FROTAESS THROUGH (AOWIEDSE

FPGA SIMULATION AND MICRO CONTROLLER
IMPLEMENTATION OF POWER FACTOR
CONTROLLER FOR AC TO DC CONVERTER

S %
A PROJECT REPORT N
Submitted by & e
MANIKANDAN.D (71201105024)
PRAVEEN R.KASHYAP (71201105034)
THIRUMALAI RAJAN.K (71201105065)
VINU BALAJEE.C.R (71201105072)

in partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
in
ELECTRICAL & ELECTRONICS ENGINEERING

Under the guidance of
Mr.S.Chidambaram, M.E.

KUMARAGURU COLLEGE OF TECHNOLOGY,
COIMBATORE - 641006

ANNA UNIVERSITY :: CHENNAI - 600 025
APRIL - 2005



ANNA UNIVERSITY : CHENNAI-600 025

BONAFIDE CERTIFICATE

Certified that this project report titled “FPGA SIMULATION AND MICRO

CONTROLLER IMPLEMENTATION

OF POWER FACTOR

CONTROLLER FOR AC TO DC CONVERTER? is the bonafide work of

MANIKANDAN.D -
PRAVEEN R.KASHYAP

THIRUMALAI RAJAN.K
VINU BALAJEE.C.R -

Register No. 71201105024
Register No. 71201105034
Register No. 71201105065
Register No. 71201105072

who carried out the project work under my supervision.

b

—

Signature of the Head of the Department

Prof. K.Regupathy Subramanian,B.E.,M.Sec.
DEAN/EEE,

Kumaraguru College of

Technology

nW(oufor

Signature of the guide

Mr.S.Chidambaram M.E
Lecturer, EEE Dept.,
Kumaraguru College of
Technology



CERTIFICATE OF EVALUATION

College : KUMARAGURU COLLEGE OF TECHNOLOGY
Branch : Electrical & Electronics Engineering

Semester : Eighth Semester

S1.No. | Name of the Students Title of the Project Name of the Supervisor
with Designation
01 Manikandan.D “FPGA simulation and
02 Praveen R.Kashyap .Micro Controller Mr.S.Chidambaram,M.E
: — implementation of Lecturer, EEE Dept.
03 Thirumalai Rajan.K | power factor controller
04 | Vinu Balajee.CR for ACto DC
converter

The report of the project work submitted by the above students in
partial fulfillment for the award of Bachelor of Engineering degree in
Electrical & Electronics Engineering of Anna University was evaluated and
confirmed to be report of the work done by the above students.

Whade \ \ \J\\;

AN
(INTERNAL EXAMINER) (EXTERNAL EXAM&ER)




ACKNOWLEDGEMENT

The completion of our project can be attributed to the combined efforts
made by us and the contribution made in one form or the other, by the
individuals we hereby acknowledge.

We are highly privileged to thank Dr. K. K. Padmanabhan,
Principal, Kumaraguru College of Technology for allowing us to do this
project.

We express our heartfelt gratitude and thanks to the Dean (R&D) of
Electrical and Electronics Department, Prof. K. Regupathy Subramaniam,
for encouraging us to choose and for being with us right from the beginning of
the project and guiding us at every step.

We express our sincere thanks to Dr. T. M. Kameswaran, former head
of our department, for his kind support during the course of study.

We wish to place on record our deep sense of gratitude and profound
thanks to our guide Mr. S. Chidambaram, Lecturer, Electrical and Electronics
department, for his valuable guidance, constant encouragement, continuous
support and co-operation rendered throughout the project.

We are also thankful to all teaching and non-teaching staffs of
Electrical and Electronics Engineering Department for their kind help and
encouragement.

Last but not least, we extend our sincere thanks to all our parents and

friends who have contributed their ideas and encouraged us for completing the

project.

v



ABSTRACT

Power factor plays an important role in almost in all power systems. It
is essential to improve the power factor almost to unity of each and every
system which leads to increase in efficiency and decrease the size of the
components used. This project titled “FPGA Simulation and Micro-
controller Implementation of Power factor Controller for AC to DC
Converter” aims at improving the input power factor of commercial
converters closer to unity.

This project uses the PWM control method of active current shaping for
power factor improvement that yields input power factors in range of 0.95 to
0.99.

The simulation is done with the Field Programmable Gate Array
controller in VHSIC HDL (Very High Speed Integrated Circuit Hardware
Description Language) using Xilinx 1.5 tool. The hardware is implemented
using (Programmable Interface Controller) PIC. The same algorithm used in
the FPGA simulation was used in the PIC micro controller and the power

factor improvement was analyzed.
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INTRODUCTION




1. INTRODUCTION

AC to DC converters without control, are popularly known as
rectifiers. The most commonly used AC source is 50 or 60 Hz voltage
source, which is available from the electric utility supply, also called the
line source. The uncontrolled rectifiers are designed using the diodes. The
designs are inexpensive and popular in the industrial applications. In some
of the rectifiers, the AC voltage from the electric utility is directly rectified
without the use of an expensive and bulky transformer. In some
applications, the DC voltage from the rectifier is connected to the DC bus
for the distribution for several different circuit systems, sub-systems, and
other converters as loads. In other applications, the rectifiers supply power
to inductive-resistive (motors) and capacitive-resistive (power supplies)

loads.

The rectifiers are required to supply ripple-free DC voltage or DC
current to the load. In practice, the peak-to-peak output ripple is designed
to be as small as possible and the ripple frequency as large as possible.
The rectifiers usually draw highly non-sinusoidal current from the electric
utility supply, giving rise to poor power factors and thus poor efficiency.
Improving power factor is an important design objective. There are
different techniques available for power factor improvement. Another
design concemn is the reduction of high frequency distortion in the line
current, which is caused by switching loads or switch mode converters as

loads.



The variation of input power factor as a function of (Vo/Vs) 18

shown in the figure below.
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Fig: 1 Graph showing variation of input pf as a function of V,/V
The plot shows that the input power factor remains constant when
the output voltage is very low and decreases quadratically with the
increase in output voltage when the input voltage remains constant. Also,
it has to be noted that the total harmonic distortion increases with the
increase in the output voltage, thus leading to very high injection of
harmonics in the line, which disturbs the operation of other utilities,

connected in parallel.

The main objective of this project is to suppress the harmonics and
improve the input power factor of the commercial converter circuits by
using the PWM control method of the Active current shaping technique.
By using this method, the input current is made to trace the input voltage,
which has a combined effect of reducing the harmonic distortion in the
circuit and improving the input power factor of the circuit. By using this

method, high input power factors almost nearing unity can be attained
(0.95-0.99).



Thus this method has the following main advantages,

1. The rating of the system components reduces much greatly as
a result of reduction in harmonics.
2. The reactive power consumed by the utility reduces,

increasing the efficiency and reducing the cost of operation.
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2. POWER FACTOR PROBLEM IN CONVERTERS

Before getting started with analyzing the power factor problem in
converters in depth, it is necessary to recollect some of the important

concepts relating to the analysis of the converter circuits.
2.1. Performance Characteristics:

Converters performance consists of two parts: the transient and
steady state part. The output voltage waveforms consist of high harmonic
content called ripple. In steady state, all waveforms are stabilized and
periodic, therefore easy to analyze.

Forward Transfer Characteristics:

The Forward Transfer characteristics describe the effect of input

variables on the output variables. There are two performance parameters,

which are used in the design of AC to DC converter systems.

Voltage transfer ratio:

Voltage to Current transfer ratio:

Reflective Characteristics:

The reflective characteristics give the effect of output conditions on

the source variable.



Current Reflection Ratio:
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It is desirable to have a small change in the output variable for a

large variation in the output characteristic.

Harmonic Profile:

The voltage and current waveforms at both the input and output
ports are in general non-sinusoidal. The following measures are used for

the undesirable Fourier components of a port variable.

Peak-to-Peak ripple in the output voltage and the output current are

denoted as V,, and I, respectively.

Ripple frequency is the frequency of the voltage or current ripple
waveform. It is a simple multiple of the output source frequency. A higher
multiple is a design goal. A large ripple frequency can be filtered with

relative ease and with small value and small size filter components.

Output current waveform in an AC to DC converter is non-

sinusoidal. The Fourier expansion of output current is given as follows:

L

fo=1,+ b LSnin -

b

-
b
&

where ® is the peak amplitude of the nth harmonic component and
the phase angle of the nth harmonic with respect to the output sinusoidal

voltage.



The Fourier expansion of the input current is given as follows

{ = j‘: o simin thtg

Y

n=12

where &, is the peak amplitude of the nth harmonic component and
the phase angle of the nth harmonic with respect to the input sinusoidal

voltage.

The phase angle of the fundamental component with respect to the
output voltage waveform, &, the displacement factor DF, the cosine of

®,, and the input power factor PF are the three important performance

measures.

DF =cosigp,]

I
PE = T”]mos i

A low value of power factor indicates that the converter 1s using

substantial reactive power. A unity power factor is desired.

Lowest undesired Harmonic Frequency is an important design
criterion.

Harmonic content of the source current is defined as the square
root of the difference between the squares of total RMS source current and

the RMS fundamental current.

HC=VI>-13,

Total Harmonic Distortion (THD) of the source current is defined
as the ratio of harmonic content to the RMS fundamental current is

calculated as following:




The voltage and current in the converter elements, especially, the
switches may consist of high transients (other than the surges) which may
be considerably higher than the normal ratings. These transients dictate the

device selection and hence the cost.

Component Stresses are measured as the ratio of the peak voltage

and current values to the respective RMS values on the elements.

2.2. Electric Utility Interface — Power factor control:

There is a growing concern regarding harmonic pollution of the
power distribution system. Adoption of the International Electric
Commission Standard IEC-555-3 and IEEE-519-1992 has helped greatly
in the awareness for clean AC line currents and a power factor close to

unity.

Electric Utility Distribution System:

The electric utility Distribution System can be represented by a
Thevenin equivalent voltage source Vg in series with a source inductance
Ls. The Line voltage at the point of common coupling is dependent on the

load current and the source inductance,
V,,=V —jwL I,

where subscript 1 refers to the fundamental harmonic (n=1). I, is the
fundamental harmonic of the line current. Actually, the line current drawn
from the electric utility by a power electronic system consists of several
components: real and imaginary components at the line frequency and the

high frequency harmonics:

fl\::j;p”?'jlzng I

a1

Ead



The Imaginary (reactive) component ;o is the main contributor to
the line voltage regulation. Minimizing I,q is referred to as the static VAR
Control. The real component of the fundamental harmonic, I, contributes
little to the line voltage regulation. The phase angle of the fundamental
harmonic current with respect to the line voltage is a very important

parameter that determines the power factor.

point of common coupling

s s v power
Lo : N -~ electronic
P ; system
T .4 :
S L
. &% (Other systems

Fig: 2 Electrical utility distribution system
Recall the definition,

PF zz?-;-ms 19,

The subscript s refers to the line source. The subscript 1 refers the
fundamental component. The power factor is also the ratio of the real
power used by the load to the power supply by the line source. A poor
factor is translated in heavy expenses to the user; hence, considerable

effort has been directed in improving the power factor.

Suppression of high harmonic in the electric utility is another very
important requirement by Electric utility Vendors. The harmonics in a

typical unfiltered single-phase line current are given below



Table 1: TYPICAL HARMONIC DISTORTION IN AN UNFILTERED
SINGLE PHASE LINE CURRENT

N= 3 5 7 9 11
I/, 73.2 36.6 8.1 5.7 4.1
(%)

Compare these numbers with the percent amplitudes of high
frequency harmonics as specified by IEEE519-1992 standards, as given in
the below table.

TABLE 2: HARMONIC DISTORTION OF LINE CURRENT (Iy/I;, FOR
ALL HARMONICS LESS THAN 117
As per IEEE-519-1992

For I[1/I,. In /T, THD (%)
>0.05 4% 5%

0.02-0.05 7% 8%

0.01-0.02 10% 12%

Note: Isc = Vg/QeIgy is the short circuit current at the point of common

coupling.

Obviously, there is a great need for reduction of the harmonics. The
interface design must aim at following two-fold goals:
a) To prevent all high frequency harmonics from being coupled to
other systems connected to the point of common coupling, and
b) To shield the power electronics system under consideration from the
transients and high frequency harmonics present in the electric

utility.

The utility interface may be a passive filter or an active current

shaping system.




2.3. Passive filtering:

The simplest technique is to use an inductor in series with the line
source to shape the current waveform. This technique involves the
smoothening of AC line current using LC filters in the line just before

connecting it to a Power Electronic Converter system. One such filter 1s

shown below;
N :....V-H.Ay,,,(" s s
L1 56—
P - i | (.
Bjw o LT
] A
i i | l |
- + o
oo
[ T NP S—
}f‘/_\\
! Y
4 ‘,"
. ‘?‘.ﬁﬂ‘w ) ﬁ;;f
":\. f”i
sﬁ\ {i‘
A

Fig: 3 Circuit using passive filtering method and Vs and I; waveforms
The inductors basically add a source side inductance thereby
reducing the high order harmonics in the input current; the output voltage
ripples and also reduces the voltage and current stresses on the rectifier
diodes. The capacitor suppresses the high frequency harmonics and
transients from being coupled to and from the source. The power factor
improves slightly; but the AC line voltage, available to the converter,

becomes dependent on the load.

10



The disadvantage of the passive filtering is the size of the filter
components at low line frequency (which are very large). The active
current shaping is one technique for reducing the size of the filter

components.

2.4. Active current shaping:

The AC line operated, switch mode power supplies and converters
for motor drives all require an AC — DC Converter as interface to the AC
line. However, the uncontrolled version, the bridge rectifier, is more
popular. A large capacitor is connected to the output of this rectifier for
reducing the voltage ripple. Since the Capacitor drawn line current only
when the output voltage is below the line voltage, the line current consist

of a highly non - sinusoidal waveform, with narrow and high peaks.

The power factor is ideal (equal to 1) when the bridge rectifier is
loaded by a current sink and poorest when loaded by a voltage sink. In the
case of current sink loading the rectifier diodes conduct for w line angle
and the power stress on the diodes is uniformly distributed over a half line
period. In the case of a voltage sink loading, the rectifier diodes conduct
for a much shorter line angle and the power stress on the diodes 1s highly
concentrated in a short duration. Similarly, the power factor is ideal when
a voltage sink load is connected to a switched constant Current Wave form
source and poorest when supplied by a switched constant DC voltage
waveform source. A power factor correction device should act like an
interface between the bridge rectifier and the voltage sink load. The
interface appears as the current sink load to the bridge rectifier and a
switched constant current waveform source to the voltage sink load.

There are two consequences that happen due to a poor power factor.

11



(1) The diodes in the bridge rectifier must be rated for higher
currents that are several times more than the peak value of the

fundamental components.

(2) The user pays for high reactive power from the AC line.

Improving the power factor in the AC — DC rectifier involves
(a) Shaping the line current to a sinusoidal wave form and

(b) Reducing the phase difference between the line voltage and the

line current.

In essence, the AC — DC converter in the power factor correction
emulates a resistor. The resistor emulator, also called the Power Factor

Pre-regulator (PFP), is basically a DC — DC converter whose topology is

given below;

1,(6) o
R G N
+ +
1 PFP
Ig ~—I
" 01(8) Vo
. ® —

i % l
Sinusotdal Drgevr.;!fc%e
current
reference

Fig: 4 Topology of Power factor Pre-regulator
The input to the PFP is a full — rectified sinusoidal voltage

waveform. A voltage sink Vg represents the load in parallel with a large

12



C. The DC — DC converter is switched at a frequency fs that is several
times higher than the line frequency fi. A large value of inductor would
be needed to appear as a current sink load to the bridge rectifier. The
current through the diode in PFP switches between 0 and the constant
value Io. The PFP acts as an ideal interface that appears as the current
sink load to the bridge rectifier and a switched constant waveform source

to the Voltage Sink load.

For the practical values of the inductor, the input current of the PFP,
possess a triangular wave shape. The input current waveform before the
diode bridge is modified to contain a strong fundamental sinusoid at the
line frequency but with harmonics at several times higher frequency than
the line frequency.

Since the switching frequency is very high in comparison to the line
frequency, the input and output voltages of the PFP converter may be
considered to be constant throughout the switching period. Thus, the PFP
converter can be analysed like a regular DC — DC Converter. The line

voltage and the input voltage to the PFP are given by

R T e waa

vi=Vlsin(@}l  g=amy

The voltage transfer ratio of PFP is required to vary within the angle
0 in a half line period. The voltage transfer ratio of DC-DC PFP is

(Vyien WV ,
—= ,(fff:—.2|5iﬂi93| o
Hfs{i)]] V 5 fs*’f" fl.

T ig=

W

where Vg is the local average DC output voltage from PFP. The
Tyv in a line period can be made high at the 0 and 7 angles by using boost,
buck-boost or fly back topologies. Buck topology cannot provide high

voltage transfer ratios.

13



2.5. For unity power Factor:

The current from the diode bridge must be identical in shape and in

phase with the voltage waveform, hence,
=1 |sinid ||
The input and output powers, averaged over a switching period, are given
by:
p=vi =Vl SSin{ 0]

Po=VYolo

Assuming the conversion efficiency to be 1, (P; = Po), the output current

requirement is determined as

; iVl gsin (01
ﬂm r;r
v,

The input and output powers, as averaged over the line period, are:

A

Vsl s
P.= S
Po=V,l,

where I is the average DC output current from the PFP.
The output current of the PFP is then
i,=21,sin°{0)=1 (1 ~c0s]20})
The above discussion points out two important requirements for PFP
1. The voltage transfer ratio Tyy must be varied over a half line
period.
2. The current output of the PFP should be varied according to

the profile shown below

14
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Fig: 5 Voltage transfer ratio & output current of PFP as

required for unity power factor

Thus, two separate control loops are required. The control systems

1s given in below

3y 5
N | -
!
|
- !

-

Pulse Yo Voer
width 4—@4-_— X‘*@

control +

Fig: 6 Control loops in Power factor correction
In one of the loops, Tyy is controlled by the pulse width as the
Control parameter. The output voltage is sensed, compared with the DC
reference, and the error signal is used to modify the pulse width of the

switching device in the PWM converter. In the other loop, the output

15



current is sensed, compared with a sinusoidal reference, and the error is
used to control the pulse width. These two loops are merged into one and
called the current- mode control. In this method, the reference current
waveform is made a function of the input voltage V, waveform and the

error voltage,

i;"x:f = {?1:] = % "r a7 i'm, ' i' K |S'~i 19 : L;' I‘

The error voltage is sampled only once in a switching period, T, and
held at the sampled value during the feedback to regulate the output
voltage around the nominal value V. This method can yield power factors
in the range of 0.95 to 0.99 and reduces the THD of the line current to
within 3%.

2.6. PWM control of power factor:

Consider the AC- DC rectifier with a boost type PFP mcorporated

into it, as shown below

The voltage transfer ratio in the boost PFP is obtained by combining

fy=ev={V,~V 1V |sinig]|

VST"}"l V,‘““Vp?[ﬁ?‘j*?"]:ﬁ

The above two equation, we get,

e to |
YoV dsini@yy (1D

r
R

D=1—{L}lsin(p}]

v
¢

o
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Fig: 7 Circuit diagram & waveform of Boost type Power factor Pre-

regulator
The literature may be referred to for several other types of power

factor correction strategies. An interesting strategy employs the constant

current ripple method.

2.7. Constant Current Ripple Control of Power factor:

The input current to the PFP, 1; is maintained within a band of
tolerance (+/-) Al with respect to the desired unity PF current waveform a

given in figure above. The circuit is illustrated below

17
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Fig: 8 Current ripple control & power factor correction

If the actual current increases more than the nominal value, plus the half of
the tolerance band, the switch S1 is turned OFF and S2 is turned ON,
Opposite switching occurs when the actual current decreases below the
nominal value minus half of the tolerance band. The switching period is

variable along the current waveform.

18
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3. SIMULATION WITH FPGA
3.1. Introduction to FPGA:

The implementation of a digital system is not independent of the
design style. Digital integrated circuits may be realized in different
technologies depending on their size and their role in the system.

Integrated circuits are connected in such a way as to realize the
design. Several masks define the locations and connectivity of the
transistors. A mask corresponds to one of the silicon compound layers that
form the transistors and the interconnect layers.

Circuit implementation may be grouped into two main categories,
fully custom and semi custom design. The latter category itself consists of
several approaches. These approaches have facilitated the design and
manufacturing of Application Specific Integrated Circuits (ASICs).
ASICs can be defined as integrated circuits designed for a particular
application in low volumes. They can also be contrasted to standard
integrated circuits such as microprocessors and memories that are used in

a wide range of application and are available ‘off the shelf’.
3.2. Custom Integrated Circuit:

Custom integrated circuit, are created using unique masks for all
layers during the manufacturing process. The user controls chip density
with high utilization. Since the design controls all stages of the chip
layout, maximum design flexibility and high performance are possible.
Consequently, only highly skilled and competent designers are engaged
with such design flexibility and high performance are possible. Also,
development time is long, and development costs are extremely high. For

applications that require high volume, custom provides a low cost

19



alternative. The high cost of design and the sting can be successfully

amortized over the high volume

3.3. Mask Programmable Gate Array (MPGA)

The gate array implementation approach uses generic masks for all
but the metallization layers, which are customized to the user’s
specifications. The generic masks create an array of modular functional
block. Modules of transistors are arranged in rows that are separated by
fixed-width channels. User logics implemented, by patterning these
transistors into logic functions and connecting the different modules.

A cell library, making the designers expertise less critical than in
the case of the full custom methodology, usually facilitates the design. For
the same reasons, MPGAs offer shorter development time and lower
development costs than do custom integrated circuits. A special class of

gate array is channel-less. They are known as sea of gates.

3.4. Standard Cells

In this approach, as in the case of MPGAs, the design task is
facilitated by the use of pre-designed modules, which are the masks for the
modules. The modules standard cells, which are the same pitch size, are
usually saved in a database. Designers select cells from the database to
realize their design. The cells are then placed in rows and interconnected.
The routing is done within channels that may be of variable width.
Placement and routing are done automatically almost removing the
designers from the physical design process. Compared with custom
Integrated circuits, implemented in standard cells are less efficient in size

and performance; however, their development cost is lower. Mixed
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standard cells and macros have also proliferated from the standard cell

design.

3.5. Field Programmable Devices

Like gate arrays field programmable devices are pre-fabricated.
However, the logic is implemented by electrically programming
interconnects and personalizing the basic cells, typically in the user’s
laboratory instead of a factory. The field-programmable devices have a
variety of architectures. Implementing the design in programmable logic
devices has the advantage of fast furn around, but limits the design
flexibility. Development time and costs are significantly lower that are
those of any other IC implementation. According to their architecture, we
distinguish two main categories of user programmable logic devices:
Programmable logic Devices (PLDs) and Field Programmable Gate
Arrays.

e PLDs consist of programmable AND arrays (product terms) and
fixed fan-in programmable, OR gates that are followed by flip-
flops. The outputs of the flip-flops can be fed back as input lines
in the product terms. The product line can be connected to any
combination of inputs. The connecting device may be a fuse as
in the case of bipolar chips or transistor. The transistor can be
chosen to act as an open connection or to function normally as a
switch. PLDs are at the low-density end of field programmable
logic devices. Their densities range from 1,000 up to 10,000
gates. Utilization varies with applications, but it is typically very
low because of the rigid AND/OR architecture. Initially, PLDs
used to be fabricated with bipolar technology; however,
complimentary metal-oxide semiconductors (CMOSs) are now

more popular.
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e Field programmable gate arrays combine the architecture of
gate arrays with the programmability of programmable logic
devices (PLDs). An FPGA normally consists of several
uncommitted logic blocks in which the design is to be encoded.
The logic block consists of some universal gates. That 1s, gates
that can be programmed to represent any function like
multiplexers (MUX), random-access memories, NAND gates,
transistors, etc. The connectivity between blocks is programmed
via different types of devices, SRAM (static random access
memory) or antifuse. The architecture of the chip depends on the

fashion in which the blocks are arranged.

3.6 Architecture of XC4000E Family

3.6.1 Functional Description.

XC4000 series devices achieve high speed through advance
semiconductor technology and improved architecture. The XC4000E
support system clock rates of up-to 80MHz and internal performance n
excess of 150MHz. Compared to a older Xilinx FPGA families, XC4000
series devices are more powerful. They offer on-chip edge triggered and
dual-port RAM, clock enables on I/O flip-flops and wide-input decoders.
They are more versatile in many applications, especially those involving
RAM. Design cycles are faster due to a combination of increased routing

resources and more sophisticated software tool.
3.6.2 Basic Building Blocks

Xilinx user-programmable gate arrays include two major configurable
elements, Configurable logic blocks (CLBs) and Input-Output Blocks
(I0Bs).
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% CLBs provide the functional elements for constructing the user’s
logic.

<+ I0Bs provide the interface between the package pins and internal
signal lines.

The functionality of each circuit blocks is customized during
configuration programming internal static memory cells (SMCs) .The
value stored in the memory cells determine the logic functions and
interconnections implemented in the FPGA. Each of these available

circuits is described in this section.

3.6.3 Configurable Logic Blocks (CLBs)

Configurable logic blocks implement most of the logic in an FPGA.
Two 4 input function generators (F & G) offer unrestricted versatility.
Most combinatorial logic functions need four of fewer inputs. However, a
third function generator (H) is provided. The H function generator has
three inputs. Zero, one or two of these inputs can be the outputs of F and
G; the other input(s) are from outside the CLB. The CLB can therefore,
implement certain functions of up to 9 variables. Each CLB contains two
storage elements that can be used to store the function generator outputs.

Function generator outputs can also drive two outputs independent
of the storage element outputs. This versatility increases logic capacity and
simplifies routing. Thirteen CLB inputs and four CLB outputs provide
access to the function generators and storage elements. These inputs and

outputs connect to the programmable interconnect resources outside the
block.

23



Function Generators

The function generators are implemented as memory lookup tables.
The propagation delay 1s therefore independent of the function
implemented. A third function generator, H, can implement any Boolean
function of 1its three inputs. Two of these inputs can optionally be the F’
and G’ functional generator outputs.

Implementing wide functions in a single block reduces both the
number of blocks required in the signal path, achieving both increased
capacity and speed. The versatility of the CLB function generators
significantly improves system speed. In addition the design software tools
can deal with each function generator independently. This flexibility

improves the cell usage.

e When 3 separate functions are generated, one of the function
outputs must be captured in a flip-flop internal to the CLB, only

two registered function generators outputs are available from the
CLB.

e User configurable, input /output blocks, (IOBs) provide the
interface between external package pins and the internal logic.
Each IOB controls one package pin and can be configured for
input, output or bi-directional signals .The Figure below shows a

simplified block diagram of the XC4000E I0OB.

IOB Input Signals

Two paths labeled I1 and 12 in the Figure bring input signal into the
array. Inputs also connect to an input register that can be programmed as

either an edge-triggered flip-flip or a level-sensitive latch. Placing the
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appropriate library symbol makes the choice variations with inverted
clocks are available and some combinations of latches and flip-flops can
be implemented in a single IOB. The XC4000E inputs can be globally
configured for either TTL (1.2V) or (5.0Volt) CMOS thresholds.
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Fig: 9 Simplified block of XC4000E input and output unit

I10B output Signals

Output signals can be optionally inverted with in the IOB, and can
pass to the pad directly or be stored in an edge-triggered flip-flop. The
polarity of these signals is independently configured for each IOB. The
high driver is an n-channel pull-up transistor, which has been pulled to a

voltage of one transistor threshold below Vcc.
Pull-up and Pull down Resistors
Programmable pull-up and pull-down resistors are useful for tying

unused pins to Ve or GND, which minimize power consumption and

reduce noise sensitivity. The configurable pull-up resistor is a p-channel
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transistor that pulls to Vcc. The configurable pull-down resistor is an n

channel transistor that pulls to Ground.

Independent Clocks

Separate clock signals are provided for the input and output flip-
flops. The clock can be independently inverted for each flip-flop with the
IOB, generating either falling edge or rising-edge triggered flip-flops .The

clock input for each IOB are independent.

On-Chip Oscillator

XC4000 Series devices include an internal oscillator. This oscillator
is used to clock the power on time out, for configuration memory clearing,
and as source of Clock in Master configuration modes. The oscillator runs
at a nominal 8 MHz frequency that varies with process, V. and

temperature. The output frequency falls between 4 and 10 MHz.

Programmable Interconnect

All internal connections are composed of metal segments with
programmable switching points and switching matrices to implement the

desired routing. There are several types of Interconnections. They are

» CLB routing is associated with each row and column of the CLB
array.

» IOB routing forms a turn (called a Versa Ring) around the outside
of the CLB array. It connects the I/O with the internal logic blocks.

» Global routing consists of dedicated networks that primarily

designed to distribute clocks throughout the device with minimum
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delay and skew Global routing can also be used for other high fan-

out signals.

CLB Routing Connections

A high level diagram of the routing resources associated with one
CLB is shown in the Figure below. The shaded arrows represent routing
present only in XC4000X devices. CLB inputs and outputs are distributed
on all four sides, providing maximum routing flexibility. In general, the
entire architecture is symmetrical and regular. It is well suited to

established placement and routing algorithms.

 Direst
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Fig: 10  High-level routing diagram of XC4000 Family

3.6.4 Programmable Switch Matrices (PSM)

The PSM is given in Figure (a) and Figure (b). The figure (b)
shows the active role of PSM in connecting the CLBs and wires. The
horizontal and vertical single and double length lines intersect at a box
called programmable pass transistors used to establish connections

between the lines.
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Single and Double length lines with Programmable Switch Matrices
(PSM)

For example a single length signal entering on the right side of the
switch matrix can be routed to a single length line on the top, left or
bottom sides. If multiple branches are required, a double length signals can
be routed to a double length line on any or all of the other three edges of
the programmable switch matrix. Single length lines provide the greatest
interconnect flexibility and other fast routing between adjacent blocks

The double length lines consist of grid of metal segments each twice
as long as the single length lines: they run past two CLBs before entering a
switch matrix. Long lines form a grid of metal interconnecting segments

that run the entire length or width of the array.
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Flip-Flops

The two edge-triggered D-type flip-flops have common clock (K)
and clock enable (EC) inputs. Either or both clock inputs can also be
permanently enabled. It passes the combinational output(s) to the

interconnect network and store the combinatorial results.

Clock Input

Each flip-flop can be triggered on either the rising or falling clock
edge. The clock pins are shared by both storage elements. However, the
clock is individually invertible for each storage elements. Any inverter

placed on the clock input is automatically absorbed into the CLB.

Clock Enable

The Clock enable signal (EC) is active high. The EC pin is shared
by both storage elements. If left unconnected for either. The clock enable

for that storage element defaults to the active state. EC is not invertible

within the CLB.

Set/Reset

An asynchronous storage element input set-reset (SR) can be
configured as either set or reset. This configuration option determines the
state in which each flip-flop becomes operational after configuration. It
also determines the effect of global set/reset pulse during normal operation
and the effect of a pulse on the SR pin of the CLB. All three set/reset
functions for any single stage can be disabled for either flip-flop. The
set/reset state is specified by using the INIT attribute or by placing the
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appropriate set or reset flip-flop library symbol. SR 1s active high. It 1s not
invertible within the CLB.

Global Set/Reset

A separate Global Set/Reset line sets or clears each storage element
during power-up, reconfiguration or when a dedicated Reset net is driven
active. This global net (GSR) does not compete with other routing
resources; it uses a dedicated distribution network. Each flip-flop is
configured as either globally set or reset in the same way that the local
set/reset (SR) is specified. There fore, if a flip-flop is set by set-reset input,
GSR also sets it. Similarly, a reset flip-flop is reset by both set-reset and
global set reset (GSR). GSR can be driven from any user—programmable
pin as a global reset input.

To use this global net, place an input pad and input buffer in the
schematic or HDL code, driving the GSR pin of the startup symbol. A
specific pin location can be assigned to this input using a loc attribute or
property, just as with any other user programmable pad. An inverter can
optionally be inserted after the input buffer to invert the sense of the global

set/reset signal. Alternatively, GSR can be driven from any internal mode.

Data Inputs and Outputs

The Source of a storage element data input is programmable. It is
driven by any of the functions F’, G’ and H’, or by the Direct In (DIN)
block input. The flip-flops or latches drive the NQ and YQ CLB outputs.
Two fast feed through paths are available. A two-to-one multiplexer on
each of the XQ and YQ outputs selects between a storage element output
and any of the control inputs. This bypass is sometimes used by the

automated router to re-power internal signals.
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Control Signals of Chip

Multiplexers in the CLB map the four control inputs into the four
internal control signals H1, DIN/H2, SR/HO and EC. Any of these mputs

can drive any of the four internal control signals.

Using Function Generator as RAM

Optional modes for each CLB make the memory look-up tables in
the F° and G’ function generators enable as an array of Read/Write
memory cells. XC4000 series devices are the first programmable logic
devices with synchronous edge trigger and dual port RAM accessible to
the user. Edge triggered RAM simplifies system timing. Dual port RAM
doubles the effective throughput of first in first out (FIFO) applications.
These features can be individually programmed in any XC4000 family.
The on-chip RAM is extremely fast. The read access time is the same as
the logic delay. The write access time is slightly slower. Both access times

are much faster than any off-chip solution, because they avoid I/O delays

3.7 Design flow & Implementation, by Xilinx1.5 tool

Design flow-Introduction:

Any design in digital circuit can be realized in using hardware
descriptive language. Many vendors like Xilinx, Act, Altera, Phillips,
mentor graphics and others comes out with powerful design tool. With that
the realization of digital circuit can be achieved. Similarly, Exemplar
(Leonardo spectrum) is a power-full tool for synthesis. Certain tool comes
only with few options with specific manner. Here Xilinx1.5 is a typical

tool, which supports following flow of design:
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e Design Entry (text based, state machine editor, schematic editor)
o Synthesis & simulation.
e Implementation & timing and verification

e Programming and device download.

Design Entry
e Text Editor
e Schematic Editor
e State Editor

1l

Svnthesis Simulation
ﬂ i Timing &
Implementation Verification

IL

Device Programming

Device
XC4000E

Fig: 12 Design flow

Design entry consists of three approach of design entry State
machine editor. The editor gives designer; actual view of his design and
this editor includes all inbuilt libraries of components of different
companies, and families. This entry provides an interactive routing

between different designs components.

The Xilinx 1.5 design tool provides two languages for it as VHDL,
Verilog. These two languages were grouped under hardware descriptive
language. Designs which are synthesizable are (i) State machine Editor’s
output file. (ii) Text Based Editor’s output.

Further Schematic Editor doesn’t need any synthesis as designer already

chooses, desired component from the library.
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Text Based Editors:

Xilinx 1.5 supports two Hardware descriptive languages like
VHDL, and Verilog. Some features of the HDL were discussed. The
hardware description language (HDLs) is used to describe the architecture
and behavior of discrete electronic systems. HDLs were developed to deal
with increasingly complex designs.

An analogy is often made to the development of software
description languages, from the machine code to assembly language (net-
lists), to high-level languages. Top-down, HDL based system design 18
most useful in large projects, where several designers or team of designers
are working concurrently. HDLs provide structured development. After
major architectural decisions have been made, and major components and
their connections have been identified, work can proceed independently on

subprojects.

3.8 DESCRIPTION OF THE PFC CONTROLLER:

The FPGA simulation is done using the Xilinx 1.5 design tool. The
FPGA controller consists of two loops namely the Voltage loop and the

current loop which are indicated in the figure below.
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Fig: 13 circuit diagram for of PFC controller
3.8.1. CURRENT -LOOP CONTROLLER:

This loop controls the input current (Ij,) in order to meet the PFC
goal. Its purpose is to keep I, proportional to Vi, in this case through the
equivalent input conductance (Gi,, the inverse of the equivalent input
resistance R;,), is calculated by the voltage loop. The goal is to set the

mean input current according to the following formula;
Iin = I/in . Gin

DSP controllers perform this task varying the duty cycle that is sent to a
PWM module. This means that I, is controlled with a few switching
cycles delay(40 to 100 ps for a 50 kHz switching frequency).The proposed
controller implements the digital version of a charge control ,deciding
every system clock cycle (every 50 ns for a 20 MHz FPGA clock) whether
to keep the MOSFET on or off.
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The working principle is to integrate I, during a switching cycle (in
the digital version, the integrator is substituted by a simple adder unit)
until it reaches the target value, defined by the product of Vi, by Gin- A
high speed A/D converter is used for sampling L, (a HI5805, a 5 MSPS
12-bite). The last value of I, is added every FPGA clock cycle and the
MOSFET is turned off when the target value is reached, controlling in this
way the mean input current.

As it can be seen, both the adder and the comparator work at the
system clock frequency (20 MHz). This method cannot be implemented in
DSP because of its sequential nature. At least two instructions would be
necessary for these two operations (add and comparison), and each
instruction would consume more than a clock cycle, so that the process
would be too slow using a DSP. Even more, this technique would consume
almost all the DSP execution time, letting few resources for the rest of the

control. However, the multiplier can work at a lower frequency because
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its both inputs are low frequency signals. This allows using a multiplier
implemented with fewer resources because no optimization is necessary.

This loop, implemented as a digital charge control, is a good
example of the FPGA advantages. It uses a high-speed algorithm in which
all the resources are executed simultaneously. The hardware resources
required for the algorithm implementation are quite small (just an adder, a
comparator and multiplier) when compared with the traditional algorithms,
many of them based on PID controllers. The main point, which makes it
as accurate as the traditional algorithms, is the concurrency: not many
resources, but executed simultaneously.

Some advantages of this current-loop are the PFC accuracy, the
valid operation of both CCM and DCM and no need for a converter model.

This method is valid independently of the inductor (L) value

3.8.2 VOLTAGE-LOOP CONTROLLER:

The previous loop makes [ proportional to Vi, through Gi,
therefore achieving power factor correction. However, that loop alone
would leave the output voltage (Vo) uncontrolled. Therefore, the voltage-
loop decides the Gin value in order to control V oy, and consequently the
input power (Pi,)

The whole control has only one output: the control signal sent to the
switch in the power of converter. This signal is calculated by the current-
loop as explained before. The second loop (the voltage-loop) actuates
changing the Gi, value that is sent to the current-loop. So one loop changes
a parameter used in the other one. That is the way in which two different
signals (I;, and V) are controlled with just one control signal.

The control formula has been calculated without any transfer
function, just equaling the input and output power so Vou Temains

unchanged, based on the capacitor value, C. The result is a second order
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equation, but the implemented algorithm uses the first order equivalent

equation:
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Tvi, is the period of rectified Vi, (10 ms), Vournom 18 the nominal
value for Vou (48V) and Vi is also considered a constant (110 V), so
V,, is the only variable. This algorithm is a proportional control that has
shown a good dynamic response for controlling V. recovering steady
state within 3-4 cycles as shown in the experimental results. Its physical

implement is reflected in figure below.
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Fig: 15 Block diagram of Voltage loop
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Proportional controls have a steady-state error (an offset 1IN Vou
from the target value). This error could be avoided using a PI control, but
this would mean a big increase in the necessary resources. However, the
error is not a problem in this application because the implemented
proportional algorithm makes the error much smaller than the Vo ripple,
inherent to PFC.

The implemented loop is quite simple. It has a subtractor for the
difference between the nominal and measured Vg, The result of the
subtraction has to be multiplied by a constant. However, this constant can
always be adjusted to a power of two (changing the internal representation
of any signal), so the multiplication can be substituted by a shifting
operation, which is much simpler. Finally the value calculated represents
the change from the previous value, so an additional adder 1s necessary.
Therefore, the only necessary resources are the subtractor, a shifter and an
adder. This allows keeping the whole control very simple, according to the
design methodology here proposed.

In a power factor correction application, V,, has a ripple double in
frequency then the AC mains (100 Hz). An advantage of using a digital
control is avoiding the filter used for Vo, which analog controls use for
canceling that ripple. Some digital controls overcome this problem
calculating the ripple and subtracting it from the measured V.. However,
this calculus is not a trivial one. We propose a much simpler method that
consists in using the maximum value of Vo in each rectified Vi, cycle .In
this way, Veu does not need to be filtered and no further calculation 1s
necessary. The main drawback of this method is that the changes in Gin
happen only once every rectified Vi, cycle, when a new Vyu value 1s

measured. In spite of it, a good dynamic response is achieved.

The outputs of the FPGA simulation are shown in the following
pages.
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3.9 DISCUSSION ON FPGA SIMULATION:

The simulation for the FPGA controller is done in such a way that if
the three input variables; the input voltage, the input current and the output
voltage are digitized and given as inputs to the controller; it generates a
series of pulses for switching the MOSFET ON and OFF. This can be seen
clearly from the screen shot given in the previous page. The 8 bit digital
values of the output voltage (VIN_V7), the input voltage (VIN_C7) and
the 12 bit digital value of the input current (IIN11) are given as mnputs
along with CLK (clock) signal to the FPGA controller. The output of the
FPGA controller can be seen from the CAL_ON_OFF output in the figure.

One important thing that is to be noted in the simulation is that the
output is obtained instantaneously after specifying the inputs. The
operations of the Current loop (Addition and Comparison) take place at
the system clock frequency so that a good control over the variation of
current is obtained. The Voltage loop (Multiplier) however functions at the
lower frequency because both its inputs are low frequency signals. The
only delay when using the FPGA controller is the inertial delay of the
hardware. This feature in FPGA controller is known as Concurrency. The
main point that makes this method so accurate is this feature of
concurrency: not many resources but executed simultaneously.

The operations of Multiplication, Addition, and Comparison are
executed one after the other in a micro controller and each operation takes

more than one clock cycle and so the execution time would be longer than

the FPGA controller.
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4. IMPLEMENTATION WITH PIC
MICROCONTROLLER

4.1 PIC Micro controller Core Features:
4.1.1 INTRODUCTION
« High-performance RISC CPU
« Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two
cycle
« Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle

« Up to 8K x 14 words of Flash Program Memory,

Up to 368 x 8 bytes of Data Memory (RAM)

Up to 256 x 8 bytes of EEPROM data memory
o Pin out compatible to the PIC16C73/74/76/77
« Interrupt capability (up to 14 internal/external
» Eight level deep hardware stack
« Direct, indirect, and relative addressing modes
» Power-on Reset (POR)
« Power-up Timer (PWRT) and
Oscillator Start-up Timer (OST)
« Watchdog Timer (WDT) with its own on-chip RC Oscillator for reliable
operation
« Programmable code-protection
 Power saving SLEEP mode
» Selectable oscillator options
« Low-power, high-speed CMOS EPROM/EEPROM technology
« Fully static design
« In-Circuit Serial Programming (ICSP) via two pins

« Only single 5V source needed for programming capability
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« In-Circuit Debugging via two pins
 Processor read/write access to program memory
« Wide operating voltage range: 2.5V to 5.5V
« High Sink/Source Current: 25 mA
« Commercial and Industrial temperature ranges
« Low-power consumption:
<2 mA typical @ 5V, 4 MHz
20mA typical @ 3V, 32 kHz
< 1mA typical standby current
4.1.2 Peripheral Features:
« Timer0: 8-bit timer/counter with 8-bit prescaler
e Timerl: 16-bit timer/counter with prescaler can be incremented during
sleep via external crystal/clock
« Timer2: 8-bit timer/counter with 8-bit period register, prescaler and
postscaler
« Two Capture, Compare, PWM modules
Capture is 16-bit, max resolution is 12.5 ns,
Compare is 16-bit, max resolution is 200 ns,
PWM max. Resolution is 10-bit
« 10-bit multi-channel Analog-to-Digital converter
« Synchronous Serial Port (SSP) with SPL (Master Mode) and I2C.
(Master/Slave)
« Universal Synchronous Asynchronous Receiver Transmitter
(USART/SCI) with 9-bit address detection.
« Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS
controls (40/44-pin only)

« Brownout detection circuitry for Brownout Reset (BOR)
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4.1.3 ARCHITECTURE OF PIC 16F877 (FIG: 19)

Crevice Program Data Memory Data EEPROM
Flash
PiC16FS874 4K 132 Bytes 123 Sytes
PHCIBF87T 3K 368 Bytes 236 Byies
13 5 oo Data Bus 8 PORTA
4——rogram Counter
FLASH lL v R&0IAND
Progranm I RA1ANT
Mermory RAM ! R&Z2IAND
8 Level Stack Fi}; e R&3aN3Aref
{13-bit) Registers RA4TOCK:
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Program 14 f
RAM addr (1) 9P = PORTB
Bus v A i RBOANT
" Addr kAU RB1
prps / Addr MUX
Instruction reg ) RE2
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RBS
REBIPGT
- RE7HFGD
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p?r*?e'-up ) RC3{SCKISCL
W mner RC4/SOINSDA
Instruction Oscillator RCS/IS0O
Decode & K= | Start-up Timer RCBITXICK
Control Power-on RCTIRX/DT
Resst PORTD
Timing Watchdog
XK= generation [0 Timer
QSC1ICLKIN Brown-ot
OBCHCLKOUT Resst 5 < ROTIPSPTRECOPSPD
In-Cireuit
Debugger
Low-'/oltage
Programming Paratlel Stave Port < PORTE
é é [<] REOMANSIRD
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TimerQ Timer1 Timer2 10-bit A/T
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i
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4

4

Data EEPROM

cCP1,2

Synchronous
Serial Port

USART

Note 1:

Table 3: Memory Specification of 16F877 Microcontroller

Higher order bits are from the STATUS register.

DEVICE PROGRAM DATA DATA
FLASH MEMORY EEPROM
PIC 8K 368 Bytes 256 Bytes

16F&77
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TRAPRTHY —= []
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RAZANZVREF- w—m []
RASANIVREF+ =—= []
RA4TOCK! a—a []

RAEANATE -— []
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RE1/WR/ANE =—= []
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VIO ——= []

(11 P——
OSCUCLKIN ——= [
OSCHCLKOUT a— []

RCATIOSUCEP? w—a [
RCHCCPT w—e []
RCISCKISCL a—= []
ROOIPSPY w—= []
RD1PSPT —=— [
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[}
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17
18
12
a0

p18/2.849101d
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Fig: 20 Pin diagram for PICI6F877
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RET/PGD
RBA/PGL
RBZ
RBIPGM
HE2

HB1
RBEOIMT
Voo

RO7/PSEY
ROGPSPE
RO&PSPE
RE4/75P4
RCTRMDT
RCETX/CK
RCESCO

RC4/SLISDA

RO3IFSP3
RO2IFSP2



Table 4;: PIN OUT DESCRIPTION

Pin Name DIP | PLCC | QFP | WOYP Buffer Descrintion
' Pin# | Pin# | Pin# |Type|  Type P

CSCHCLKIN 13 14 30 | ST/ICWMOS™ | Dscillator crystal inputiexternal clock source Input.

QSC2CLKOUT 14 15 21 O — Oscillator crystal output. Connects to crystal of resonator in
crystal oscillator mode. In RC mode, 0OSC2 pin outputs
CLKOUT which has 1/4 the frequency of OSC1, and
denotes the instruction cycle rate.

MCLRNVeRTHY 1 2 18 1P ST Master clear (Teset) input or programming valtage input of
high woltage test made control. This pin is an active low
reset to the device.

PORTA is a bi-directicnal VO port.

RAQ/AND 3 19 tHe TTL RA0 can also be analog inputl

RAT/ANT 3 4 20 1o TTL RA1 can also be analog input

RAIANZ2/VrEr- 5 21 e TTL RA2 can also be analog input2 or negative analog ref-

erence voltage

RAJAN3VREF+ 5 6 22 o TTL RA3 can also be analog input3 or positive analog refer-

ence voitage

RA4/TOCK] B 7 23 0o ST RA4 can also be the clock input to the TimerD tmer/

counter. Qutput is open drain type.

RAGLISSIANA 7 8 24 o TTL RAS can also be analog inputd or the slave select for

the synchronous sernal port.
PORTB is a bi-directional /O port. PORTE can be software
programmed for internal weak pull-up on all inputs.

RBO/INT 33 36 8 yo | TTLSTY RBO can also be the externatl interrupt pin.

RB1 34 37 5 e TTL

RB2 35 38 10 e TTL

RB3/PGM 35 39 11 i TTL RB3 can also be the low voltage programming input

RB4 37 41 14 e TTL Interrupt on change pin.

RB5 38 42 15 o TTL Interrupt on change pin.

RB&/PGC 39 43 16 | vo | TTLST@ interrupt on change pin or In-Circuit Debugger pin.

Serial programming clock.
RB7/PGD 40 44 17 | o | TTusT® Interrupt on change pin or In-Circuit Debugger pin.
Serial programming data.
Legend: I=input O =output I/O =input/output P =power
__ —TNotused TTL=TTL input ST = Schmitt Trigger input
Note

1. This buffer is a Schmitt Trigger input when configured as an external

interrupt

2. This buffer is a Schmitt Trigger input when used in serial programming

mode.
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3. This buffer is a Schmitt Trigger input when configured as general

purpose I/O and a TTL input when used in the Parallel Slave Port mode

(for interfacing to a microprocessor bus).

4. This buffer is a Schmitt Trigger input when configured in RC oscillator

mode and a CMOS input otherwise.

Pin Name DIP | PLCC QFP | VOIP Buffer Description
Pin# | Pin# | Pin# | Type Type P
PORTC is a bi-directional IfO port.
RCOT10OSOMICKI 15 16 32 ne) ST RCC can also be the Timerl oscillator output or a
Timer1 clock input.
RCUT10SICCP2 15 18 35 11O ST RC1 can also be the Timer! oscillator input or
Capture? inputiCompare2 output/PYWM2 output.
RC2/CCP1 17 19 38 Yo ST RC2 can also be the Capturel input‘Compare 1 output!
PWMN'1 output.
RCISCK/SCL 18 20 37 1o ST RC3 can also be the synchronous serial clock input/
cutput for both SP1 and 1°C modes.
RC4/SDI/SDA 23 25 42 O ST RC4 can also be the SP1 Data In {SP1 mode} or
data 1O {IFC mode).
RCE/SDO 24 26 43 1O ST RCE can aiso be the SP1 Data Qut
(SPI mode).
RCEMICK 25 27 44 W2 ST RC6 can also be the USART Asynchronous Transmit or
Synchronous Clock.
RCTRXOT 26 29 1 1o ST RCT can also be the USART Asynchronous Receive or
Synchronous Data.
PORTD is a bi-directional VO port or parallel slave port
when interfacing to a microprocessaor bus.
RDOPSPO 19 21 38 o STATL™
RDUPSP1 20 22 38 WO ST/TTLG!
RD2/PSP2 21 23 40 o] STATL®
RD3IPSP3 2 24 41 o STATLR
RD4/PSP4 27 30 2 o STTTLR!
RD5/PSP5 28 3 3 o STTL®
RD6/PSP6 29 32 4 He] STATLE
RD7/PSP7 30 33 5 o STATLE
PORTE is a br-directional /O port.
REO/RD/ANS 8 9 25 1o ST/TTLR REQ can also be read control for the parallel stave port,
or analog input5.
RE4/WRIANG 9 10 2B 0 STATL® RE1 can also be write control for the parallel slave port,
or analog inputB.
REXTSIANT 10 11 27 Ko STATLE RE2 can also be select controi for the parallel slave
port, or analog input?.
Vss 12,31 13,34 6,29 P — Ground reference Tor logic and 11O pins.
VoD 1132 12,35 7.28 P — Positive supply for logic and lfO pins.
NC — 117.28, 1 1213, — These pins are nat internally connected. These pins should
40 33,34 be left unconnected.
Legend: I = input O = output I/O = input/output P = power
— =Not used TTL = TTL input ST = Schmitt Trigger input
Note
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1. This buffer 1s a Schmitt Trigger input when configured as an external
interrupt.

2. This buffer is a Schmitt Trigger input when used in serial programming
mode.

3. This buffer 1s a Schmitt Trigger input when configured as general
purpose I/O and a TTL input when used in the Parallel Slave Port mode
(for interfacing to a microprocessor bus).

4. This buffer 1s a Schmitt Trigger input when configured in RC oscillator
mode and a CMOS input otherwise.

4.1.4.1/0 PORTS
Some pins for these I/O ports are multiplexed with an alternate
function for the peripheral features on the device. In general, when a
peripheral is enabled, that pin may not be used as a general purpose I/O
pin.
Additional Information on I/O ports may be found in the

ICmicro™ Mid-Range Reference Manual,

PORTA and the TRISA Register:

PORTA is a 6-bit wide bi-directional port. The corresponding data
direction register is TRISA. Setting a TRISA bit (=1) will make the
corresponding PORTA pin an input, i.e., put the corresponding output
driver in a Hi-impedance mode. Clearing a TRISA bit (=0) will make the
corresponding PORTA pin an output, i.e., put the contents of the output
latch on the selected pin. Reading the PORTA register reads the status of
the pins whereas writing to it will write to the port latch. All write
operations are read-modify-write operations. Therefore a write to a port

implies that the port pins are read; this value is modified, and then written
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to the port data latch. Pin RA4 is multiplexed with the Timer0 module
clock input to become the RA4/TOCKI pin. The RA4/TOCKI pin 1s a

Schmitt Trigger input and an open drain output. All other RA port pins
have TTL input levels and full CMOS output drivers. Other PORTA pins

are multiplexed with analog inputs and analog VREF input. The operation

of each pin is selected by clearing/setting the control bits in the ADCON1

register (A/D Control Registerl).

The TRISA register controls the direction of the RA pins, even

when they are being used as analog inputs. The user must ensure the bits in

the TRISA register are maintained set when using them as analog nputs.

Table 5: PORT A FUNCTIONS

Name Bit# Buffer | Function
RAG/ANO bitd TTL inputroutput or analog input
RA1/AN1 bit1 TTL Input/output or analog input
RAZ/AN2 bit2 TTL Inputroutput or analog input
RA3/AN3NVREF | bIt3 TTL input/output or analog input or VREF
RA4/TOCKI bitd4 8T . input/output or external clock input for Timer0
Qutput is open drain type
RAS/SS/AN4 bits TTL inputfoutput or slave select input for synchronous serial port or analiog input

Table 6: SUMMARY OF REGISTERS ASSOCIATED WITH PORT A

Legend: TTL = TTL input, ST = Schmitt Trigger input

Value on: Value on all
Address |Name  |Bit7 |Bit6 |Bit5 Bit4 |Bit3 |Bitz  |Bit1 |[Bit0 |POR, h” o

BOR other resets

05h PORTA | — | — RAS RA4 RA3 RAZ RA1 RAD | --0x 0000 | --0u 000D

85h TRISA | — | — PCRTA Data Direction Register --11 1111 | --11 1111

oFh | ADCONT1 | — | — | ADFM | — |PcFG3| PCFG2 [ PCFG1 | PCFGO | --o0- 0000 | —-0- 000
Legend: x = unknown, u = unchanged, - = unimplemented
locations read as '0'. Shaded cells are not used by PORTA.
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PORTB and the TRISB Register:

PORTB is an 8-bit wide bi-directional port. The corresponding
data direction register is TRISB. Setting a TRISB bit (=1) will make the
corresponding PORTB pin an input, i.e., put the corresponding output
driver in a hi-impedance mode. Clearing a TRISB bit (=0) will make the
corresponding PORTB pin an output, i.e., put the contents of the output
latch on the selected pin. Three pins of PORTB are multiplexed with the
Low Voltage Programming function; RB3/PGM, RB6/PGC and RB7/PGD.
The alternate functions of these pins are described in the Special Features
Section. Each of the PORTB pins has a weak internal pull-up. A single
control bit can turn on all the pull-ups. Clearing bit performs this
RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off
when the port pin is configured as an output. The pull-ups are disabled on a
Power-on Reset.

Four of PORTB’s pins, RB7:RB4, have an interrupt on change feature.
Only pins configured as inputs can cause this interrupt to occur (i.e. any
RB7:RB4 pin configured as an output is excluded from the interrupt on
change comparison). The input pins (of RB7:RB4) are compared with the
old value latched on the last read of PORTB. The “mismatch” outputs of
RB7:RB4 are OR’ed together to generate the RB Port Change Interrupt
with flag bit RBIF (INTCON<0>). This interrupt can wake the device from
SLEEP. The user, in the interrupt service routine, can clear the interrupt in
the following manner:

a) Any read or write of PORTB. This will end the mismatch
condition.

b) Clear flag bit RBIF. A mismatch condition will continue to
set flag bit RBIF. Reading PORTB will end the mismatch condition, and
allow flag bit RBIF to be cleared. The interrupt on change feature is
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recommended for wake-up on key depression operation and operations

where PORTB is only used for the interrupt on change feature. Polling of

PORTB is not recommended while using the interrupt on change feature.

This interrupt on mismatch feature, together with software configurable

pull-ups on these four pins, allow easy interface to a keypad and make it

possible for wake-up on key depression

Table 7: PORT B FUNCTIONS

Name Bit# | Buffer Function

RBO/NT bith TTUsTH Inputioutput pin or external interrupt input. Internal software
programmable weak pull-up.

RB1 bit1 TTL Inputioutput pin. Internal software programmable weak pull-up.

RB2 bif2 TTL Inputioutput pin. Internal software programmable weak pull-up.

RB3PCGM  |bit3 TTL Inputioutput pin or programming pin in LYP mode. internal software pro-
grammable weak pull-up.

RB4 bitd TTL Inputoutput pin (with interrupt on change). Internal software programmable
weak pull-up.

RB5 bits TTL Inputioutput pin (with interrupt on change). Internal software programmable
weak pull-up.

RB6PGC  |bite TTUST® Inputioutput pin (with interrupt on change) or In-Circuit Debugger pin. inter-
nal software programmable weak pull-up. Serial programming clock.

RB7PGD  |bit7 TTUSTE Inputioutput pin (with interrupt on change) or In-Circuit Debugger pin. Inter-
nal software programmable weak pull-up. Serial programming data.

Legend: TTL =TTL input, ST = Schmitt Trigger input
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2- This buffer is 3 Schmitt Trigger input when used in serial programming mode.

Table 8: SUMMARY OF REGISTERS ASSOCIATED WITH PORT B

Value on:
Address |Name |Bit7 |Bit® Bit5 |Bit4 |Bit3 |Bit2 |Bit1 |Bito |POR, Value on all
other resets
BOR
O6h 106h | PORTB | RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RBO | oo oom | wiuu mam
86h, 186h TRISB PORTB Diata Direction Register 1111 1111 1111 1111
81h, 181h | OPTION_| RBPU | INTEDG | TOCS | TOSE | PSA | PS2 | PSI PSSO 1111 1111 1111 1111
REG

Legend: x = unknown, u = unchanged. Shaded celis are not used by PORTB.
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PORTC and the TRISC Register:

PORTC is an 8-bit wide bi-directional port. The corresponding data
direction register is TRISC. Setting a TRISC bit (=1) will make the
corresponding PORTC pin an input, i.e., put the corresponding output
driver in a hi-impedance mode. Clearing a TRISC bit (=0) will make the
corresponding PORTC pin an output, i.e., put the contents of the output
latch on the selected pin. PORTC is multiplexed with several peripheral
functions
(Table-3.5). PORTC pins have Schmitt Trigger input buffers.

When the I°C module is enabled, the PORTC (3:4) pins can be
configured with normal I°C levels or with SMBUS levels by using the
CKE bit (SSPSTAT <6>).

When enabling peripheral functions, care should be taken in defining
TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to
make a pin an output, while other peripherals override the TRIS bit to
make a pin an input. Since the TRIS bit override is in effect while the
peripheral is enabled, read-modify write instructions (BSF, BCF, XORWEF)
with TRISC, as destination should be avoided. The user should refer to the

corresponding peripheral section for the correct TRIS bit settings.
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Table 9: PORT C FUNCTIONS

Name Bit# |BufferType |Function

RCO/T10SO/T1CKI b0 | ST inputioutput port pin or Timer1 oscillator cutput/Timer1 ctock input

RCHUTI1OSICCP2 bitt | ST Inputioutput port pin or Timer1 oscillator input or Capture2 input/
Compare2 output/PWH2 output

RC2/CCP1 iz | ST Inputioutput port pin or Capture1 input‘Compare1 SUtputiPWh11
output

RC3/SCK/SCL bit3 | ST RC3 can also be the synchronous serial clock for both SP1and 1°C
modes.

RC4/SDISDA bitd |ST RC4 can also be the SPI Data In (SPI mode) or data 110 {I°C mode).

RC5/SDO bits | ST Input/output port pin or Synchronous Serial Port data cutput

RCE/TXICK bith | ST Inputioutput port pin or USART Asynchronous Transmit or Synchro-
nous Clock

RCTIRX/IDT hit7 ST Inputfoutput port pin or USART Asynchronous Receive or Synchro-
nous Data

Legend: ST = Schmitt Trigger input

Table 10: SUMMARY OF REGISTERS ASSOCIATED WITH PORT C

Value on
Value on: all
Address |Name | Bit7 | Bité | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit¢ |POR,
BOR other
resets
07h PORTC | RC7 RCH RCE | RC4 | RC3 | RC2 | RCY RCO | oo wox | uuwu wuau
87h TRISC PORTC Data Direction Reqister 1111 1111 | 1111 1131

Legend: x = unknown, u = unchanged.

PORTD and TRISD Registers:

This section is not applicable to the 28-pin devices. PORTD is an 8-

bit port with Schmitt Trigger input buffers. Each pin is individually

configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor Port
(parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this
mode, the input buffers are TTL.
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Table 11: PORT D FUNCTIONS

Name Bit# Buffer Type Function

RDU/PSPO hith STATUN tnput/ouiput port pin or parallel slave port bit0
RD1U/PSP1 hitd STTTLN tnput:cutput port pin of parallel slave port bit1
RD2/PSP2 hit2 STATLY inputioutput port pin or paralie! slave port bit2
RD3/PSP3 bit3 ST/TTLY Inputioutput port pin or parallel slave port bit3
RD4/PSP4 hitd sTATLM inputfoutput port pin or parallel siave port bitd
RD5/PSP5 hits STATLY Inputfoutput port pin or paraliel stave port bits
RD6/PSPH bit6 STATUY input/output port pin or paraliel siave port bitd
RD7/PSPT7 bit? sTaTLY input/output port pin or parallei stave port bit7

Legend: ST = Schmitt Trigger input TTL = TTL input
Note 1: Input buffers are Schmitt Triggers when in 10 mode and TTL buffer when in Paralle! Slave Port Made.

Table 12: SUMMARY OF REGISTERS ASSOCIATED WITH PORT D

Value on: | Value on all
Address |Name |Bit7 |Bit6|Bit5| Bit4 |Bit3| Bit2 | Bit1 Bit0 |POR, other
BOR resets
0sh |PORTD| RD7 | RDG | RDb RD4 RD3 | RD? RDH RD0 | wox xox | wam wam
géh | TRISD PORTD Data Direction Register 1111 1111 | 1111 1111
89h TRISE | IBF | OBF {{BOV | PSPMODE | — PORTE Data Direction Bits | 0000 -111 | o000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

PORTE and TRISE Registers:

PORTE has three pins REO/RD/AN5, REI/WR/AN6 and
RE2/CS/AN7, which are individually configurable as inputs or outputs.
These pins have Schmitt Trigger input buffers.

The PORTE pins become control inputs for the microprocessor port
when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make
sure that the TRISE<2:0> bits are set (pins are configured as digital inputs).
Ensure ADCONI1 is configured for digital I/O. In this mode the input
buffers are TTL.

PORTE pins are multiplexed with analog inputs. When selected as
an analog input, these pins will read as '0's. TRISE controls the direction of

the RE pins, even when they are being used as analog inputs. The user
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must make sure to keep the pins configured as inputs when using them as

analog inputs.

Table 13: PORT E FUNCTIONS

Name

Bit#

BufferType | Function

REO/RD/ANS

bitd

st
analog input:
RD

1 = Not a read operation
0 = Read operation. Reads PORTD register {if chip selected)

Inputioutput port pin or read control input in paraliel siave port mode cor

RE1/WR/ANG

bith

STTLY
analog input:
WR

1 =Not a write operation
0 =Write operation. Writes PORTD register {if chip selected)

Input/output port pin or write control input in paratiel siave port mode or

RE2/CS/ANT

bit2

sST/TTL

cs

1 = Device is not selected
0 = Device is selected

Inputioutput port pin or chip select control input in parallel slave port
mode or analog input:

Legend: ST = Schmitt Trigger input TTL = TTL input
Note 1: Input buffers are Schmitt Triggers when in YO mode and TTL buffers when in Parallel Stave Port Mode.

Table 14: SUMMARY OF REGISTERS ASSOCIATED WITH PORT E

Value on:
AddrName |Bit7|Bite|Bits |mit4  |Bit3 |Bit2 |Bit1 |[Bito |POR Value on all
ofher resats
BOR
%h | PORTE| — | — | — - — RE2 RE1 REQ | ---- -xxx | ---- -um
89h | TRISE | IBF | OBF | IBOV | PSPMODE | — PORTE Data Direction Bits | 0000 -111 | 0060 -111
o |ADCONT | — | — |aDFM| — | PCFG3 | PCFG2 | PCFGT | PCFGO | --0- oooo | --0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as ‘0" Shaded cells are not used by PORTE.
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4.1.5. MEMORY ORGANISATION:

There are three memory blocks in each of the PIC16f877 MUCs.
The program memory and Data Memory have separate buses so that

concurrent access can occur.

PROGRAM MEMORY ORGANISATION

The PIC16f877 devices have a 13-bit program counter capable of
addressing 8K *14 words of FLASH program memory. Accessing a
location above the physically implemented address will cause a
wraparound.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

DATA MEMORY ORGANISATION

The data memory is partitioned into multiple banks that contain the
General Purpose Registers and the special functions Registers. Bits RP1
(STATUS<6) and RPO (STATYUS<5>) are the bank selected bits.

Table 15: Data Memory Organization

RP1:RPO Banks
00 0
01 1
10 2
11 3

Each bank extends up to 7Fh (1238 bytes). The lower locations of
each bank are reserved for the Special Function Registers. Above the

Special Function Registers are General Purpose Registers, implemented as
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static RAM. All implemented banks contain special function registers.
Some frequently used special function registers from one bank may be

mirrored in another bank for code reduction and quicker access.
GENERAL PURPOSE REGISTER FILE
The register file can be accessed either directly or indirectly through

the File Selected Register (FSR). The following figure shows the
PIC16F877 REGISTER FILE MAP
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Indirect addr.f?| aoh indirect ador | son Indirect addr. | 1007 | Irdiesct agar
TMRE a1h OPTICON REG| &1h TMROD 1010 CPTION_REG
PCL azh PCL a2h gL 1029 PCL
STATUS 03h STATUS £3h STATUS 1330 STATUS
FSR 04h F5R 24h FSR 1040 FER
PORTA Qch TRISA 25h 1050
PDRTB 0&h TRIS3 &6k PORTE 108h TRIS3
PORTC O7h TRISC &r 1077
PORTD i | O8h TRISD ™ | 88h 1080
PORTE % | D8h TRISE™M | ash 108h
PCLATH | 02h PCLATH 8ah PCLATH 104h SCLATH
IMTCON 0Eh INTCON £Bh IMTCOH 193h INTCON
PiR1 0Ch PIE1 8Ch EEDATS | 10Ch EECOMT
PiF2 JDh PIE2 ECh EEADR 10Dh EECONZ
TMREAL OEh PCON g8Eh EEDATH 10Eh Ressrved?
TMR1H OFh &8Fh EEADRH 10Fh Reserved™
TICON 1Gh alh 1105
TMRZ 11h ESPCONZ 91h 111h
T2COM 12h PR? o2h 112h
SS5PBUF 12h sSspabD g3k 1130
ISPCON 14h SSPSTAT Gdhy 114n
CCPR1L Eh 95 h 1150
ZCPR1H 1€h 96h 118h
CCP1COM 17h a7h General 117h General
' . Purpose i Furposs
RCSTA | 18h TXSTA GBh Register | 1190 Register
TXREG 15h SPBRG ash 16 Bytes 114n 16 Bytes
RCREG 1Ah 9Ah 11Ah
CCPR2L 1Bh 9Bh 118h
ccpR2H | 1Ch ach 1MC
CccP2coN | 10h 9Dh 11Dh
ADRESH 1Eh ADRESL SER 11Eh
ADCOND 1Fh ADCON1 oFh 11Fh
20h A0h 1200
General General General seneral
Purpose Purpose Furpose Purpose
Register Register Register Register
96 Bytes 80 Bytes - B0 Bytes 16Eh 80 Bytes
accesses | T 0D accesses | /00 BCCESEES
70h-7Fh 70h-TFh Fon - 7Fh
TFh FFh 17Fh
Bank O Bank 1 Bank 2 Banx 3

Unimplementad data memory locaticns, read as ‘0.

tot a physical register.

Mote 1- These regisiers are not implemented on 28-pin devices.
2:  These registers ara resenvad, maintain these registers ciaar.
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4.1.6. INSTRUCTION SET SUMMARY

Each PIC 16F877 instruction is a 14-bit word, divided into an
OPCODE that specifies the instruction type and one or more operand
which further specify the operation of the instruction. The PIC16F877
instruction set summary in table 12 lists byte-oriented, bit-oriented, and
literal and control operations. Tablell shows the opcode Field
descriptions.

For byte-oriented instructions, ‘f;” represents a file register
designator and‘d’ represents a destination designator. The file register
designator specirids that file register is to be used by the instruction. The
destination designator specified where the result of the operation is to be
placed. If*d’ is zero, the result is placed in the w register. If*d’ is one, the
result is placed in the file register specified in the instruction.

For bit-oriented instructions, ‘b’ represents a bit field designator
which selects the number of the bit affected by the operation, which ‘f’
represents the address of the file in which the bits is located.

For literal and control operations, ‘k’ represents an eight or eleven

bit constant or literal value.

60



Table 16: OPCODE FIELD DESCRIPTIONS

Field Description
£ Register fite address {0x00 to Ox7F]
10} Working register (accumulator}
b Bit address within an 8-bit file register
k Literal field, constant data or label
x Don't care location {=0 or 1}

The assembler will generate code with x = 0. Itis the
recommended form of use for compatibility with all
Microchip software tools.

d Destination select; d = 0: store result in W,
d = 1: store result in file register f.
Defaultisd =1
BC Program Counter
TO Time-out bt
FD Fower-down bit

The instruction set is highly orthogonal and is grouped into three basic
categories:

e Byte-oriented operations

¢ Bit-oriented operations

o Literal and control operations

All instructions are executed within one single instruction cycle,

unless a conditional test is true or the program counter is changed as a
result of an instruction. In this case, the execution takes two instruction
cycles with the second cycle executed as a NOP. One instruction cycle
consists of four oscillator periods. Thus, for an oscillator frequency of 4
MHz, the normal instruction execution time is 1 ms .If a conditional test 1s
true or the program counter is changed as a result of an instruction, the

instruction execution time is 2 ms.
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GENERAL FORMAT FOR INSTRUCTIONS

Byie-onented file register oparaticns
13 & 7 &6

| OPCODE b f(FILE #) J

d = 0 for destination

d = 1 for destination T
f = 7-kit file register address

3

[

LA
W

Bit-criented file register operations
O

13 10 © 78
f OPCCDE kA f{FILE #)

{BIT #)

by = 3-bit hit address
f = 7-hit file register address

Literal and control operaions

General
i

13
[ OPCODE K {literal)

k = 8-hit immediate vaius

CcALL and GOTO instructions only
13 11 14 2
r OPCCDE k (iteral)

k = 14-bit immediate value

16F877 INSTRUCTION SET
The PIC 16F877 instruction set is given below.

62



Mnemaonic, Description Cycles 14-Bit Opcode Status | Hotes
Operands MSh [sh Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS

ADDWF f,d | AddWandf 1 oo o111 Afff fEfF | CDCE iz
ANDWF f,d | ANDWwith f § |00 010l Afff £fff |7 1.2
CLRF f Clear 1 a0 oool 1fff Efff |2 2
CLRW - Clear W 1 o0 000l Qe wooee | 2

COMF f.d | Complement f 1 oo 1001 Afff £EEE| 2 1.2
DECF f,d | Decrementt 1 o0 0011 Afff ffEE| T 12
DECFSZ  f,d | Decrement{ Skipit0 420 |on 1011 Afff  Efff 122
INCF fd |incrementf 1|00 LMo dfff EffE |7 1.2
INCFSZ f,d |inceement f, Skip if0 2y foop 1111 Afff EffF 123
IORWF f,d |incusive CRW withf 1 |00 o0 Afff FEEE|Z 12
MOVE fd | Movef 1 o0 1000 dFff fEff |2 1.2
MOVWFI f Move Wiof 1 |00 oDo0 Ifff  EFEf

NOP - hip Operation 1 o0 0000 Oxeed  0DOD

RLF f,d | Rotate Left f through Carry 1|00 110l dfff fffE(C 12
RRF f,d | Rotate Right f through Carry v lon 1100 4fff f£fff | C 2
SUBWF f,d | Subtract W fromf 1 |00 o0lo Afff ffff | COCE 2
SWAPF  f,d | Swapnibblesinf t o |oo 1110 dfff  £EEf 2
XORWF f,d | Exclugive OR W with { 1 |00 0110 Afff ffEfE |2 12
BIT-ORIENTED FILE REGISTER OPERATIONS

BCF f,b | Bt Clear{ 1 01 0obb bEff EEEE 1.2
BSF f,b | B Setf 1 01 0Olkk bfff ffff 1.2
BTFSC f,b | Bit Testf, Skip if Clear 1(2) | 01 10k bEff ffff 3
BTFSS f,b | Bit Testf, Skip if Set 12 1 01 1lbb bEEE  Efff 3
LITERAL AND CONTROL OPERATIONS

ADDLW k | Add literal and W 1 11 1lx kkkk kkkk| CLCZ
ANDLW k | AND liferal with W 1 11 1001 kkkk kkkk| 2

CALL k | Call subroutine 2 10 Okkk kkkk kkkk

CLRWDT - | Clear Watchdog Timer 1 06 0Opo 0110 0100| TOPFD
GOTO k | Gotoaddress 2 10 lekk kkkk kkkk

IORLW k | Inclusive OR iiteral with W 1 11 1000 kkkk kkkk| Z

MOVLW k | Move literal to'W 1 11 Ol kkkk kkkk

RETFIE - Return from interrupt 2 00 QooD oD 1001

RETLW k Return with literal in W 2 11 Olbxx kkkk kkkk

RETURN - Return from Subrouting 2 00 0000 0000 1000

SLEEP - | Gointo standby mode 1 o0 0000 0110 0011| TOPD
SUBLW k | Subtract W from literal 1 11 1iox kkkk kkkk| CRCZ
XORLW k | Exclusive OR literal with 1 11 1010 kkkk kkkk| £

Note 4:  When an O register is modified as a function of itseff { e.g., MOVF BORTB, 1), the value used will be that value present on
the pins themselves. For example, if the data latch is "1’ for a pin configured as input and is driven low by an external
device, the data will be written back witha'D".

2 I this instruction is executed on the TMRO register (and, where applicable, d = 1), the prescaer will be ceared If assigned
to the Timer Module.

3 If Program Courter {PC} is modified or a conditional test ie Tue, the ingiruction requires two cycles. The second cycle
executed as & MOP.
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4.2. SYSTEM COMPONENTS
4.2.1. FLY-BACK CONVERTER CIRCUIT:

A normal fly back converter is used in this project. The essential
necessity for a fly back converter was already explained in the second
chapter and is reiterated here. The input to power factor pre-regulator
(PFP) is a full-rectified sinusoidal waveform and the output of the power
factor pre-regulator is a constant DC voltage. Therefore, it becomes
essential that the voltage transfer ratio has to be maximum at the angles 0
and 7 relatively to what it has to be at 7/2. So, as a result there has to be a
continuous variation in voltage transfer ratio throughout a half line period.
The high voltage transfer ratio at the zero and 7 angles can be achieved by
using boost, buck-boost or fly back topologies. Buck topology cannot

provide high voltage transfer ratio

A fly back converter provides a variety of voltage by chopping the
input DC into a high frequency rectangular wave that can be passed
through the pulse transformer to several secondary windings. This
transformer also provides isolation, replacing the large, heavy, and

expensive line frequency transformer.

The high voltage sine is the most common waveform. This may be
converted immediately to DC and then stepped to the variety of regulated

voltage provided by a fly back converter.

The buck regulator produces a single voltage lower than its mput.
The boost’s single output is always above its input. If the input voltage
begins above the output voltage, but falls below the output voltage (such as

with a battery discharge neither alone works)
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The fly-back converter replaces the inductor of the boost with a
transformer primary. There may be as many secondaries as you need and

for each you need only a diode and capacitor. There are no inductors.

Now that there is a transformer in the system, the large, heavy,
expensive line transformer can be rectified and filtered, sending a high
voltage DC to the fly-back transformer. This transformer provides the
isolation between the line and your regulated voltage. Since the fly-back
converter is running above audio frequencies, that transformer is small,

light, available as a surface mount component, and less expensive.

The key to a fly-back regulator’s operation is that the primary and
the secondaries are out of phase. When the switch is ON the phase
difference will be opposite in the windings and the diode will be reverse

biased and hence it remains OFF.

Since no current flows in any of the secondaries, the primary acts as
a simple inductor. Current ramps in it, just as it does in the Boost regulator.
When the switch turns OFF, the field in the core reverses direction, and
begins to fall. This reversal of direction changes the polarities of the
voltage at all of the secondary windings. The dots are induced positive. The
diodes turn on and energy is transferred to the output capacitors and loads.
The loads are powered on the fly-back part of each cycle, thus the

converters name.

4.2.2. POWER FACTOR DETECTION CIRCUIT:

The Voltage and the current through the rectifier circuit are sensed

using the potential and current transformers, the output of which is applied
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as an input to the zero-crossing detector. This produces two square wave
outputs which correspond to the voltage across and the current through the
bridge circuit. Both the square waves are applied as input to the XOR gate
which produces a positive pulse output, the width of which corresponds to

the input power factor of the circuit.
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4.2.3 MICROCONTROLLER PROGRAMMING:

The microcontroller is programmed and is tested with the hardware
circuit. The program is given in Appendix II. The digitized inputs are
connected to the microcontroller parts and the output from the

microcontroller is used to drive the MOSFET.

4.2.4 TEST RESULTS:

Unlike FPGA, the microcontroller is a sequential device and
therefore processes do not take place concurrently but one after the other.
This deteriorates the switching speed of MOSFET from kHz to Hz. As a
result, When the MOSFET is switched at a frequency very less compared
to the frequency it had to be switched; the power factor does not improve.
The Conversion efficiency becomes very less. This leads to the very low
improvement in power factor which cannot be noticed. The screen-shot
displaying the time taken by the microcontroller for performing this

operation is shown in the next leaf.
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Since the switching speed of MOSFET is very low, it does not lead
to any viewable improvement in the power factor. The algorithm was
changed and tested for results with little modifications.

According to the above algorithm, the change in conductance for the

change in error voltage was calculated using the formula,

ot ;
AG, ey SV

iy 2 \ ST s
[ S )
in it e

and added with the previous value of conductance which gives the new
value of conductance corresponding to the error voltage. This conductance
is then multiplied with the input voltage which gives the reference mnput

current as the output.

I =0, ¥

-y g i

This output is compared with the actual current and the gating pulse
is given to turn the MOSFET ON, if the actual current is less than the
reference current and if the actual current is more than the reference
current, the MOSFET is turned OFF, so that the input current decreases

and tends to follow the input voltage, thus improving the power factor.

According to the first formula, the conductance is described as a
function of error voltage. So, it was anticipated that by decreasing the error
voltage, the conductance can be changed and the input power factor can be

improved. The circuit for testing the second method is shown below.
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The microcontroller is programmed as shown in Appendix Il
(program 2). The circuit was designed and tested with the inputs. In this
circuit, the microcontroller is programmed so as to change the duty ratio of
the PWM output of the microcontroller, in order to reduce the error voltage

and to maintain a constant voltage at the output.

4.2.5. TEST RESULTS:

The input power factor remained the same and there was no
improvement in the power factor. It affirmed that the control system that is
required to maintain high input power factors in the range of 0.95 to 0.99
must comprise of two loops namely the

» Voltage Loop
» Current Loop
which independently perform the following two actions.
> The Voltage loop maintains the output voltage at a constant value
providing the required voltage transfer ratio during the half line
period.

» The Current loop shapes the line current to a sinusoidal waveform.

The two loops can be combined by expressing the input current as a
function of input voltage as
Input current = K (input voltage)
where the constant K has to be a function relating the input current and
the error voltage.
This is explained in the previous chapters and is reiterated here for

convenience.
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4.3 DISCUSSIONS ON THE HARDWARE IMPLEMENTATION:

The problems faced when the Microcontroller is used instead of

FPGA are

R/
X4

*,

Q7
°o*

Unlike the FPGA, the Microcontroller 1s not a concurrent controller
and hence the operations take place one after the other leading to the
delay in this operation.

The multiplication operation and the cumulative addition operation
(which simulates integration in the analog circuit), takes iInnumerous
cycles that decrease the switching speed of MOSFET by a very large
factor.

The algorithm was made in the simplest possible way, by which a
single loop performs the two processes of maintaining the output
voltage constant as well as maintaining a sinusoidal line current. The
algorithm could not be further simplified.

In order to improve the power factor in this method using any
sequential controller, the clock frequency has to be very high than

available at present.

We can implement the power factor controller, if the problems listed

above are rectified.
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CONCLUSION

Since the power factor plays an important role to improve the
efficiency and miniaturization of the whole system with cost
effectiveness, the PWM control method was implemented in this project
for current shaping in order to improve the input power factor in the
range of 0.95 to 0.99. Field Programmable Gate Array controller was
simulated based on PWM technique in VHSIC HDL using Xilinx 1.5
tool. Simulation results for Voltage loop, Current loop and the FPGA
controller are obtained, which show the improvement in input power

factor.

The hardware implementation part was carried out with PIC micro
controller as the heart module. The micro controller was programmed
with the same algorithm of PWM control method and tested with
hardware. The PWM output of the micro controller was not matching
with the switching speed of MOSFET which lead to unexpected results
in shaping of current waveforms. So it is concluded that concurrency in
operation is an important feature for improving the power factor by this
method. The simulated codes in VHSIC HDL can be implemented in
FPGA chip in which the matching between the PWM output and
MOSFET switching speed will enhance the project and bring the

expected results in power factor improvement.
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APPENDIX I

PROGRAM FOR VOLTAGE LOOP

library IEEE;

use IEEE.std logic 1164.all;

use IEEE.std logic unsigned.all;
use IEEE.std_logic_arith.all;

entity voltageloop 1s
port(vin,vnorm:in std_logic_vector(7 downto 0);
clk:in std_logic;
gout:inout std_logic vector(7 downto 0));
end voltageloop;

architecture voltageloop arch of voltageloop 1s
component mac 1s
port(Ain : in std logic_vector(7 downto 0);

clk : in std_logic ;

macout : inout std logic vector(11 downto 0));
end component;

signal sout,shfout:std logic_vector(7 downto 0);
signal goutx:std logic_vector(11 downto 0);
signal gouti:integer;

begin

sout <= vnorm - vin;

shfout <="'0' & sout(7 downto 1);
pl:mac port map (shfout,clk,goutx);
gouti <= conv_integer(goutx);

gout <=conv_std logic vector(gouti,&);
end voltageloop_arch;
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PROGRAM FOR MAC COMPONENT IN VOLTAGE LOOP

library IEEE;

use IEEE.std logic 1164.all;

use IEEE.std logic unsigned.all;
use IEEE.std _logic arith.all;

entity mac is
port(Ain : in std_logic vector(7 downto 0);

clk : in std_logic;

macout : inout std logic vector(11 downto 0));
end mac;

architecture mac_arch of mac is
component adder8 12 is
port(A : in std_logic vector(7 downto 0);
B : in std logic vector(11 downto 0);
SUM : out std logic_vector(11 downto 0));
end component ;

component regl2 is
port(datain:in std_logic_vector(11 downto 0);
clk:in std logic;
dataout:out std logic vector(11 downto 0));
end component;

signal addout : std logic_vector(11 downto 0);
begin
ml : adder8 12 port map (ain,macout,addout);

3 : regl2 port map (addout,clk,macout);
end mac_arch;
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PROGRAM FOR 12 BIT REGISTER COMPONENT

library IEEE;
use IEEE.std logic 1164.all;

entity regl2 1s
port(datain:in std_logic vector(11 downto 0);
clk:in std_logic;
dataout:out std_logic_vector(11 downto 0));
end regl?2;

architecture regl2 arch of regl2 1s
begin

process(clk)

begin

if clk="1" and clk'event then
dataout <= datain;

end if;

end process;
end regl2_arch;
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PROGRAM FOR CURRENT LOOP

library IEEE;

use IEEE.std logic 1164.all;

use IEEE.std logic_unsigned.all;
use IEEE.std logic arith.all;

entity currentloop is

port(vin,gin:inout std_logic vector(7 downto 0);
un:inout std_logic vector(11 downto 0);
clk:in std_logic;
cur_out:out std logic);

end currentloop;

architecture currentloop arch of currentloop is

component mul8c is

port(a :1inout std logic vector(7 downto 0);
b :inout std logic vector(7 downto 0);
prod : mout std_logic_vector(15 downto 0));

end component;

component macl 1s
port(Ain : in std_logic vector(11 downto 0);

clk : in std_logic ;

macout : inout std logic vector(15 downto 0));
end component;

signal macout,mout:std logic_vector(15 downto 0);

begin

pl:mul8c port map (vin,gin,mout);
p2:macl port map (iin,clk,macout);
process(mout,macout)

begin

1f macout > mout then
cur_out <="1";

else
cur_out <='0";

end if;

end process;

end currentloop arch;
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PROGRAM FOR MAC1 COMPONENT IN CURRENT LOOP

library IEEE,;

use IEEE.std logic 1164.all;

use IEEE.std logic_unsigned.all;
use IEEE.std logic_arith.all;

entity macl 1s
port(Ain : in std_logic_vector(11 downto 0);

clk : in std_logic ;

macout : inout std_logic_vector(15 downto 0));
end macl;

architecture macl_arch of macl is
component adderl2 16 is
port(A : in std_logic_vector(11 downto 0);
B : in std_logic_vector(15 downto 0);
sUM : out std_logic_vector(15 downto 0));
end component ;

component regl6 1s
port(datain:in std_logic_vector(15 downto 0);
clk:in std_logic;
dataout:out std_logic_vector(15 downto 0));
end component;

signal addout : std_logic_vector(15 downto 0);
begin
ml : adder12 16 port map (ain,macout,addout);

13 : regl16 port map (addout,clk,macout);
end macl_arch;
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PROGRAM FOR ADDER12 16 COMPONENT IN MAC1

library IEEE;

use IEEE.std logic 1164.all;

use IEEE.std logic arith.all;

use IEEE.std logic unsigned.all;

entity adder12 16 is
port(a : i std_logic vector(11 downto 0);

b :1in std_logic_vector(15 downto 0);

sum : out std_logic vector(15 downto 0));
end adder12 16 ;

architecture adder12 16 arch of adder12 16 is
signal s,x:std_logic vector(15 downto 0);

begin

s<="0000" & a;

x<=a + b;

sum <=x;

end adder12 16 arch;
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PROGRAM FOR 16 BIT REGISTER

library IEEE;
use IEEE.std logic_1164.all;

entity regl6 1s
port(datain:in std_logic_vector(15 downto 0);
clk:in std _logic;
dataout:out std_logic_vector(15 downto 0));
end regl6;

architecture regl6_arch of regl6 is
begin

process(clk)

begin

if clk="1" and clk'event then
dataout <= datain;

end if;

end process;
end regl6_arch;
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PROGRAM FOR MULSC COMPONENT IN CURRENT LOOP

library IEEE;
use IEEE.std_logic 1164.all;

entity mul8c 1s

port(a :inout std_logic_vector(7 downto 0);
b :inout std logic vector(7 downto 0);
prod : inout std_logic_vector(15 downto 0));

end mul&c;

architecture circuits of mul8c is
signal zero : std_logic_vector(7 downto 0);
signal ncl : std_logic;
type arr8 is array(0 to 7) of std_logic_vector(7 downto 0);
signal s : arr§;
signal ¢ : arrg;
signal ss : arrs;
signal x :std logic;

component add8csa is
port(b  :in std logic;

a :in std_logic_vector(7 downto 0);
sum_in :in std logic_vector(7 downto 0);
cin :in std logic vector(7 downto 0);
sum_out : out std_logic_vector(7 downto 0);
cout :outstd logic vector(7 downto 0));

end component add8csa;

component add8 is
port(a :in std_logic_vector(7 downto 0);
b :in std logic vector(7 downto 0);
cin :in std logic;
sum : out std logic_vector(7 downto 0);
cout : out std _logic);
end component add8;

begin

zero <= "00000000";

X <___ '0';
st0: add8csa port map(b(0), a, zero , zero, s(0), c(0));
ss(0) <="'0'&s(0)(7 downto 1) ;
prod(0) <= s(0)(0) ;
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stage: for [ in 1 to 7 generate
st: add8csa port map(b(), a, ss(I-1) , c(I-1), s(I), c(I));
ss(I) <="0'&s(I)(7 downto 1) ;
prod(I) <= s(I)(0);

end generate stage;

add: add8 port map(ss(7), c(7), x , prod(15 downto 8), ncl);

end architecture circuits;
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PROGRAM FOR ADDS8CSA COMPONENT IN MULSC

library IEEE;
use IEEE.std logic 1164.all;

entity add8csa is

port(
b :in std logic;
a :in std_logic_vector(7 downto 0);

sum in :in std logic_vector(7 downto 0);

cin :in std logic vector(7 downto 0);

sum_out : out std_logic_vector(7 downto 0);

cout :outstd logic_vector(7 downto 0));
end add8csa;

architecture circuits of add8csa 1s
signal zero : std_logic_vector(7 downto 0) ;
signal aa : std_logic_vector(7 downto 0) ;

component fadd1
port(a :in std_logic;
b :in std logic;
cin :in std logic;
s :outstd logic;
cout : out std_logic);
end component faddl;

begin

zero <= "00000000";

aa <= a when b="1" else zero ;

stage: for I in O to 7 generate

sta: fadd1 port map(aa(l), sum_in(T), cin(I) , sum_out(I), cout(D));
end generate stage;

end architecture circuits;
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PROGRAM FOR DELAY64 COMPONENT

library IEEE;
use IEEE.std_logic 1164.all;

entity delay64 1s
port(din:in std_logic_vector(63 downto 0);
clk,en:in std_logic;
dout:out std_logic vector(63 downto 0));
end delay64;

architecture delay64 arch of delay64 is
begin

process(din,clk,en)

begin

if clk ='1" and clk'event then

if en ="'1"' then

dout <= din;

else

dout <=
"0000000000000000000000000000000000000000000000000000000
000000000";

end if;

end 1f;

end process;
end delay64 arch;
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PROGRAM FOR FADD3 COMPONENT

library IEEE;
use IEEE.std logic 1164.all;

entity fadd3 1s
port(a,b,c:in std_logic;

sum,carry:out std_logic);
end fadd3;

architecture fadd arch of fadd3 is
begin
sum <=a xor b xor c;

carry<=(a and b)or(b and c)or (c AND A);

end fadd_arch;
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PROGRAM FOR ADDS8 GEN

library IEEE;
use [EEE.std logic 1164.all;

entity addS is

port(a,b:in std_logic vector(7 downto 0);
cin:inout std_logic;
sum:out std_logic_vector(7 downto 0);
cout:out std_logic);

end adds;

architecture add8 arch of add8 is

component fadd3 is
port(a,b,c:in std_logic;

sum,carry:out std_logic);
end component;

signal c:std_logic vector(8 downto 0);
begin

cin <="0";
c(0)<=cin;

gl:foriin O to 7 generate
al:fadd3 port map(a(i),b(i),c(i),sum(i),c(i+1));

end generate;

cout<=¢(8);
end add8_arch;
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PROGRAM FOR ADDERS8 12 COMPONENT

library IEEE;

use IEEE.std logic_1164.all;

use IEEE.std logic arith.all;

use IEEE.std logic unsigned.all;

entity adder8 12 is
port(a : in std_logic_vector(7 downto 0);

b : in std logic vector(11 downto 0);

sum : out std logic vector(11 downto 0));
end entity ;

architecture adder8 12 arch of adder8 12 1s
signal s,x:std_logic vector(11 downto 0);

begin

s<="0000" & a;
x<=a+b;

sum <=X;

end adder8 12 arch;
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PROGRAM FOR FADD1 COMPONENT

library IEEE;
use IEEE.std_logic 1164.all;

entity faddl 1s
port(a,b,cin:in std_logic;

s,cout:out std_logic);
end faddl;

architecture fadd_arch of faddl is

begin

s <=a xor b xor cin;

cout<=(a and b)or(b and cin)or (cin and A);
end fadd arch;
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PROGRAM FOR SHIFTER COMPONENT

library IEEE;

use IEEE.std logic 1164.all;

use IEEE.std logic_unsigned.all;
use IEEE.std_logic arith.all;

entity shifter is

port(s:in std_logic_vector(2 downto 0);
datain:in std_logic_vector(7 downto 0);
shiftout:out std logic_vector(7 downto 0));

end shifter;

architecture shifter_arch of shifter is

begin
process(s,datain)
begin

if s="000" then

shiftout <= datain;
elsif s ="001" then

shiftout <='0' & datain(7 downto 1);
elsif s = "010" then

shiftout <="00" & datain(7 downto 2);
elsif s ="011" then

shiftout <= "000" & datain(7 downto 3);
elsif s ="100" then

shiftout <="0000" & datain(7 downto 4);
elsif s="101" then

shiftout <="00000" & datain(7 downto 5);
elsif s ="110" then

shiftout <= "000000" & datain(7 downto 6);
elsif s="111" then

shiftout <= "0000000" & datain(7);
end if;

end process;
end shifter arch;
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PROGRAM FOR COMBINING THE TWO LOOPS (LOOP COMPONENT)

library IEEE;

use IEEE.std logic 1164.all;

use IEEE.std logic unsigned.all;
use IEEE.std logic_arith.all;

entity loops 1s
port(vin_v,vnorm,vin_c:inout std_logic_vector(7 downto 0),
iin:inout std_logic vector(11 downto 0);
clk:in std_logic;
gin:inout std_logic_vector(7 downto 0);
cal_on_off:out std logic);
end loops;

architecture loops_arch of loops 1s

component voltageloop 1s
port(vin,vnorm:in std logic_vector(7 downto 0);
clk:in std_logic;
gout:inout std logic_vector(7 downto 0));
end component;

component currentloop is

port(vin,gin:inout std logic vector(7 downto 0);
iin:inout std logic_vector(11 downto 0);
clk:in std logic;
cur_out:out std_logic);

end component;

begin

pl:voltageloop port map (vin_v,vnorm,clk,gin);
p2:currentloop port map (vin_c,gin,iin,clk,cal on off);

end loops_arch;
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APPENDIX II

PROGRAM 1
#include"pic1687x.h"
#include"lcd.h"
#include"math.h"

unsigned char limit,i;

unsigned char vin,vout,gin,i_in,delg,itm,vonom,i_inref;
float pf;

static bit s @((unsigned) &PORTC*8+0);

static bit rw @((unsigned) &PORTC*&+1);

static bit en @((unsigned) &PORTC*8+2);

void lcd_init( );

void lcd_disp(unsigned char);

void Iecd_condis(const unsigned char*,unsigned int);
void delayu(unsigned char d)

{unsigned char 1;

for(i=d;d>0;d--);

b

void main()

{

TRISB=0X01;
TRISA=0XFF;
ADCON1=0X02;
ADCONO0=0X01;
OPTION=0XD7;
INTCON=0XFO;
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lcd_init( );
vonom=50;
beg:

gin=0;

1 in=0;

limit=18;

for(i=1;1<=limit;i++)
{
delayu(200); //measure vout
ADCONO =0X01;
delayu(200);
ADGO = 1;
while(ADGO);
vout=ADRESH;
delayu(22);

delg=vonom-vout,
gin=gin-+delg;
//measure 1tm
ADCONO =0X09;
delayu(200);
ADGO =1,
while(ADGO);
itm=ADRESH;

1_in=i_in+itm;

}
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ADCONO =0X11;
delayu(200);
ADGO =1;
while(ADGO);
vin=ADRESH;
i_inref=gin*vin;
if(i_in<i_inref)
RC7=1;

else

RC7=0;

goto beg;

}

void interrupt isr()
{

if(INTF==1)

{

INTF=0;
ifINTEDG==1)
{TMRO0=0;
OPTION=0X97;

¥

else

{

t1=TMRO;
OPTION=0XD7,
}

}

//measure vin
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led_condis(" pwr factor ",15);

delayu(200);

led disp(pf);
}
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PROGRAM 11
#include"pic1687x.h"
#include"lcd.h"
#include"math.h"

unsigned int vout,vin,cin;

unsigned char t1,t2;

float pf;

static bit s @((unsigned) &PORTC*8+0);
static bit rw @((unsigned) &PORTC*8+1);
static bit en @((unsigned) &PORTC*8+2);
void lcd_init( );

void led_disp(unsigned char);

void lcd_condis(const unsigned char*,unsigned int);
void delayu(unsigned char d)

{unsigned char 1,

for(i=d;d>0;d--);

}

void main( )

{

TRISC=0X04;
TRISB=0X01;
TRISA=OXFF;
ADCONI=0X8&2;
ADCONO0=0X01;
OPTION=0XD7,
PIE1=0X40;
INTCON=0XFO0;
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PR2=0X63;
CCPRIL=0X32;
T2CON=0X04;
CCP1CON=0XO0F;
vout=40;

led_1nit( );
while(1)

{

ADCONO =0X10;
delayu(200);
ADGO =1;
while(ADGO);
vout=ADRESH;

vout=vout<<g;

vout=vout+ADRESL;

delayu(22);
ADCONO =0X08;
delayu(200);
ADGO =1;
while(ADGO);
vin=ADRESH;
vin=vin<<§;
vin=vintADRESL;
delayu(22);
ADCONO =0X00;
delayu(200);
ADGO =1;
while(ADGO);

//timer( and external inrrpt are on
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cin=ADRESH;
cin=cin<<g;
cin=cin+tADRESL;
delayu(22);
pf=t1*0.2*128/(55);
pf=cos(pf*3.1419/180);
§

b

void interrupt isr()
{

if(INTF==1)

{

INTF=0;
if(INTEDG==1)
{TMRO=0;
OPTION=0X97;

}

else

{

t1I=TMRO;
OPTION=0XD7;
h

b

lcd_condis(" pwr factor ",15);
delayu(200);

led disp(pf);

}
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