“THESUS”

WEB CONTENT MANAGEMENT ENHANCED WITH

LINK SEMANTICS AN
TN

] @S2

A PROJECT REPORT N
\‘\‘:;/f:?‘&l;:? 4% 7]

Submitted by 17
AARTHI GURURAJ(71201104001)
JAISHREE.J(71201104016)
in partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING
KUMARAGURU COLLEGE OF TECHNOLOGY

ANNA UNIVERSITY: CHENNAI 600025

APRIL 2005

ANNA UNIVERSITY: CHENNAI 600025

BONAFIDE CERTIFICATE

Certified that this project report “THESUS -WEB CONTENT
MANAGEMENT USING LINK SEMANTICS?” is the bonafide work of
“AARTHI GURURAJ (71201104001) and JAISHREE.J (71201104016)”

who carried out the project work under my supervision.

¢ " '-

o S e i L

Z , o
A //3/ N TS INT

SIGNATURE SIGNATURE
Dr.S.Thangasamy Mrs.D.Chandrakala
HEAD OF THE DEPARTMENT SUPERVISOR
Senior Lecturer
Department of Computer Science & Engg. Department of Computer Science & Engg.
Kumaraguru College of Technology, Kumaraguru College of technology,
Chinnavedapatti Post, Chinnavedapatti Post,
Coimbatore-641006 Coimbatore-641006

Submitted for viva-voce examination held on - ¢4 20CS

njg U
T

atj o
ERNAL E R EXTERNAL EXAMINER

ANNA UNIVERSITY : CHENNAI 600025
EVALUATION CERTIFICATE
College : KUMARAGURU COLLEGE OF TECHNOLOGY

Branch : COMPUTER SCIENCE AND ENGINEERING
Semester : EIGHT (08)

S.NO | Name of the Student | Title of the Project | Name of Supervisor
1. Aarthi Gururaj THESUS-Web Mrs. D. Chandrakala
2. J.Jaishree Content

Management
Enhanced with Link
Semantics

The report of the project work submitted by the above student in
partial fulfillment for the award of BACHEL.OR OF ENGINEERING degree
in COMPUTER SCIENCE AND ENGINEERING of Anna University was
evaluated and confirmed to be the report of the work done by the above

student and then evaluated.

(INTERNAL EXAMINER) (EXTERNAL EXAMINER)

DECLARATION

We hereby declare that the project entitled “THESUS, Web Content
Management Enhanced with Link Semantics” is a record of original
work done by us and to the best of our knowledge, a similar work has not

been submitted to Anna University or any Institutions, for fulfillment of

the requirement of the course study.

The report is submitted in partial fulfillment of the requirements for the
award of the Degree of Bachelor of Computer Science and Engineering

of Anna University, Chennai.

Place: Coimbatore

Date: 3044|2008 _

(Aarthi Gururaj)

S 7
7 f

ARV _
(Jaishree.J)

ACKNOWLEDGEMENT

e Wl em———— e

ACKNOWLEDGEMENT

With profound gratitude, we express our deepest thanks to
Mrs.D.Chandrakala, Senior Lecturer, Dept. of Computer Science and
Engineering, our internal guide, who has taken all measures to guide us
through the project, and been a constant source of inspiration and motivation
at various levels of the project.

Our sincere thanks to all the lab assistants who have been
operational in aiding us implement the system.

We would like to thank the Head, Computer Science and
Engineering, Dr.S.Thangasamy and Mrs. Devaki for guiding us through the
project.

Our sincere thanks to the Department of Computer Science and
Engineering, Kumaraguru College of Technology, for extending its fullest
support by all means to enable us to complete the project.

Last but not the least, we extend our gratitude to all the student
peers, and all those who directly or indirectly helped us in successful

completion of the project.

iii

ABSTRACT

ABSTRACT

With the unstoppable growth of the World Wide Web, users
now turn to the Web whenever they need information. Currently most search
features are based on raw lexical content and provide number of irrelevant
results. We show how the use of the hyperlinks to a page can be used efficiently
to classify a page in a concise manner. This enhances the browsing and
querying of web pages, thereby eliminating irrelevant results. The links are
processed using a hierarchy of concepts, akin to ontology. Information about
the semantics of a page is derived by analyzing the links pointing to the given
page. Thematic subsets of World Wide Web documents are constructed based
on the initial set of keywords and hence the name “TheSus”. Querying process
is restricted to the Music domain only and the ontology is also based on this
domain. THESUS is not a search engine. Yet the functions of TheSus simulate
few concepts that any search engine can implement in order to be more

efficient. The entire process is executed offline.

iv

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.
ACKNOWLEDGEMENT iii
ABSTRACT v
LIST OF FIGURES vii
LIST OF SYMBOLS viii
1. INTRODUCTION 1

1.1 LINKAGE INFORMATION 2

1.2 INFORMATION RETRIEVAL 2

1.2.1 Keyword based Retrieval 3

2. LITERATURE REVIEW 4
2.1 EXISTING SYSTEM 4

2.2 PROPOSED SYSTEM 5

3. PROPOSED LINE OF ATTACK 6
4. PROGRAMMING ENVIRONMENT 7
4.1 HARDWARE REQUIREMENTS 7
4.2 SOFTWARE REQUIREMENTS 7
5. SYSTEM DESIGN 8
5.1 FLOW OF CONTROL 8
5.2 DATABASE DESIGN 9

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.
6. DETAILED DESIGN 10
6.1 INFORMATION ACQUISITION 11
6.2 INFORMATION EXTRACTION 12
6.3 INFORMATION ENHANCEMENT 13
6.4 DISPLAY MODULE 14
6.5 REGISTRATION MODULE 15
7. TESTING 16
8. FUTURE ENHANCEMENTS 18
9. CONCLUSION 19
10. APPENDIX 20
10.1 SAMPLE CODE 20
10.2 SAMPLE OUTPUT 34

11. REFERENCE 37

vi

LIST OF FIGURES

LIST OF FIGURES

System Overview

Ilustration: TheSus System Architecture
Illustration: Information Acquisition
Ilustration: Information Extraction
Sample Ontology

Illustration: Registration

vii

LIST OF SYMBOLS

LIST OF SYMBOLS, ABBREVIATIONS AND

NOMENCLATURE
TheSus - Thematic Subsets
Ontology - List of keywords related to a domain
Link Semantics - Analyses the semantic contents of link
Link Analysis - using links for analysis of given keyword
Link Management - managing the contents of page using link

Information retrieval - retrieving information from text document

IE - Information Extraction
IA - Information Acquisition
Ont - Ontology

DB - Database

viii

INTRODUCTION

1. INTRODUCTION

The World Wide Web serves as a huge, widely
distributed, global information service center for news, advertisements, and
other information. The Web also contains rich and dynamic content of
hyperlink information that prove to be a useful resource. However, some of
the discrepancies that are met while using the web include

e The Web seems to be huge

e The complexity of web pages is far greater than that of any large text
document collection

e The Web is a highly dynamic information source

e Only a small portion of the information on the web is truly relevant or
useful.

Hence we need to go in for “Authoritative Web Pages”.
The Authoritative Web pages are those whose contents are highly related
and have authority over the context covered. It is found that the secrecy
of “authority” is found in the “Web page linkages™.

Sometimes many words are introduced in the content
irrespective of the context under which the page is based. The concept
proposed in TheSus eliminates this irrelevancy to a certain extent, aiding
for a more concise and theme based search, thereby reducing the time a

user spends in identifying the URLSs relevant to him/her.

1.1 Using Linkage Information:

The Web consists of not only pages, but also of
hyperlinks pointing from one document to another. These hyperlinks
contain enormous amount of “latent human annotation” that can help
to infer the notion of authority. The tremendous amount of Web
linkage information provides rich information about the relevance,
quality, and the structure of the Web’s content, and thus is a rich
source of information. |

TheSus illustrates this concept that can be used by
search engine where links are considered a more useful resource for
finding the authoritative pages rather than content of the page.

The TheSus incorporates 'the concept of Text-Data

Analysis, which uses the Information Retrieval mechanism.

1.2 Information Retrieval:

Information Retrieval is the organization and retrieval
of information from a large number of text based documents. A
typical information retrieval problem is to locate relevant documents

based on user input such as keyword, queries or example documents.

1.2.1 Keyword Based Retrieval:

In a keyword based retrieval mechanism, a document is
represented by a string, which can be identified by a set of
keywords. A good retrieval method considers the synonyms of the
words while answering such queries. For example, for the given
string “car”, synonyms such as automobile, vehicle should also be
considered in the search.

The two types of problems encountered in Keyword
based retrieval are

e Synonymy problem
e Polysemy problem

Synonymy problem is such that the given keyword may
not appear anywhere in a document but the document may be
closely related to that particular context.

Polysemy problem is that the same keyword may mean
different things in different contexts.

These two problems are addressed via the use of

“ONTOLOGY” that has been proposed.

LITERETURE REVIEW

2.1 ERATURE REVIEW

2.1 Existing System:

“he existing concept of web search engines uses the
crawling system to move from one page to another and searches the content
of the pages for relevance to any given query.

Once any match to the given query is found, they are
updated to the database and the matches are ranked based on the Page Rank
Algorithm. The results are displayed to the user. Sometimes in order to
increase the demand for a page, creators of the page introduce certain words
that are irrelevant to the context of the web document yet might seem
important.

For example, when searching for the keyword “wind”,
The user may mean the wind under different contexts like weather, wind
instrument, windpipe and so on. Unless the user is very specific in his query
he cannot find an exact option.

The appearance of such redundant keywords under
irrelevant context wastes time of those users who are specific to any
particular domain.

The redundancies also mislead the naive users and also

those who go in for information about a particular topic of interest.

2.2Proposed System:

In order to eliminate the irrelevancy caused from the
presence of such words in a particular domain, we propose two new
concepts for refining the search process.

e One is the use of hyperlinks while matching for the given query.
e Second is the use of “Ontology”.

Under the presumption that hyperlinks contain
information related to the context of the page, we go in for extracting words
from the hyperlinks and matching them with the given query. The hyperlinks
and its neighboring areas contain information relevant to the pages content.
Hence we make use of this to reduce redundancy.

The use of Ontology relates a given keyword to one
particular domain. The ontology contains words associated to a particular
domain. If the keyword matches the words in the ontology, then files
relating to the ontology domain are alone extracted. The remaining ones are
discarded.

By implementing these two concepts, we propose to
eliminate the irrelevant URLs, making the search process more concise and

meaningful!

PROPOSED LINE OF ATTACK

3. JPOSED LINE OF ATTACK

In order to eliminate the extraction of irrelevant URLs
from misleading data, we intend to approach the TheSus System by splitting
it into various modules, such as Information Extraction, Information
Acquisition, Information Enhancement that focus on domain related
querying.

Each of these modules performs its assigned functions of
querying for keywords and URLs and finally displays the result ranked by
the importance of data using Page Rank Algorithm.

The platform on which the TheSus system is
implemented is Windows XP, with source coding done using JAVA and the
front-end implementations using JSP. JSP pages incorporate the HTML
content also, thereby aiding in the generation of dynamic pages as and when
the queries are processed.

Client side validations are implemented using Java
Script for java is platform independent and hence the system can be run on
any platform. Database used is MS-Access. Access has its own advantage
such that it loads only those components that are required for a particular

application under concern.

PROGRAMMING ENVIRONMENT

4. PROGRAMMING ENVIRONMENT

4.1 Hardware Requirements:

Operating System: Windows 2000 and above versions
RAM: 64 MB

Processor: Pentium IV

4.2 Software Requirements:

e Jdk1.3 or its higher version
o J2sdkl.4

e Apache Tomcat Web Server
e Web browser

e MS-Access Database

SYSTEM DESIGN

e s

s fEM DESIGN

5.1 Flow of control:

The TheSus system accepts users input through the User
Interface that is designed similar to that of any search engine.

A query string is accepted from the user and passed to the
Information Acquisition module.

This module queries through the pages that are available in the
database.

Every page is mapped with the user given keyword.

If a match to the specific string is found, the page is returned to
the next module namely, Information Extraction.

The Information Extraction module searches the hyperlinks for a
given user query.

Since the hyperlinks are a source of information on the authority
of the page, the presence of the given keyword in the hyperlink
places that page above all the other pages.

The URL of the page is passed to the Display module.

If no match is found in the content or in the hyperlink, the user
query is passed to the Information Enhancement module.

This module makes use of ontology to find the synonyms of
given keyword or its related terms.

The Web pages are again searched for the keyword generated.

If a match is found, the URLs of these documents are placed in
the display module.

The display module is accessed finally to generate all the results

along with the count of the number of results found.

5.2 Database Design:
The database consists of 5 tables namely

e ThesusFileName

e ThesusFile URL

o DisplayURL

e Ontology

e Register

The first two tables act as an index to enable easier

location of Web pages. They contain the list of Web pages and the
URL that points to the Web page. The DisplayURL table houses the
URLs of those pages that have some authority over the requested
document. The Ontology table consists of that list of root keywords
that may appear in any of the documents. This consists of some of
frequently occurring synonyms of a particular domain.
The Registration module facilitates the users to register new URLs,
the organization to which it is associated with, and the details of the

customer who registers the details with the system.

DB

User i/p

System Overview register

DETAILED DESIGN

¢ JETAILED DESIGN

The entire system of TheSus is divided into modules namely,

Information Acquisition
Information Extraction
Information Enhancement
Querying

Display module

Registration module

Hlustration: TheSus System Architecture

Informmtion Acquisition

Information Extraction

Lets see each of these modules in detail.

10

6.1 Information Acquisition:

The keyword for which the user wants relevant search
result is passed from the client side JSP page to this module.

Once the keyword is obtained, the files in the database
are searched for the presence of keyword. Searching the file includes reading
the file using a File reader and then using “Stream Tokenizer” to split the
file and compare with the keyword.

Once the required word is found, all the files that

contain the keyword are passed to the Information Extraction modulg.. =~

Illustration: Information Acquisition

Files From datahase

Match Found

Related Files
Info

Extraction

11

6.2 Information Ext. ion:

Fo: those files that contain the required keyword, the
next step is to extract th: URLs from them. The incoming and outgoing links
are taken and parsed with the help of “String Tokenizer”. The URLs are
checked for the presence of the query string. This process is one of the
enhancements of the proposed system. To check the presence of keyword in
the URL we find the position of the starting letter of the keyword in the URL
and extract the sub string thereon.

If the sub string matches with that of the query string,
the URL is passed on to the display module.

If no match is found for the keyword in the content of
the web pages or in the URL, we pass on the keyword to the Ontology,

implemented in the Information enhancement module.

Illustration: Information Extraction

Info

Acqui Related Files

No

Ont

12

6.3 Information Enhancement:

The Information Enhancement module comes into play
when the given keyword does not occur in any of the pages. This module
makes use of Ontology. Ontology defines a common vocabulary for
researchers who need to share information in a domain. All the important
and most sought after words are included in the ontology.

Our ontology mainly focuses on the “music” domain
and contains almost all words related to this domain. We develop this
ontology as an XML file because we can define tags of our own in xml files.

This module parses the Ontology xml file using Stream
Tokenizer. The companion tags form the root. If a match to the query string
is found in the root, then that word and its similar ones under it are searched
for a match in the pages and the corresponding URLs are returned to the
display module.

If a match is found in the tags following the root, then
we search for the presence of the root word in the contents. If no match is
found, we return a null to the display module.

Sample Ontology:

- <media>

- <sound>

- <digital>
<cds />

- <computer>
<mp3 />
<midi />
</computer>
</digital>

- <analog>
<vinyl />
<tape />
</analog>
</sound>

- <image>
<photographs />

I3

<p:.)p>
<disco />
<grunge />
<reggae />
<techno />
<rock />
</pop>

- <world>
<indian />
<arabic />
<chinese />

- <american>
<country />
</american>
<french />
<folk />
</style>

This ontology module aids in reducing the irrelevancy
and concentrates to a particular domain thereby yielding better search
results. The use of ontology to enhance the search process is yet another

steps forward in implementing domain related search!

6.4 Display Module:

The display module consists of extracting the URLs
that are found relevant to the context. The display module consists of
database access where all the URLs are stored. Using the “connection”
object creates database access prior to which the MS-Access driver is
initialized.

Query statements are created and the result set is
passed to the UL, Display page and displayed to the user.

If the display module accesses a null database, we
forward the UI age to intimate that no results have been found for the

particular word.

14

6.5 Registration module:

This module enébles the user to register new URLs
with the TheSus system so that they can be included in the search process.
The details such as Customer name, Organization name, the URL registered
and the index file are extracted from the users input page.

The URL and the index file are updated to the
respective tables so that they can be used at later stages of searching. The
customers details are updated to the Customer table so that further enquires
are possible.

This module does much of database access. A
connection is established using the connection object. Query to update the
database are written in the statement object. The value returned by the result
set is checked for valid update and commit operation is performed.
Otherwise the operations are rolled back and user is prompted with the

message of invalid update.

Illustration: Registration

DB
update

Extraction
of fields
from input

UserInput [— >

VRN

Used by
other
modules

A

15

TESTING

7. TESTING

Testing ensures that all the discrepancies in the system are
identified and corrected so that one can expect efficient outcome from the
system. The THESUS system is tested with some sample keywords in order
to check the outcome and its efficiency.

We test the system with keywords that relate to the domain
as well as with those that are totally irrelevant. Since the feature of the
system itself is the domain related searching, we see to that results obtained
are relevant to the domain.

Testing is done based on the number files that contain the
query string specified and the number of relevant files retrieved. We have
for verification, some sample files in the client side of the system that
simulate the Web pages.

Unit testing was done at the design stage to check the
concurrency of each module. Sample inputs were given and the performance
was checked by executing the program in command prompt. Let us see some

of the sample inputs that the system was run on and its performance.

Input: guitar

The sample files for this particular keyword was maintained in such a way
that all the simulating Web pages contained the word “guitar”.

When executed we obtained a result of only 5 results. The 5 URLs that were
generated were found to contain the keyword in the URL or were mapped

from the Ontology.

16

Input: jazz
The keyword digital generated 3 resultant URLs wherein all the 3 were

found to contain the keyword “jazz”. The total number of files that contained
the keyword jazz are 5. The remaining 2 pages are eliminated for that fact

that they are probably not domain specific.

Input: digital

The keyword “digital” when searched for generated 5 URLs, all 5 of which
did not contain the word digital. The web pages were simulated in such a
way that none of them had this word in it. Since digital is a part of the
domain that may mean a digital music file or digital encoding or the like, the

word was mapped to the ontology and some related files are being displayed.

Input: hello
The hello keyword returned a null result thereby directing the system to No

Result page. This particular word neither relates to the domain nor is present

in any file.

Testing Registration:
Giving new URLs and checking the updation process in the database test the

registration module. A proper update results in a pop-up dialog in the user
interface that displays the confirmation of registered details. Else the pop-up
displays a “ Details not Registered” dialog box.

These are a few inputs that were used to test the system for

efficiency.

17

FUTURE ENHANCEMENTS

8. Fl. TURE ENHANCEMENTS

e The system shall be updated for searching using multiple
keywords.

o The current system is demonstrated using single ontology only.

e The TheSus system can be enhanced by bringing in user
intervention to determine the users domain of interest when
given more number of ontologies, each of a particular domain.

e This gives the user complete freedom to determine how
relevant his search results are going to be.

e Use of tools to generate the various senses of given keyword
could be used to identify the users domain of interest easily.

These will make the system more user friendly!

18

CONCLUSION

9. CONCLUSION

The TheSus System proposes a concept of information
retrieval from Web pages through keyword retrieval mechanism.
Authoritative Web pages are found by focusing on the hyperlink
information, namely Link Semantics in order to find pages that are of
interest to the user. Irrelevant pages are eliminated as a result of focus on
Link Semantics. Related data are not lost as a result of synonimical search.

With little bit of enhancement on querying over
multiple keyword strings, the TheSus system proves to be a useful solution

for knowledge hunters and domain related searchers!!!

19

APPENDIX

10.APPENDIX

10.1 Sample source code:

public ArrayList getFileName(String kw) throws IOException,
SQLException

{ System.out.println("In class InfoAccqui: "+ kw);
DbConnection tc=new DbConnection();

Connection objCon=tc.getConnection();

Statement stmt=objCon.createStatement();

ResultSet rs=stmt.executeQuery("select FileName from

ThesusFileName");

String fn=new String();

ArrayList al=new ArrayList();

boolean flag=false;

while(rs.next())

{ fn=rs.getString("FileName");
System.out.println("************x Eile under Check is: "+fn);
File i=new File("C:/THESUS Proj/",fn);
FileReader fr=new FileReader(i);
StreamTokenizer st=new StreamTokenizer(fr);
st.resetSyntax();
st.wordChars(33,255);
st.whitespaceChars(0,' ');

st.eollsSignificant(true);

String str;

while(st.nextToken()!=StreamTokenizer. TT EOF)

20

{if(st.ttype==StreamTokenizer.TT WORD)
{ str=st.sval;
if(str.compareTolgnoreCase(kw)==0)

{ flag=true;
System.out.println("Keyword Exists in this file");
// put the file name in an arraylist.
al.add(fn);//check for repeated file names

3
else
{flag=false; }
}//end of if
}//end of second while
public void getURL(ArrayList al,String kw) throws IOException,
SQLException
{ System.out.println("In class InfoExtract!");
System.out.println(al.size());
DbConnection tc=new DbConnection();
try
{ Connection objCon=tc.getConnection();
Statement stmt=objCon.createStatement();
ArrayList ar=new ArrayList();
int n=0;
//delete URLSs of previous transaction
Statement s=objCon.createStatement();
String delqry="delete from DisplayURL";
int z=s.executeUpdate(delqry);
// end of delete

21

for(int i=0ji<al.s);i++)

{ String fn=(¢ ing) al.get(1);

System.out.println;fn);
ResultSet rs=stmt.executeQuery("select URL from ThesusFileURL
where FileName=""+fn+"");
while(rs.next())

{ String url=rs.getString("URL");
System.out.println("Extracted URL is:"+url);

int k=url.indexOf(kw);

//System.out.printin("kkkkkkkkkkkkkk "+ k);

int I=url.length();
if(k!=-1)
{

// System.out.println(k-+" " +kw.length());

String qrykw=url.substring(k k-+kw.length());
System.out.println("Query Keyword”+ qrykw);
if(qrykw.compareTo(kw)==0)

{ ++n;

System.out.printin("Keyword exists in the URL");
// write current urls to database table display
Statement s1=objCon.createStatement();

String qry="insert into DisplayURL values("+n+",""+url+")";
int r=s1.executeUpdate(qry);
if(r>0)

{System.out.println("URL updated to database!");}
else

{ System.out.println("URL update Failed!");}

22

}

else
{ // call ontology module.return an arraylist with
keyword,filename,url.
//ar.add(new OntologySource(kw,fn,url));
System.out.println("No matches found in URL and Content!! Go in
for Ontology!!!");
3
if(k=-1)
{
System.out.println("Keyword not in URL");
//ar.add(new OntologySource(kw,fn,url));
3
}//end of while
}//end of for
public ArrayList getK wSenses(String kw) throws SQLException,
IOException
{ //Connection objCon=ThesusConnection.getConnection();
//Statement st=objCon.createStatement();
ArrayList sen=new ArrayList();
// OntologySource os= new OntologySource();
File os=new File("C:/THESUS Proj/SampleOntology.txt");
FileReader fr=new FileReader(os);
StreamTokenizer tok=new StreamTokenizer(fr);
tok.resetSyntax();
tok.wordChars(33,255);
tok.whitespaceChars(0," ');

23

tok.eollsSignific. true);

String str,start=nt .,temp=null,rootKw=null;

int 1=0;
while(tok.nextToken()!=StreamTokenizer.TT_EOF)
if(tok ttype==StreamTokenizer. TT_WORD)//if1

{

str=tok.sval;
System.out.printin("@@@@@@Q@Q@@: "+str),
rootKw=checkToken(str,kw,tok,rootKw);
if(flag==true)

{ break; }

33

return sen;,

}// end of method

public String checkToken(String str,String kw,StreamTokenizer
tok,String rootKw)
{
String temp=null,xKw=null;
boolean flag;
int I=str.length();
if(str.compareTo("-")==0)
{ rootKw=storeVal(str,tok);
if((rootKw.charAt(0)y='<")&&(rootKw.charAt((rootKw.length())-
1=">")
{
xKw=rootKw.substring(1,(rootKw.length())-1);

24

int g=rootKw.length();
//rootKw=rootKw.substring(1,g-1);
rootKw=xKw;
checkResult(kw,xKw,rootKw);
3}
else if((str.charAt(0)=='<")&&(str.charAt(1-2)==""))
{ xKw=str.substring(1,}-2);
// int g=rootKw.length();
//rootKw=rootKw.substring(1,g-1);
checkResult(kw,xKw,rootKw);
}
else if((str.charAt(0)=='<")&&(str.charAt(1)==""))
{ if(str.compareTo(rootKw)==0)
{ System.out.printin("match found for rootKw!");
}
}
return rootKw;
}
public void checkResult(String kw,String xKw,String rootKw)
{ boolean flag=false;
if(kw.compareTo(xKw)==0)
{
System.out.println("!!!! Keyword exists: "+xKw);
//call method to check db for that kw
System.out.printIn("Root Keyword is: "+rootKw);
checkDbase(rootKw);
flag=true;

25

}

else

{ return; }

)

public String storeVal(String str,StreamTokenizer tok)
{ String rootKw=null;

try

{ if(tok.nextToken()!=StreamTokenizer.TT_EOF)

{

rootKw=tok.sval;

System.out.println("Root Kw is: "+rootKw);

}

3
catch (IOException €)

{System.out.printIn("Error in storeval!");
e.printStackTrace();
}
return rootKw; }
public void checkDbase(String rootKw)
{ OntDbaseCheck o=new OntDbaseCheck();
0.DbaseCheck(rootKw);
}
public void DbaseCheck(String rootKw)
{
System.out.println("In OntDbaseCheck: keyword is: "+rootKw);
DbConnection tc=new DbConnection();

Connection objCon=tc.getConnection();

26

String fna=new String();

int n=0;

try

{ Statement st=objCon.createStatement();

ResultSet rs=st.executeQuery("Select FileName from Ontology
where Keyword=""+rootKw+"");

while(rs.next())

{
fn=rs.getString("FileName");

3
//delete URLSs of previous transaction

Statement s=objCon.createStatement();

String delqry="delete from DisplayURL";

int z=s.executeUpdate(delqry);

// end of delete

Statement stmt=objCon.createStatement();

ResultSet rs1=stmt.executeQuery("Select URL from ThesusFileURL
where FileName=""+fn+"");

while(rs1.next())

{

n=n+1;

String url=rs1.getString("URL");

Statement s1=objCon.createStatement();

String qry="insert into DisplayURL values("+n+",""+url+"")";
int r=s1.executeUpdate(qry);

if(r>0)

{ System.out.printin("URL updated to database!");

27

}

else

{ System.out.println("URL update Failed!");

}

¥
catch (SQLException e)

{System.out.printin("SQL Exception generated for statement
creation!");

e.printStackTrace();
}

tc.releaseConnection();

}

28

Sample JSP Code:

<%(@ page import="java.util. ArrayList" %>
<jsp:include page="InfoAccqui.jsp" flush="true" />
<jsp:useBean id="InfoExtract" class="testthesus.InfoExtract">
<%
try
{ Class.forName("sun.jdbc.odbc.JdbcOdbeDriver"); }
catch(Exception e)
{ out.printin("jsp file sql exception"); }
%>
</jsp:useBean>
<htmI><body>
<%
String kw=request.getParameter("txtSearch");
ArrayList resl=request.getParameter("res");
InfoExtract.getURL(res1,kw);
out.println("URL extracted");
%>
</body></htm]>
<jsp:useBean id="Reg" class="testthesus.Register" />
<%
try
{ Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); }
catch(Exception e)
{ out.printin(e.toString()); }

%>

29

<html><head>
<script>
function pass(form)
{ alert("Details Registered !"); }
function fail(form)
{ alert("Sorry!! Registration Failed !!"); }
</script>
</head>
<body bgcolor="#6699cc">
<form method="POST" name="Reg" action="Home.jsp">
<%
String txtURL=request.getParameter("txtURL");
String fn=request.getParameter("txtFileName");
String orgname=request.getParameter("txtOrg");
String cust=request.getParameter("txtCustomer");
int val=Reg.setDetails(txtURL,fn,cust,orgname);
if(val==1)
{ %>
<script>
alert("Details Registered!!");
</script>
<%}
else{ %>
<script>
alert("Details Not Registered!!");
</script><%} %>

30

</form></body></html]>
<%@ page import="java.sql.*" %>
<%! int n=0;%>
<%
try
{Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); }
catch(Exception e)
{ out.println(e.toString()); }
%>
<HTML>
<HEAD>
<title>Result</title>
</HEAD>
<body MS_ POSITIONING="GridLayout" bgColor="#6699cc">
<form method="post" name="Result">
<input type="hidden" value="3" name="Transld">
<%
try
{ Connection con=DriverManager.getConnection("jdbc:odbc:Thesus");
Statement stmt=con.createStatement();
ResultSet rs=stmt.executeQuery("Select URLdisp from DisplayURL");
while(rs.next())
{ n=n+1;
String u=rs.getString(1);

%>

<TR>

31

<TD bgColor="#66ccft
<%out.prir in(u);%>
</TD></TR>
<% } %>
<% }
catch(Exception e)
{
} %>
</TABLE>
</form></body></HTML>
<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN"> |
<htmI>
<head>
<title>RightFrame</title>
<meta name="vs_defaultClientScript" content="JavaScript">
<meta name="Progld" content="VisualStudio. HTML">
<meta name="Originator" content="Microsoft Visual Studio .NET 7.1">
<script>
function validate(form)
{

if(document.Search.txtSearch.value.length==0)

{ alert("Enter Search text !!");
document.Search.txtSearch.value="";

}

if(document.Search.txtSearch.value.length!=0)

{ alert("Form Submit");

32

form.submit();

33
</script>
</head>
<body MS_POSITIONING="GridLayout" bgColor="#6699cc">
<form method="post" name="Search" action="InfoAccqui.jsp">
<input type="hidden" value="1" name="Transld">
<inputtype="button"value="Go"name="cmdSearch"
onClick="validate(this.form);">

</form></body></htmI>

33

10.2 Sample Output:

TheSus-Web Content Raragement Using Link Semantics - Micros
oy

ft internet Explor

34

35

2 TheSus‘Web Content Management

3 TheSus-Web Content Management Using Link Semantits - Microsoft internet

36

REFERENCES

11.REFERENCES

—

“Mining link structure of world wide web”, Computer, vol 32,

no.8, pp.60-67, Aug 1999

2. GreenLaw and Hepp, ’Inline and Online Internet’, Tata McGraw
Hill Publication

3. M.Henzinger, “Hyperlink Analysis for the Web,” IEEE Internet
Computing, vol 5, no.1, pp.45-50, 2001

4. Herbert Schildt (2000), ‘Java—Complete Reference’, Tata McGraw
Hill Publication, Fifth Edition

5. Ivar Horton, ‘Beginning SDK 1.3°, Wrox Publications

6. Iraklis Warlamis, Michalis vazirgiannis, Maria Halkidi, “THESUS,
a closer view on Web Content Management Enhanced with Link
Semantics”, IEEE Transactions on Knowledge and Data
Engineering, vol.16, no.6, June 2004

7. Jeff Frentzen & Henry Sabootka (1999), ‘JavaScript, Annotated
Archives’, Tata McGraw Hill

8. Jiawei Han & Micheline Kamber (2001), ‘Data Mining-Concepts
& Techniques’, Morgan Kaufmann Publishers

9. Margret Young (1999), ‘The Internet — Complete Reference’, Tata
McGraw Hill Publication

10. Natlaya F. Noy and Deborah L. McGuinness, “Ontology

Development 101: A Guide to creating your First Ontology”,

Stanford University

37

Online Referen ::

http://www.computer.org

http://www.searchenginesystems.net

wWww.iprcom.com/papers/pagerank

http://www.db-aueb.org

http://www.digital-web.com/articles/smartercontentpublishing

http://www.daml.org/ontologies/

http://www.db-net.aueb.gr/thesus

http://directory.google.com

o L R o e

www.northernlights.com (Search Engine Sample)

10. www.vivisimo.com (Search Engine Sample)

11. www.citeseer.com

12. Word Net website — http://www.cogsci.princeton.edu/~wn

13. ODP — open directory Project, http://dmoz.org/

38

