LOAD BALANCING FOR DISTRIBUTED
COMPUTING

A PROJECT REPORT
Submitted by

REMYA SHANKAR (71201104042}
RAJASOWMIYA.M (71201104037)
SIVAKUMAR.P (71201104059)

in partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING
KUMARAGURU COLLEGE OF TECHNOLOGY

ANNA UNIVERSITY: CHENNAI 600025

APRIL 2005

ANNA UNIVERSITY: CHENNAI 600025

BONAFIDE CERTIFICATE

Certified that this project report “LOAD BALANCING FOR
DISTRIBUTED COMPUTING” is the bonafide work of “REMYA
SHANKAR, RAJASOWMIYA.M and SIVAKUMAR.P” who carried out

the project work under my supervision.

e el 8 o

SIGNATURE SIGNATURE ¢

Dr. S. Thangasamy Ms.S.Rajini

HEAD OF THE DEPARTMENT SENIOR LECTURER

Computer Science and Engineering Computer Science and Engineering
Kumaraguru College of technology, Kumaraguru College of technology
Chinnavedapatti, Chinnavedapatti,

Coimbatore- 641006 Coimbatore- 641006

Submitted for the Viva-voce Examination held on 2C-04 - 05

{

Rt L V=
;I%temal Exéllg{ger External E)?a }ner

EVALUATION CERTIFICATE

ANNA UNIVERSITY : CHENNAI 600 025

EVALUATION CERTIFICATE

College : KUMARAGURU COLLEGE OF TECHNOLOGY

Branch : COMPUTER SCIENCE AND ENGINEERING

Semester : EIGHT (08)

S.No Name of the Title of the Project | Name of Supervisor
Students
SIVAKUMAR.P Load balancing for Ms.S.Rajini
1 | RAJASOWMIYA.M distributed Senior Lecturer
REMYASHANKAR computing

The report of the project work submitted by the above student

in partial fulfillment for the award of BACHELOR OF ENGINEERING

degree in COMPUTER SCIENCE AND ENGINEERING of Anna

University were evaluated and confirmed to be the report of the work

done by the above student and then evaluated.

(INTERNAL EXAMINER)

(EXTERNAL EXAMINER)

DECLARATION

DECLARATION

We hereby declare that the project entitled “ LOAD BALANCING FOR
DISTRIBUTED COMPUTING?”, is a record of original work done by us
and to the best of our knowledge, a similar work has not been submitted to
Anna University or any other institution, for fulfillment of the requirement

of the course study.

This report is submitted in partial fulfillment of the requirements for the
award of the Degree of Bachelor of Computer Science and Engineering of

Anna University, Chennai.

Place: Coimbatore Losasoromia)
(RAJASOMIYA.M)

(RE%%’AE%KAR)

Date: | -01-0D

(SIVAKUMAR.P)

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

We thank Almighty God, the guiding light of my life, for granting me

the strength and courage to complete this project work successfully.

We express our immense gratitude to Dr. K.Arumugam,
Correspondent, Kumaraguru College of Technology, Coimbatore for giving
me an opportunity to study in their prestigious institution and to take up the

project in partial fulfillment of the regulations for the B.E. program.

We are thankful to Dr. K.K.Padmanabhan, Principal, Kumaraguru
College of Technology, Coimbatore, for the facilities made available during

the course.

We convey our heartfelt thanks to Dr.S.Thangasamy, B.E. (Hons),
Ph.D., Professor and Head, Department of Computer Science and
Engineering, Kumaraguru College of Technology, Coimbatore, for his
guidance and enthusiasm that went a long way in the successful completion
of the project. I also thank Ms.S.Rajini, B.E, project guide, Kumaraguru
College of Technology, Coimbatore, for the invaluable advice and guidance

given to me to make this endeavor a successful one.

Last but not the least, we would like to thank all the staff members of
the Computer Science department and all those who have directly or

indirectly assisted me in successfully completing this project.

ABSTRACT

ABSTRACT

A distributed system is a collection of autonomous processors, which can
communicate with each other, which allows resource sharing. The purpose
of such a system is to provide a mechanism to solve a huge task in a limited
amount of time with efficiency. The autonomous processors can
communicate with each other and co-operate in a consistent and a stable

manncr.

In a distributed system, the project or the problems are divided into various
modules and provided to the processors for processing. In course of time,
some of the processors are heavily loaded and others are lightly loaded and
some are even idle. The load balancing mechanism tries to balance the total
system by transparently transferring the workload from heavily loaded nodes

to lightly loaded nodes in the attempt to ensure good overall performance.

Load balancing mechanism involves two phases

* Process scheduling

* Process migration

Process scheduling involves the process of finding which process to migrate
and to which processor it should migrate. Process migration is the actual
transfer of the process from the source processor to the destination

Processor.

This load balancing algorithm strives to balance the load on all nodes at all
times. A processor may be in any of the three states: heavy load, normal load
or light load. A processor in light load may accept a migrant process, while a
processor in heavy load can have its processes migrate to another processor.

A processor in normal load needs no balancing effort.

CONTENT

CONTENTS

PARTICULARS

1. INTRODUCTION
1.1 EXISTING SYSTEM AND ITS LIMITATIONS
1.2 PROPOSED SYSTEM’S ADVANTAGES

2. PROPOSED LINE OF ATTACK
3. PROPOSED METHODOLOGY

4. SYSTEM DESIGN
5. PROGRAMMING ENVIRONMENT

5.1 HARDWARE REQUIREMENTS
5.2 SOFTWARE REQUIREMENTS
6. DETAILED DESIGN

7. FUTURE ENHANCEMENTS
8. CONCLUSION
9. REFERENCES

10. APPENDICES
10.1 SAMPLE CODES
10.2 RESULTS

PAGE NO.

11

14

17
18
20

27

29

31

33
43

INTRODUCTION

1. INTRODUCTION

1.1 Existing system and its limitations

Existing System

At first round robin was considered the standard in sharing the load
among the servers. Super computers are used by some organizations for
finishing their job fastly. Later some of the software load balancing

packages came in to use, they are

¥ BEOWULF

E COW (Clustering of Workstations)
E HEARTBEAT

& OSCAR

E VLS

E MOSIX

Limitations of the Existing System

« When building in sequence, it is possible that a node receives a task
that will take it much longer than the other nodes to complete. It is
also possible that as other nodes finish their jobs faster, the node,
which has been slowed down is handed another job. When performing

large parallel builds, eventually very slow machines will stall the

entire build, as they are attempting to compile many objects at once,
and are usually at this point near-death from swapping.

In Round Robin a long process had to wait for long time.

A new job had to wait for a long time till all the assigned jobs got
completed.

There are large numbers of commercial balancing and queuing
systems available such as CODINE from Genias software, Load Lever
from IBM. All these allow the presence of traditional batch system
that might be found on an IBM mainframe.

The software load-balancing package is used only for specific
applications.

Very traditional batch systems require some active tools. These are
very good tools, but they add greatly to the cost of the cluster as their
cost is usually tied directly to the number of nodes to run the batch
systems.

Many who have a need to harness super computing power don’t buy
super computers because they can’t afford them. And then there is the
upgrade problem.

By the time your machine is delivered, it is often out of date and a
newer model will have taken its place. If you would like to upgrade

your machine the manufacturer gives you limited options.

1.2 Proposed System

Objectives of the proposed system

Load balancing can be used for all parallel programming applications, which
should have no interaction in between. Fault tolerance and high availability
is the distinct advantage of load balancing. One of the important features of
cluster will be the ability to set up systems by which the users can run jobs
non-interactively. It is a group of systems, which functions as super

computer.

Advantages of the Proposed System

1. Itis simple, easy and fast to build.

2. It is very simple to build using components available from a lot of
sources unlike commercial products; they are independent of a single

vendor or a single source for equipment.

3. Clusters are a cheap and easy way to take off-the-shelf components
and combine them in to a single super computer. The clusters are
actually faster than a commercial super computer.

4, Fault tolerance and high availability.

5. Parallel Linux clusters can offer some advantages over a commercial

super computer that go beyond simple price comparison. Unlike a

commercial super computer, a cluster can be made more powertul,

increase its performance by adding new nodes.

. It saves the waiting time (zero down time)

. Upgrading a Linux cluster is very easy. It is as easy as buying
whatever the “latest, greatest” off-the-shelf system and it in to the

cluster, the cluster can be upgraded as a whole.

_ An excellent use for Linux clusters is the creation of high availability

web servers and other mission critical availability system.

PROPOSED LINE OF ATTACK.

7

2. PROPOSED LINE OF ATTACK

Load balancing distributes traffic efficiently among networks servers
so that no individual server is overburdened. This vendor-neutral guide to
the concepts and terminology of load balancing offers practical guidance to
planning and implementing the technology in most environments. This helps
to insulate the individual machines within the cluster, and allows the cluster,
and allows the cluster to dole out traffic to the least busy servers. The load
balancing is called as the massively parallel processing machine. It can be
used for all parallel programming applications. The effective form of load
balancing is by assigning a single host name to several IP addresses

(different machines)

Cluster computers provide a low-cost alternative 1o multiprocessor
systems for many applications. Building a cluster component is within the
reach of any computer user with solid C programming skills and a
knowledge of operating systems, hardware and networking. A cluster
computer is a multi computer; network of node computers running
distributed software that makes them work together as a team. Distributed
software turns a collection of network computers into a distributed system. It
presents the user with a single-system image and gives the system its
personality. Software can turn a network of computers into a transaction
processor, a supercomputer, or even a novel design of your own. By
combining the power of many workstation-class or server-class machines,
performance levels can be made to reach supercomputer levels, for a much

lower price than traditional super computer can offer.

By breaking the problem down into tasks that can be done in parallel,
the computers in a high performance cluster can share the load and complete
the problem more quickly. Performance clustering works in a similar manner

to traditional Symmetric Multiprocessor (SMP) servers.

PROPOSED METHODOLOGY

10

3. PROPOSED METHODOLOGY

Load balancing mechanism involves two phases 74 iy,

* Process scheduling R

* Process migration

Process scheduling involves the process of finding which process to migrate
and to which processor it should migrate. Process migration is the actual
transfer of the process from the source processor to the destination

ProCessor.

This load balancing algorithm strives to balance the load on all nodes at all

times. A processor may be in any of the three states: heavy load, normal load
or light load. A processor in light Joad may accept a migrant process, while a
processor in heavy load can have its processes migrate to another processor.

A processor in normal load needs no balancing effort.

CONNECTION ESTABLISHMENT

1921681002 | 192.168.100.1

stdin
1 sldin
socket zocket
I
client port ‘ server
prograrm 3333 uinetd pIoGram

$1d0 ut I stdout
| | E J

11

The stdin is the input (the set of commands) to the first processor. The
connection is established through the sockets of the other processors with
which the load is to be shared. The connection is established by using their
IP address. The connection takes place through the port no. 3333 and the
commands are taken there for execution. The commands are executed and

the result is sent back to the processor as stdout.

12

13

SYSTEM DESIGN

4. SYSTEM DESIGN

Design is a meaningful engineering representation of something that is to be
built. It can be traced to a customer’s requirements and at the same time
assessed for quality against a set of predefined criteria for good design. In

software engineering context design focuses on four major areas of concern.

1. Architecture
The architectural design defines the relationships between the major

structural elements.

2. Interfaces
The interfaces design describes how the software communicates within
itself, with systems that interoperate with it, and also with the human

beings who use it.

3. Components
The component level design transforms structural elements of the
software architecture to procedural description of the software

components.
Design is the process through which the requirements are translated into

blueprint for constructing the software. The design must have some

characteristics

14

1. The design must implement all of the explicit requirements contained
in the analysis model and it must accommodate all the implicit

requirements.
2. The design must be a readable, understandable guide for those who
generate code and for those who test & subsequently support the

software.

The design should provide a complete pictare of the software, functional and

behavioral domains from an implementation perspective.

15

PROGRAMMING ENVIRONMENT

16

5. PROGRAMMING ENVIRONMENT

The hardware and software configurations that were used to develop
this system are given below.

5.1 Hardware Requirements

Server Side Configuration

Front Server Machine

Processor - Intel Pentium III Processor @ 2GHz
Memory : 128 MB RAM

Hard Disk : 10GB

Keyboard - Linux Compatible

Floppy : 3 1/2 inch Floppy Drive

Mouse : PS/2 Port Mouse

Monitor : 15” Color Display

NIC : Ethernet Card

Client Side Configuration

Real Server Machine

Processor - Intel Pentium III Processor @ 900 MHz
Memory : 128 MB RAM

Hard Disk : 10GB

Keyboard : Linux Compatible

17

Floppy : 31/2 inch Floppy Drive

Mouse : PS/2 Port Mouse
Monitor : 15” Color Display
NIC : Ethernet Card — 2 Nos.
Network Setup Hardware
Patch Cable : CAT 5E UTP
NIC : Ethernet Hub / Switch — 8/16 ports

5.2 Software Requirements

Operating System : Red Hat Linux 9.0

Language : “C” with Shell Scripting.

18

19

DETAILED DESIGN

6. DETAILED DESIGN

Load balancing is a concept in which the group of processors shares their
jobs. It is the ability to preempt the process on one machine and reactivate
the process on another machine. Load balancing is a service on one IP
address over multiple servers without generating a single point of failure.
They take traffic destined for a machine from the server and route it to an
available server based on the configuration you require. Traffic destined on
our server is initially forwarded to one or more servers with highest priority
setting. When all servers at this level have failed, traffic is forwarded to the
server(s) with the next highest priority. In the event of a highest priority
machine returning to service, traffic is forwarded to this machine and lower

priority machine returns to a dormant state.

By combining the power of many workstation-class or server class
machines, performance levels can be made to reach supercomputer levels.
For a much lower price than a traditional super computer can offer, which
require expensive specialized hardware and software. Think of a high traffic
web site, they are not really a single server. There will be a default gateway
and many other servers connected to it. The client communicates through the

default gateway. At its core, clustering technology has two basic parts.

In load balancing there is a master node to which many compute nodes or
slaves are connected. There can be many requests to a particular node and
the server responds correspondingly. The first component, made up of a
customized operating system (such as kernel modifications made to Linux),

special compilers and applications allows programs to take full advantage of

20

clustering. The second component is the hardware inter connect between
machines (nodes) in the server cluster. These interconnects are often highly
specialized interfaces.

This can be implemented in three modules. They are

1. Job Server

2. Job Dispatcher

3. Client module
Job Server

In Job server there are two primary programs, they are

1. Job Scheduler
2. Job Splitter

21

Job Scheduler:

It is used to take the traffic destined for the server. It gets the machine data at
first. It keeps track of the number of nodes and the IP addresses of the nodes.
It is also possible to schedule these processes on the remote machines, so

that not more than one process per machine is active at any one time.

This was designed to combat problems with using sequences for parallel
builds. When building in sequence, it is possible that a node receives a task
that will take much longer time than for the other nodes to complete. It is
also possible that as other nodes finish their jobs faster, the node which has
been bogged down, is handed another job. When performing larger parallel
builds, very slow machines will stall at entire build, as they attempt to
compile many objects at once, and usually at this point swapping is

performed.

The job scheduling in cluster can prevent this in two ways. The job
scheduling will not allow a node to process any more than one command at
the same time. If more commands than nodes are requested, the excess
commands will block until a node has been freed.

Second the scheduler has the ability to register a benchmark number of some
sort for each node. This allows the scheduler to always give out the fastest of
the remaining nodes whenever one is requested. This allows a parallel build

to more efficiently utilize a heterogeneous cluster.

22

Job Splitter

Traffic is evenly split between servers depending on a predetermined load
ratio. The master node gets the jobs and these jobs are split according to the
number of slave nodes or computer nodes. In this the traffic from the
different clients is split between different nodes, connected to the master
node. The different compute nodes according to the jobs split among slave
nodes carry out the processing of each job. If the number of jobs is more
than one in a node the excess jobs are in a dormant sate until the node is

free.

Job Dispatcher

The jobs after processing are stored in the master node as files with job
name as job combined with the IP address of corresponding compute node,
where the job is carried out. When we view the jobs file we may get the
information of what are the jobs carried out by the respective compute
nodes. We have all information about the different nodes connected and the
1P addresses of the compute nodes and what are the jobs performed by the
respective compute nodes. It also has the information of where the output for

the job is stored.

23

Client module

After the processing if a client wants the output from a particular compute
node to be viewed, the name of the job file can be specified to view the jobs.
The output of the job will be in the respective compute node, where the
client had requested. These modules are implemented in the Linux platform

with the help of C programming language and shell scripting.

Good programmers optimized their programs for speed because computer
power is a valuable commodity. There is a limited amount of speed available
in each computer, and not a lot of ways to connect them together to allow

groups of computers to accomplish a task cooperatively.

Clusters are in fact quite simple. They are a bunch of computers tied
together with a network working on many problems. Parallelism is the
quality that allows something to be done in parts that work independently
rather than a job that has a so many interlocking dependencies that it cannot

be further broken down.

With load balancing clustering model, the number of users (or the number of
transactions) can be allowed across a number of application instances, so as
to increase transaction throughput. This model easily scales up as the overall
volume of users and transactions goes up. The scale-up happens through
simple applications replication only, requiring little or no application

modification or alteration.

24

One of the most important features of load balancing will be the ability to set
up the systems by which the users can run the job non-interactively. And,
since this is a clustered environment, it is also necessary that those non-
interactive jobs be delivered to lightly loaded nodes in the cluster or even to

split them up among nodes.

There are lots of commercial load balancing and queuing systems but they
require some tools such as, Load Lever for IBM computers and Cluster from
Active tools. All these allow users to have what could be considered a
traditional batch system that could be used for some particular organization
or some particular systems. For example, Load Lever is a traditional batch
system that might be found on an IBM mainframe. So we have to build a
fully functional cluster, a system that can support a fully functional batch

system.

Cluster technology helps to bring availability and performance to the
traditional centralized server model. Formalized service levels within and
between businesses are becoming standard practices. Availability,
performance and reliability are chief among the metrics measured.
Continuous availability on a technical level tends to reduce business-

planning costs.

25

FUTURE ENHANCEMENTS

26

7. FUTURE ENHANCEMENTS

The project “Load Balancing” has been programmed in “C” and
developed under Red Hat Linux. The clustering can be implemented in other
Linux packages like SuSe, Debian, Mandrake and other available packages.
This can be further developed in case of high availability clusters, which

could be used to solve all the big business needs.

% If an application error occurs, the application restarts itself on the
same node and corrects any potential cause for error (such as corrupt

control data).
% If an application performs some amount of checkpoint-restart
processing, the application shall be viewed as if it is close to the point

of failure.

< If a system outage occurs, the application is restarted on a backup, and

it can be viewed as though it had started for the first time.

27

28

CONCLUSION

8. CONCLUSION

Load balancing technology helps to achieve availability, high
and better performance to the traditional data center model. Formalized
service levels within corporate and between businesses will become standard
practice. Availability, performance and reliability are chief among the
metrics measured. Continuous availability on a technical level tends to
reduce business-planning costs. This would include application availability,
batch versus backup contention, decision support systems, use of assets for
something other than just disaster recovery and point-in-time reconstruction.

These issues lead to cost avoidance.

Load balancing distributes traffic efficiently among network servers
so that no individual server is overburdened. This vendor-neutral guide to
the concepts and terminology of load balancing offers practical guidance to
planning and implementing the technology in most environments. Clustering
elegantly solves the problem of integrating servers along with centralized
network and storage resources. Clustering technologies provide benefits far
beyond the mere historical challenge of high-end scalability. These benefits
include extreme availability, redundancy/resiliency/replication, backup, and
fail over, automated cross-platform systems management, parallel

processing, resource sharing.

29

30

RETFERENCES

9. REFERENCES

. David HM Spector, Building Linux Clusters, O’Reilly Publications

Alex Vrenios, Linux Cluster Architecture, Sam’s Publications

_ Charles Bookman, Linux Clustering: Building and Maintaining

Linux Clusters, New Riders Publication.

Elis Awad, System Analysis and Design, Galgotia Publication.

Maurice J. Bach, The Design of the Unix Operating System, O’Reilly

Publications

. www.linux.org

6
7.
8
9

www.linuxvirtualserver.org

. WWw.coyotepoint.com

. www.linuxhowto.com

10.www.ctssn.org

31

32

APPENDICES

10.1 SAMPLE CODES

Client.c

#include<stdio.h>
#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/msg.h>
#include<errno.h>

extern int errno;

#define QKEY (key_t)0100
#define QPERM 0666
#define MAXOBN 500
#define MAXPRIOR 10

struct q_entry {

long mtype;
char mtextf MAXOBN+1];
b

int init_queue() {
int queue_id;
if(queue_id = msgget(QKEY, IPC_CREAT | QPERM) == -1) {
perror("msgget failed");
return(queue_id);

1}

warn(char *s) {
fprintf(stderr, "client (client.c) Warning: %s\n", s);

}

static int s_qid = -1;

enter(char *objname, int priority) {
char *strncpy();
struct q_entry s_entry;
int len;

33

if((len = strlen(objname)) > MAXOBN) {
warn("Name t0o Long...");
return -1;

}

if(priority > MAXPRIOR || priority < 0) {
warn("Invalid priority Level");
refurn -1;

}
if(s_qid == -1 && (s_qid = init_queue()) == -1)
return -1;

s_entry.mtype = (long)priority;
strncpy(s_entry.mtext, objname, MAXOBN);
printf("message is %s\n", s_entry.mtext);
if(msgsnd(s_qid, &s_entry, len, 0) ==-1) {
perror("Msgsnd Failed");
return(-1);

else return O;

}

main(int argc, char *argv{]) {
int priority;
if(argc 1= 3) {
fprintf(stderr, "USAGE: %s command priority!\n", argv[0]);
exit(1);
}

if((priority = atoi(argv[2])) <= 0 || priority > MAXPRIOR) {
warn("Invalid priority"};
exit(2);

}

if(enter(argv[1], priority) < 0) {
warn("Enter Failure™);
exit(3);

}

exit(0); }

34

ClusterManager.sh

printChar() {
num=0;
while [$num -1t $2]
do
echo -n $1
num="expr $num + 1°
done
echo

}

printLine() {
num=0;
while [$num -1t $1]
do
echo
num="expr $num + 1
done
echo

}

function mainMenu() {
clear
printLine 5
printChar \# 79
printf "\n\n\t\t\t1. Add Cluster Member(s)\n";
printf "\(\t\t2. Submit job(s)\n";
printf "\t\t\t3. Split Jobs\n";
printf "\t\t\t4. Start ClusterServer\n";
printf "\\\t5. Quit\n\n";
}

function quitApp() {
printChar \# 79
echo -e "\(\t\tThank you for using Cluster....\n\n\n";

}

printChar \# 79
printf "Starting Cluster system please wait.....\n"

35

sleep 2

while true
do
mainMenu

echo -e "\nWhat do you want to perform..........

read opt
case $opt in
)
sh AddNodes.sh;;
2)

3)

sh JobReceiver.sh;;
sh JobSplitter.sh;;

4)
sh StartServer.sh;;
5)
- quitApp;
exit;;

*

echo "Sorry 1 couldn't get that? *;
esac

echo -n "Do you want to continue...say (y/n): '

read reply
if ["$reply" 1= "y"];then
quitApp
break;
fi
done

36

NFS Configurator.c

1
// This program configures NFS Server

I

#include<stdio.h>

void nfsConfigurator() {

FILE *fp = fopen("/etc/exports”, "a+");
char shareName[300], ipAddress{30];
char sharePermissions[3];

printf("\n\nEnter the Share Name: ");

scanf("%s", shareName);

printf("\n\nEnter the IP range where it has to shared ");
printf("\nFormat <ip>/<netmask): sample

192.168.200.0/255.255.255.0\n");

}

scanf("%s", ipAddress);
printf("\nEnter Share permissions (rw, ro): ");
scanf("%s", sharePermissions);

fprintf(fp, "%s\t\t%s(%s)\n", shareName, ipAddress, sharePermissions);

// Close the file

fclose(fp);

printf("\nPlease wait setup is initializing....");
printf("\nThis may take few seconds....\n");
system("service nfs restart &> /dev/zero");
system("echo YES boss its ready for use....!I'!");
// end nfsConfigurator

int main() {

}

nfsConfigurator();
return O;

37

ClustClient.c

#include "unp.h”
int main(int argc, char **argv)

FILE *fp;
int sockfd, n;
int priority = 4;
char cmdString[15}];
char recviine[MAXLINE + 1];
struct sockaddr_in servaddr,

if (arge 1= 2)
err_quit("usage: a.out <IPaddress>");

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
err_sys("socket error");

bzero(&servaddr, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_port = htons(13);/* server */

if (inet_pton(AF_INET, argv[1], &servaddr.sin_addr) <= 0)
err_quit("inet_pton error for %s", argv[1]);

if (connect(sockfd, (SA *) &servaddr, sizeof(servaddr)) < 0)
err_sys("connect error");

while ((n = read(sockfd, recvline, MAXLINE)) > 0) {
recvlinefn] = 0; /* null terminate */

J/ THIS following line makes the commands to be available in
// a file named 'commands’
fp=fopen("commands", "w");
fprintf(fp, "%s", recvline);
sprintf(cmdString, "%s", "sh commands");
system(cmdString);

}
if (n <0)

err_sys("read error");
exit(0); }

38

Server.c

#include<stdio.h>
#include<fentl.h>
#include<signal.h>
#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/msg.h>
#include<sys/errno.h>

#define QKEY (key_t)0100
#define QPERM 0666
#define MAXOBN 500
#define MAXPRIOR 10

struct g_entry {

long mtype;
char mtextf MAXOBN+1];
b

staticintr_qid =-1;
int fd;

void usrl() {

pause();
}

void usr2() {
signal(SIGUSR1], usr1);
signal(SIGUSR?2, usr2);

}

server() {
long pro_type;
struct g_entry r_entry;
int mlen, fd;
char buf[10];
fd = creat("ser.ixt", O_WRONLY | O_CREAT | O_EXCL | 0644);
if(fd < 0) {

39

printf("Server already installed!'\n");
exit(0);
} else {
printf("Server process PID is %d\n", getpid());

¥

sprintf(buf, "%d", getpid());
write(fd, buf, sizeof(int));
chmod("ser.txt", 0400);

if(r_qid == -1 && (r_gid = init_queue()) == -1) {
return -1;

}
signal(SIGUSR1, usrl);
signal(SIGUSR2, usr2);

for(;;) {
if((mlen = msgrev(r_qid, &r_entry, MAXOBN, 0, MSG_NOERROR)) ==
1) {
perror("msgrcv failed");
return -1;
} else {
t_entry.mtext[mlen] = \0';
proc_command(r_entry.mtext);
}
}
¥

proc_command(char *msg) {
// printf("command is '%s"\n", msg);
system(msg);

}

init_queue() {
int queue_id;
/* Attempting to Create Message Queue */
if(queue_id = msgget(QKEY, IPC_CREAT | QPERM) == -1) {
perror("msgget failed");

40

return queue_id;
}
¥

void warn(char *s) {
fprintf(stderr, "Warning: %s\n", s);
}

main() {
int pid = fork();

switch(pid) {
case 0:
setpgrp();
server();
break;

case -1:
warn("Fork to start server failed!!\n");
break;
} // end switch
exit(pid !=-170: 1);
} // end main

41

JobReceiver.sh

printChar() {
num=0;
while [$num -1t $2 |
do
echo -n $1
num="expr $num + 1°
done
echo

}

submitJob() {
rm -f scheduled
lineNumber=1
totalLines="wc -1 jobFile | tr -s " " | cut -f2 -d" ™;
while [$lineNumber -le $totalLines]
do
command="sh PrintLine.sh $lineNumber jobFile";
cmd="echo $command | cut -f1 -d" ™
echo "$command &> /mnt/clusterQutput/$cmd.output” >> scheduled
lineNumber="expr $lineNumber + 1°;
done }
printChar + 79
echo
rm -f cmdFile
echo "Start entering commands.....<type 'stop' when you are done with
input>.."
while true
do
read cmdStr
if ["$cmdStr" = "stop”]
then
break;
fi
echo $cmdStr >> cmdFile
done
cat cmdFile | cut -f1- -d" " > jobFile

submitJob

42

10.2 RESULTS

B4 roo17 red2 homerJanakiFinalC
pile Edt View Teminal Go Help

what is that U R planning...?

1. Add New Node...

2. Create Node List from Scratch..

3. View Node List..

4. Quit...

Enter Ur option: 1
tnter the ip-address of node: 192.168.200.1C
Do U want to continue? say (y/n): v]]

43

n)ol;il_‘_redZ:_:homg;‘]__a_naki;‘Final_C N
Fle Edt Yiew Temindd Go Hep

what is that U R planning...?

1. Add New Node...
2. Create Node List from Scratch..

3. View Node List..

4. Guit...

Enter Ur option: 2
Enter the ip-address of node: 192.168.200.15
Do U want to continue? say (y/n): yﬂ

44

what is that U R planning...?

1. Add New Node...

3. View Node List..

4. Quit...

Enter Ur option: 3
192.168.200.15

192.168.200.10

45

2. Create Node List from Scratch..

i 100t red2;;home; Janaki;FinalC
Fle Edt View Teminal Go Help

T R T TR R R R R

. Add Cluster Member(s)
. Submit job(s)

. Split Jobs

. Start ClusterServer

. Quit

W o W R

What do you want to perform.............

£ Mar 19
11:49 AM

46

SHEHHE R RS B R SRR R R

. Add Cluster Member(s)
. Submit job{s}

. Bplit Jebs

. Start ClusterServer
{uit

W W R

what do you want to perform............. 72
[EURTTETRREE R RR R AE SRS PR S S S SRS SRS AU ke

Start entering commands..... <type 'stop’ when you are done with input»..
date

history

1s

cat

pwd

cal

stop

Do you want to continue...say (y/n):]

47

i 100t 1ed2; home; Janaki FinalC
Fle Edt View Temirad Go Help

R S R A R R R R R I

. Add Cluster Member(s)
. Submit job(s)

. Split Jobs

. Start ClusterServer
Juit

oo WD

what do you want to perform............. 73
Splitting jobs please wait......

Job Splitting performed Successfully!!!!
De you want to continue...say (y/n): yl

48

FREERT

T Ll g By ge e Av(S-g kB! Bl eie s prr e o8 Ao g i Gams g et 13
KA A R S S 3 It o 3t 7 ATt et S A A A0 H 0y 47 1 i o ST i s e

. Add Cluster Member(s)
. Submit job(s)

. Split Jobs

Start ClusterServer

. {uit

[T N I

What do you want to perform............. 74
Enter ‘the fileName: job192.168.200.5]]

49

’V root«?sredZ:,."hb_mé';"j;‘inaki;FinaEC

Fle Edi Vew Temind Go Help
[root@red? Final(]# ./cclient 192.168.200.5
frooteéred? FinalC]# sh verifyOutput.sh
[root@red? FinalCl# 1s /mnt/clusterfutput/

cal.output date.output ifconfig.output ps.output

[root@red? FinalCl# vi /mntfciuster()utputfls.outputl

cat.output histery.outpat ls.output pwd. output

Fii Mar 15
12:28 PM

50

