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ABSTRACT

The TCP/IP Header Compression Tool allows the user to improve TCP/IP
performance by reducing TCP/IP Header size from 40 bytes to 3 bytes.

Normally the TCP/IP Header size is 40 bytes (20 bytes of TCP and 20 bytes of
IP), all these header fields serve some useful purpose and it's not possible to simply

omit some in the name of efficiency.

However, TCP establishes connections and typically, tens or hundreds of
packets are exchanged on each connection. How much of the per-packet information
is likely to stay constant over the life of a connection? HALF — So, if the sender and
receiver keep track of active connections and the receiver keeps a copy of the header
from the last packet it saw from each connection, the sender gets a factor-of-two
compression by sending only a small (< 8 bit) connection identifier together with the
20 bytes that change and letting the receiver fill in the 20 fixed bytes from the saved
header.

One can scavenge a few more bytes by noting that any reasonable link-level
framing protocol will teII‘the receiver the length of a received message so fotal fength
(bytes 2 and 3) is redundant. But then the header checksum (bytes 10 and 11), which
protects individual hops from processing a corrupted IP header, is essentially the only
part of the IP header being sent. It seems rather silly to protect the transmission of
information that isn't being transmitted. So, the receiver can check the header
checksum when the header is actually sent (i.e., in an uncompressed datagram) but,
for compressed datagrams, regenerate it locally at the same time the rest of the IP

header is being regenerated.
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This leaves 16 bytes of header information to send. All of these bytes are likely
to change over the life of the conversation but they do not al change at the same
time. For example, during an FTP data transfer only the packet ID, sequence number
and checksum change in the sender - receiver direction and only the packet ID, ack,
checksum and, possibly, window, change in the receiver > sender direction. With a
copy of the last packet sent for each connection, the sender can figure out what fields
change in the current packet then send a bit mask indicating what changed followed
by the changing fields.

If the sender only sends fields that differ, the above scheme gets the average
header size down to around ten bytes. However, it's worthwhile looking at how the
fields change: The packet ID typically comes from a counter that is incremented by
one for each packet sent. l.e., the difference between the current and previous packet
IDs should be a small, positive integer, usually < 256 (one byte) and frequently = 1.
For packets from the sender side of a data transfer, the sequence number in the
current packet will be the sequence number in the previous packet plus the amount of
data in the previous packet (assuming the packets are arriving in order). Since |P
packets can be at most 64K, the sequence number change must be < 2'° (two bytes).
So, if the differences in the changing fields are sent rather than the fields themselves,
another three or four bytes per packet can be saved. That gets us to the five-byte
header target.

Recognizing a couple of special cases will get us three byte headers for the
two most common cases: Interactive typing traffic and Bulk data transfer.

This intellectual exercise suggests it is possible to get three byte headers, it

seems reasonable to flesh out the missing details and actually implement something.
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CHAPTER 1

INTRODUCTION

As increasingly powerful computers find their way into people’s homes, there is
growing interest in extending Internet connectivity to those computers. Unfortunately,
this extension exposes some complex problems in link-level framing, address
assignment, routing, authentication and performance. As of this writing there is active
work in all these areas.

This project describes a method that has been used to improve TCP/IP
performance by reducing the header size. This is essential for low speed Serial links

and useful for high-speed lines.

However, this protocol compresses more effectively (the average compressed
header is 3 bytes) and is both efficient and simple to implement (the Unix
implementation is 250 lines of C and requires, on the average, 90us (~170

instructions) for a 20MHz MC68020 to compress or decompress a packet).

This compression is specific to TCP/IP datagrams. Compressing UDP/IP
datagrams was investigated but found that they were too infrequent to be worth the
bother and either there was insufficient datagram-to-datagram coherence for good
compression (e.g., name server queries) or the higher level protocol headers
overwheimed the cost of the UDP/IP header (e.g., Sun's RPC/NFS).



Separately compressing the IP and the TCP portions of the datagram was
also investigated but rejected since it increased the average compressed header size

by 50% and doubled the compression and decompression code size.

1.1 THE PROBLEM

Internet services one might wish to access over a serial IP link from home
range from interactive “terminal’ type connections (e.g., telnet, rlogin, xterm) to bulk
data transfer (e.g., FTP, SMTP). Header compression is motivated by the need for
good interactive response. |.e., the line efficiency of a protocol is the ratio of the data
to header + data in a datagram. If efficient bulk data transfer is the only objective, it is
always possible to make the datagram large enough to approach an efficiency of
100%.

Human-factors studies have found that interactive response is perceived as

“bad” when low-level feedback (character echo) takes longer than 100 to 200 ms.
Protocol headers interact with this threshold three ways:

(1) If the line is too slow, it may be impossible to fit both the headers and data
into a 200 ms window: One typed character results in a 41 byte TCP/IP packet being
sent and a 41 byte echo being received. The line speed must be at least 4000 bps to
handle these 82 bytes in 200 ms.

(2) Even with a line fast enough to handle packetized typing echo (4800 bps
or above), there may be an undesirable interaction between bulk data and interactive
traffic: For reasonable line efficiency the bulk data packet size needs to be 10 to 20
times the header size. l.e., the line maximum transmission unit or MTU should be 500
to 1000 bytes for 40 byte TCP/IP headers.



Even with type-of-service queuing to give priority to interactive traffic, a telnet
packet has to wait for any in-progress bulk data packet to finish. Assuming data
transfer in only one direction, that wait averages half the MTU or 500 ms for a 1024
byte MTU at 9600 bps.

(3) Any communication medium has a maximum signaling rate, the Shannon
limit. Based on an AT&T, the Shannon limit for a typical dialup phene line is around
22,000 bps. Since a full duplex, 9600 bps modem already runs at 80% of the limit,
modem manufacturers are starting to offer asymmetric allocation schemes to
iﬁcrease effective bandwidth: Since a line rarely has equivalent amounts of data
flowing both directions simultaneously, it is possible to give one end of the line more
than 11,000 bps by either time-division multiplexing a half-duplex line (e.g., the
Telebit Trailblazer) or offering a low-speed “reverse channel’ (e.g., the USR Courier
HST). In either case, the modem dynamically tries to guess which end of the
conversation needs high bandwidth by assuming one end of the conversation is a
human (i.e., demand is limited to <300 bps by typing speed). The factor-of-forty
bandwidth multiplication due to protocol headers will fool this allocation heuristic and

cause these modems to “thrash”.

From the above, it's clear that one design goal of the compression should be to
limit the bandwidth demand of typing and ack traffic to at most 300 bps. A typical
maximum typing speed is around five characters per second which leaves a budget

30 - 5 = 25 characters for headers or five bytes of header per character typed.

Five byte headers solve problems (1) and (3) directly and, indirectly, problem
(2): A packet size of 100-200 bytes will easily amortize the cost of a five byte header
and offer a user 95-98% of the line bandwidth for data. These short packets mean

little interference between interactive and buik data traffic.



Another design goal is that the compression protocol be based solely on

information guaranteed to be known to both ends of a single serial link.

o

Figure 1.1: A topology that gives incomplete information at gateways

Consider the topology shown in Figure 1.1, where communicating hosts A and
B are on separate local area nets (the heavy black lines) and the nets are connected
by two serial links (the open lines between gateways C-D and E--F).
One compression possibility would be to convert each TCP/IP conversation into a
semantically equivalent conversation in a protocol with smaller headers, e.g., to an
X.25 call. But, because of routing transients or multipathing, it's entirely possible that
some of the A-B traffic will follow the A-C-D-B path and some will follow the A-E-F-B
path. Similarly, it's possible that A—>B traffic will flow A-C-D-B and B-->A traffic will
flow B-F-E-A. None of the gateways can count on seeing all the packets in a
particular TCP conversation and a compression algorithm that works for such a
topology cannot be tied to the TCP connection syntax.

A physical link treated as two, independent, simplex links (one each direction)
imposes the minimum requirements on topology, routing and pipelining. The ends of

each simplex link only have to agree on the most recent packet(s) sent on that link.



Thus, although any compression scheme involves shared state, this state is
spatially and temporally local and adheres to Dave Clark’s principle of fate sharing:
The two ends can only disagree on the state if the link connecting them is inoperable,
in which case the disagreement doesn’t matter.
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Figure 1.2: The header of a TCP/IP datagram



1.2 WORK DONE

The TCP/IP Header Compression Tool allows the user to improve TCP/P
performance by reducing TCP/IP Header size from 40 bytes to 3 bytes.

Figure 1.2 shows a typical (and minimum length) TCP/IP datagram header.
The TCP/IP Header size is 40 bytes: 20 bytes of TCP and 20 bytes of IP.
Unfortunately, since the TCP and IP protocols were not designed by a committee, all
these header fields serve some useful purpose and it's not possible to simply omit
some in the name of efficiency.

However, TCP establishes connections and typically, tens or hundreds of
packets are exchanged on each connection. How much of the per-packet information
is likely to stay constant over the life of a connection? HALF — the shaded fields in
Figure 1.3. So, if the sender and receiver keep track of active connections and the
receiver keeps a copy of the header from the last packet it saw from each connection,
the sender gets a factor-of-two compression by sending only a small (<=8 bit)
connection identifier together with the 20 bytes that change and letting the receiver fill

in the 20 fixed bytes from the saved header.

One can scavenge a few more bytes by noting that any reasonable link-level
framing protocol will tell the receiver the length of a received message so total fength
(bytes 2 and 3} is redundant. But then the header checksum (bytes 10 and 11), which
protects individual hops from processing a corrupted [P header, is essentially the only
part of the IP header being sent. It seems rather silly to protect the transmission of
information that isn’t being transmitted.



So, the receiver can check the header checksum when the header is actually
sent (i.e., in an uncompressed datagram) but, for compressed datagrams, regenerate

it locally at the same time the rest of the IP header is being regenerated.
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Figure 1.3: Fields those changes during a TCP connection



This leaves 16 bytes of header information to send. All of these bytes are likely
to change over the life of the conversation but they do not ali change at the same
time. For example, during an FTP data transfer only the packet /D, sequence number
and checksum change in the sender -> receiver direction and only the packet ID, ack,
checksum and, possibly, window, change in the receiver - sender direction. With a
copy of the last packet sent for each connection, the sender can figure out what fields
change in the current packet then send a bit mask indicating what changed followed
by the changing fields.

If the sender only sends fields that differ, the above scheme gets the average
header size down to around ten bytes. However, it's worthwhile looking at how the
fields change: The packet ID typically comes from a counter that is incremented by
one for each packet sent. |.e., the difference between the current and previous packet
IDs should be a small, positive integer, usually < 256 (one byte) and frequently =1.
For packets from the sender side of a data transfer, the sequence number in the
current packet will be the sequence number in the previous packet plus the amount of
data in the previous packet (assuming the packets are arriving in order). Since IP
packets can be at most 64K, the sequence number change must be < 2'® (two bytes).
So, if the differences in the changing fields are sent rather than the fields themselves,
another three or four bytes per packet can be saved. That gets us to the five-byte
header target.

Recognizing a couple of special cases will get us three byte headers for the
two most common cases - Interactive typing traffic and Bulk data transfer.

This intellectual exercise suggests it is possible to get three byte headers, it

seems reasonable to flesh out the missing details and actually implement something.



CHAPTER 2

PROTOCOL ARCHITECTURE

2.1 THE OS| REFERENCE MODEL

The Open System Interconnection (OSI) reference model describes how
information from a software application in one computer moves through a network
medium to a software application in another computer. The OSI reference model is a
conceptual model composed of seven layers, each specifying particular network
functions. The model was developed by the International Organization for
Standardization (ISO) in 1984, and it is now considered the primary architectural

model for intercomputer communications.

The OSI model divides the tasks involved with moving information between
networked computers into seven smaller, more manageable task groups. A task or
group of tasks is then assigned to each of the seven OSI layers. Each layer is
reasonably self-contained so that the tasks assigned to each layer can be
implemented independently. This enables the solutions offered by one layer to be

updated without adversely affecting the other layers.

The following list details the seven layers of the Open System Interconnection
(OSI) reference model. Figure 2.1 illustrates the OSI Model.
* Layer 7—Application
* Layer 6—Presentation
* Layer 5—Session
+ Layer 4—Transport
» Layer 3—Network
* Layer 2—Data link
* Layer 1—Physical
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T Application
G Presantation
5 Session

4 Transport
3 Network

2 Data link

1 Physical

Figure 2.1: The OSI Reference Model

2.1.1 Characteristics of the OS| Layers

The seven layers of the OSI| reference model can be divided into two
categories: upper layers and lower layers.

The upper layers of the OSI model deal with application issues and generally
are implemented only in software. The highest layer, the application layer, is closest
to the end user. Both users and application layer processes interact with software
applications that contain a communications component. The term upper layer is

sometimes used to refer to any layer above another layer in the OSI model.

The lower layers of the OS| model handle data transport issues. The physical
layer and the data link layer are implemented in hardware and software. The lowest
layer, the physical layer, is closest to the physical network medium (the network
cabling, for example)} and is responsible for actually placing information on the

medium. Figure 2.2 illustrates the division between the upper and lower OS] layers.
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Figure 2.2: Two Sels of Layers Make up the OS/ Layers

2.1.2 Interaction between OS| Model Layers

A given layer in the OSI model generally communicates with three other OSI

layers: the layer directly above it, the layer direcily below it, and its peer layer in other

networked computer systems. The data link layer in System A, for example,

communicates with the network layer of System A, the physical layer of System A,

and the data link layer in System B. Figure.2.3 illustrates this example.
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Figure 2.3: OSI Model Layers Communicate with Other Layers
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2.1.3 O8I Layer Services

One OSI layer communicates with another layer to make use of the services
provided by the second layer. The services provided by adjacent layers help a given
OSI layer communicate with its peer layer in other computer systems. Three basic
elements are involved in layer services: the service user, the service provider, and the

service access point (SAP).

[n this context, the service user is the OSI layer that request services from an
adjacent OSI layer. The service provider is the OSI layer that provides services to
service users. OSl layers can provide services to multiple service users. The SAP is a
conceptual location at which one OSI layer can request the
services of another OSI layer. Figure 2.4 illustrates how these three elements interact

at the network and data link layers.

_ Sarvice user
-+ network layer protocel

Metwark
fayar

Data link
layar

Figure 2.4: Service Users, Providers, and SAPs Interact at the Network and Data Link
Layers
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2.1.4 OSl Model Layers and Information Exchange

The seven OSlI layers use various forms of control information to communicate
with their peer layers in other computer systems. This control information consists of
specific requests and instructions that are exchanged between peer OSI| layers.
Control information typically takes one of two forms: headers and trailers. Headers
are prepended to data that has been passed down from upper layers. Trailers are

appended to data that has been passed down from upper layers.

An OSI layer is not required to attach a header or a trailer to data from upper
layers. Headers, trailers, and data are relative concepts, depending on the layer that

analyzes the information unit.

At the network layer, for example, an information unit consists of a Layer 3
header and data. At the data link layer, however, all the information passed down by
the network layer (the Layer 3 header and the data) is treated as data.

In other words, the data portion of an information unit at a given OS! layer potentially
can contain headers, trailers, and data from all the higher layers. This is known as
encapsulation.

Figure 2.5 shows how the header and data from one layer are encapsulated

into the header of the next lowest layer.
2.1.5 Information Exchange Process
The information exchange process occurs between peer OSI layers. Each

layer in the source system adds control information to data, and each layer in the

destination system analyzes and removes the control information from that data.



