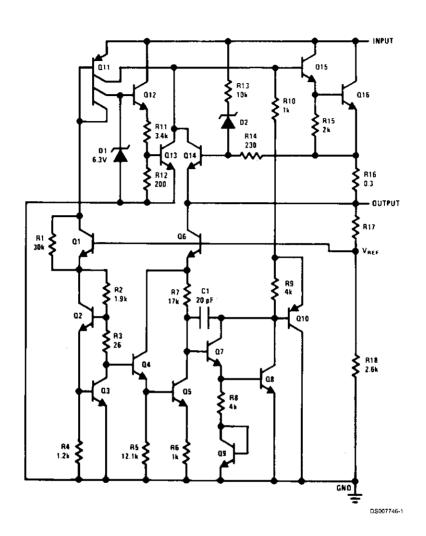

- Output current in excess of 1A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in the aluminum TO-3 package

Voltage Range


LM7805C	5V
LM7812C	12V
LM7815C	15V

Connection Diagrams

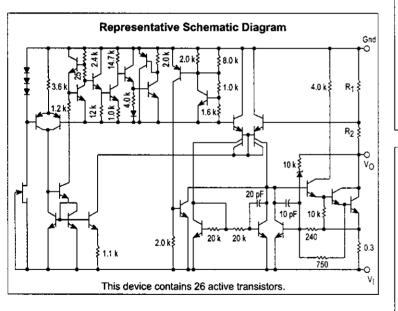
Metal Can Package TO-3 (K) Aluminum



Bottom View Order Number LM7805CK, LM7812CK or LM7815CK See NS Package Number KC02A

Top View Order Number LM7805CT, LM7812CT or LM7815CT See NS Package Number T03B

Schematic

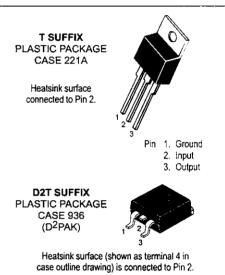


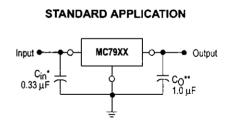
Three-Terminal Negative Voltage Regulators

The MC7900 series of fixed output negative voltage regulators are intended as complements to the popular MC7800 series devices. These negative regulators are available in the same seven—voltage options as the MC7800 devices. In addition, one extra voltage option commonly employed in MECL systems is also available in the negative MC7900 series.

Available in fixed output voltage options from -5.0 V to -24 V, these regulators employ current limiting, thermal shutdown, and safe-area compensation – making them remarkably rugged under most operating conditions. With adequate heatsinking they can deliver output currents in excess of 1.0 A.

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe—Area Compensation
- Available in 2% Voltage Tolerance (See Ordering Information)


ORDERING INFORMATION


Device	Output Voltage Tolerance	Operating Temperature Range	Package
MC79XXACD2T	2%		Surface Mount
MC79XXCD2T	4%	T. = 00 to 140500	Surface Would
MC79XXACT	2%	T _J = 0° to +125°C	Innerties Adecord
MC79XXCT	4%		Insertion Mount
MC79XXBD2T	4%	T 409 to 140590	Surface Mount
MC79XXBT	470	$T_J = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	Insertion Mount

XX indicates nominal voltage.

MC7900 Series

THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above more negative even during the high point of the input ripple voltage.

- XX, These two digits of the type number indicate nominal voltage.
 - * C_{in} is required if regulator is located an appreciable distance from power supply filter.
 - ** Co improve stability and transient response.

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE

221.02			<u> </u>
MC7905	5.0 V	MC7912	12 V
MC7905.2	5.2 V	MC7915	15 V
MC7906	6.0 V	MC7918	28 V
MC7908	8.0 V	MC7924	24 V

National Semiconductor

ADC0808/ADC0809 8-Bit µP Compatible A/D Converters with 8-Channel Multiplexer

General Description

The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital converter, 8-channel multiplexer and microprocessor compatible control logic. The 8-bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256R voltage divider with analog switch tree and a successive approximation register. The 8-channel multiplexer can directly access any of 8-single-ended analog signals.

The device eliminates the need for external zero and full-scale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE® outputs.

The design of the ADC0808, ADC0809 has been optimized by incorporating the most desirable aspects of several A/D conversion techniques. The ADC0808, ADC0809 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications. For 16-channel multiplexer with common output (sample/hold port) see ADC0816 data sheet. (See AN-247 for more information.)

Features

- Easy interface to all microprocessors
- Operates ratiometrically or with 5 V_{DC} or analog span adjusted voltage reference
- No zero or full-scale adjust required
- 8-channel multiplexer with address logic
- 0V to 5V input range with single 5V power supply
- Outputs meet TTL voltage level specifications
- Standard hermetic or molded 28-pin DIP package
- 28-pin molded chip carrier package
- ADC0808 equivalent to MM74C949
- ADC0809 equivalent to MM74C949-1

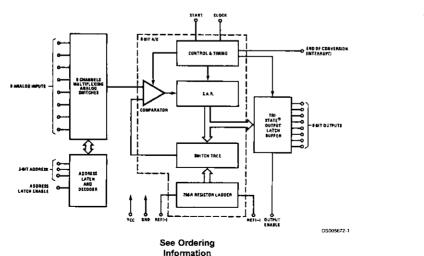
Key Specifications

■ Resolution

8 Bits

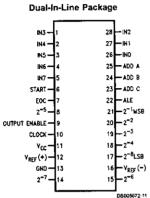
■ Total Unadjusted Error

±½ LSB and ±1 LSB 5 V_{DC}

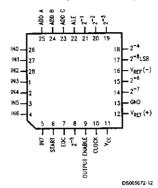

■ Single Supply
■ Low Power

15 mW

■ Conversion Time


100 µs

Block Diagram


TRI-STATE® is a registered trademark of National Semiconductor Corp.

Connection Diagrams

Order Number ADC0808CCN or ADC0809CCN See NS Package J28A or N28A

Molded Chip Carrier Package

Order Number ADC0808CCV or ADC0809CCV See NS Package V28A

Ordering Information

TEMP	PERATURE RANGE	-40°C to +85°C			-55°C to +125°C
Error	±1/2 LSB Unadjusted	ADC0808CCN	ADC0808CCV	ADC0808CCJ	ADC0808CJ
	±1 LSB Unadjusted	ADC0809CCN	ADC0809CCV		
Package Outline		N28A Molded DIP	V28A Molded Chip Carrier	J28A Ceramic DIP	J28A Ceramic DIP

Functional Description

Multiplexer. The device contains an 8-channel single-ended analog signal multiplexer. A particular input channel is selected by using the address decoder. *Table 1* shows the input states for the address lines to select any channel. The address is latched into the decoder on the low-to-high transition of the address latch enable signal.

TABLE 1.

SELECTED	ADDRESS LINE		
ANALOG	С	В	Α
CHANNEL			
INO	L	Ĺ	L
IN1	L	L	н
IN2	L	н	L
IN3	L	н	н
IN4	н	L	L.
IN5	н	L	н
IN6	н	н	L
IN7	н	н	н

CONVERTER CHARACTERISTICS

The Converter

The heart of this single chip data acquisition system is its 8-bit analog-to-digital converter. The converter is designed to give fast, accurate, and repeatable conversions over a wide range of temperatures. The converter is partitioned into 3 major sections: the 256R ladder network, the successive approximation register, and the comparator. The converter's digital outputs are positive true.

The 256R ladder network approach (Figure 1) was chosen over the conventional R/2R ladder because of its inherent monotonicity, which guarantees no missing digital codes. Monotonicity is particularly important in closed loop feedback control systems. A non-monotonic relationship can cause oscillations that will be catastrophic for the system. Additionally, the 256R network does not cause load variations on the reference voltage.

The bottom resistor and the top resistor of the ladder network in Figure 1 are not the same value as the remainder of the network. The difference in these resistors causes the output characteristic to be symmetrical with the zero and full-scale points of the transfer curve. The first output transition occurs when the analog signal has reached +½ LSB and succeeding output transitions occur every 1 LSB later up to full-scale.

The successive approximation register (SAR) performs 8 iterations to approximate the input voltage. For any SAR type converter, n-iterations are required for an n-bit converter. Figure 2 shows a typical example of a 3-bit converter. In the ADC0808, ADC0809, the approximation technique is extended to 8 bits using the 255R network.

The A/D converter's successive approximation register (SAR) is reset on the positive edge of the start conversion (SC) pulse. The conversion is begun on the falling edge of the start conversion pulse. A conversion in process will be interrupted by receipt of a new start conversion pulse. Continuous conversion may be accomplished by tying the end-of-conversion (EOC) output to the SC input. If used in mode, an external start conversion pulse should be applied after power up. End-of-conversion will go low between 0 and 8 clock pulses after the rising edge of start conversion.

The most important section of the A/D converter is the comparator. It is this section which is responsible for the ultimate accuracy of the entire converter. It is also the comparator drift which has the greatest influence on the repeatability of the device. A chopper-stabilized comparator provides the most effective method of satisfying all the converter requirements.

The chopper-stabilized comparator converts the DC input signal into an AC signal. This signal is then fed through a high gain AC amplifier and has the DC level restored. This technique limits the drift component of the amplifier since the drift is a DC component which is not passed by the AC amplifier. This makes the entire AD converter extremely insensitive to temperature, long term drift and input offset errors.

Figure 4 shows a typical error curve for the ADC0808 as measured using the procedures outlined in AN-179.

Functional Description (Continued)

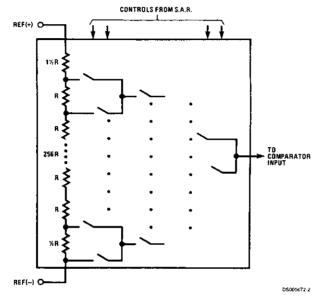
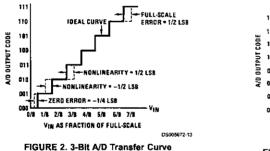



FIGURE 1. Resistor Ladder and Switch Tree

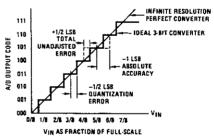


FIGURE 3. 3-Bit A/D Absolute Accuracy Curve

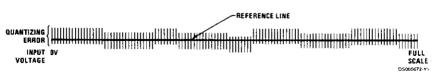
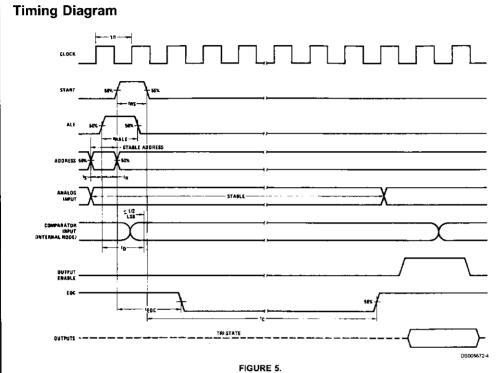



FIGURE 4. Typical Error Curve

May 1999

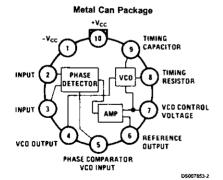
LM565/LM565C Phase Locked Loop

General Description

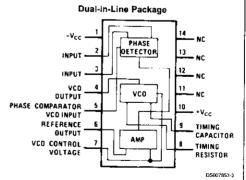
The LM565 and LM565C are general purpose phase locked loops containing a stable, highly linear voltage controlled oscillator for low distortion FM demodulation, and a double balanced phase detector with good carrier suppression. The VCO frequency is set with an external resistor and capacitor, and a tuning range of 10:1 can be obtained with the same capacitor. The characteristics of the closed loop system—bandwidth, response speed, capture and pull in range—may be adjusted over a wide range with an external resistor and capacitor. The loop may be broken between the VCO and the phase detector for insertion of a digital frequency divider to obtain frequency multiplication.

The LM565H is specified for operation over the -55°C to +125°C military temperature range. The LM565CN is specified for operation over the 0°C to +70°C temperature range.

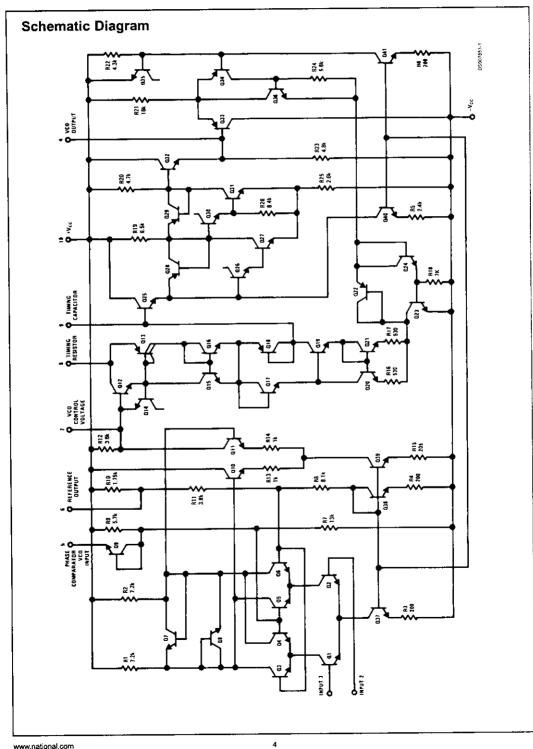
Features


- 200 ppm/°C frequency stability of the VCO
- Power supply range of ±5 to ±12 volts with 100 ppm/% typical

- 0.2% linearity of demodulated output
- Linear triangle wave with in phase zero crossings available
- TTL and DTL compatible phase detector input and square wave output
- Adjustable hold in range from ±1% to > ±60%


Applications

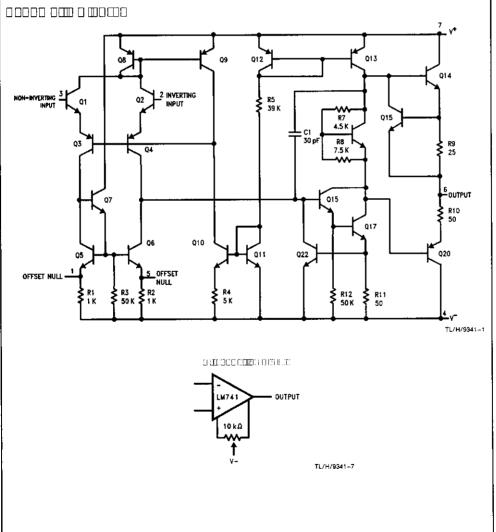
- Data and tape synchronization
- Modems
- FSK demodulation
- FM demodulation
- Frequency synthesizer
- Tone decoding
- Frequency multiplication and division
- SCA demodulators
- Telemetry receivers
- Signal regeneration
- Coherent demodulators


Connection Diagrams

Order Number LM565H See NS Package Number H10C

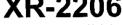
Order Number LM565CN See NS Package Number N14A

November 1994


LM741 Operational Amplifier

General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.


The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a 0°C to \pm 70°C temperature range, instead of \pm 55°C to \pm 125°C.

XR-2206

Monolithic **Function Generator**

June 1997-3

FEATURES

- Low-Sine Wave Distortion, 0.5%, Typical
- Excellent Temperature Stability, 20ppm/°C, Typ.
- Wide Sweep Range, 2000:1, Typical
- Low-Supply Sensitivity, 0.01%V, Typ.
- Linear Amplitude Modulation
- TTL Compatible FSK Controls
- Wide Supply Range, 10V to 26V
- Adjustable Duty Cycle, 1% TO 99%

APPLICATIONS

- Waveform Generation
- Sweep Generation
- AM/FM Generation
- V/F Conversion
- **FSK Generation**
- Phase-Locked Loops (VCO)

GENERAL DESCRIPTION

The XR-2206 is a monolithic function generator integrated circuit capable of producing high quality sine, square, triangle, ramp, and pulse waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated by an external voltage. Frequency of operation can be selected externally over a range of 0.01Hz to more than 1MHz.

The circuit is ideally suited for communications, instrumentation, and function generator applications requiring sinusoidal tone, AM, FM, or FSK generation. It has a typical drift specification of 20ppm/°C. The oscillator frequency can be linearly swept over a 2000:1 frequency range with an external control voltage, while maintaining low distortion.

ORDERING INFORMATION

Part No.	Package	Operating Temperature Range
XR-2206M	16 Lead 300 Mil CDIP	-55°C to +125°C
XR-2206P	16 Lead 300 Mil PDIP	-40°C to +85°C
XR-2206CP	16 Lead 300 Mil PDIP	0°C to +70°C
XR-2206D	16 Lead 300 Mil JEDEC SOIC	0°C to +70°C

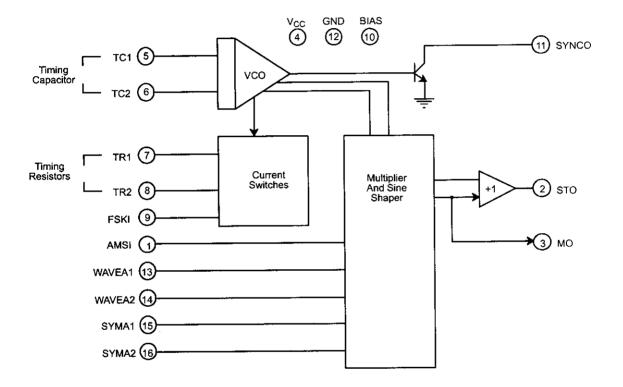
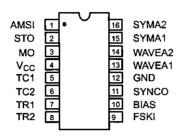
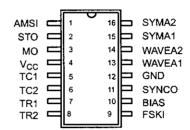




Figure 1. XR-2206 Block Diagram

16 Lead SOIC (Jedec, 0.300")

PIN DESCRIPTION

Pin#	Symbol	Type	Description	
- 1	AMSI	Ī	Amplitude Modulating Signal Input.	
2	STO	0	Sine or Triangle Wave Output.	
3	МО	0	Multiplier Output.	
4	Vcc		Positive Power Supply.	
5	TC1	1	Timing Capacitor Input.	
6	TC2	1	Timing Capacitor Input.	
7	TR1	0	Timing Resistor 1 Output.	
8	TR2	0	Timing Resistor 2 Output.	
9	FSKI	ı	Frequency Shift Keying Input.	
10	BIAS	0	Internal Voltage Reference.	
11	SYNCO	0	Sync Output. This output is a open collector and needs a pull up resistor to V _{CC} .	
12	GND		Ground pin.	
13	WAVEA1	l ı	Wave Form Adjust Input 1.	
14	WAVEA2	1	Wave Form Adjust Input 2.	
15	SYMA1	1	Wave Symetry Adjust 1.	
16	SYMA2	1	Wave Symetry Adjust 2.	