{PRCGRESS THROUGH KNOWLEDGE |

Efficient Data Mining Algorithms for use in
Association Rule Mining

By
Anand.M
Reg. No. 71202521003

Of

KUMARAGURU COLLEGE OF TECHNCLOGY, COIMBATORE

A PROJECT REPORT
Submitted to the
FACULTY OF INFORMATION AND COMMUNICATION ENGINEERING

In partial fulfillment of the requirements
for the award of the degree

Of

MASTER OF COMPUTER APPLICATION

June, 2005

i

BONAFIDE CERTIFICATE

Certified that this project report titled ~ Efficient data mining algorithms for

Certified further, that to the best of my knowledge the work reported hersin
does not form part of any other project report or dissertation on the basis of

which a degree or award was conferred on an earlier occasicn on this cr any

other candidate.

(._..\}
Head of the Department roject Guide

ternal Examiner External Examiner

i

ABSTRACT

‘A’EFFICIENT DATA MINING ALGORITHMS FOR USE IN ASSOCIATION
RULE MINING” is an attempt to design new data mining algorithms, improvise
the existing ones for efficiency and also to adapt the existing algorithms to a
different problem but within the domain of data mining. Since there is an
increased availability of data due to switching over from manual tc computer
based systems, it has become decreasingly viable option and possibility for
humans to find information that is useful to the business or problem at handc
using manual mechanisms. Therefore, use of efficient data mining algorithms
beéomes an absolute necessity.

Even though computer based information gathering systems tend to
come up with a lot of results that are not relevant from the commercial point of
view, their accuracy is evolving at a very fast clip. Also the very advantage of
using such systems is that they may come up with results that the manual
methods may fail to locate or pinpoint due to lack of insight and limited
perception of the human brain. Data mining when used as a process of
knowledge discovery helps very much in the decision making process.

The field of data mining although new, is very vast. Association Rule
Mining which deals with techniques involved in finding interesting associations
or correlation relationships among a large set of data items, is a subset of

data mining and a separate field by itself. The field albeit a small part of data

iv
mining is very interesting from the modern day business point of view. Almost
all business decisions to be made depend on Association rule mining.

Efficiency of Data Mining algorithms used, in the purview of
Association rule mining can be increased by design of new algorithms, data
structures, using better data representation mechanisms, etc. This project

focuses on single dimension association rules for the major part. Measuring

the performance of the algorithms by itself is a task separate.

ACKNOWLEDGEMENT

For any long endeavour to succeed in this modern world, requires a lot of
support, encouragement, advice and the blessings of the almighty. | take this
opportunity to express my gratitude and appreciation to all of thosa pecple out
there who helped me when | was stuck.

| wish to thank Dr.S.Thangasamy, PhD, Professor and Head of the
department, Computer Science and Engineering, for constantly ancouraging
me to pursue fresh ideas and set new goals for myself.

| wish to express my gratitude to my project guide Asst.Prof. A Muthukumar,
Course Coordinator, MCA. The very idea of the project as well as the material

input and much needed support came from him.

vi

LIST OF TABLES

2.1 — Sample Database Table Dt

2.2 — A Sample Weblog File

2.3 — First Order Markov Model

2.4 — Second Order Markov Model

2.5 -~ Third Order Markov Model

2.6 — Database Sorted by Customer id, Transaction time.
2.7 — Custocmer-Sequence Version of the Database

2.8 — The answer set sequential patterns.

2.9 — Diet habits of a specific ethnic groups.

2.10 — Diet habits of a specific ethnic groups.

3.1 — Node Count of Itemset tree and Corresponding execution times.

3.2 — Data count and Corresponding execution times.

Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1

rigure 3.2

vii

LIST OF FIGURES

Itemset tree construction(Step1-6)
Implementing the itemset tree
Rotated itemset tree

Node count Vs exacution tima

Data count and Corresponding execution time

TABLE OF CONTENTS

Abstract
List of Tables

List of Figures

Chapter 1
INTRODUCTION
1.1 Project Outline
1.2 The world of Data Mining
1.2.2 Association Rule Mining

1.3 Choice of implementation Language

Chapter 2
DESIGNING AND IMPLEMENTING ALGORITHMS
2.1 ltemset tree data structure
2.2 Selective Markov Model
2.3 Mining sequential patterns
2.4 Multi-database Mining

ii
Vi

vii

B —

13
19
23

Viil

Chapter 3

EFFICIENCY DETERMINATION
3.1 Code Profiling
3.1.1 Concept of clocks
3.2 Profiling tools

3.3 Results and Conclusions

Appendi‘ces

Appendix 1 — Glossary of terms
Appendix 2 — Source Code Sample
Appendix 3 — Sample Data

References

29

30
30
34

37
40
45

47

ix

CHAPTER 01

INTRODUCTION

1.1 Project Outline

The focus of the project, “EFFICIENT DATA MINING ALGORITHMS
FOR USE IN ASSOCIATICON RULE MINING”, is on choosing a set of mining
algorithms that fit into the various stages of association rule mining. For instance,
we start from the problem of choosing the right table from a database containing
many tables. Then we proceed to problem of choosing the right attribute for use
in association rule mining. Further we move to the problem efficiency of such
chosen data mining algorithms, analyzing their performance and focus on

optimizing them has also been considered.

1.2 The World Of Data Mining

Data mining also known by alternate terms such as knowledge
discovery in databases is a set of techniques customized for the problem of
uncovering useful patterns from largé data sets. Data mining is primarily an
offshoot of the database industry. An evclutionary path has been witnessed in
database industry in development of various functionalities such as data
collection and database creation, data management, data analysis, etc which
affect the way data mining is applied to databases, since data mining is a higher

level operation dependent upon the various above mentioned tasks.

The major reason the field of data mining has received so much attention

n recent years, is due to the fact that the use of information technology has

resulted in vast amounts of accumulated data. Such accumulated data contains
lots of hidden patterns and useful information that cannot be detected by manual
inspection of the data due to the vast quantity of data, high cost of IT labour and
the limited capacity of such human systems. Hence, data mining becomes
inevitable. Data mining helps find information and knowledge that is useful in a
variety of application domains such as business management, preduction control

and market analysis to engineering design and science exploration.

It is simply not possible to apply data mining techniques to existing, in use
databases, as such. Hence, the large data sets used for data mining are stored
in data warehouses. Data warehouse is a database that contains historical
information, and is a bit outdated. They are usually also stripped of all their
constraints like locking mechanisms, integrity and security constraints. They are
also de-nermalised and certain fields are dropped because it is easier to carry

out data mining tasks within a single table than across multiple ones.

When many data mining tasks are carried cut simuitaneously, we use a
data warehouse server to take care of multiple requests for data. Data mining
can also be carried out on data from relational, text, multimedia, transactional
and other forms of database architectures. Data warehouse gathers data from
various sources and locations which are often gecgraphically apart. The
gathered data is cleaned, transformed and integrated before being loaded into
the warehouse. Data mining is a part of the process of knowledge discovery from
databases.

Architecture of data mining systems have been classified into icose,
semi-tight, tight and no coupling based on the amount of interaction and
integration of the data mining system to an underlying database or data
warehouse system. As the amount of coupling increases, the integration of the
data mining system and data base increases. The utilization of third party utilities

also increases.

1.2.2 Association Rule Mining

The art or technique of detecting interesting correlation relationships
amongst a large set of items is done using association rule mining. The discovery
of association relationships among huge amounts of business data helps in

business decision making processes.

Association rule mining is classified broadly into single and
multidimensional association rule mining. Single dimensional asscciation rule
mining focuses on using just one facet of the given data at a time to produce
relationships from the data. They are the most widely used and simplest of
mechanisms. The main problem with these mechanisms is their tendency {0
come up with a lot of patterns which may not be very useful in the decision
making process. Multi-dimensional association rule mining helps make complex
decisions but are not widely suitable for all domains. Moreover the

multidimensional method gives very specific patterns.

In many applications, it is very difficult to find strong associations
among data items at low or primitive levels of abstraction due to the sparsity of
data in multidimensional space. Strong associations discovered at high concept
levels may represent common sense knowledge. However, what may represent
common sense to one may not be so common to another. Therefore we use
multilevel association rule mining to mine rules at various levels of abstraction.

There are plenty of methods of mining multilevel association rules.

A factor contributing to the interestingness of a pattern is the pattern’s
overall simplicity for human comprehension. Support and cenfidence are the two
most widely used measures for determining the interestingness of data. Support
of an association pattern refers to the pércentage of task related data tuples for

which the pattern is true. Confidence is a certainty measure for association rules

Market basket analysis is a prominent application that is based on
association rule mining.

1.3 Choice Of Implementation Language

C++ lends itself as a ianguage of choice for implementing the
algorithms. Although C seems to be the first choice because cf its high speed
and ease with which algorithms can be implemented in it, the lack of data
security tends to be a major dis-advantage. in addition, as the size of the
program increases lack of modularity is a problem in C. Exception handling in
C++ helps us to trap errors in code where they appear. This helps us to irace and

debug these errois.

It is easy to define shared aspects of the implementation that are
helpful to all derived classes. So extending the algorithms and at the same time
~ retaining the features of the originai within the same code is very much possibie
in C++. Also, C++ provides a rich set of profiling tools to measure the efficiency

and performance of our code.

(4]

CHAPTER 02

DESIGNING AND IMPLEMENTING ALGORITHMS

2.1 The item-Set Tree: A Data Structure for Data Mining

Discovering knowledge is an expensive operation. it requires extensive
access of secondary storage that can become a bottleneck for efiicient
processing. Running data mining algorithms from scratch, eachi time thereis a
change in data, is obviously not an efficient strategy. Building a structure to
maintain knowledge discovered could solve many problems, that have faced data
mining techniques for years, that is database updates, accuracy of data mining

results, performance, and ad-hoc queries.

The need for an incremental data mining approach is very much
needed. So a mining technique based on a data structure called the itemset tres
has been used. Advancements in data capturing technology have lead to
axponeantial growth in amounts of data being stored in information systerns. The
approach is effective for solving problems related to efficiency of hardiing data
updates, accuracy of data mining results, processing input transacticns, and

answering user queries.

Basic assumptions

Association mining helps us to discover dependencies among the
values of an attribute. It has over the years, emerged as a prominent research
area. The data structure has been created with the association-mining problem

also referred to as the market basket problem in mind.

Let us consider a database table containing transactions. The transactions
are purchases made by various customers who visit the store, over a period of
time. We denote a transaction by S = {s1,s2, . . ., sn} where, each si is a separate
transaction and sie S. Let | be a set of items such that / = {i1,iz, . . ., in}.Many
algorithms have been proposed to generate association rules that satisfy certain
measures. A close examination of those algorithms reveals that the spectrum of

techniques that generate association rules has two extremes:

e A transaction data file is repeatedly scanned to generate large itemsets.
The scanning process stops when there are no more itemsets to be
generated.

¢ A transaction data file is scanned only once to build a complete

transaction lattice.

‘Each node on the lattice represents a possible large itemset. A count is attached

to each node to reflect the frequency of itemsets represented by nodes.

In the first case, since the transaction data file is traversed many times,
the cost of generating large itemsets is high. In the later case, while the
transaction data file is traversed only once, the maximum number of nodes in
the transaction lattice is 2n , n is the cardinality of /, the set of items. Maintaining

such a structure is expensive.

Many knowledge discovery applications, such as on-line services and
World Wide Web, require accurate mining information from data that changes on
a regular basis. In World Wide Web, every day hundreds of remote sites are
created and removed. In such an environment, frequent or occasional updates
may change the status of some rules discovered zailier. Alsc, many data mining
applications deal with itemsets that may not satisfy data mining rules. Users
could be interested in finding correlation between itemsets, not necessariy

satisfying the measures of the data mining rules.

Here a new approach is proposed, that represents a compromise between
the two extremes of the association mining spectrurn. In the context of the
proposed approach two algorithms are introduced. The first algorithm buiids an
item-set tree by traversing the data file once, that is used to produce mining
rules. While the second algorithm allows users to apply on-line ad hoc queries on

the item-set tree.

The ltem-Set Tree

The item-set tree T is a graphical representation of the transaction data
file DT. All transactions that are having the same itemset, belong to the same
transaction group. Let us consider a database table, DT (Table 2.1), containing
transactions. The transactions are purchases made by various custorners who
visit the store S, over a period of time. The variety of items in the storz is setto

eight for reason of simplicity in usage.

F’ID \ Transaction items | Date
1 13,47 05-Jan-2003
| 2 | 23 06-Jan-2003 |
|3 235 ‘ 11-Feb-2003

| 4 6.7 | 23-Feb-2003
| 5 1,4 25-Feb-2003

Ds 23.4 03-Mar-2003 |

2.1 Sample Database Table DT

So in order to represent the following table DT as a tree, we have to take

into consideration the following issues :

** There is a root node r, where r&DT. 1 is the root of the tree.

** {(s) is the frequency of transaction s, ie the count of the occurrences of sin OT.

Case 1: All nodes Sj (children of r) are such that these do share no leading

slements in s. When a leaf node s is inserted as a son of r, f(s) is initiated
to 1.

Case 2: S=Sj, the node already exists. f(sj) is incremented by 1.

Case 3: S ce §j, Sis an ordered subset of node 3j. A node s, representing
s, is inserted as a child of rand as a parent of sj. f(s) =f(sj) +1.

Case 4: Sjce S, node §jis an ordered subset of s. The subtree, that has
Sjas a root, is examined and the procedure starts over again

Case 5: S Me Sj # ¢ ,there exists an ordered intersection between S and
Sj. Two nodes are inserted. A node Si, Si =S MeSj. is inserted between r

and sj, and a node S is inserted as a child of Si. f(si) = f(sj)+1, and f(s)
is initiated to 1.

Now let us look at the steps involved in adding each transction in DT, to

the representation of the table DT. The first step is to create the root node r (See
Fig 2.1.1.)

)= — f5)= _
(R)" (r — f(5)=2
K R | N
‘_H___ /’l l:}___l_/’ {}__R—FA /,I
."/ ;‘,.‘ \
- v XQL
(134D 3aD 230
Figure 2.1.1 Figure 2.1.2 Figure 2.1.3

Each transaction is considered as a node and added the tree.
{1,3,4,7} is added as child of R (see Fig 2.1.1). Since elements {1,3,4,7} and {2,3}
do not have any common first elements they are made as siblings (see Fig
2.1.1). Since {2,3} is common to both {2,3} and {2,3,5} the elements common to
both, ie{2,3} is made as root and {2,3,5} is added as a child of it. The important
thing is we do not take two copies of {2,3} but rather increment the frequency as
needed (see Fig 2.1.4). Proceeding in the same manner (6,7} is added as child of

root as it has no relation to any of the other nodes (see Fig 2.1.5).

‘ —. fs)=4

Ol (7

— an N

/ \ i ""\ \\

! .,?' '\"‘ \"_
A A a
- - (13470 <23 o 67 D
TzaD 237 L2347 _—T ~

T35 2350
Figure 2.1.4 Figure 2.1.5
=5
R /}'\
/"”"’ NN
f "
\". \R’\\.._I
23 0 67
__‘_ o,
/o \
/ \
N :L
{1,347 14 235

Figure 2.1.6 — Final Constructed tree

10

11

The problem now is how to represent a general tree in a program
without loss of efficiency. Now let us consider the figure2.1.6. In this tree we
start from the root and to the left-most child L of the root, we attach to root using
a down link. The rest of the nodes at that level ie the siblings of L are maintained
as a linked list starting from L and proceeding to the last node linked by right
pointers. The last node’s right pointer pcints to the immediate parent ie root in

this case. The constructed tree as per above logic is shown in Figure 2.2.

Figure 2.2 — Implementing the itemset tree

When the tree is rotated by an angle of 45> we find that the general tree
has been converted into an ordinary binary tree, without any loss in semanticity,
data and efficiency. The rotated tree is shown in figure 2.3.

fis)=25
(/-""_“‘.ﬂ_'\
R e

Y

e 4

e - ""{_b 1 _,:) l\
-~ - .:I\
!_.f A ‘.,I
i‘,f - - g . II
! (13470 il 23 0 !
\ 7 - - s i
'.“'. !" T\ l:
\\ E \\ 1

14)

Figure 2.3 — Rotated ltemset tree

The size of the general tree can be expanded as much as needed. The oniy

constraint is the availability of physical memory for storing the nodes of the tree

12

13

2.2 SELECTIVE MARKOV MODEL

The problem of predicting a user’s behaviour on a web site has gained
importance due to the rapid growth of the world-wide-web and the need to
personalize and influence a user’s browsing experience. Markov models and
their variations have been found well suited for addressing this problem. Higher
order Markov models display high predictive accuracies. However, they are also
very extremely complicated due to the large number of states that increases their
space and run time requirements. Therefore, implementing these higher order
Markov models is not very efficient. Here we explore the variations of Markov

models that would be efficient as well as useful to the problem at hand.

The problem of modeling and predicting a user’s surfing behaviour
helps to improve search engines, web cache performance, understand and

influence buying patterns and personalize the browsing experience.

In the world of mathematical probability, Markov models in their pure
form have been used for studying and understanding stochastic processes.
Therefore, the problem of predicting and modeling a user’s surfing behavicur

also being a variation of the stochastic process, Markov modeis tend to be useful
for this.

The input for these problems is the sequence of wab pages that were
accesses by a user during a browsing session. Such sequences are traditionally
stored in web log files on the internet server. The goal! is to build Markov models
that can be used to model and predict the web page that the user will most likely
access next. For many appilications first order Markov models are not very
accurate in predicting the user’s behaviour, since these models do not look far
enough in to the past to correctly discriminate the different patterns. So, very

often high order models become necessary. Unfoitunately, these higher order

14

models though accurate, have a number of high state-space complexity, reduced

coverage and sometimes even worse prediction accuracy.

As a solution to the problem at hand, the All-k" —order Markov model is
used. Here we train varying order Markov models and use all of them during the
prediction phase. As a result we have a soiuticn that has low state complexity,

improved prediction accuracy and retains the coverage.

2 2 2 An Illustration Of Ail-K™ Order Markov Model

To make the understanding of Markov model easier, let us consider a
practical working example. Given below is sampie weblog file containing five
browsing sessions of a user. Each session contains the varicus pages viewed by

{ne user.

Sid | User Surfing Sequence *

WS, |2346,7,8

WS, |578
WS; |123456,8
WS, |16,8

WSs 112456,7,8

* \Web-page Identification number.

TABLE 2.2 —-A SAMPLE WEBLOG FILE

Given the weblog file now we generate up to the third order Markov model
for the All-kth-Order. It has been proved that Markov models are efficient up 1o

only a certain order after which the space-time complexity increases.

15

2.2.2.2 First Order Markov Model

To generate the first order Markov model we first take into account the
total unique pages from the web log file. Then we construct a Matrix with the first
row and column being occupied by the unique elements identified. Then for every
corresponding row/column value we update the value according to the pair's

occurrence in the web log file.

For instance in Fig2.5, we have the value 2 against the row/cclumn pair of
{1,2}, which means in the log file the page numbered two was viewed twice ty
the user, immediately after viewing page numbered one. Tne row/column pair of
{1,3}, {1,4}, {1,5} are null as not once in the log file are the pages 3 cr 4 or 5, ever
viewed contiguously after page one. Proceeding in a similar fashion we update
the entire matrix by scanning the entire web log file once. The First order so

generated serves as a reference when creating the second order.

™ iyl 23 a5 5! 78
Order |
1 ol2/olojol1l0io0
2 100 |3|1/l0/0/0/ o0
3 clolo|3|0jlo0io]¢c
4 0lojo0!0[311 016
5 oloc ololoja 2109
6 0[0j0/0/0]|0 32|
7 0o /o0 0!l0|o0]4]
. 8 |ojolojolclojo0 0

TABLE 2.3 — First Order Markov Model

16

2.2.2.3 Second Order Markov Model

The method to create the second order is to ensure that only those
column values of the matrix in first order that have a non-null value to be
considered. The second step is to generate two item pairs by parsing the first
order matrix and combining the row/column values in first order matrix into a
single item in an orderly manner. Then these combined items are used as the
row values of second order’'s matrix. For instance, the values {1,2} and {2,3} are
not null and hence they become the first two rows of the matrix. The next step is
to parse the original web log file once again and search for values as was done
for order one.

In Fig2.6, the values against the row/column value of {1,2}/3 is one,
since in the original log file we have a single occurrence of the sequence {1,2,3}.
Wherever there such sequences do not exist, the value is null as in first order’s
matrix.

17

i

2nd
order

{12}
{16}
{23}
{24}
{34}
{45}
{46}
{56}
{57}
{67}
{88}
{7,8}

—
w
'S

—_—

- O O O »n
OOl o | OO | o

—

OO0 | OO0 O|lO | N

T OO0 OO~ 0|

-—

ool 0O|lcojlo]jloo|lojo|lo|o! o
O 0|0 Ojlojlolo|lojojolo|jlo! N
Ol o|OoOjo|lo|lo|lo|oolo | O
OO0 0O 0l ol w|oOo]
O O 0o oo |lo|oc M

OO /O | OO O] Ww

O oC OO N

OO | w

TABLE 2.4 — SECOND ORDER MARKOV MODEL

2.2.2.4 Third Order Markov Model

The generation of the third order is similar to the second order. The
second order serves as the basis for the third order. Once we move higher up the
order, only the original weblog file and the immediately preceding order serve as
the input and basis for the generation of this crder. The pure Markov modei stops
when the N orders’ matrix is a null matrix. But in this method we stop at the K"
Order and take the results of all the orders to arrive at a suitable and effective
solution. The important thing to note is that the diagonai values are nuil, since the
transactions contain pages only till the recurrence of an already visited page.

Using these orders, we can filter based on suppoert or confidence to obtain
results.

3" Order

-
BN
(3))

{1,2,3}

{1,2,4}

—

[
o oo &

{1,6,8}

{234}

—

{245}

—

{345}

{3,46}

ol NeNNoNNe NN NN N R

{456}

—

{4,6,7}

—

{56,7}

{568}

{578}

o|lo|lo|o|lojlojlojlo|lo|0O|O|O| O

Ol oIl Ol OO |O]O N
olo|lo|lojo|lo|lo|j]olcjOo|OC|O| O w
O | ol 0OlO|lOoO|lOO|O| OO0 | O =

Ol o]l ol OoO|Oo|jC | O | QOO | N | O
ojo|loo|lo|lo|MN~|lO|]O|C | O |O | 0O ~

O/l ool oo O N

{6,7,8}

OO | O|N

TABLE 2.5 — THIRD ORDER MARKOV MODEL

18

19
2.3 Mining Sequential patterns

Database mining is motivated by the decision support problem faced
by most large retail organizations. Progress in bar-code technology has made it
possible for retail organizations to collect and store massive amounts of sales
data, referred to as the basket data. A record in such data typically consists cf
the transaction date and the items bought in the transaction. Very often, data
records also contain customer-id, particutarly when the purchase has been made
using a credit card or a frequent-buyer card. Catalog companies also collect such

data using the orders they receive.

We are given a database D of customei transacticns. Eacn transaction
consists of the following fields: customer-id, transaction-time, and the items
purchased in the transaction. No customer has more than one transaction with
the same transaction-time. We do not consider quantities of itams bought in 2
transaction: each item is a binary variable representing whether an itam was
bought or not. |

An itemset is a non-empty set of items. A sequence is an orderad list
of itemsets. Without loss of generality, we assume that the set of items is
mapped to a set of contiguous integers. Given a database 'D of custorner
transactions, the problem of mining sequential patterns is to find the maximal
sequences among all sequences that have a certain user-sljacified minimum
support. Each such maximal sequence represents a sequential pattern. We call 2
sequence satisfying the minimum support constraint a large sequence. Example
Consider the database shown in Table2.6.(This database has been sorted on
customer-id and transaction-time.) Table 2.7 shows this database expressed as

a set of customer sequences.

20

CustomeriD | TransactionTime | items Bought
1 June 25 '93 30
1 June 30 '93 90
2 June 10 '93 10, 20
2 June 1593 30
2 June 20 '93 40, 60, 70
3 June 25 '93 30, 5C, 70
4 June 2593 30]
4 June 30 '93 40,70
4 July 25 '93 a0
5 June 12 'G3 90

TABLE 2.6 -Database Scried by Customer Id, Transacticn time.

Customer Id Customer Sequence
1 ((30), (90))
2 ((10 20), (30), (40 60 70))
3 ((30, 50,70))
4 ((30) (40,70) (20))
5 ((S0))

TABLE 2.7 - Customer-Sequence Version of the Database

21

All the transacticns of a customer can together be viewed as a
sequence, where each transaction corresponds to a set of items, and the list of
transactions, ordered by increasing transaction-time, corresponds to a sequence.
We call such a sequence a customer-sequence. Formally, let the iransactions of
a customer, ordered by increasing transaction-time, he 71, T2, ..., Tn. Let the set

of items in T be denoted by itemset(T).

With minimum support set to 25%, i.e., a minimum support, of 2
customers, two sequences: ((30) (90)) and ((30) (40 70)) are maximal amcng
those satisfying the support constraint, and are the desired sequences. (Table
2.8).

Sequential Patterns with support > 25%
((30) (90))
((30) (40 70))

TABLE 2.8: The answer set sequential patterns.

The sequential pattern ((30) (90)) is supported by customers 1 and 4.
Customer 4 buys items (40 70) in between items 30 and 90, but supports the
pattern ((30) (90)) since we are looking for patterns that are not necessarily
contiguous. The sequential pattern (30 (40 70)) is supported by customers 2
and 4. Customer 2 buys 60 along with 40 and 70, but supporis this pattern since
(40 70) is a subset of (40 60 70). An example of a sequence that does not have
minimum support is the sequence ((10 20) (30)), which is only supported by
customer 2. The sequences ((30)),((40)), ({70)), ((90)), ({30) {40)), ({30) (70)) and

((40 70)), though having minimum support, are not in the answer because they

are not maximal.

The problem of discovering what items ars bought together in a

transaction" over basket data was introduced. Whiie related, the problem of

22

finding what items are bought together is concerned with finding intra-transaction
patterns, whereas the problem of finding sequential paiterns is concerned with
inter-transaction patterns. A pattern in the first proclem consists of an unordered

set of items whereas a pattern in the latter case is an ordered list of sets of items.

23

2.4 Muitidatabase Mining

Various tools and systems for knowledge discovery and data mining
are developed and available for applications. However, when lots of databases
exist, an immediate query is, where we start mining should be started from. it is
not true that the more databases, the better for data mining. it is only true when
databases involved are relevant to a task at hand. Breaking away from the
conventional data mining assumption that many databases be joined into one, it
is proved that the first step for multidatabase mining is to identify databases that
are most iikely relevant to an application; withcut doing so, the mining process
can be lengthy, aimless and ineffective. A measure of relevance is thus proposed
for mining tasks with an objective to find patterns or regularities about certain at-

ributes. An efficient algorithm for identifying relevant databases is described.
Experiments are conducted to verify the measure's performance and to exemplify
its application.

With more and more databases created, an increasingly pressing
issue is how to make efficient use of them. So lots of research interest on
knowledge discovery and data mining has been created. Researchers are trying
to develop efficient algorithms to cope with large volumes of data but little work
has been devoted to the data aspect in the knowledge discovery process. In
most organizations, data is rarely speciaily collected and stered for the purpose

cf mining knoWIedge, but usually as the byproducts of cther tasks. Furthermors,
~ with the development of technoiogies, it is not uncommon that an organization

has a large number of database systems and diverse data sources.

Although most data mining algorithms assume a single data set, for
real world applications, practitioners have to face the prekiem of discovering
knowledge from multiple databases. In crder to do so, one way is to employ a
brute force approach to join the available tables into a single large table, upon

which existing data mining technigues or tools can be applied. There are several

24

problems for this approach in real world applications. First, database integration
itself is still a problematic area, especially where the source domains differ.
Second, all tables with foreign key references need to be joined together to
produce a single combined table. The size of the resulting table, in terms of both
the number of records and the number of attributes, will be much larger than the
original individual tables. The increase of data size not only prolengs the running
time of mining algorithms, but also affects the behavior of mining algorithms.
From the viewpoint of statistics, joining one relevant database with an irrelevant
one will result in a more difficult task to find usefui patterns as search space is

enlarged by irrelevant attributes.

For this simplified analysis, we have not yet considered the factor of
missing values due to joining. This factor will certainly increase the difficuity of
data mining, too. Third, if databases are joined and data mining algerithms are
applied, the users face the problem of identifying interesting patterns from a iarge
number of discovered rules. In practice, it is too easy to discover & huge number
of patterns in a database, however, it is difficult for users to szarch in all the
discovered patterns for useful ones. The redundant, useless or uninteresting
patterns can be even more easily generated when there are quite a number cf
databases irrelevant to the mining task. Therefore, as in any effective knowledge
discovery process, the first impoertant step in mining multipie databases is indead

tc select those databases that are relevant to a specific mining task.

To understand the same we provide a motivating example to rmake the
understanding much more easier. Two smali databases are used to argue that
for data mining tasks involving muitiple databases, it is better to identify relevant
database first before applying mining techniques. Databases are about people's
diet habits. It is user's intention to disccver some useful knowledge about
Chinese diet habits from the databases. Here and in most KDD applications,
being useful means something that should potentially lead to some useful actions

by a user. Specific information is one type of usefulness.

25

In our example, the useful knowledge should be scme diet habits
specific to Chinese. Two tables (databases) with desired attributes are as shown
in Tables 1 and 2. Let us look at Table 1 first. From the attribute values

summarized in Table 3, we observe the following:

No person is on diet, regarcless of his ethnic group; For both Chinese
and Russian, 50% of records show that they take alcoho! sometimes; Similarly,
50% of Chinese and Russian have snacks between regular meals; and it seems

difficult to arrive at a convincing conclusicn on favorite noin-vegetable food since

Pt oyl
~
IL#&%U

a very small number of tuples are available: there are five different foods

and the largest group only has six records available.

From the above cbservations, we can see that, the database in fact
does not contain information specific to Chinese. Iri such a case, it is fair o say
that the database is irrelevant with respect to the query about Chinese. it is easy
to see that database in Table 2.X is relevant to the query abcut Chiness since we

can at least derive such a statement (rule).

"If the group is Chinese, the main food is rice" zince all records about
Chinese show that the main food is rice whereas records abcut Russian and
Indian do not indicate such a habit. We have seen that aithough both databases
contain information about the diet habits cf Chinese, one ¢f them centains

relevant information but the other does not.

i)
\ ID Group | Alcohol \ On- D'et ‘ Snack Biw \ Favorite Non-veg \

meals
| 950351 | Chinese | Never ‘ Sometimes \ Fish . *
950301 | Chinese | Never | Seldom 1 Pork \
950282 | Chinese | Sometimes | No Seldom | Fsh |
"9401 121 Chlnese Often No Often J\ Chicken 4
r940023 \ Chinese | Sormetimes 4\3 Sometimes Beef ' |
r938976 i Chinese | Sometimes No Sometimes Pork l
950612 \ Russian Never No Seldem Beaf]l
950122 ‘ Russian Cften No | Sometimes Beef ;i
940227 | Russian | Sometimes il No (Sometimes L Chickan ‘
938567 | Russian | Sometimes ‘ No ll Sometimes \ Pork j
050348 | Indian | Often | No | Somsfimes | Fish |
950312 | Indian | Sometimes | No ¥ Seidom \ Pork j

, - — T

950123 | Indian Never Ill No \‘ Sometimes \ Chicken l}
040247 | Indian | Sometimes No L Sometimes Fish i
940100 | !ndian Never No Sometimes eef —1]
+ - — ——— 1
050312 | Indian | Scmetimes ! Mo ‘l Seldom Pork ‘

TABLE 2.9 — Diet habits of a specific ethnic groups.

Main

Regular

27

iD Group food eating times Drink | Vegetarian
950578 | Chinese | Rice 3 Tea No
950351 | Chinese | Rice 3 Tea No
950301 | Chinese | Rice 3 Tea No
950282 | Chinese | Rice 3 Tea No
940226 | Chinese | Rice 3 Cola No
940112 | Chinese | Rice 3 Tea Yes
950612 | Russian | Bread 3 Coffee No
950122 | Russian | Bread 3 Cola No
940227 | Russian | Rice 3 Cola Yes
940121 | Russian | Bread 3 Tea No
950348 | Indian Bread 3 Coffee No
950312 | Indian Bread 3 Coffee Yes
950123 | Indian Rice 3 Cola No
940247 | Indian | Rice 3 Coffee No
940109 | Indian Bread 3 Tea No

TABLE 2.10 — Diet habits of a speciiic ethnic groups.

28

To measure the Relevance factor

RF(s,Q) = Pr(s|Q).Pr(Q).log [Pr(s|Q)/Pr(s)]
Where,
RF is Relevance Factor
S is a selector. eg : “drink = tea”
Q is Query Predicate. eg : “group = chinese”.
Pr(Q) and Pr(s) are priors and estimated by the ratios how frequently they
appear in a database; and Pr(s|Q) is the posterior about the frequency ratio of s

appearing given that Q occurs.
Given below are the various possibilities and the resulting conclusions.
Case 1 : If Pr(sjQ)/Pr(s) is close t0 1, i.e., Pr(sjQ) ' Pr(s), s is independent
of Q;

Case 2 : If Pr(sjQ)/Pr(s) is close {0 0, i.e., Pr(sjQ) is almost 0, s rarely
occurs given Q;

Case 3 : If Pr(sjQ)/Pr(s) is less than 1, s is not frequent enough using
when Q is given,

Case 4 : If Pr(sjQ)/Pr(s) is greater than 1, then s occurs more often given
Q than without Q, hence s and Q are correlated.

Thus given a set of tables in a database, we can find the one that is most useful

and relevant to the problem at hand.

29

CHAPTER 03

EFFICIENCY DETERMINATION

The quality of the application we develop is determined by various
factors such as speed of execution, scalability, portability, errors per KLOC, etc.
Of these factors determining the efficiency of the code that we have developed is
absolutely necessary for evaluating the quality of the code. However, considering
the speed of current day processors fitted on personal computers, the concept of
speed alone is not the true measure of efficiency. Still it is considered a good
pointer to the quality.

3.1 Code Profiling

The art of measuring the time taken for completion of execution by an
application or some subset of the application is called Code Profiling. The subset
we mention is referred to as a profile. Code profiling records the clock cycles
expended by the profiled section of code or function i.e. the number of CPU clock
cycles taken by the code that we have profiled. By repeatedly profiling our code,
we get a clear picture as to which functions or sections of code are causing
bottlenecks or hot spots. After localizing or pinpointing the bottlenecks, it's then
just a matter of applying the code optimization techniques, to lower the number of

clock cycles used by the function or section of code.

30

By knowing how frequently a piece of code is used, you can more
accurately gauge the importance of optimizing that piece of code. There are a
number of good tools for profiling user space applications. Two useful ways of
profiling code are: counters and lock profiling. Any changes made in order to
allow code profiling should be done only during development. Since these are not

the sort of changes that we want to release to end users.

3.1.1 Concept Of Clocks

Clocks or clock cycles are what the program instructions consume
while executing tasks. Code written in a high level language is cornpiled by a
compiler. Compiler outputs a list of instructions native to the target machine.
Each instruction requires a specific number of clock cycles to execute to
completion. For the same instruction. different CPU’s may take a different

number of clock cycles or different approach to execute.

Hypothetically speaking, assume the ADD instruction needs 4 cycles to
execute, on a computer equipped with Pentium 4 rated at 2.2 GHz (2, 200, G00,
000 cycles per second) then the time taken by CPU to execute:

2200000000 cycles per second

, = 550000000 adds per second.
4 clocks for ADD instruction

3.2 Profiling Tools

The Visual C++ language provides a rich set of code profiling tools that
provide varying range of accuracies, security and sophistication. Other than the
set of tools provided in Visual C++ third party products are also available, each
offering different advanced facilities. Some of the tools and the drawbacks in

these tools also have been given.

31

Clock Functio'n

The clock function has been provided with the C language as part
of the standard library. It is very simple to use in that we call clock function twice
once before the start of the profiled code section and once at the end. The
difference in times between the two return values is the approximate time taken
by the section to execute to completion. Clock traditionally measures the time
consumed in milliseconds. Hence the ability of this function to determine speed

on modern processors is limited to very large time consuming programs.

GetTickCount Class

The GetTickCount class is provided with Microsoft Foundation

Classes. It has a better accuracy than the clock function. It has some serious
issues regarding security.

QueryPerformanceCounter Class

If the system supports a high-resolution counter, one can use
QueryPerformanceCounter and QueryPerformanceFrequency to do high-
resolution timings. QueryPerformanceCounter changes value between
successive API calls, indicating its usefulness in high-resolution timing. The
resolution in this case is on the order of a microsecond. Because the resolution is
system-dependent, there are no standard units that it measures. One has to
divide the difference by the QueryPerformanceFrequency to determine the
number of seconds elapsed.

QuéryPerformanceCounter() vs. GetTickCount()

QueryPerformanceCounter uses the PC's clock counter just as
GetTickCount, but it reads the current vaiue of the countdown register in the
timer chip to gain more accuracy -- down to 1.193MHz (about 800ns). However,
it takes 5 to 10us to call QueryPerformanceCounter, because it has to do several

port I/O instructions to read this value. In a muitiprocessor NT,

32

QueryPerformanceCounter uses the Pentium cycle counter. You should not be
using the raw value of QueryPerformanceCounter; you should always divide by
QueryPerformanceFrequency to convert to some known time base.

QueryPerformanceCounter docesn't run at the same rate cn all machines.

RDTSC Instruction

RDTSC - Read Time Stamp Counter - returns the number of clock cycles
since the CPU was powered up or reset. intel introduced this instruction as a
means of benchmarking Pentium processors. RDTSC is a two byte instruction -
OF 31 - and it returns a 64-bit count in EDX:EAX. One problem with RDTSC is
that both IntToStr and Format('%d") can only handle longints, not comps. A comp
value can be passed to one of these functions, it cannot be any larger than
High(Longint), or 2,147,483,647,which is only a little over 16 seconds of clock
ticks to a 133 MHz Pentium. To compare two long running processes, the
difference between the start ticks and the stop ticks can easily exceed

High(Longlnt). In these cases, we need to use the CompToStr function:

CProfile software

It's a class that uses two member functions Start and Finish and outputs a
log file to disk or debug output window. The major benefit to this class is that by
using the two functions, one can be more precise and local to what we want to
analyze; Total control can be maintained over what we profile. This class is very
object oriented. Another feature is, instead of explicitly supplying the start and
end of your profiled section of code, the constructor starts recording and
destructor stops recording. This means we are less likely to get faulty profile
timings because now we are guaranteed to have properly recorded start and stop
times. If one forgets the stop () in the other method, then obviously we are going

to have incorrect measurement of clocks expended. The drawback to this

33

method is that now you don't have direct control over the code section you want
to profile. Profiling starts whenever the object is instantiated and stops whenever
the object is destroyed or goes out of scope. A PROFILER macro can be
plugged into every function in your code (at the very beginning of each function)
and leave it there and it acts like an ASSERT or TRACE macro. It only compiles

under debug mode, it's not included in release.

3.3 Results and Conclusions

All the tests were carried out on an Intel Pentium Il 133mhz processor.
The reason being that the difference in computation time is discernible only in
these low speed processors. The higher speed machines are so fast and the
compilers so efficient that there is no discernible speed, when lower amounts of
data are used. The results have been tabulated and for better understanding
represented pictorially as graphs. The times shown may vary with different
machines and also with the type of compilers installed. Various compiler
optimizations have to be turned on to really notice the efficiency level of the code.

When Celeron processors are used, the computation time increases
rapidly after the hundred thousand data threshold. However, as these processors

are not classified for efficiency tests, these cannot be taken as a platform for
measurement.

Efficiency test of ltemset tree

In the itemset tree as the number of nodes increase, the

Nodes Time (s)
100 0.21
1000 0.48
5000 1.10
10000 1.407
50000 2.1
100000 3.34

TABLE 3.1 Node Count of Itemset tree and Corresponding execution times.

35

Selective Markov Model - Performance List

e i 334
3
25
.cé_’ 2 2.1
L
1
0.5
0 :
100 1000 5000 10000 50000 100000

Data

Figure 3.1 Node count Vs execution time

Efficiency test of Selective Markov Model

Markov models show a linear increase in computation time as the amount
of data increases. There is an even further steep increase in computation speed
if the number of elements used is increased. With twenty elements and around
seven hundred thousand data, the system crasnhes. At this stage a different data

structure representation is needed, which at lower data values tends to be slow.

Data | Time(sec
100 0.1
1000 0.103
5000 0.12
10000 0.14
50000 0.20
100000 0.59

TABLE 3.2 Data count and Corresponding execution times.

X axis — data count
y axis — execution

Figure 3.2 Data count and Corresponding execution time

37

APPENDIX 01

GLOSSARY OF TERMS USED

Association rule mining
Association rule mining finds interesting association or correlation

relationships among a large set of data items.

Classification
It is the process of finding a set of models (or functions) that describe
and distinguish data classes or concepts, for the purpose of being able to use the

model to predict the class of object whose class label is unknown.

Clock
The time taken by processor to complete one basic instruction unit. Varies

for each different type and model of processors.

Code profiling

The art of measuring the time taken for execution of a given piece of code.

Concept description
Users like the ease and flexibility of having data sets described at
different levels of granularity and form different angles. Such descriptive data

mining is called concept description.

38

CProfile

A freeware utility class for code profiling that can be used for Visual C++.

Has a very robust mechanism for profiling code without errors.

Data cleaning
Data cleaning routines attempt to fill in missing values, smooth out noise

while identifying outliers, and correct inconsistencies in the data.

Data cube

A Data cube allows data to be modeled and viewed in multiple

dimensions. It is defined by dimensions and facts.

Data integration

Merging of data from multiple data stores into a single entity. Helps to

carryout higher level operations in a much more easier manner.

Data mining

Data minin'g refers to extracting or “mining” knowledge from large amount
of data.

Data selection

Data selection is where data relevant to the analysis task are retrieved from
the database.

Data transformation
Where data are transformed or consolidated into forms appropriate for

mining by performing summary or aggregation operations, for instance

39

Data warehouse

Data warehouse provides storage mechanisms, architectures and tools
for business executives to systematically organize, understand and use their data
to make strategic decisions.

Multi-dimension Association Rule Mining

Association rules that take into consideration more than one dimension or

attribute of the data to mine relationships.

Pattern evaluation

To identify the truly interesting patterns representing knowledge
based on some interestingness measures.

Prediction

Prediction can be viewed as the construction and use of a model to
assess the class of an unlabeled sample, or to assess the value or value ranges

of an attribute that a given sample is likely to have.

Single dimension Association Rule Mining
Association rules that contain a single predicate are referred to as single

dimension association rules.

Support

Support is a measure of what fraction of the population satisfies the both

the antecedent and the consequent of the rule.

Vtune

A third party tool for code profiling from Intel® that has very sophisticated

and advanced features.

APPENDIX 02

SAMPLE SOURCE CODE

DATA GENERATOR SOURCE CODE

/*
* Source code to generate random itemsets for use in
* Association rule mining

*

*/

/*

* randomDG.h

*/
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <time.h>

class Random

{
private:

int i List[100]; // to store items in each basket
short int i noi; // no of items per basket

int i,],tmp;
ofstream out;

public:

Random () ;
void generate(int turn = 0);

40

/*

void bubbleSort():
void display();
void sendToFile();
~Random () ;

* randomDG.cpp

*/

#include "RandomDG.h"

Randoem: : Random ()

{

void

srand((unsigned)time(NULL));
i noi = 0;
out.open ("Rand.txt");

Random: :generate (int turn)

// Set number of items in this basket
i noi = turn;
if (i noi == 0)

i noi = 3;

bool bflg = false;

// generate the required no. of items
for(i=0;1 < i noi;)

{

true;

for (int x=0; x < 1i;x++)
if (i _List([x] == tmp)
bflg = true;

41

if(bflg == false)
{

i List[i] = tmp;
i++;

else

bflg = false;

}
}
} // end of function

void Random: :bubbleSort ()
{

for(int i=0;i<i noi;i++)
for(j=i+1;3j<i noi;j++)
if(i List({i] > i List[j])
{

tmp = i List[i];
i List[i] = 1 List[3j];
i List[j] = tmp;

void Random: :display ()
{

for(i=0;1i < i noi;i++)
{
cout<<i List({i];

if(i+1 !'= 1 noi)
cout<<",";

}

cout<<endl;

42

void Random: :sendToFile ()

{
if(out.is open())

{

out<<endl;
for(i=0;1 < i noi;it++)

{

out<<i List([i];
if(i+l != i noi)
Out<<", ",.

Random: : ~Random ()

{

out.close();

/*
* Random number generator for Market Basket Analysis

*/

#include "Random.h"

void main ()

{

long 1,1 nob;
Random gen;
char *strFileName = new char[25];

cout<<"\n Enter the number of baskets : ";
cin>>1 nob;

43

// we need 1000 items
for(1=0;1<1 nob;l++)
{

gen.generate (1)

14

gen.bubbleSort () ;
)

gen.sendToFile (

}

delete(strFileName) ;

/*
* End of sample source

*/

44

APPENDIX 03

SAMPLE DATA

Data for itemset tree with 9 different items

~ - ~ ~

~ 0~ ~ ~

~ ~ o o [00] [e0]

) ~ ~ N~ ~ ~

N [e)} A O O 0 © ~ ~

-~ ~ . CE NN [N N ~ ~

[eXWNe o] (o0} 98868) O WO ~ ~
~ 0~ - .~ s N ~ o~ ~ ~ ~
987 —~ 6687746 8 < W < e e}
- 0~ P L LN LS NN -~ ~
O 9755 58356553497 oM w O i)
L LN LN .~ s AN ~

~ T [N LS
L -~ 47224422366722276847942

-~ -~ ~ ~ o ~ ~ ~ ~ o~ - -~ - -~ ~ ~ ~ ~ -~ ~ ~

1921211825113111221411151514531

Sample Data For Multidatabase Mining

ID * Group * Alcohol * On-Diet? * Snack_B/w_meals * Fav_Non-veg

950351 * C * 0 0 * 0 * F
950301t * C * 0 *0 *1*P
950282 * C * 1 * 0 *1*F
940112 * C * 2 * 0 * 2 * C
940023 * C * 1 * 0 *0 * B
938976 * C * 1 * 0 * 0 * E
950612 * R * 0 * 0 * 1 * B
950122 * R * 2 * 0 * 0 * B
940227 * R * 1 * 0 * 0 * C
938567 * R * 1 * 0 * 0 * P
950348 * I * 2 * 0 *0*F

950312 * I * 1 *0 *1 * P

950123 * 1 * 0 * 0 * 0 * C
940247 * I * 1 * 0 * 0 * F

940100 * I * 0 * 0 * 0 * B

Sample Data For Selective Markov Model With maximum eight elements

=2 22NN
whHhoobhooh

NN WNW

47

REFERENCES

RESEARCH ARTICLES

[11 R. Agrawal, T. Imilienski, and A. Swami, “Mining Association Rules between
Sets of ltems in Large Databases,” Proc. of the ACM SIGMOD Int'l Conf. On
Management of data, May 1993.

[2] R. Agrawal, and R. Srikant, “Fast Algorithms for Mining Asscciation Rules,”
Proc. Of the 20t VLDB Conference, Santiago, Chile, 1994.

[3] H. Mannila, H. Toivonen, and A. Verkamo, “Efficient Algorithms for
Discovering Association Rules,” AAAl Workshop on Knowledge Discovery in
databases (KDD-94) , July 1994.

[4] Alaaeldin Hafez, Jitender Deogun, and Vijay V. Raghavan, “The ltem-Set
Tree: A Data Structure for Data Mining”

[5] Ramakrishnan srikant and Ramesh Agrawal “Mining sequential patterns”.

[6] Ramakrishnan srikant and Ramesh Agrawal “Mining sequential patterns :
Generalizations and Performance improvements”.

[7] Huan Liu, Hongjun Lu, Jun Yao, “Towards Multidatabase mining : ldentifying
relevant databases”. IEEE TKDE13:(4) 541-553 ,July/August 2001.

[8] H. Mannila, H. Toivonen, and A. Vérkamo, “Efficient Algorithms for
Discovering Association Rules,” AAAlI Workshop on Knowledge Discovery in
databases (KDD-94) , July 1994.

[9] Data mining concepts and techniques by Jiawei Han and Micheline Kamber

