INTERACTIVE AUTHORING TOOL

By
SATISH.A
(Reg. N0:71202621039)

Of

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE

A PROJECT REPORT
Submitted to the
FACULTY OF INFORMATION AND COMMUNICATION ENGINEERING
In partial fulfiiment of the requirements
For the awarcci) ?f the degree

MASTER OF COMPUTER APPLICATION

June 2005

BONAFIDE CERTIFICATE

Certified that this thesis titled INTERACTIVE AUTHORING
TOOL is the bonafide work of Mr. Satish.A, who carried out the
research under our supervision. Certified further, that to the best of
our knowledge the work reported herein does not form part of thesis
or dissertation on the basis of which a degree or award has

conferred on an earlier occasion on this or any other candidate.

1UIEE HEAD OF THE DEPARTMENT

Submitted for the University Examination Heldon & 4 - 0b-0S

Internal Guide Ex{e nal Gui

Quflples

1t

ABSTRACT

Interactive Authoring Tool(IAT), which are nothing but Structured
Technical Manuals. IAT’s were designed and developed by the US Department
of Defense to replace traditional paper technical manuals. Their primary purpose
is to support diagnostics, maintenance, and repair of complex technical systems.
it is a manual that is written for a digital format, allowing it to operate
interactively with the user and provide immediate feedback.

These IAT manuals enable a technician to walk through maintenance
procedures in a logical sequence and through fault isolation techniques. Current
in-itiatives are underway to create an International Standards Organization (1ISO})
standard for IAT development. An ISO standard for IATs will ensure that the
data can be reusable into the future.

The proposed system is an Integrated database IETIS. Integrated
Electronic Technical Information System (IETIS) for Interactive Presentation of
Class 4 IETMs integrated in with the data for other processes including Expert-
System rules for the display of information and other user-applications such as
diagnostics or computer-managed training. Initially the project will focus on a
useful software engineering process which will be best suited to the program to
be developed. This is the blueprint to be followed when constructing the
program. It is likely to be an integration based process, allowing the
development of each sub-system and testing of that sub-system before

integrating and testing further, until the full system is completed.

ACKNOWLEDGEMENT

The satisfaction that accompanies the successful completion
of any task would be incomplete without mentioning the names of
people who made it possible, whose constant guidance and
encouragement crowns all efforts with success.

| would like to express my sincere thanks to Dr.
S.Thangasamy, HOD, Department of computer Science and
Engineering, Kumaraguru College of Technology for having permitted me
to undertake this project.

| convey my earnest thanks to Mr.A.MuthuKumar, Assistant
Professor, Department of Computer Science and Engineering,
Kumaraguru College of Technology for his invaluabie guidance, support
and suggestions throughout the course of this project work.

| express my sincere thanks to the review committee member
Mr.P.GopalaKrishnan for his suggestions and constructive
criticisms.

| express my deep sense of gratitude to Mr.R.Senthil Kumar,
Software Engineer, Newgen Software Technologies Limited,

Chennai for his invaluable guidance, support and suggestions.

TABLE OF CONTENTS

TITLE PAGE NO.

INTERACTIVE AUTHORING TOOL i

ABSTRACT iii
TAMIL ABSTRACT iv
ACKNOWLEDGEMENT v
LIST OF TABLES Xi
LIST OF FIGURES Xii
LIST OF ABBREVIATIONS xiii
CHAPTER 1

INTRODUCTION

1.1 ORGANIZATION PROFILE

1.2 INTRODUCTION TO IETM

1.3 SYSTEM UTILITIES

1.4 PROBLEM DEFINITION

1.5 SYSTEM AIMS

1.6 MODIFICATION FROM THE PROPOSAL
1.7 FORMAT FOR THE REMAINDER OF THE REPORT
CHAPTER 2

BACKGROUND AND RESEARCH

2.1 SEMI-STRUCTURED DATA

2 2 EXTENSIBLE MARKUP LANGUAGE (XML)
2.3 MYSQL AND JDBC

2.4 JDBC

w0 o o o ¢ ~ O O M W = 22 = -

—
o

25FOP

CHAPTER 3

SYSTEM DESIGN

3.1 SYSTEM DESIGN APPROACHES

3.2 REQUIREMENTS DEFINITION

3.2.1 Initial Requirements

3.2.1.1 Initial Requirements for Manual Editor

3.2.1.2 Initial Requirements for XML Storage/Retrieval
3.2.1.3 Initial Requirements for XML/XSL/XSL-FQO Editor

3.3 SUB-SYSTEMS IDENTIFICATION

3.3.1 ldentification of Sub-systems for Manual Editor

3.3.2 ldentification of Sub-systems for XML Storage/Retrieval
3.3.3 Identification of Sub-systems for XML/XSL/XSL-FO Editor
3.4 DATABASE CREATION

3.5 FILE RETRIEVAL

3.6 FILE DELETION

3.7 SYSTEM INTERFACE DESIGN

3.8 SYSTEM ARCHITECTURE

3.8.1 Manual Editor

3.8.2 XML Storage/Retrieval

CHAPTER 4

SYSTEM IMPLEMENTATION

4.1 GENERAL IMPLEMENTATION DECISIONS

4.1.1 Database creator

4.2 IMPLEMENTATION OF SYSTEM ARCHITECTURE
4.2.1 Database implementation

4.2.1.1 Database implementation for Manual Editor

4.2.1.2 Database implementation for XML Storage/retrieval
4.2.1.3 Database implementation for XML/XSL/XSL-FO Editor

10
11
11
12
12
12
12
13
14
15
15
16

16
16
17
17
17
18
19
20
20
20
20
20
20
21
23
24

Vi

4.2.2 JDBC Driver

4.2.3 Java Applications

4.2.4 GUI (Graphical User Interface)

4.2.4.1 GUI for Manual Editor

4.2 4.2 GUI for XML Storage/Retrieval

4.2.4.3 GUI for XML/XSL/XSL-FQ Editor

4.3 COMPONENT IMPLEMENTATION

4.3.1 Component Implementation for Manual Editor
4.3.2 Component Implementation for XML Storage/Retrieval
4.3.3 Component Implementation for XML/XSL/XSL_FQ Editor
CHAPTER 5

THE SYSTEM IN OPERATION

5.1 MANUAL EDITOR

5.1.1 Main Option Screen

5.1.2 Menu

5.1.3 Open

5.1.4 Save

5.1.5 Close & Exit

5.2 XML STORAGE/RETRIEVAL

5.2.1 Conversion

5.2.2 Main Option Screen

5.2.3 XML File Selection Screen

5.2.4 XSL-FO File Selection Screen

5.4 XML Editor

CHAPTER 6

SYSTEM TESTING

6.1 JUSTIFICATION OF TESTING

6.2 TEST CASES

6.2.1 Manual Editor test cases

25
26
26
26
26
27
27
27
28
30
31
31
31
32
32
32
32
33
33
33
33
34
34
34
35
35
35
36
36

Vil

6.2.1.1 New Manual component test cases

6.2.1.2 Open Manual retrieval component test cases
6.2.2 XML Storage/Retrieval test cases

6.2.2.1 XML file storage component test cases
6.2.2.2 XML file retrieval component test cases
6.2.3XML Editor test cases

6.2.3.1 Create database component test cases
6.2.3.2 XML file component test cases

6.2.3.3 XML File retrieval component test cases
6.2.3.4 XML File formation component test cases
CHAPTER 7

SYSTEM EVALUATION

7.1 EVALUATION DESIGN AND METHODOLOGY
7.1.1 Aspects of the system to be tested

7.1.2 Evaluation metrics

7.2 EVALUATION SUMMARY

CHAPTER 8

CONCLUSIONS

8.1 REVIEW OF AIMS

8.1.1 Provision of a XML creator and store

8.1.2 Provision of data retrieval functions

8.1.3 Provision of a user interface

8.2 FUTURE WORKS

8.3 PERSONAIL DEVELOPMENT

8.3.1 Software design skills

8.3.2 Implementation of unfamiliar packages and database
APPENDIX

1. METHODOLOGY

2. PROGRAMME OF WORK

36
37
38
38
39
40
40
40
41
42
43
43
43
43
43
44
45
45
45
45
45
45
46
46
46
46
47
47
47

viii

3. SCHEDULE OF WORK

4. RESOURCES REQUIRED
5. SCREEN SHOTS
REFERENCES

48
49
49
54

Table

3.1
3.2
3.3
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
7.1

LIST OF TABLES

Description
Initial requirements for Manual Editor
initial requirements for XML Storage/Retrieval
Initial requirements for XML/XSL/XSL-FO Editor
New Manual component test cases
Open Manual component test cases
XML file storage component test cases
XML file retrieval component test cases
Create database component test cases
Create file component test cases
File retrieval component test cases
File deletion component test cases

Evaluation summary

Page No.
13
14
16
37
38
39
40
41
41
42
43
45

Figure
3.1
3.2
41
42
4.3
4.4
45
46
4.7
4.8
A1
A2
A3
A4
A5
A6
AT
A8
A9

LIST OF FIGURES

Description
Manual System Diagram
XML Sorage/Retrieval Diagram
The fault_isolation table description
The dtd table description
The subsystem_manuals table description
The system_manuals table description
The xslfo table description
The tags table description
The xsl table description
Database Connection Code
Main Option Screen
New Manual Screen
New Manual Screen
Open Manual Screen
Main Option Screen
XML File Seiection Screen
XSL-FO File Selection Screen
XSL-FO File Selection Screen
XSL Editor Screen

Page No.
20
21
23
24
24
25
25
26
26
27
50
51
51
52
52
53
53
54
54

X1

IETM
XSLT
XSL
DTD
JOBC
API
FOP
W3cC
XSL-FO

umL
XML

LIST OF ABBREVIATIONS

Interactive Electronic Technical Manual
Extensible Stylesheet LLanguage Transformation
Extensible Stylesheet Language.

Document Type Definition

Java Database Connectivity

Application Program Interface

Formatting Objects Processor

World Wide Web Consortium

Extensible Stylesheet Language- Formatting
Objects

Unified Modeling Language
Extensible Markup Language

xii

CHAPTER 1

INTRODUCTION

1.1ORGANIZATION PROFILE

Newgen is a young organization founded in 1992 by a technocrat
management with over 22 years of experience in software development and
marketing. In a short span of eight years, Newgen has achieved a predominant
position in the field of Document and Imaging Management Solutions. Newgen has
financial participation with Citibank Venture Capital Management and a joint
development partnership with Canon Corporation, Japan. Newgen also has a
100% fully owned subsidiary company, Newgen iInc. in Virginia, U.S.A.

1.2 INTRODUCTION TO IAT

Interactive Authoring Tools(lAT), which are nothing but Structured Technical
Manuals.|AT is based on IETM concept. IETM manuals enable a technician to walk

through maintenance procedures in a logical sequence and through fault isolation

techniques.

IETM manuals have been placed into categories or classes as follows.

Class 0. Non-Electronically-Indexed Page Images [Not an ETM] - Systems of

Digitized Page Images that are intended for electronic archival filing or Print-on-

Demand. These allow pages o be viewed on an electronic display but have no
detailed index for navigation through the document for purposed of on-line usage.

Class 1. Electronically Indexed Page Images - Systems of Digitized Page
Images intended for Full-Page Display and use allowing navigation by means of an
automatedintelligent index to the page images for user access (e.g., Navy
AUTOMATIC TERMINAL INFORMATION SERVICE).

Class 2. Electronic Scrolling Documents - Systems for Interactive Display of
ASCII encoded Documents using an intelligent index and Hypertext tags inserted
into a tagged document file. In general, the document is the resuit of a simpie
conversion from a page oriented document but with little reauthoring with the
exception of adding hypertext tags. These allow a user to navigate through the
document, but have very limited, if any, author inserted navigation aids or a
content driven NEXT function.

Class 3. Linear Structured IETMs - Interactive Display of Technical Information
which is SGML tagged using MiL-D-87269 tags to the maximum extent possible
and using a Hypertext presentation system for display in accordance with MIL-M-
87268. It is based on a linear SGML document file and not a heirarcharically based
Data Base. Navigation is based on author-developed constructs employing
prompted dialog boxes and content driven logical NEXT function.

Class 4. Hierarchically Structured IETMs - Interactive Electronic Display of
Technical Information specifically authored into and maintained in a non-redundant
relational or object-oriented hierarchical database. These source data are

subsequently packaged (i.e., "view-packaged') as a run-time database for

Interactive Presentation in accordance with the DoD IETM Specifications (MIL-M-
87268, MIL-D-87269, and MILQ- 87270).

Class 5. Integrated Data-Base IETIS - Integrated Electronic Technical Information
System (IETIS) for Interactive Presentation of Class 4 IETMs integrated in with the
data for other processes including Expert-System rules for the disptay of
information and other user-applications such as diagnostics or computer-managed
training. Each of these classes has benefits over the current paper TM Systems
and the degree of benefit increases with each higher class. Class 0 and Class 1
ETMs can be built at relatively low cost using scanned images or Postscript
encodings, when available, of the present inventory of paper Technical Manuals
(i.e., legacy data).

Class 1 system benefits are focused on eliminating problems with the
excessive space and weight requirements of paper manuals and the problems of
printing paper and maintaining change-page updates. Class 2 systems add the
benefits of frame-based electronic presentation to documents which have been
developed using a conventional publication system, with the format and content
developed according to existing TM specifications. Class 3 is the class in which the
TM authoring organization has an opportunity to reorganize for electronic
presentation, augments, and converts an existing manual into an |IETM data-
element form in order to increase technician performance by better access and
display of information, as well as, provide the benefits achieved by eliminating
paper. Classes 4 and 5 take best advantage of the electronic media because they
are specifically authored for and maintained for those media. Class 5 can only be
loosely defined at this time; however, whatever it becomes it should be able to use
the databases developed for Class 4 with no modification. Class 5 is included in
the classification scheme to anticipate various future integrated concepts in which
process data are added to static information, and the composite data integrated
product demonstrated to achieve performance results better than the other classes
of automated TM Presentation systems. Class 5 approaches are expected to

(8]

achieve better user performance as well as increase the scope of the IETM by
closely integrating additional applications such as a "just-in-time" training, active
automated expert-advice, or an other computational diagnostic process performed

at display time to enhance the presentation of static Technical Information to the
user.

1.3 SYSTEM UTILITIES

The system has the following utilities that are described as follows.

Frame Navigation: Frame Navigation feature enable user with easier frame
traversal within an IETM manual. This is not applicable between manuals. Totaily,
five frame navigation options are provided.

Physical Navigation: Back and Forward buttons will take to the immediate
previous and next frame in the manual.

Logical Navigation: Previous and Next buttons will take to the previous and next

frames visited from the time of opening the manual.

Go to Frame: User can move to a particular frame by entering the frame number
in the Text Box.

History: History will list the frames visited in that manual till that time. User can
select a frame from the list and go to that frame. User can also clear the selected

items or the entire History list at any point of time.

Notes: Notes are of two typés — Public and Private. Public notes will be visible for
all users who have rights to access Notes. Only ‘Admin’ user can modify or delete

the Public notes. Private notes will be visible only to the user who added the notes.

Search: Intelligent search can be done on the manual. IAT supports FTS(Full Text
Search). FTS is performed for a manual when it is loaded for the first time.
Thereafter if the manual is updated using IAT XML, XSL, DTD Editors, again FTS

is performed. The keywords are highlighted when the user views the page found in
search dialog.

Bookmark: User can add Bookmark for a frame.

Troubleshooting: Troubleshooting enables user to clarify their queries or any
error/problem occurred in the maintenance procedure through Multi-Level Search.
By default, the Troubleshooting interface will list some basic search results when
opened. User can view the solution by selecting each search result. Two different
interfaces are available for troubleshooting in Authoring toot and Viewer.

Troubleshooting — Admin: In authoring tool, user can add new troubleshooting
queries and solutions to NGIAT database.

Troubleshooting — Viewer: In viewer, user cannot add new queries and solutions
to the database. User has to key in their query in the ‘Search Keyword area.
Keywords from the query will be filtered and the search results matching for his
queries are listed in the search results area. On selecting a result set, the solution
is displayed below. If a search result has relative links, ‘See Relative Links’ option
will get enabled which facilitates Multi-Level Search. User can drill down to the next
level using this See Relative Links. User can traverse back using ‘Go Previous'’
option and clear the Troubleshooting display areas with ‘Clear’ option.

Fault Isolation: This will show a dialog to the user about a specific fault and then
provides the action for that specific fault. Then it would ask the user whether the
fault has been corrected. If the user option indicates no then it would ask a series
of questions and depending upon the user response the solution to the particular

problem will be given to the user.

Print: This will show a dialog to the user, whether he wants to see a preview of
the current frame or print the current frame or multiple frames. If the user chooses
Preview option, a preview window with zoom facilities will be opened and shown to
the user. The user can zoom in or zoom out the frame view and he can print that
frame. If the user chooses Print option, the current frame will be printed. Users
with admin rights or specific Print rights can use this option.

Mute Audio: NGIAT supports Audio and Video files within IETM manual. Any
Audio file started from within the manual can be stopped half way using Mute
Audio option.

Glossary: This will open an index page for the manual being displayed in the
manual display area. If the manual is modified in the Authoring tool, the FTS
search will be done again for the entire manual to get the keywords for index page.

In Viewer, only the existing keywords in the database for the particular manual will
be displayed.

Home: This will take to the home page of an IETM manual being displayed.
Close: This will close the IAT manual.

Exit: This will close the IAT Authoring Tool / Viewer itself.

1.4 PROBLEM DEFINITION

This project proposes to solve this problem using a simple store.
Consequently the semi-structured data in the form of XML must be placed into a
database. This is in contrast to many of today’'s XML stores, which simply intake
and store XML documents, in their current format. The three major aspects of the
system are therefore Manual Editor, XML storage, XML retrieval and XML format
conversion with the use of XSL-FO along with the XML, XSL and XSL-FO Editor.

1.5 SYSTEM AIMS

The aim of the system will be to develop a program for efficiently storing and
querying semi-structured (XML) data. The system will take XML data, and store the
entire XML document in the database table. The database should then allow the
system to provide efficient querying of the data held within.

¢ The system must store the XML documents in a database.
+ The system must provide data retrieval functions.

e The system must provide queries to support the data retrieval
function.

¢ The user interface should provide the user with a simple navigation

through the possible operations it can perform.

e The system must provide the XML format conversions as per the
user needs.

¢ The system must provide the user with XML, XSL and XSL-FQ Editor
so that the user can construct the corresponding files.

1.6 MODIFICATION FROM THE PROPOSAL

The system has outgrown the ideas set out in the project proposal. The
original idea of using software available for breaking down XML documents into
RDF data then into triples, although time saving, provided triples that were of little
use to the system when the need to retrieve XML data from the database arose.
There was an immense amount of data loss in retrieval of the document-centric
XML documents. This was due to the poor quality of the parser, which provided
null elements in the triples (i.e. either the subject, predicate or object was a null
value). This problem is overcome by storing the entire XML documents in a single
column field of the database table so as to prevent the data loss and maintain the
integrity of the XML document.

1.7 FORMAT FOR THE REMAINDER OF THE REPORT
The remainder of this report is structured as follows:

» Chapter two provides the relevant background and research into the
technical areas the system employs.

o Chapter three discusses the design of the system. It provides the
requirements derived from chapters one and two as well as outlining
the design method used to create the system.

* Chapter four details the implementation of the system providing
discussion of the key implementation decisions.

e Chapter five illustrates the system in operation. This provides an

overview of how the system works from the users’ perspective.

» Chapter six provides the testing implemented to ensure the usability,
reliability and success of the system and its components.

e Chapter seven provides a critical evaluation of the system. The
evaluation is based on user feedback, testing and compietion of the
requirements set out in chapter three.

» Chapter eight concludes the report by revisiting the aims expressed
in chapter one. Areas of improvement and future work will also be
discussed in the conclusions.

CHAPTER 2

BACKGROUND AND RESEARCH

2.1SEMI-STRUCTURED DATA

Semi-structured data is data with no associated schema that is loosely
defined and can have irregular structure. The data defines itself to give its
structure and is therefore called self-defining data. XML is a language that adds
more structure to documents and is almost identical to the semi-structured data
model. XML is therefore the format of data that will be used in the system.

2.2 EXTENSIBLE MARKUP LANGUAGE (XML)

XML, originally developed for document exchange, is tipped to become the
standard language for structured documents and data exchange and the next-
generation HTML. Six characteristics of XML that make it so desirable are:

o Tractability: XML is text, not binary, so it can be easily referenced and
updated by humans.

o Structure: XML is structured and information can be added to it by
adding tags.

¢ Independence between data and style.
o Extensibility: XML supports the definition of new types of tags.

e Openness: XML is independent of specific vendors.

¢ XML can be used with Web technologies.

XML, the eXtensible Markup Language, is a subset of the Standard
Generalised Markup Language (SGML), designed especially for the Web. It is the
universal format for structured documents and data on the Web and facilitates the
transaction of data between computer appiications. XML was developed by W3C
as a standard markup language for adding structure to data i.e. to describe the
data. It is this description of data that provides flexibility and adaptability of
information identification. Furthermore XML provides self-describing data, a
means of storing data within its own structure.

2.3 MYSQL AND JDBC

It is important to the system that the database to be used is both relational
and simple yet offered the programmer options advanced enough to allow JDBC to
run its more advanced features seamlessly. Relational databases are databases
that store data according to the relational model. This relational model refies upon
three major components; structure, integrity and manipulation. The structural
aspect demands the data to be represented in tables, which contains columns and
rows. The integrity aspect demands that the tables follow certain constraints.
Finally, the manipulative aspect demands that the tables can be operated upon i.e.
certain operations can be performed on them to create new tables. They provide
ease of use and analytical flexibility, both qualities demanded by this project. This
language allows the managing, querying and updating of relational databases and
Is the language associated with JDBC. MySql provides adaptability with JDBC,
allowing the use of the pure JDBC Bridge.

2.4 JDBC

Java Database Connectivity is an API, enabling Java programs to execute
MySqg! statements on the database. It is the industry standard for database
connectivity. 'It provides an interface for Java to access databases using the pure
JDBC driver. The classes provided facilitate multiple connections thus
simultaneous access to many databases. It provides the “Write Once, Run
anywhere” ability that all systems strive for.

2.5 FOP

FOP (Formatting Objects Processor) is the world's first print formatter driven
by XSL formatting objects (XSL-FO) and the world's first output independent
formatter. It is a Java application that reads a formatting object (FO) tree and
renders the resulting pages to a specified output. Outputs that are currently
supported include PDF, PCL, PS, SVG, XML (area tree representation), Print,
AWT, MIF and TXT.

FOP uses the standard XSL-FO file format as input, lays the content out into
pages, and then renders it to the requested output. One great advantage to using
XSL-FO as input is that XSL-FO is itself an XML file, which means that it can be
conveniently created from a variety of sources. The most common method is to
convert semantic XML to XSL-FQ, using an XSLT transformation. The goals of the
Apache XML FOP Project are to deliver an XSL-FO to PDF formatter that is
compliant to at least the Basic conformance level described in the W3C
Recommendation.

CHAPTER 3

SYSTEM DESIGN

3.1SYSTEM DESIGN APPROACHES

The first system used in this project is the system design process. This is
built up from the following activities:

¢ Partition requirements

¢ |dentify sub-systems

¢ Assign requirements to sub-systems
+ Specify sub-system functionality

e Define sub-system interface

This design process encourages a component-based architecture where
individual components representing any number of the system functionalities are
developed individually of each other. These components are then brought
together, component by component, tested through an integrated testing process
and finally emerge as the completed system.

3.2 REQUIREMENTS DEFINITION

Requirement engineering is an essential beginning to this design process.

It provides the focus for the rest of the design and extends the system aims.

3.2.1 Initial Requirements

The first tables of requirements are initial requirements that were obtained

from the initial aims and research, before system design. As the design moves

forward, requirements may be added or changed, as may sub-requirements.

3.2.1.1 Initial Requirements for Manual Editor

The table 3.1 explains the initial requirements for the Manual Editor.

Requirement

Requirement Description

ID
The system should provide the list for the available data-
RM1 modules for every data-module type.
The system must provide the functionality for adding the
RM2 data-modules.
RM3 The system should provide the functionality to move the
data-modules up and down.
The system should report the error if the data module is
RM4 already added.
RMS5 The system should report the error if the system with the

same name already exists in the database.

The system must have a function to retrieve the data-
RM6 module files that are stored in the database.

The interface must provide the user with relevant
RM7 information regarding what is in the database and the
options at each stage.

Table 3.1 Initial requirements for Manual Editor

3.2.1.2 Initial Requirements for XML Storage/Retrieval

The table 3.2 explains the initial requirements for the
Storage/Retrieval.

Requirement Requirement Description
ID

Output should be made as usable to the user as
RX1 possible. This is because there is no way of telling why
the user wants the data so screen output is not
sufficient.

Each process carried out by the system must provide
RX3 feedback to the user to inform them of the current
status of the process and if that process is successful or
not.

The system must provide queries on all data in the
RX4 database i.e. all files queried together.

RX5 The system must provide queries on all single files

XML

within the database.
The system must have a function to retrieve whole XML
RX6 documents to allow the database to be used as storage
only.
The interface must provide the user with relevant
RX7 information regarding what is in the database and the
options at each stage.
RX8 The database must be a relational database containing
tables.
The system must provide security on advanced options
RX9 so only designated users can use those options.
A blank database should be able to be created by a
RX10 user.
RX11 XML documents must be stored in the database.

Table 3.2 Initial requirements for XML Storage/Retrieval

3.2.1.3 Initial Requirements for XML/XSL/XSL-FO Editor

The table 3.3 explains the initial requirements for XML/XSL/XSL-FO Editor.

Requirement
ID

Requirement Description

RXX1

The system must take care that all the XML/XSL/XSL-FO
documents that are created are well formed.

documents that are created are well formed.
RXX2 Editor should provide functionalities to create new
XML/XSL/XSL-FO file.
The contents of the file should be stored in database for
RXX3 processing.
RXX4 Editor should enable the contents to be saved to the
database.
Functionalities has to be provided to display the list of
RXX5 tags for XML, XSL and XSL-FO.
RXX6 The system must have a function to modify and delete the
tags associated with XML, XSL or XSL-FO.
RXX7 Allow to add new template, new attribute & new variable
for the tag.
Allow the display in the bottom panel to vary according to
RXX8 the tags selected.

Table 3.3 Initial requirements for XML/XSL/XSL-FO Editor.

3.3 SUB-SYSTEMS IDENTIFICATION

3.3.1 Identification of Sub-systems for Manual Editor

» A sub-system must provide a way of creating the database.

¢ A sub-system for creating a system manual.

¢ A sub-system for creating a sub-system in which we can add the data-
modules.

¢ A sub-system for adding the data-modules to the sub-systems.

3.3.2 Identification of Sub-systems for XML Storage/Retrieval

* A sub-system that deals with the parsing of documents.

* A sub-system must provide a way of creating the database.
» A sub-system for handling the querying of the database.

¢ A sub-system for production of full XML documents.

* A sub-system to interact with the user through an interface.
» A sub-system to provide deletion of files from the database.

¢ A sub-system to change the XML file to other file formats through XSL-
FO

3.3.3 Identification of Sub-systems for XML/XSL/XSL-FO Editor

* A sub-system must provide a way of creating the database.
¢ A sub-system for storing the xml/xsl/xsl-fo files to the database.
A sub-system for retrieving the xmi/xslixsl-fo files from the database.

¢ A sub-system to interact with the user through an interface.

3.4 DATABASE CREATION

This sub-system must provide the following functions.
e Create tabies to hold all essential data and indexes.
* Authenticate whether the user is allowed to perform the task.

+ Ensure only one database can exist at any one time.

3.5 FILE RETRIEVAL

This sub-system must provide the following functions:

¢ user defines the name of the file to be returned
o list the files available to the user

¢ translate into a well-formed XML document

3.6 FILE DELETION

This sub-system must provide the following functions:
+ remove all traces of the file from the database
+ authenticate whether the user is allowed to perform the task

+ maintain the integrity of the database

3.7 SYSTEM INTERFACE DESIGN

This sub-system must provide the following functions:
* provide information to the user on system status.

e provide information to aid the users decision-making.

3.8 SYSTEM ARCHITECTURE

Together the diagrams provide an overview of the complete system
architecture and the interaction between the different levels of architecture.

3.8.1 Manual Editor

Manual System

Manual System

\4~

Subsystem

Data Modules

el

Data Modules Data Modules

Figure 3.1 Manual System Diagram

18

19

3.8.2 XML Storage/Retrieval

XML

XML -
XSLT il
PDF - Document
Document

Text XML

Document Document

Figure 3.2 XML Storage/Retrieval Diagram

20

CHAPTER 4

SYSTEM IMPLEMENTATION

4.1 GENERAL IMPLEMENTATION DECISIONS

4.1.1 Database creator

This component creates the tables in the database. The tables created can
be viewed in figures given below.

4.2 IMPLEMENTATION OF SYSTEM ARCHITECTURE

This section provides an overview of how the system architecture
highlighted in figure 3.1 and 3.2 is implemented. Each component of the
architecture will be discussed in turn (working from the bottom of the diagram) and

the implementation decisions highlighted.

4.2.1 Database implementation

The first decision for the system was concerned with the database. To
provide the required functionality it was decided that the package of choice wouid
be MySql. This provides a relational database that is both simple to use and highly
recognized within the database industry. The modeling of the tables was the next
implementation decision. Figures 4.1 to 4.7 shows the structure of the tables.

21

Figure 4.1 shows how the XML documents are stored in an order facilitating
retrieval and 'queries of the data. Figure 4.2 shows the table storing the document
header. Figures 4.3 to 4.5 show tables that store the triples of information. Each
of theses tables represents a different element of the triple. The decision to have
nine separate tabies holding the data modules XML documents rather than a

single table was taken to provide future extensibility to this system.

4.2.1.1 Database implementation for Manual Editor

mysql> desc fault_isolation:

+ ‘ + + + + + +
| Field | Type | Null | Key | Default | Extra |
+ + + + + + +
| DataModuleCode | varchar(50) | YES | NULL | | |
| Content | blob IYES | NULL | | |
+ + + + + + +

2 rows in set (0.03 sec)

Figure 4.1 The fault_isolation table description

mysql> desc dtd,

+ + + + + + +
| Field | Type | Null|Key | Default| Extra |

+ + + + + + +
| FileName | varchar(50) | | PRI | | |

| Content | blob | YES | | NULL | |

| IsOpened | char(1) I YES | I NULL |]

+ + + + + + +

3 rows in set (0.00 sec)

Figure 4.2 The dtd table description

mysql> desc subsystem_manuals;

+ + + + + + +
| Field | Type | Null | Key | Default | Extra |
+ + + + + + +
| SubsystemName | varchar(50) | YES | | NULL | |
| DataModuleCode | text | YES | | NULL | |
+ + + + + + +

2 rows in set (0.08 sec)

Figure 4.3 The subsystem_manuals table description

22

23

mysql> desc system_manuals:

+ + + + + + +
| Field | Type | Null | Key | Default |Extra |
+ + + + + + +
| SystemName | varchar(50) | YES | | NULL | |
| SubsystemName | varchar(50) | YES | | NULL | |
+ + + + + + +

2 rows in set (0.08 sec)

Figure 4.4 The system_manuals table description

4.2.1.2 Database implementation for XML Storage/retrieval

mysqgl> desc xslifo;

+ + + + + + +
| Field | Type | Null | Key | Default | Extra |
+ + + + + + +
FileName	varchar(25)		PRI		
Content	blob	YES		NULL	
IsOpened	char(1)	YES		NULL	

+ + + + + + +

3 rows in set (0.00 sec)

Figure 4.5 The xslfo table description

mysqi> desc tags;

+ + S — + + +
| Field | Type | Null | Key | Default | Extra |
+ + + + + + +
| type | enum(’xsl','html','xsl-fo’) | | | xsi | |

| tagname | varchar(35) | | i | |
| attributes | text | YES | | NULL | |

+ + + + + + +

3 rows in set (0.02 sec)

Figure 4.6 The tags table description

4.2.1.3 Database implementation for XML/XSL/XSL-FO Editor

mysqgi> desc xsl table;

+ + + + + + +
| Field | Type | Null |Key |Default | Extra |
+ + + + + + +
FileName	varchar(50)	YES		NULL	
Content	blob	YES		NULL	
Open_Status	char(1)	YES		NULL	
+ + + + + + +

3 rows in set (0.00 sec)

Figure 4.7 The xsl table description

24

25

4.2.2 JDBC Driver

This provides the link between the database and the Java application
requiring communication with the database. It is essential this link be established
for any application wishing to talk to the database. This link was established by the

following code:
try{
Class.forName ("com.mysql.jdbc.Driver").newlnstance ();
Connection con=DriverManager.getConnection (“jdbc: mysql://
192.168.7.30:3306/ngiat","root","");
}catch (java.lang.ClassNotF oundException e)
{
System.err.print ("ClassNotF oundException: ");

System.err.printin (e.getMessage ());

}

Figure 4.8 Database Connection Code

4.2.3 Java Applications

These applications access the underlying database. They provide the tools
for manipulation of the data in the system. Each Class and its implementation are
described in full detail in section 4.2.3.

4.2.4 GUI (Graphical User Interface)

4.2.4.1 GUI for Manual Editor

The Class “ManualEditor.java” which creates and edit manuals from data
modules. Class "NewManual.java” Provides the interface and functionalities for
creating a new system or subsystem. Class “OpenManual.java’ which provides the

interface and functionalities for opening an existing system or subsystem.

4.2.4.2 GUI for XML Storage/Retrieval

The Class “Xslt.java” provides the XML Editor to facilitate the author to
update the XML manual and view the transformed output immediately. Updates
can be reverting back since the changes will be temporarily available in memory.
DTD elements corresponding to the manual can be newly added and attribute
values in XML can be updated. Class “Conversion.java” provides the functionality
to perform the XML document conversion to various file formats such as pdf, text,

awt or svg. A class “FileSelection.java’ performs the file selection for the file
conversion.

27

4.2.4.3 GUI for XML/XSL/XSL-FO Editor

The Class “XMLEditor java” provides the interface to the user for creating
and manipulating the xmi/xsl/xsl-fo file.

4.3 COMPONENT IMPLEMENTATION

This section describes how the functions specified in Chapter 3 have been
implemented into the working system. Each sub-section will represent one of the
components/sub-systems specified in Chapter 3. Each of the functions refers to
the summaries of functions in chapter 3.

4.3.1 Component Implementation for Manual Editor

The class “ManualEditor.java” handles the implementation of the functions
for the manual editor component. This class creates and edits manuals from data
modules. This requires the use of the methods:

» createPane!

¢ addSubsystems

o listDataModuleTypes
o listSubsystemTypes
o listSystem

¢ listSubsystem

¢ modifyData

¢ saveData

Each of the methods belongs to this class. The method createPanel() is for
Creating Manual Editor Screen. Method addDataModules() is for creating a string
containing all data modules added. Method addSubsystems() is for creating a
string containing all subsystems added. Method listDataModuleTypes() is for listing
the set of Data modules under a particular subsystem. Method
listSubsystemTypes() is for listing the set of subsystems under a particular system.
Method listSystem() is used to open a system and display its subsystems. Method
listSubsystem() is used to open a subsystem and display its corresponding data
modules. Method modifyData() is used to check if the contents of system or
subsystem are modified. Method saveData() is used to save the modifications to
database. The Class “NewManual java’ Provides the interface and functionalities
for creating a new system or subsystem. This requires the use of the method
createDialog() that creates a new dialog. Class “OpenManual.java’ which provides
the interface and functionalities for opening an existing system or subsystem.
This requires the use of the method openSystem() that open a system and display
its subsystems and a method openSubsystem() that open a subsystem and display
its corresponding data modules.

4.3.2 Component implementation for XML Storage/Retrieval

The class “Xslt.java’ handles the implementation of the functions for the
retrieval of the XML document. It provides the XML Editor to facilitate the author to
update the XML manual and view the transformed output immediately. DTD
elements corresponding to the manuai can be newly added and attribute values in
XML can be updated. This requires the use of the methods:

s |oadDtd
e |oadXsl

¢ loadXml

createNewDataModule
getTextFromEditor
apply
doTransform
getimages
retrievelmages
updateDocument
showFileDialog
openFile
findDTDXSL
findXmllds
parseAttributes
findElement
findMatch
movetoPage

savefile

29

The Class “Conversion.java” provides the functionality to perform the XML
document conversion to various file formats such as pdf, text, awt or svg that uses

a method créateElements() to create the elements. Class “FileSelection java”
performs the file selection for the file conversion that uses a method
createElements() to create the elements and another method displayFiles() to
display the files.

4.3.3 Component Implementation for XML/XSL/XSL_FO Editor

The class XMLEditor.java provides the functionalities to create and
manipulate the xml,xsl and xs|-fo files.This requires a list of functions that include

¢ formTreeView()
s formElementList()
¢ placeControls(}
* setPopupMenus()

The function formTreeView() is used in order to form a tree structure from
the xml,xs! or xsl-fo file. Function formElementList() will list all the tags that
are associated with xml,xs| or xsl-fo. Function placeControls() is used to
place controls at appropriate location. The function setPopupMenus()
provides the popup menus for the user.

CHAPTER 5

THE SYSTEM IN OPERATION

/A/’?’:'T" v .:." B
& :

ty
]

il
i

5.1 MANUAL EDITOR doon

Manual Editor is a user interface that helps the user to view the list of
available systems and subsystems. If the user selects system for viewing its detail,
the screen wili display the list of available system that gets displayed under
“Available System” and the list of systems that are needed for a particular module

will be displayed under “Added System”.

The buttons between the list boxes are provided to move the elements of
the system to either side. The top button (>>) is used to add a system to the list of
added system. The bottom button (<<) is provided to remove a system from the list
of added system. In addition system can be moved to an indicated location. The
button on the extreme right is provided to alter the order of occurrences of system.
“UP" button is to move the system selected up in the listing and “DOWN” button to
move the selected system down in listing. Menu has been provided in order to
create new system/subsystem, to open an already existing system/subsystem
Save the modifications made and finally to close the editor.

The basic difference in the interface for system and subsystem is that an
additional feature to display the types of data modules has been provided. This can
help the user to list the data modules and add the data modules as required.

32

5.1.1 Main Option Screen

The main option screen is shown in figure 5.1.

5.1.2 Menu

The file menu provided in the manual editor helps to create new system or
subsystem. In New menu options have been provided to provide the name of the
manual as well as an option to select whether the user is going to create a manual
for system or subsystem. The “OK” button will be enabled only if some entries
have been provided in the text box given to enter the manuail name. If the user is
selecting system the manual editor interface will give the listing of all the available
subsystem so that the user can select the required subsystems to form their
system. And if they are selecting subsystem the manual editor will give the list of
data modules for the user to form their subsystem:.

5.1.3 Open

The Open option provided under the file menu is used in order to view the
list of system or subsystem. In the open menu options have been provided to
display the list of available systems. Selection can be made by means of a combo
box whether to display system or subsystem. The “OK” button will become active
only if some system or subsystem displayed has been selected.

5.1.4 Save

The save option has been provided under the file menu so that the user can
save the changes that had been made. The entire contents that are saved gets
updated in the database so that the user can access it as and when required. For
performing the modifications and making the possible updating in database some

33

tables are maintained. These tables include system_manuals,
subsystem_manuals, datamodule_types, etc.

5.1.5 Close & Exit

The close option can be used to close the manual that was displayed and
the Exit option can be used to close the application.

5.2 XML STORAGE/RETRIEVAL

5.2.1 Conversion

In this module we are inputting the XML file and XSL-FO file for converting
into particular file format such as PDF and Text using FOP.FOP is the world's first
print formatter driven by XSL formatting objects. It is a Java 1.1 application that
reads a formatting object tree and then turns it into a PDF document. The
formatting object tree, can be in the form of an XML document (output by an XSLT
engine like XT or Xalan) or can be passed in memory as a DOM Document or (in
the case of XT) SAX events. FOP is part of Apache's XML project.

5.2.2 Main Option Screen

This screen shows the detaiis of the conversion module. The file type
combo box holds the file formats such as PDF and Text. File type can be selected
from the combo box.

5.2.3 XML File Selection Screen

The XML file text field is there for holding the particular XML file. By clicking
the browse button we can have the window that contains list of XML file retrieved
from the database. We can select particular XML files from the database.

5.2.4 XSL-FO File Selection Screen

The XSL-FO file text field is there for holding the particular XSL-FO file.By
clicking the browse button we can have the window that contains list of XSL-

FO file retrieved from the database. We can select particular XSL-FO files from
the database.

In the output file we have to specify the newly created output file with particular
extension. After that click ok button to have the newly generated file.

5.4 XML Editor

XML Editor screen contains three parts. First part will contain the list of XML
tags that can be included. Second part will have the XML coding and the third

part reflects coding details. In addition it also provides menu option to users.

35

CHAPTER 6

SYSTEM TESTING

6.1 JUSTIFICATION OF TESTING

The architecture of the system provides a requirement that the workings of
each of the components should not interfere (unexpectedly) with the workings of
any of the other components. The testing must therefore implement an integration
based testing system where each component is tested as far as possible
separately, but then other components are integrated to provide full testing of the
component.

6.2 TEST CASES

6.2.1 Manual Editor test cases

6.2.1.1 New Manual component test cases

Test Test case Test Comments
case description result
A1l Manual added to Success All tables were
empty database added to database
A2 Manual added to Success All tables were
database updated and the
containing data relevant data
added
A3 The first manual Success First manual in
entered is retrieved. database is stored
Is checked against correctly.
original manual.
Ad The second manual Success Manuals at the
entered is retrieved middle are
therefore stored
A5 The last manual in Success Manuals at the end
the database is are therefore stored
retrieved correctly.

Table 6.1 New Manual component test cases

36

6.2.1.2 Open Manual retrieval component test cases

Test Test case Test Comments

case description result

B1 The first manual Success Manuals are the
entered is same as stored in
retrieved. Is the database.
checked against
original manual.

B2 The second manual Success Again the manuals
entered is retrieved are the same

B3 The last manual in Success Manuals are the

the database is
retrieved

same

Table 6.2 Open Manual component test cases

37

6.2.2 XML Storage/Retrieval test cases

6.2.2.1 XML file storage component test cases

Test Test case Test Comments
case description result
C1 File added to empty Success All tables were
database added to in the
expected way
Cc2 File added to Success All tables were
database updated and the
containing data relevant data added
C3 The first file Success First file in
entered is database s
retrieved. Is therefore stored
checked against correctly
original file.
C4 The second file Success Files not at the
entered is retrieved beginning or end of
the database tables
are therefore stored
correctly
C5 The last file in the Success Files at the end are

database is

retrieved

therefore stored

correctly.

Table 6.3 XML file storage component test cases

6.2.2.2 XML file retrieval component test cases

Test Test case Test Comments

case description result

D1 The first file Success Files are the same.
entered is
retrieved. Is
checked against
original file.

D2 The second file Success Again the files are
entered is retrieved the same

D3 The last file in the Success Files are the same

database is
retrieved

Table 6.4 XML file retrieval component test cases

6.2.3XML Editor test cases

6.2.3.1 Create database component test cases

Test Test case Test Comments

case description result

E1 Create a database Success Database was
when there is no created with all
database expected tables

E2 Try to create a Success No database was

database when one
already exists with
data already

entered

created therefore
the Singleton
pattern works

6.2.3.2 XML file component test cases

Table 6.5 Create database component test cases

Test Test case Test Comments
case description result
F1 XML File added to Success All tables were
empty database added to in the
expected way
F2 XML File added to Success All tables were

database

containing data

updated and the

relevant data added

40

41

F3 The first file entered Success First file in
is retrieved. Is database is
checked against therefore stored
original file. correctly
F4 The second file Success Files not at the
entered is retrieved beginning or end of
the database tables
are therefore stored
correctly
F5 The last file in the Success Files at the end are
database is therefore stored
retrieved correctly.

Table 6.6 Create file component test cases

6.2.3.3 XML File retrieval component test cases

Test Test case Test Comments
case description resulit
The first XML file
entered is retrieved. _
G1 _ Success Files are the same.
Is checked against
originat file.
The second file Again the files are
G2 _ Success
entered is retrieved the same
G3 The last file retrieved Success Files are the same

Table 6.7 File retrieval component test cases

6.2.3.4 XML File formation component test cases

Test Test case Test Comments

case description result

H1 Check whether the Success Root element is
root element is properly inserted
present in the file into the file

H2 Check whether all Success All the child
the child elements element appears in
appear in proper proper order
order

H3 Check whether ail Success All the elements

the elements
opened has been
properly closed.

have proper
closing tags.

Table 6.8 File deletion component test cases

42

43

CHAPTER 7
SYSTEM EVALUATION

7.1 EVALUATION DESIGN AND METHODOLOGY

7.1.1 Aspects of the system to be tested

The evaluation of system must determine how successful the system is. The
criterion is the requirements specified. These requirements overlap into the
different sub-system components that consequently mean that the evaluation
process will evaluate against each requirement in turn rather than on the
component-by-component basis.

7.1.2 Evaluation metrics

The quantification of success for each aspect of the system requires a
metric that yields an accurate assessment of the system. As the system aims to
successfully achieve each of the requirements, the metric used will provide a rating
as to how successful the aspect was in its achievement. A three-tier scale of
provides this satisfied, partially satisfied and unsatisfied.

7.2 EVALUATION SUMMARY

The resuits of the evaluation process are summarized by Table 7.1.

Requirement ID

Evaluation Classification

RX1 Satisfied
RX2, RX11, RM2 Satisfied
RX3, RM4, RM5 Satisfied
RX4, RM1 Satisfied
RXS Satisfied
RX6, RM6& Satisfied
RX7, RM7 Partially satisfied
RX8 Satisfied
RX9, RX10 Satisfied
User Interface Satisfied

Table 7.1 Evaluation summary

44

45

CHAPTER 8

CONCLUSIONS

8.1 REVIEW OF AIMS

8.1.1 Provision of a XML creator and store

The first aim of the system was to be able to take an XML document and
model this data in the database. It has been proven that an XML document can be
stored in the database. This component satisfies this initial aim.

8.1.2 Provision of data retrieval functions

This aim was to develop a system to retrieve data. The first through the file
retrieval component provided a way to retrieve a document stored in the database.
The second is implemented with the query component and is discussed in the
following section. These two functions satisfy the aim.

'8.1.3 Provision of a user interface

Chapter seven provides a discussion on the interface and its level of
success. The aim was to provide a user interface that would provide the user with
a means of accessing the system functionality. As described this was a success.

46

8.2 FUTURE WORKS

Remodeling the design of the XML store was mentioned in chapter two and
three. Irrespective of the whole XML document to be stored as a single column
element of the table we can further break the XML document. This would decrease

the amount of memory required by the database and possibly speed up queries as
less data needs to be searched through.

8.3 PERSONAL DEVELOPMENT

8.3.1 Software design skills

The design of the system was crucial to its success and through the use of
requirements and design architecture skills were developed in the ability to provide
a design solution specific to a task.

8.3.2 Implementation of unfamiliar packages and database

The use of pure JDBC Driver, XML documents, XSL-FO and MySql
database and the interface implementation using Java Swing components were all
areas that had previously never been used. Therefore the successful

implementation of each of the above provides confidence in the ability to handle
unfamiliar languages and software.

47

APPENDIX

1. METHODOLOGY

The project will use Java programming environment. Java is a very useful
modern object-oriented programming language. It is fikely the waterfall model (not
the original model which was inflexibie) of design will be followed throughout the
project. Following this model will allow the successful integration of components

and sub-systems allowing enough versatility for changes to be made throughout
the process.

2. PROGRAMME OF WORK

This section reveals how the project will be conducted in relation to what is
to be done and when it is to be done. The project will be developed to completion
between December 2004 and the May 2005. The majority of work will be carried
out in 20 weeks.

The lists of tasks includes:
¢ Design and develop the system for storing data
e Test sub-systems
e Integration and testing of the system
s Conformance with design

e Provide user interface

48

3. SCHEDULE OF WORK

Weeks one to four will see the completion of designs and first
prototypes. This will allow testing of the sub-systems to begin. Stages two,
three and four are then revisited as needed for weeks five to eleven as the
design is developed. Once the sub-systems are considered complete, full
system tests will start. This will start as early as week seven although is more
likely week fourteen. Allowing again for changes to previous stages, this
should be compiete by week fifteen. At this point validation and verification are
very important. From week seventeen the user interface can be developed
which should take only a few weeks.

Throughout the project the documenting and reporting will be carried out.
This means every stage will be recorded as it happens hence not allowing
events to be forgotten.

Week fourteen will be the first milestone. Progress will be checked at
this point. By this point there will be available a prototype of the two programs.
It is likely to be limited and not perform all tasks required. Final designs should
be documented by this time. Week fifteen is the next milestone and by this
point the project should be nearing completion. There should be available a

prototype of the full system minus the fully developed user interface.

Week sixteen will be the deadline for the draft report. Week twenty is the
deadline for the finalized project including the report. This point must complete
everything.

49

4. RESOURCES REQUIRED

A workstation containing software, which must include Java Runtime
Environment 1.4 or above with MySql 3.23.52 Installation. This is essential, as the
programs will be written within this environment.

5. SCREEN SHOTS

Figure A.1 Main Option Screen

Figure A.3 New Manual Screen

Figure A.4 Open Manual Screen

Figure A.5 Main Option Screen

51

¥y
1~

TOC.xml
default-author.zmi
Rotary.xml
HelicopterGrid.zml

canner.yml

Figure A.6 XML File Selection Screen

defaultfo.xsl
ofile.fo

newfilefo
samplefo

Figure A.7 XSL-FO File Selection Screen

ARALKK

Figure A.8 XSL-FO File Selection Screen

1 xsllemplate match="h¢zg¢ 3"
FDyon

¢ FONT color="blue" face="serif' size="4"

" DY xstannivtemplatess

Ben

Figure A.9 XSL Editor screen

rh
Ll

54

REFERENCES

. Cay 8. Horstmann and Gray Cornell (2000), 'Core JAVA 2' Pearson
Education Asia

. Patrick Naughton and Herbert Schildt (1999), ‘The Complete Reference
Java 2’ Tata McGraw-Hill

. V.Yasuo Yamane VNobuyuki Igata Visao Namba { 2004), ‘High-
performance XML Storage/Retrieval System’, Tata McGraw-Hill

. Wen Qiang, Wang Mong, Li Lee, Beng Chin Ooi, Kian-Lee Tan Department
of Computer Science, National University of Singapore, ‘A Scalable Storage
Mapping Scheme for XML Data’, http:llwww.comp.nus.edu.sg!~wangwq.

. http:/Awww.w3schools.com/xml

. http:/iwww.comp.nus.edu. sg/~wangwq

. www.ietm.net

. www.oneil.com

. www.cpt.fsu.edu

