p_ 14k

SEAMLESS INTERCONNECTION BETWEEN
LEGACY SYSTEMS USING WEB SERVICES

A PROJECT REPORT
Submitted by
NAME REG.NO
D.G.ARJUN 71201104006
R.RAJESH KANNAN 71201104038

VISWA N. MOHAMMED AZARUDDIN 71201104071

in partial fulfillment for the award of the degree é’;é{;\\
of k& A
BACHELOR OF ENGINEERING e
in
COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE
ANNA UNIVERSITY : CHENNAI 600025
APRIL 2005

ANNA UNIVERSITY : CHENNALI 600025

BONAFIDE CERTIFICATE

Certified that this project report “SEAMLESS
INTERCONNECTION BETWEEN LEGACY SYSTEM USING WEB
SERVICES” is the bonafide work of D.G.ARJUN (71201104006),
R.RAJESH KANNAN (71201104038) and VISWA N. MOHAMMED

AZARUDDIN (71201104071), who carried out the project work under my

supervision , ‘
SIGNA"?U R]:Eﬂ\ 0 ?/ S}%}l% ‘ R\E/
Dr. S. Thangasamy Ms.V.S.Akshaya ™M-E.,
HEAD OF THE DEPARTMENT SUPERVISOR
Lecturer
Department of Department of
Computer Science and Engg, Computer Science and Engg,

Kumaraguru College of Technology, Kumaraguru College of Technology,
Chinnavedampatti P.O., Chinnavedampatti P.O.,
Coimbatore - 641006 Coimbatore - 641006

Submitted for the Viva-voce Examination held on 2o Apﬁ’) d005

i

NG ‘
TN S
ternal Examiner External BExaminer

ANNA UNIVERSITY : CHENNAI 600025

EVALUATION CERTIFICATE

College : KUMARAGURU COLLEGE OF TECHNOLOGY

Branch : COMPUTER SCIENCE AND ENGINEERING

Semester: EIGHT (08)

S.No | Name of the Student | Title of the Project | Name of Supervisor
Seamless
Interconnection
Ms.V.S.Akshaya,
1 D.G.ARJUN between Legacy
) Lecturer
systems using Web
Services
Seamless
Interconnection
R.RAJESH Ms.V.S.Akshaya,
2 between Legacy
KANNAN Lecturer
systems using Web
Services
Seamless
VISWA N. Interconnection
Ms.V.S.Akshaya,
3 MOHAMMED between Legacy
Lecturer
AZARUDDIN systems using Web

Services

The report of the project work submitted by the above students in
partial fulfillment for the award of BACHELOR OF ENGINEERING degree
in COMPUTER SCIENCE AND ENGINEERING of Anna University were
evaluated and confirmed to be the report of the work done by the above

students and then evaluated.

(INTERNAL EXAMINER) (EXTERNAL EXAMINER)

DECLARATION

We hereby declare that the project entitled “SEAMLESS
INTERCONNECTIONS BETWEEN LEGACY SYTEMS USING WEB
SERVICES?”, is a record of original work done by us and to the best of our
knowledge, a similar work has not been submitted to Anna University or any

other institution, for fulfillment of the requirement of the course study.

This report is submitted in partial fulfillment of the requirements for
the award of the Degree of Bachelor of Computer Science and Enginecring

of Anna University, Chennai.

Place: Coimbatore

Date : 35.04.20p5 (D.G.Arjun)

;{M&H

(R.Rajesh Kannan)

X’{. N-MW

swa N. Mohammed Azaruddin)

ACKNOWLEDGEMENTS

We would like to express our gratitude to the Principal, Dr. K. K.
Padmanabhan for helping us to complete this project successfully.

We would express our sincere thanks to our Head of the Department
Dr.S.Thangasamy for motivating and inspiring us during the course of this

project.

We have immense pleasure in expressing our heartfelt thanks to our guide,
Ms.V.S.Akshaya, Lecturer, for her constant advice and support during the
project. We are grateful to her for her guidance.

We would like to thank our project coordinator, Mrs.P.Devaki, Assistant

Professor, for her support during the course of our project.

We would like to express our éincere thanks to all the members of the
faculty of the Department of Computer Science & Engineering for their

support.

We would like to express our gratitude to Mr. SakthiVel Rajamanickam,
Senior Systems Analyst, Hewlett Packard, for encouraging us to take up a

project of this nature.

We thank many of our patient fellow students for listening about the

problems we were tackling and helping us understand them more clearly by

asking the right questions. We wish to single out the following people, in

particular (in alphabetical order): Raghavendran and Santhosh Kumar,

We thank all those who have been involved directly or indirectly in our

project.

il

ABSTRACT

We present a method for accessing legacy systems from modern day systems
without making changes to either the legacy system or the modern day
system. Here, we build a web service that is capable of extracting the various
parameters from one format and converting it to the other format so that the
home system understands the format. We make use of wrapper classes and
adapters which decide the nature of the legacy and modern systems. The
base concept of the project is to make changes to the web service rather
than the systems, in order to make the systems inter-operable. Every year,
millions of dollars are wasted in developing changes in legacy systems so as
to create a compatibility to modern systems. The project is expected to

alleviate the problem.

iii

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.
ACKNOWLEDGEMENTS i
ABSTRACT iii
LIST OF FIGURES v
LIST OF SYMBOLS, ABBREVATIONS AND vi
NOMENCLATURE

1. INTRODUCTION 1
1.1 EXISTING SYSTEM AND ITS LIMITATIONS 2
1.2 PROPOSED SYSTEM’S ADVANTAGES 4
2, PROPOSED LINE OF ATTACK 6
3. ARCHITECTURE OF THE SYSTEM 8
4. SYSTEM DESIGN 9
3. PROGRAMMING ENVIRONMENT 13
5.1 HARDWARE REQUIREMENTS 13
5.2 SOFTWARE REQUIREMENTS 13
6. DETAILED DESIGN 14
7. FUTURE ENHANCEMENTS 20
8. CONCLUSION 21
9. APPENDIX 22
9.1 SAMPLE CODE 22
92 RESULTS 44

10. REFERENCES 51

iv

LIST OF FIGURES

TABLE NAME DESCRIPTION . | PAGE NO.
Figure 1.1 Existing System Architecture 3
Figure 3.1 Proposed System Architecture -8
Figure 4.1 Interactions between various elements of the 9

system

LIST OF SYMBOLS, ABBREVIATIONS, AND
NOMENCLATURE

UDDI - Universal Description, Discovery and Integration
SOAP - Simple Object Access Protocol

XML - Extensible Markup Language

WSDL - Web Service Definition Language

CRUD - Create Read Update Delete

vi

1L.INTRODUCTION

As your large enterprise grows, your IT challenges grow with it. Virtually all
enterprises have legacy applications and databases, and they want to
continue to use them while adding or migrating to a new set of applications
that utilize the Internet, e-commerce, the extranet, and other new
technologies. New platforms foster new technologies and capabilities.
Rewriting legacy applications running on archaic systems to connect them to

this new functionality is usually expensive and time-consuming.

In addition, as organizations expand and merge, their IT platform
deployments often become fragmented. For exampie, different departments
within an organization may use different applications and persistence
mechanisms to access the same data. As a result, some data, such as
customer information, may exist in multiple locations. The problems this can
cause range from lack of efficiency (having to enter the same data multiple
times) to inconsistency in data that is stored in differeat locations.
Conflicting data stored in different locations results in higher operations
costs, reduced customer satisfaction, and other negative impacts to an
organization's bottom line. Having a unified view of all mission-critical data

is beyond the capabilities of such a fragmented system.

This problem is not new. Connecting to the legacy applications saves the
time and expense of having to migrate the legacy applications, and it
provides a mechanism for tying together fragmented IT platforms. For years,

IT departments have created point-to-point mechanisms, and middleware

developers have written millions of lines of code for achieving

interoperability of data sources and applications.

1.1 EXISTING SYSTEM AND ITS LIMITATIONS

Typical solutions use a combination of rewriting legacy code to run
on more modermn systems or installing so-called "middleware"
applications to patch together disparate systems into a cohesive whole.
There are significant downsides to both of these approaches.
Rewriting legacy systems can amount to reinventing these systems
from scratch. This can be extremely costly and sometimes result in
solutions that are less reliable and cost-effective than the original.
Patching together disparate solutions with middleware creates
multiple points of failure and an overall system architecture so
complex that increased maintenance costs can eliminate any benefit
that the integration may have provided.

In the type of solution shown in Figure 1.1, each application requires
custom code to access the legacy application. Any changes in the
interface exposed by the legacy application would require modifying
each of the Client applications individually, multiplying the
development effort required. If multiple programming languages exist
within your Client applications, then development expertise in those
languages will also be required. Some older applications use
languages that have quite cryptic networking APIs, further hampering
interface efforts. Because of scenarios like this, in the past, most

attempts have resulted in point-to-point solutions that did not scale

and were difficult to maintain. However, the widespread adoption of
XML standards and Web services has made effective interfaces and

integration more attainable.

~ Lagady Sy slam ————

Proonetary Protocol

Lagsey
Application

M vy
Custom Custom
intgrop Ea Tl
Code Code
Cliart Appiicabon 1 Client Application 2 Lne of Business

AppHcanon
Figure 1.1 — Existing System Architecture

1.2 PROPOSED SYSTEM AND ITS ADVANTAGES

The proposed system incorporates the usage of web services to
remove the dependability of the system on the existing architectures.
The web service alone can be modified based upon the requirement of
the legacy system (flat file) or the front end. The Web Service makes
use of wrapper classes to extract the particular parameters. These
parameters are then packaged into XML for platform independent
transport of parameters. SOAP is used along the path. The XML
parameters are extracted by the front end(Aircraft booking system)
and the changes are displayed. In the end a scamless integration
between both the legacy system and the front end with both system

not needing any change in the existing code.

Development of Web services can be focused on the business logic
within the applications rather than on the tedious details of formatting,

and of transporting data. Some of the benefits include:

Web services—Web services and supporting technologies including
SOAP are quickly becoming the standard building blocks for modem

distributed application design.

HTTP—The ubiquitous presence of HTTP makes it the obvious
choice for a standardized communication layer through which
components of a distributed application can interact. An HTTPS

channel should be used for point-to-point secure communications.

XML—XML provides a platform-neutral format for data transfer and

provides validation for content and structure

« Secure Sockets Layer (SSL)—SSL provides data security using

industry standard encryption protocols.

2

PROPOSED LINE OF ATTACK

Instead of rewriting legacy applications or customizing them with
middleware to connect to other applications one by one, this solution
entails creating a "facade" for the legacy application. Other
applications are easily "plugged into" this facade. By modeling a
legacy application into its basic functions of create, read, update, and
delete (CRUD), and then exposing these functions through the HTTP
communications protocol and an XML-based SOAP interface, the
Web service facade solution allows other applications to access legacy
data by making use of common Web services through standardized
protocols. A consistent and simple interface with consolidated
security makes for easier integration. This allows developers to focus

on business logic rather than replicating existing functionality.

In the proposed solution, new client applications can interact directly
with the Web service without making use of the Client Helper.
Existing client applications can utilize the Client Helper to minimize
the changes required for them to access Web services. Since the Client
Helper is a .NET class, its use of the Web service is seamless and easy
to implement. Also, accessing it is easy, and the skills required to do
so would transfer to other development efforts within the Enterprise.
Another primary advantage of this solution is that if a change occurs
in the interface used to access the legacy application, only the Adapter
would require modification. Isolating change and providing a simple

common interface for all of your Client applications provides a major

productivity benefit in the application interface development efforts.
The possible limitation of this architecture is that such a simplified
form of access may not support all of the functionality of more

complex legacy applications.

3 ARCHITECTURE OF THE SYSTEM

- Lagacy Sy81am —— e o

Lagacy
Datesbase

[
|
|
| Proprietaty Prtocol
|
|
|

SOAP
]
LClignt Heiper - miglid palls

method catis

H

3 i ¢ AR
Web Service sware Non-Web Saervice awars NoonaVeb Service awee
Chart Apgiicalion Ofiert Appication Lina of Businass
Apiphcarion

Figure 3.1 — Proposed System Architecture

SYSTEM DESIGN

The system is composed of three phases namely

1. Development of legacy system
2. Development of front end

3. Development of web service

Y

A

Web Service
¥

A

Front End - Modern System

Legacy System - Flat file Db

Figure 4.1: Interactions between various elements of the system

1. Development of Legacy System

This phase involves the study and development of flat file database
as a legacy database. It also involves the development of the
various classes that create, update or delete the various entries of
the flat file database. This is the equivalent of the legacy system
the aircraft service provider. The various details of the number of
free tickets and the corresponding flight number are stored based
upon the date of transport. The date of transport is based as the
name of each legacy database(flat file database). Some of the

important methods in the legacy system invocation are:

reateDate()
2 createOrModifyEntry()

Table 4.1 Important methods in legacy application

2. Development of Front End

The front end incorporates various security capabilities. It also
proves as a front end to the web service. The front end is
connected to the front end database which contains the various
details about customers, flight details of the various flights etc.
It also incorporates the user’s GUI for the various interfaces to

reserve, cancel and view issued tickets.

10

The important functions used are summarized below:

Welcome
Check Ticket
Reservation

Login

A

Issued Tickets

List 4.2 Important functions in front end

3. Development of Web Service

The Web Service is basically composed of components that are
used to access the legacy system. The basic components of the
web service are two fold. They are to read from or write into the
file from the legacy database and to wrap it into the XML
which transports it across to the front end which extracts it after
the required transaction is performed. The web service acts as
the intermediate between both these systems and forms the
more intrinsic part of the project. An individual GUI is further
developed for the CheckBook Web Service so as the
independently portray the dual functionality of the web service.

The Web Service helps in the implementation of the reservation
and the cancellation functionalities that form the major
components of the front end. These are in turn altered in the
back end of the legacy system as when changes in the front end

are requested.

11

The important methods in the Web Service are summarized

below:

2 writeFile()
3 getFileByName()

Table 4.3 Important methods in the Web Service

12

Programming Environment

Hardware Requirements:

1. Processor: Intel Pentium 4 Processor

2. Processor Speed: 1.8 GHz

3. Hard Disk: 40 GB IBM HDD

4. Memory: 256 MB SD RAM

5. Operating System: Windows 98, Windows XP

6. Backup Devices: 3 % inch floppy drive, Maxell Floppy Disk,

Samsung CD Writer Drive, Sony Optical
Rewritable Disk (4x)

Software Requirements:

1. Visual Studio .NET 2003
2. Flat File Database

3. Visual Studio 7

4. NET Framework 1.1

5. SQL Server 7

13

6 DETAILED DESIGN

This section deals with a detailed explanation of the various classes

used by this application.

6.1 Deviopment of Legacy System

6.1.1

6.1.2

Purpose

The Legacy System has the following purposes:

1. Existing flight details in the legacy system

2. Details that can be manually inseried into the legacy
database from the legacy front end.

3. Exhibiting sample flat file legacy system.

Members

The legacy system is basically composed of the legacy database
and the front end of the legacy system. The basic legacy
database is a flat file database. It is composed of files which
represent dates of the date of travel. These correspond to the
parent company’s flight details for that one particular date. This
legacy system is generally not accessible by the front end of the
modern databases. The legacy application may be used to create

a new date or edit and change the details of the existing date.

14

6.1.3 Methods

The methods within this phase are summarized in Table 5.3

Method

Purpose

createDate()

Used to create a date file for the
particular date of travel. This creates
a text file based on the specified date
that is passed as a parameter to the

createDate() method.

createOrModifyEntry()

Used to create or edit details of a text
file which has the details of the
aircraft travel which corresponds to
the date specified in the file. The
various flight numbers are entered
here along with the number of free
tickets that may be available. The
details are either added or modified
or deleted based on the number of
tickets availble in the particular set

of aircrafts on the specified date.

Table 6.4

Methods in Legacy Application

15

6.2 Development of Front End :

6.2.1 Purpose

The Front end serves the following purposes:

1. To provide the GUI for the modern application

2. To enable checking, reserving, cancelling of tickets

3. To enable viewing of issued tickets

6.2.2 Functions

The functions within this phase are summarized in Table 5.3

Method

Purpose]

Welcome

To provide the welcome screen
wherein the user can select from the
given list of options to either check
availibility of tickets, reserve tickets,

cancel tickets or view issued tickets.

Check Ticket

To check if the number of tickets are
availible in the given aircraft on the
specified day. This in turn invokes
the web service which performs the

given operation.

Reservation

To reserver the number of tickets, if

availible in the given aircraft on the

16

specified day. This in turn invokes
the web service which performs the

given operation.

Login

To authenicate the user by checking
if he/she is authorised. This process
is carried out by cross checking with
the password that is associated with
the user in the front end database that
is used to store the user details along

with the user’s name and password.

Issued Tickets

To display the tickets that have

already been booked and issued.

Table 6.4 Functions of Front End

6.3 Development of the Web Service

6.3.1 Purpose

The Web Service serves the following purposes:

1. To interact with the legacy system and extract required
parameters.
2. To transport via XML the parameters that should be passed

on to the front end.

3. To query the legacy system with the queries that are posed

by the front end.

17

6.3.3 Methods

The methods within this class are summarized in Table 6.6

Method

Description

readFile()

Reads the flat file present in the
legacy database in the legacy system
and extracts the required
information and wraps it and
formulates the XML code which
transports the data to the front end
independently. This data is then
further extracted by the Front end

which passes this onto the front end.

writeFile()

Writes into the flat file present in the
legacy database in the legacy system
after getting the information from the
front end and posts the returned
information and wraps it and
formulates the XML code which
transports the data to the front end
independently. This data is then
further extracted by the Front end

which passes this onto the front end.

getFileByName()

This a minor method which extracts

the name of the flat file based on the

18

date specified in the front end. The
basic functionality is to perform a
format conversion to the required
format in which the flat file can be

opened.

Table 6.6 Methods of CheckBook Web Service

19

7 FUTURE ENHANCEMENTS

The application has been built with minimum functionalitics, with the
intention of demonstrating the working of the concept of web services. In
the future, enhancements can be made to the User Interface. The following
features can be included to the User Interface:

1. Enable the user to view the actual back end database in a separate
window, make changes to the actual back end legacy database
directly.

2. Enable the user to have a variety of legacy databases as back ends
(viz. different flight modules).

3. Improvising security to all levels and not restrict it only to the user
login and ssl authentications alone.

4. Multiple user handling in front end along with concurrency issues.

20

8 CONCLUSION

The implementation of seam-less interconnection between legacy systems
using web services has proven to be successful. The approach proves to be
efficient for simple and semi-complex databases and applications. The
interface has been made simple enough so that the user can work easily with

the application.

The project was a very challenging one to work with. This project presented
a lot of hidden difficulties in terms of logic as well as implementation. This
project proved to be mentally stimulating and intellectually satisfying. It
gave a proper insight into the difficulties in the field of middle ware
development. It also threw light in the most recent research currently being

pursued in the same field.

On the whole, the project was very exciting and proved to be truly rewarding

working on it.

21

9 APPENDIX

9.1 SAMPLE CODE
CheckTicket.aspx.vb:

#Region " Imports "

Imports Microsoft. ApplicationBlocks.Data
Imports System.Data.SqlClient

Imports System.Text

Imports System.Web.Services

#End Region

Public Class CheckTicket
Inherits System.Web.UlL Page

#Region " Web Form Designer Generated Code "

"This call is required by the Web Form Designer.
<System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()

End Sub
Protected WithEvents Calendarl As
System.Web.UIL. WebControls.Calendar
Protected WithEvents Buttonl As System.Web.UL WebControls.Button
Protected WithEvents DateTravel As
System.Web.UL.WebControls. TextBox

22

Protected WithEvents LblMessage As
System.Web.UL. WebControls.Label
Protected WithEvents AirLine As
System.Web.UL WebControls.DropDownlList
Protected WithEvents ALInfoGrid As
System.Web.UL WebControls.DataGrid
Protected WithEvents ALInfoGridl As
System.Web.UL. WebControls.DataGrid
Protected WithEvents Reserve_Btn As
System.Web.UL. WebControls.Button
Protected WithEvents Reserve _ As System. Web. UL WebControls.Button
Protected WithEvents NoOfTickets As
System.Web. UL WebControls. TextBox

'NOTE: The following placeholder declaration is required by the Web
Form Designer.

Private designerPlaceholderDeclaration As System.Object

Private Sub Page Init(ByVal sender As System.Object, By Val e As
System.EventArgs) Handles MyBase.Init
'CODEGEN: This method call is required by the Web Form Designer
InitializeComponent()
End Sub
Protected WithEvents LblMessagel As
System.Web. UL WebControls.Label

23

#End Region

Public AgentName As String

Dim Message As String

Dim myConnection As New SqlConnection
Dim Ds As New DataSet

Dim Dv As DataView

Dim WebSr As New TicketBook.Servicel

Private Sub Page Load(ByVal sender As System.Object, ByVal ¢ As
System.EventArgs) Handles MyBase.Load
If Seséion("Validated") = "True" Then

AgentName = Session("AgentNAme")

myConnection.ConnectionString =
(ConfigurationSettings. AppSettings("ConnectionString"))
myConnection.Open()

If IsPostBack Then
If Request.Form("CallCheck") = "True" Then
Message = WebSr.ReadFile(Request.Form("FlightNo"),
DateTravel. Text(). Trim)
If IsNumeric(Message) Then
If Message = 0 Then

Message = "No seats available."

24

Else
Message = Message & " Seats(s) available.Reserve"
End If
End If
End If
If Request.Form("CallReserve") = "True" Then
If NoOfTickets. Text <> "" And NoOfTickets. Text <= 0 Then
Message = "No Of Tickets is Invalid"
Else
Message = WebSr.WriteFile(Request.Form("FlightNo™),
DateTravel. Text(). Trim, NoOfTickets. Text(), "")
If Message = "Done" Then
Message = " Seats(s) Blocked. <a
href=BookTickets.aspx?S=" & NoOfTickets.Texi() & "&F=" &
Request.Form("FlightNo™) & "&D=" & DateTravel. Text().Trim & ">Issue
Tickets "
End If
End If
End If
If Request.Form("CallCancel") = "True" Then
If NoOfTickets. Text <> "" And NoOfTickets.Text <= 0 Then
Message = "No Of Tickets is Invalid"
Else
Message = WebSr.WriteFile(Request.Form("FlightNo™"),
DateTravel Text(). Trim, NoOfTickets. Text(), "True")
If Message = "Done" Then

25

Message = " Seats(s) Canceled."
End If
End If
End If
If AirLine.SelectedValue <> "" Then
getFlightDetail(AirLine.Selected Value)
End If
Else
DateTravel. Text = Date.Today.Month & "-" & Date.Today.Day &
"." & Date.Today.Year
getAirlinedata()
End If
LblMessagel.Text = Message
myConnection = Nothing
Else
Response.Redirect("Login.aspx™)
End If
End Sub

Private Sub getAirlinedata()
Dim LiList As ListItem
Dim cmd As New SqlCommand("SELECT * FROM Airlines ",

myConnection)

Dim Dr As SqiDataReader = cmd.ExecuteReader()

26

AirLine.Items. Add("")

Do While Dr.Read()
LiList = New Listltem
LiList.Value = Dr.Item("airlineID").ToString()
LiList. Text = Dr.Item("airlineName").ToString()
AirLine.Items.Add(LiList)

Loop

Dr1.Close()

End Sub
Private Sub getFlightDetail(ByVal ALID As Integer)

Dim StrSql As String

StrSql = "select FlightNo,FlightName, C1.City_Name as From_city,
C2.City_Name as To_City, FlightType from flightInfo, Cities C1, cities C2 "

StrSql = StrSql & "where airlinelD =" & ALID & " And "

StrSql = StrSql & "C1.City_ID = From_city and C2.city_ID = To_city"

Dim SQlAdp As New SqlDataAdapter(StrSql, myConnection)
SQIAdp.Fill(Ds)
If Ds.Tables(0).Rows.Count > 0 Then
ALInfoGrid.DataSource = Ds
ALInfoGrid.DataBind()
ALInfoGrid.Visible = True
Dv = New DataView(Ds.Tables(0))
Else

27

ALInfoGrid.DataSource = Nothing
ALInfoGrid.Visible = False
Message = "No Details available for the selected flight.”
End If
Ds = Nothing
SQIlAdp = Nothing
End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal ¢ As
System.EventArgs) Handles Button1.Click
Calendarl.Visible = True
End Sub

Private Sub Calendarl_SelectionChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Calendarl.SelectionChanged

Dim trDate As Date

trDate = Calendarl.SelectedDate

DateTravel. Text = trDate.Month & "-" & trDate.Day & "-" &
trDate.Year

Calendarl.Visible = False

End Sub
#Region "DataGrid Functionality”

Public Sub FormatColumn(ByVal objSender As Object, ByVal objArgs
As DataGridltemEventArgs)

28

Dim objltem As DataGridltem = CType(objArgs.ltem, DataGridltem)

Dim objltemType As ListIitemType = CType(objArgs.Item.ItemType,
ListltemType)

Dim tbiStyle As TableItemStyle = New TableltemStyle 'used for

customized HeaderStyles

If objitemType = ListltemType.Alternatingltem Or objltemType =
ListItemType.Item Then
Dim objRowView As DataRowView =
CType(objArgs.Item.Dataltem, DataRowView)
Dim FLNo As String = objRowView("FlightNo")

Dim objLabel As Label =
CType(objArgs.Item. FindControl("Iblcheck Ticket"), Label)
objLabel. Visible = True
If Request.QueryString("Reserve") = "True" Then
objLabel. Text = "<a href=javascript:frm_sub_res(" & FLNo &
";>Reserve" & " " & "<a href=javascript:Cancel_Reserve_sub(™" &
FLNo & ");>Cancel"
Else
objLabel Text = "<a href=javascript:frm_sub_chk(" & FL.No &
"N;>Check"
End If
End If
objltem = Nothing
objltemType = Nothing
tbiStyle = Nothing

29

End Sub

Public Sub SortGrid(ByVal source As Object, ByVal e As
System.Web.UIL WebControls.DataGridSortCommandEvent Args)
Dim strSORT As String

strSORT = e.SortExpression. ToString
Dv.Sort = sttSORT
ALInfoGrid.DataSource = Dv
ALInfoGrid.DataBind()

End Sub
#End Region

End Class

BookTickets.aspx.vb:

#Region " Imports "

Imports Microsoft. ApplicationBlocks.Data
Imports System.Data.SqlClient

Imports System.Text

Imports System.Web.Services
#End Region

Public Class BookTickets
Inherits System.Web.UI Page

30

#Region " Web Form Designer Generated Code "

"This call is required by the Web Form Designer.

<System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()

End Sub

Protected WithEvents Res_AirLine As
System. Web. UL WebControls.DropDownList

Protected WithEvents Res DateTravel As
System. Web.UL.WebControls. TextBox

Protected WithEvents ResNoOfTickets As
System.Web. UL WebControls. TextBox

Protected WithEvents Res_IblMessagel As
System. Web. UL WebControls.Label

Protected WithEvents Res Calendar]l As
System. Web.UL. WebControls.Calendar

Protected WithEvents Res ALInfoGrid As
System.Web.UL. WebControls.DataGrid

Protected WithEvents Pass] As
System.Web.UL. WebControls.DropDownList

'NOTE: The following placeholder declaration is required by the Web

Form Designer.

Private designerPlaceholderDeclaration As System.Object

31

Private Sub Page_Init(ByVal sender As System.Object, ByVal ¢ As
System.EventArgs) Handles MyBase.Init
'CODEGEN: This method call is required by the Web Form Designer
InitializeComponent()
End Sub

#End Region
Public AgentName As String
Public I As Integer
Public PrintTkt As String
Public TicketCnt As Integer
Public FlightNo As String
Public FlightDate As String
Dim myConnection As New SqlConnection
Dim Ds As New DataSet
Dim Dv As DataView
Dim SQL As String
Private Sub Page Load(ByVal sender As System.Object, ByVal ¢ As
System.EventArgs) Handles MyBase.Load
Dim J As Integer ' loop counter
Dim ErrorOccured As Boolean
If Session("Validated") = "True" Then
AgentName = Session("AgentNAme")
myConnection.ConnectionString =
(ConfigurationSettings. AppSettings("ConnectionString™"))
myConnection.Open()
If IsPostBack Then

32

For J = 1 To Request. Form("TktCnt")
If InsertRecord(Request.Form("FName" & J),
Request. Form("LName" & J), Request. Form("Addrl" & J),
Request.Form("Addr2" & T), Request. Form("City" & J),
Request.Form("Pin" & J), Request. Form("FNo"), Request.Form("FDt")) =
"Error" Then
ErrorOccured = True
End If
Next
If ErrorOccured = False Then
PrintTkt = "true"
End If
End If
myConnection = Nothing
Else
Response.Redirect("Login.aspx")
End If
End Sub

Private Function InsertRecord(ByVal FName As String, ByVal LName
As String, ByVal Addrl As String, By Val Addr2 As String, ByVal City As
String, ByVal Pin As String, ByVal FNo As String, ByVal FDt As String)
As String

Dim StrSql As String
Dim Result As String
Dim SQICmd As New SqlCommand

ne

InsertRecord =

33

StrSql = "insert into Passengers values (" & FName & "'," & LName &
mw & Addrl & ™, & Addr2 & ", & City & "',"" & Pin & "")"

SQICmd.Connection = myConnection

SQICmd.CommandType = CommandType.Text

SQICmd.CommandText = StrSql

Result = SQICmd.ExecuteNonQuery()

SQICmd.CommandText = "select @@IDentity"
Result = SQICmd.ExecuteScalar()
If Result > 0 Then
StrSql = "insert into Ticket Booking values (" & Result & "," & FNo
& """ & FDt & ",'1%,'0",'Confirmed’)"
SQICmd.CommandText = StrSql
Result = SQICmd.ExecuteNonQuery()
If Result < 0 Then
InsertRecord = "Error”
End If
End If
End Function
End Class
CheckBook.asmx.vb-Web Service:
Imports System.Web.Services
Imports System.10
Imports System.Text

34

<System.Web.Services.WebService(Namespace :=
"http://tempuri.org/WebServicel/Servicel")> _
Public Class Servicel

Inherits System.Web.Services. WebService

#Region " Web Services Designer Generated Code "

Public Sub New()
MyBase.New()

"This call is required by the Web Services Designer.

InitializeComponent()

End Sub

"Required by the Web Services Designer

Private components As System.ComponentModel.IContainer

'NOTE: The following procedure is required by the Web Services
Designer

't can be modified using the Web Services Designer.

<System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()

components = New System.ComponentModel.Container()
End Sub

35

Protected Overloads Overrides Sub Dispose(ByVal disposing As
Boolean)
'CODEGEN: This procedure is required by the Web Services Designer
If disposing Then
If Not (components Is Nothing) Then
components.Dispose()
End If
End If
MyBase.Dispose(disposing)
End Sub

#End Region

'Reads a Text File
<WebMethod()> _
Public Function ReadFile(ByVal FlightCode As String, ByVal FLDate As
Date) As String
Dim objStreamReader As StreamReader
Dim strLine As String
Dim strNewLine As String
Dim F1, Awail As String
Dim FileName As String

FileName = getFileName(FLDate)

If FileName = "BadDate" Then
FL_Avail = "Enter a valid date."
Return FL._Avail

36

End If

If File.Exists(FileName) Then ' check file exist
objStreamReader = New StreamReader(FileName) 'open the file

"Read the first line of text.
strNewLine = "Start"
nn

strlLine =
FL_Avail =""

'Continue to read until you reach the end of the file.
Do While Not strtNewLine Is Nothing
sttNewLine = ""
sttNewLine = objStreamReader.ReadLine
'do the string operation
If sttNewLine <> "" Then
If sttNewLine.Substring(0, 2). Trim.ToUpper =
FlightCode. Trim.ToUpper Then
FL_Avail = strNewLine.Substring(3, 3).Trim
objStreamReader.Close()
Return FL,_Avail
End If
End If

Loop

'Close the file.
objStreamReader.Close()

37

If FL._Avail. Trim() = "" Then
FL_Avail = "Flight not found"
End If
Else 'file doesnt exist
FL._Avail = "Reservation not started"”
End If

Return FL_Avail

End Function

' Updates a textFile

<WebMethod()> _

Public Function WriteFile(ByVal FlightCode As String, By Val FLDate
As Date, ByVal TicketsNeeded As String, By Val Cancel As String) As
String

Dim objStreamWriter As StreamWriter

Dim objstreamReader As StreamReader

Dim Temp _file As String

Dim Real _File As String

Dim strNewLine As String

Dim TicketAvail As String ' Old Availability
Dim NewAvail As String ' New Availability

Real File = getFileName(FLDate)
If Real File = "BadDate" Then
WriteFile = "Enter a valid date."

Return WriteFile

38

End If

TicketAvail = ReadFile(FlightCode, FLDate)
If Cancel = "True" Then
NewAvail = Int(TicketAvail) + Int(TicketsNeeded)
Else
If IsNumeric(TicketAvail) Then
If TicketAvail - TicketsNeeded < O Then
WriteFile = "Requested number of seat(s) not available.”
Return WriteFile
Else
NewAvail = Int(TicketAvail) - Int(TicketsNeeded)
End If
Else
WriteFile = "Check seat availablity."
Return WriteFile
End If
End If

If Len(NewAuvail) <= 0 Then
NewAvail = "000"

Elself Len(NewAvail) = 1 Then
NewAvail = "00" & NewAuvail

Elself Len(NewAuvail) = 2 Then
NewAuvail = "0" & NewAuvail

Elself Len(NewAuvail) > 3 Then
NewAvail = Right(NewAuvail, 3)

39

End If

Temp_file = Replace(Real_File, ".txt", "_Temp.txt")

If File.Exists(Temp_file) Then 'check file exist
WriteFile = "Reservation in progress, Try again later."
Return WriteFile

End If

If File.Exists(Real_File) Then 'check file exist
objStreamWriter = New StreamWriter(Temp_file) ‘'open the file to

write

objstreamReader = New StreamReader(Real _File) 'open the file to

read

'Read the first line of text.
strNewLine = "Start"

'Continue to read until you reach the end of the file.
Do While Not sttNewLine Is Nothing
sttNewLine = ""
sttNewLine = objstreamReader.ReadLine()
If strtNewLine <> "" Then
If sttNewLine.Substring(0, 2).Trim. ToUpper =
FlightCode. Trim.ToUpper Then

sttNewLine = sttNewLine.Substring(0, 3) & NewAvail
End If

objStreamWriter, WriteLine(sttNewLine)

40

End If
Loop

'Close the files, update the real file, delete the temp file.
objstreamReader.Close()
objStreamWriter.Close()
File.Delete(Real_File)
File.Copy(Temp_file, Real File)
File.Delete(Temp_file)
WriteFile = "Done"
End If

Return WriteFile
End Function
' Makes the filename with the supplies date
Private Function getFileName(ByVal FL_Date As Date) As String
getFileName = "C:\Reservations\"
If IsDate(FL._Date) Then 'check date
getFileName = getFileName & FL_Date.Month() & " " &
FL_Date.Day() & "_" & FL._Date.Year() & ".txt"
Else 'not a Good Date
getFileName = "BadDate"
Return getFileName
End If
End Function
End Class

Welcome.aspx.vb:

41

Public Class welcome

Inherits System. Web.UI Page

#Region " Web Form Designer Generated Code "

"This call is required by the Web Form Designer.
<System.Diagnostics.DebuggerStepThrough()> Private Sub

InitializeComponent()

End Sub

'NOTE: The following placeholder declaration is required by the Web
Form Designer.
Do not delete or move it.

Private designerPlaceholderDeclaration As System.Object

Private Sub Page_Init(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Init
'CODEGEN: This method call is required by the Web Form Designer
"Do not modify it using the code editor.

InitializeComponent()

End Sub

#End Region

Public AgentName As String

Private Sub Page L oad(ByVal sender As System.Object, ByVal ¢ As
System.EventArgs) Handles MyBase.Load

42

If Session("Validated") = "True" Then
AgentName = Session("AgentNAme")
Else
Response.Redirect("Login.aspx™)
End If
End Sub

End Class

43

9.2 RESULTS

Login Screen:

3 Travel Center - Login - Microsaft internet kxplorer

Fl¢ Edit Wiew Favarites. Tools- Help
@Back‘ - =& @ @ ‘fﬁ f“} Search ‘Ei‘{ Favorites QMedia @ &:,;" ::ﬂt

@http:,f;'lccalhostp'TravelCanter!Login.aspx v j‘ E2cn Lnks ¥

“tog on ’
Username:
Iagenﬂ i

Passwiard:

{.-----l

D Remermber My_.l.agin and Password

(oo |

44

Welcome Screen :

Fie FEdit Miew Favorites Tools Help

@Back - @ @ ;Zh : pSeerch kzj;"\?Faw.\rites QMedia @ Q

agent:arun canesan T

Logout Ticket Check
Reservations

Cancellation

issuedTickets

45

Check Ticket Instance :

X CheckTicket fic
Fle Edit Wiew Feverlbes Tools Heip

Internet Explorer

esack - qp lfJ @ :3{;} j.\ Search 3‘: Favores @ Heda 523 ;53~

8] orabiost TravelCorter{TheckT cket azpu b, M
»
Agenttirur Ganssan
Ticket Check ; ..
Reservations TR E £ Ei
Cancellatian R 14 15 16
IssuedTickets Travel Date mm-cd-yyy 21 22 2%
Leqout Horre 20 22 o
4 5 B
011 Seats(s) avdlable.Reserve
Cherk 01 NW London NewYork 4700
Check 02 T London Detriok AT
Check 03 Nw Lendon Housten A700
Check 04 R MNewYork Dretrict £700
M 05 W MewYork “Houston A700
Check 06 ITW ewYork London AT00
Check o7 NW Detriot London AT00
Check 2 W Deinot NewYerk AT00
Check . 09 Nw Detriot Houston AT00
Cheeke 10 W Houston London AT00
Cheek 11 Iaas Heustor.” NewYerk ATO0
v

Mhonl, 17 Lot b Bouton Tmbnt A

46

Reservation Instance :

agentiaron caresan (N, B

Ticket Check Sun Mon Tue Yed Thu

o o Abrlinas 27 22 1 2

Reservations e

. : Nt here 6 7 & &

Cangella 12 14 15 16

IssuedTickets 0 2L P 03

Logaut Horma 27 28 23 0

2 4 5 8
No of Tickets
Natne Yrow

Reserve Cance] 01 Pty Toondon NewYork AT00
Eestrve Cancel 0z W London Detmiot ATU0
Reserwe Cancel 03 W Londen Houston A700
Reserve Canrel] W New York Detriot AT
Reserve Cancal 05 MW Hew¥ork Heouston ATU0
Reserve Cancel 1] NW HewVork London A700
Reserve Congal 7 MW Detriot Lendon AT06
Rezerve Cancel vz MW Detrot TewTerk AT0G
Resarve Cancel 0% N Detriot Houston AT00 -

[HER R

47

Issued Tickets : '

3 WebForm1
Fis Edit Yiew Favorites Tools Halp

Hicrosefl Internet Explarer

Qe - i (¥ B Fp jTsewd Frrmone @mess £ 52~ ,‘;, =,

5 | 48) btp: Jlocalhost {Travelcertar R eser vatoriist spre s
~
Agent:Arjun Ganesan birst Name Last Name From
Ticket Check . : 2 00
HEER IR Arjun anesan Lendon Demot 12’1""{2%‘;{12 0000
i FEaesh Famnan London Dretriot 1243 22004 120000
IssuedTickety AM
Logeut H .
et ©vigha 213 Lendon New¥ork 12’132?;112,00.00
- o
agdf asdf Londen MewYork 1_1.!12!’205;1; F0
oqedf asdf London WewYork]2’12’2%}20&00
queer wer London MWew Tork 121 EJIZOB;{I 20000
asdf asd London NewYork 12 2'52031?&1 20000
gzdf asdf’ Londen HewTork 1471 Efﬁﬁiﬁ b
qwer wer London NewYork L 320:;{1 20000
N i L 12122004 12:00.00
agdf asd Lendon Tlevw Tork e
1 { London NewYork 2n 21’20‘3:}1 2:00:00 .

48

Legacy Database :

Faenrdan Tnzd Hehs

{;} : F? J‘;:’Snarch n Falders

+Reservations

= o Daeume it

12 72 2004t Notepad
" - | Fie' Edt Format View Heip
- Lol o 004

X e 02 Q20

030

040

050

Lither Plac

_11_2005 Ext
L Do

49

Front End Database :

AirLines
;] Avine1o
;| Airlinelame

Fhightinfo
| WD
Fhohto
FlightMarme
From_Gity
T ity
Flight Type
Arlinell o
Tcket Booking [Ramenaen
Bookingl®
G bl FirctName
PagsengerID
Lastiarne
FlightDs P
TraveData ddfm.J,’
Searto 5 e
RetyrnTicket ity
Status Fincode
i gotatus

50

10 REFERENCES

1. CHRIS PAYNE (2002) ‘Teach Yourself ASP.NET in 21 days’, 4*
Edition, SAMS publication.

2. Harvey M. Deitel, ‘Web Services: A Technical Introduction’ , 4”
edition, Addison Wellesley.

3. DUNCAN MACKENZIE (2003) Yourself ASP.NET in 21 days’,
SAMS publication.

4. ETHAN CERAMI (2003) ‘Web Services Essentials’, Oreilley.

5. DAN BOX, ‘Teach Yourself ADO.NET in 21 days’, SAMS

publication.

) L

51

