By

~ SMITHAH
Reg No. 71203405017
of

Kumaraguru College Of Technology, Coimbatore 641 006

A PROJECT REPORT

Submitted to the
FACULTY OF INFORMATION AND COMMUNICATION ENGINEERING

In partial fulfillment of the requirements
for the award of the degree

Of

MASTER OF ENGINEERING
IN

COMPUTER SCIENCE AND ENGINEERING
ANNA UNIVERSITY CHENNAI 600 025
June 2005

/g.

BONAFIDE CERTIFICATE

Certified that this project report entitled “MASSIVE PARALLEL
COMPUTATION OVER GAMMA” is the bonafide work of Ms. SMITHA.H,
who carried out the research under my supervision. Certified further, that to
the best of my knowledge the work reported herein does not form part of any
other project dissertation on the basis of which a degree or award was

conferred on an earlier occasion on this or any other candidate.

Quppende' QI e

GUIDE HEAD OF THE DEPARTMENT

The candidate with University Register No. 71203405017 was examined by
R5-6-06

us in the project Viva-Voce exam held on

R etk Nl

INTERNAL EXAMINER EXTERNAL EXAMINER 5"

%\'D/

ACKNOWLEDGEMENT

| express my hearty gratitude to our beloved Correspondent, Professor
Dr. K. Arumugam, B.E. (Hons), M.S. (USA), M.L.E., for giving me this great
opportunity to pursue this course.

| thank, Dr. K.K. Padmanabhan, B.Sc. (Engg), M.Tech., Ph.D., Principal,
Kumaraguru College of Technology, Coimbatore, for being a constant source of
inspiration and providing me with the necessary facilities to work on this project.

| would like to make a special acknowledgement _and thanks to
Dr.S.Thangasamy, Ph.D., Professor and Head of Department of Computer
Science and Engineering, for his support and encouragement throughout the
project. ,

| tender my special thanks to Mr. R. Dinesh, M.S. (VVisconsin), Assistant
Professor and Project Coordinator, Department of Computer Science and
Engineering for his valuable suggestions. ‘ '

| express my deep sense of gratitude and gratefulness to my guide
Mrs.Devaki.P, M.S. Assistant Professor, Department of Computer Science and
Engineering, for her supervision, tremendous patience, active involvement and
guidance. L

| extend my sincere thanks to Ms. L.S. Jayashree, M.E., Ph.D., Senior
Lecturer, Department of Computer Science and Engineering for her valuable
suggestions and guidance.

| would like to convey my honest thanks to all members of staff of the
Department for their unlimited enthusiasm, friendship and experience from which
| have greatly benefited.

| owe special gratitude to my husband, S.Vinod kumar, without whom this
project work would not have the seen daylight.

| express my profound gratitude to my parents and friends for their moral
support.

Above all | thank the Creator of this beautiful planet for his grace

throughout my endeavors.

TABLE OF CONTENTS

CHAPTER CONTENTS Page No
ABSTRACT iii
1. INTRODUCTION 1
1.1. Problem Definition 1
12. The Current Status Of The Problem Taken Up 1
1.3. Relevance And Importance Of The Topic 2
2. Details Of Literature Survey 2
2.1 Available Implementation schemes 2
3. "LINE OF ATTACK 4
4. . DETAILS OF METHODOLOGY EMPLOYED 5
441 Cyclic Reduction Method Of Tridiagonal 5
Systems ‘
4.2 Serial Cyclic Reduction (SCR) For Tridiagonal 6
Systems
4.3 Parallel Cyclic Reduction(PCR) For 7
Tridiagonal Systems
4.4 Cyclic Reduction Communication Pattern For 7
7 - Processor Case
4.5 Backsubstitution
46 An Overview Of Gamma
5. CLUSTERING USING FOLLOWING TOOLS 10
5.1 LAM 10
5.2 PVM 12
53 GAMMA 13
6. PERFORMANCE EVALUATION 17

6.1. Measurements And Performance Comparison 17

F B 4

7.

8.

SNO

SNO

SNO

L NS

6.1.2.2. Speedup obtained
6.1.2.3. Efficiency obtained
6.1.2.4. Efficacy obtained

CONCLUSION AND FUTURE OUTLOOK

REFERENCES

LIST OF FIGURES

Cyclic Reduction Stages When 7 Processors Are
Used

Backward Solve Communication When 7- Processors
Are Used

LIST OF TABLES

Computation Time Involved
Speedup Obtained
Efficiency And Efficacy Obtained

LIST OF CHARTS

Computation Time Involved
Speedup Obtained
Efficiency Obtained
Efficacy Obtained

27
28
29

30

30

i

PAGE NO.

PAGE NO
26
27
28

PAGE NO

27
28
29
29

SNO

10.

11.

SNAPSHOTS OF SCREENS

Parallel Implementation on a LAM cluster of 3
nodes

Screen — 1: Booting up machines on the LAM
cluster

Screen 2: Extraction of Triplets in a LAM cluster
Screen - 3; Back substitution and solution of odd
rows in a LAM cluster

Paralle! Implementation on PVM

Screen — 4: Extraction of Triplets in a PVM cluster
Screen - 5: Extraction of Triplets (Contd..)
Screen - 6: Back substitution and solution of odd
rows in a PVM cluster

Parallel Implementation on a GAMMA cluster
Screen - 7: Extraction of Triplets in a GAMMA
cluster | |

Screen - 8: Back substitution and soiution of odd
rows in a GAMMA cluster

PAGE NO

18

18

19

20

21
21
22

23

24

24

25

il

g AW N

MPI
NOWs
MPPs
LAM
GAMMA

LAN
PVM
IPC

LIST OF ABBREVIATIONS

Massage — Passing Interface
Network Of Workstations
Massively Paraliel Machines
Local Area Multi-Computer

Genoa Active Message
Machine

Lbcal Area Networks
Parallel Virtual Machine

Inter-Process Communication

- jii -
ABSTRACT

This paper presents the implementation of a Fast Linear Solver for
Tridiagonal systems using Cyclic Reduction Method on GAMMA clusters and
provides with performance results with and without the enhancement through
GAMMA. Tridiagonal systems often occur in the simulation of physical problems.
The objective of the paper was to reduce the time of computation to less than 1/n

the time needed for serial implementation when n number of processors are used

Among the direct and indirect methods available for solving a Tridiagonal
system, Cyclic Reduction architecture is the most appropriate one for solving

Tridiagonal systéms.

Cyclic reduction is an algorithm for the direct solution of linear equations
with tridiagonal property. Cyclic reduction algorithm is a modification of recursive

doubling which avoids computational redundancy.

Basic idea of cyclic reduction is to halve the dimension of the equation
system repeatedly until a single equation with a single unknown is left. This
equation is solved and the previously eliminated unknowns are found by a

backward substitution

The cost of high performance parallel platforms prevents parallel
processing techniques from spreading in present applications. Indeed standard
network protocols and mechanisms cannot deliver a satisfactory amount of

communication performances of the raw hardware to applications. NOW parallel

iV -

architecture potentially enjoys several advantages. On the other hand, the cost of
workstations and high-speed LAN devices is constantly decreasing, thus making
this approach very appealing from the financial point of view. This advantage
cannot be enjoyed by the commercial high-performance parallel platforms. The
negative aspects of the NOW approach are related to the performance of the
communication mechanisms usually made available at the application level. The
use of traditional protocols for LANs yields extremely high latency and very low

message throughput.

GAMMA is an attempt to overcome such a limitation by adopting a
minifﬁal communication protocol and Active Message communication paradig_rh.
Gamrha yields a communication latency time that is unbeated by any NOW-
based prototype leveraging comparable hardware, together with a good

exploitation of the communication bandwidth of the raw hardware.

With the promising facilities provided by GAMMA, our implementation of a
tridiagonal solver had outperformed the record produced in a NOW with the
traditional protocols. Running GAMMA communications on a dedicated
interconnect can boost performance of GAMMA parallel jobs, because
separating GAMMA communications from the remaining network traffic allows a

number of optimizations in the low-level messaging protocol

& FHE aigg,a’;&tb

@etisumisilsd (pthRpemsvRIL L KB @aTen ourig (peopsEemen GAMMA
Qan@ils Egren sppd &HES (PO Lpsoid eenGY auf & @En G
aufissmnsd GAMMA Ry SEHS0aD HEosy QFwsdupyey@st Sl SGUID
£iay S1HIILG EDE. (phRpensve L SUIRIGHOD GursSwumss Qs
@emLLyDIEsiTs0 AL 3T GBS @ensunieis Crp & SIS B
smbAL0BIHmS, 1/mn auflsn & & iLoLnesst BlemmCadmSHeOles CryHen Sl
GEPILSIGH (n - Qausiuy Salsaila sTowislesen).

(pibRpsmevati L Kis@saTen QUGBS Eiuspens oo CBIY
InHID 0ENDIPES aufipeop@silsy SoHE 8i(Th & &B(PBHD sl Loty &l
QN B SLOTEH S0, gipndl SHBSPERD iiipemeveii L UsHILEmLU QUHUG &
Fosun pheEnst Chigd Hie] QAUOBOINLY @S- -

snd EHBBHOD (g smEELS CHiSmss SHMiEG0
@miiglly SHuy HiEpey (pEPERULD SETUSTGSID.

spnd SHHS pempliss SiigusmL o MiBHSHING FOGLTIg6H
ufioTsmSemd ASTLIHE UyFnSLT s 8 @endlh L (Hid SHWTH)
ey UTHUnES GEDSIHS QaEnsitL AUmHAUSTSID. @& FL0siuh
Sjesiu’y pbmBU goljseEiulL JPurs (&8 BELEST NesiGsam (&
FhpenD Qpsoid SsLILh S S,

Qensmbun s SonmIEen LDl SALTER QausiLnsnL Qeualiing, &Sl

SSHETH ADIS Qawnp OIS B (Lpenmuliso QEwsU SHOUHUBDE

SOLWTE 2SS, NG QEILIBEBETST MFpsmn WHHID
anfpenmEal SHmigenorer QsILIY Qewsium mL. AEEEUT@HST {psutd
QausiliyHS (PrUTSH. QeSS sULenwldfies 2-sfafwsoy LS
BHLWE &6 SNBSS WM. agGus LAN aEngabohetss AF VAN

&EDH SN TEL aumaSTer Deieufipsmm SIHISI0MEH QLU SSUIUG SN

o . . -
- ~ = F 2 WP

P o T P 1 QEUJG{)UHL..lhg:)

SN SHIL T QBI_JLEnL WSS, gy sSlpenDEmHEn LAN&@&
o uGuNAIUETH NESHD HHDHS Qeusify BmL BB,

GAMMA aufipemnn QDSHSMEW QIBIPRD Gophs Sy
slgpemp®Eat wHmid AMC (Active Message Communication) Qpsotd
Bpauspes 96 QUDFAUTSD. MPI , GAMMA o sisn e
QesQuiss QawsiunismL MPL / GAMMA {ouh siesngs. NOW
SilgLiLemi 10sumeor sfghpsnpssilan GBI SinEEGE ChiSmBoil Hbs
QaTLiy — SnSlEGL CryHems GAMMA Qausiliiugy H&HEMF. NOW
aflpsmpies Qeusiiic ent ol pigpensvsil LEle@ssns GAMMA (psmmuTlsst
Qausd ey SEW fopssndEng. GAMMA ABILiY (P
QemsmGuissd GAMMA Qausiypsmpaaiial * AEusiub penDimul 90 &G5> S G

CHAPTER 1

INTRODUCTION

Solving tridiagonal systems is one of the key issues of numerical simulations
in many scientific and engineering problems. Solving a linear system Ax = b
requires more computational time due to the communication overhead
involved in Parallel computing systems. To reduce the communication
overhead, GAMMA is used
A tridiagonal system is a linear system of equations

Ax=d
Where x and d are n-dimensional vectors and a = [ai,bi,ci], is a tridiagonal
matrix with dimension n. Tridiagonal systems are of the form

aixi-1 + bx; + cxi+l1=F; = 1,,N
1.1. Problem definition:

Solving a Tridiagonal system on top of GAMMA to achieve massive
parallelism

1.2. The current status of the problem taken up:

Parallel tridiagonal algorithms have been studied extensively and remain an
active research area. Most parallel tridiagonal solvers trade computation with

parallelism.

1.3. Relevance and Importance of the Topic

Large trldlagonal systems of linear equations appear in many numerical

R T P P [TR Aty RESIPRERY - |

2
communication paradigm is being used to enhance the performance of a

tridiagonal solver. For simplicity, we assume in this paper that each processor
has roughly the same number of subsequent rows of the tridiagonal system,
and the number of processors Np is strictly less than the number of unknowns
N.

CHAPTER 2

DETAILS OF LITERATURE SURVEY

2.1. Available Implementation schemes:

Tridiagonal systems can be implemented using:
1. Direct Methods:

1.1. LU decomposition

1.2. Successive Doubling

1.3. Recursive Doubling and

1.4. Parallel Cyclic Reduction methods
2. lterative type Methods:

2.1. Jacobi method

2.2. Gauss-Seidel

Guassian elimination (or) Thomas algorithm:

On a serial computer, Guassian elimination without pivoting can be used to
solve a tridiagonal system of linear equations in O(N) steps. This algorithm is
referred to as Thomas algorithm therefore, it is inherently serial in the sense
that its communication has a complexity of O(Np).. Unfortunately, the

algorithm is not well suited for parallel computers. The Thomas algorithm is

P . T T T T D T Y Tt I (L S e oy |

3
performs the process of elimination from the beginning each time a new

system has to be solved, also if the coefficient matrix remains constant. If the
whole solution of a single system is considered, Thomas algorithm can't
compete with methods, which perform a factorization of the coefficient matrix
when the solution of a large number of linear systems with only different right-

hand sides has to be performed.

Recursive Doubling:

Stone introduced his Recursive-doubling algorithm. Both Cyclic
reduction and Recursive doubling was designed for fine-grained parallelism.

Partitioning algorithm:

Sun et al introduced the parallel partitionirjg LU algorithm that is very
similar to the Bondeli's divide and conquer algorithm. For both partitioning
algorithms and divide and conguer algorithms, a reduced tridiagonal system of
interface equations must be solved. Each processor owns only a small
number of rows in this reduced system. As an example, in Wang'’s partitioning
algorithm each processor owns one row of the reduced system. Recursive
doubling sclves this reduced system. However, numerical experiments were
performed only on very small number of processors.

Wang introduced a new partitioning algorithm. The basic idea is that a
tridiagonal interface of Np linear equations is generated without
communication. Each processor owns one equation of this interface system.
After solving the interface system of equations a back substitution step

generates the solution.

Divide and Conquer algorithm

The divide and conguer algorithm introduced by Bondeli consists of
inverting the tridiagonal systems that reside on each processor, by
disregarding the connections to neighboring processors. Similar to the
partitioning algorithms, this also yields a interface system of equations that
must be solved in parallel, for example by cyclic reduction. The storage
requirement for this divide and conquer algorithm is about twice the storage of

a tridiagonal system.
Jacobi and Gauss-Seide! Algorithms

Iterations in both algorithms should be slightly faster because the

algorithm loops through every elements in the matrix.

CHAPTER 3

LINE OF ATTACK

3.1. Actual Approach: Cyclic Reduction Method:

The first parallel algorithm for the solution of tridiagonal systems was
developed by Hockney and Golub. It is now usually referred to as Cyclic
Reduction.

We focus heavily on the Cyclic Reduction schemes because this method
outperforms conventional techniques for parallel implementations, and is the
most appropriate one for solving tridiagonal systems and from the point of
view of integration in VLS! technology, is the one which uses the least amount
of area and the smallest number of pins. Cyclic Reduction method has been
the most successful method. Cyclic reduction requires 2*log2Np steps of

nearest neighbor communication. Additionaily storage requirements can be

Lo drd don o i i s svansetina the aridinal fridiaoanal evetem with all

We assume that each processor has a unique index or rank.

CHAPTER 4

DETAILS OF METHODOLOGY EMPLOYED

4.1. CYCLIC REDUCTION METHOD OF TRIDIAGONAL SYSTEMS:

Cyclic Reduction (CR) was first used to solve tridiagonal equations,
arising from the finite-difference approximation to Poisson’s equation. This
particular case was limited to problem size given by powers- of 2. CR was
chosen over other algorithms such as Guassian elimination, because it deals
with periodic boundary conditions in a much neater way, eliminating the need
for the calculation of auxiliary vectors. 3
Linear equations are combined to ‘eliminate the odd numbered unknowns X1,
X3, Xs, ..., Xn. Reorder thé unknowns and repeat the process until we reach a
single equation with one unknown. March backward to obtain rest of
unknowns.

Considering the case of n=7 = 23 — 1 unknowns or which we have three
triplets. Start by forming the first triplet from the first three equations. Multiply
by parameters a, B2, and yz to get
aob X + w20 X2 = a2F

Baazxy + Babaxs + Pacax; = B2F2

v2a3Xy + ¥2b3x3 + y2C3X4 = 72F3
To eliminate x1 and x3, we add the equations and choose

B2 =1
2 by +Prar=0

Bacz + y2b3 =0

Resulting in (02C1+B2b2+y2a1)X2+Y2C3%a=0aF 1+B2F2+Y2F3
. ~ S \'W—J . ~ S

e

6
Similarly, combining the third, fourth and fifth equations obtained from

equation (1), we form the second triplet, from which we obtain
azayXst (a4c3+|34b4+a4a5) X4+‘Y405X6= a4F3+B4F4+’Y4F5

o ~ A AN ~ y

N W3 c2 a,
And a4, Bs, y4 are determined from
Ba=1
asbs +Bsag = 0
Bacs + y4b5 =10
Finally, for the third triplet we obtain, as before, the only surviving equation
DeXs + OgXg = ¢
Where the parameters ab, B8, y6 involved in the definition of ®6, w6, a6 are
determined by solving
agbs + Psas = 0
~ Bscs + ysb7 =0 _
We see that the three resulting equations also form a tfiﬂiagonai system, that
is '
®2Xz + O2X4 = &2 (2) |
®4Xs + 4Xq + 02X = 42 (3)
Dex4 + @6X6 = 46 4
Repeat the same elimination process as before, i.e., Multiply those equations
by a4’, B4’ and y4’respectively and choose
0y 0 + B Dy=0
Ps’cs + ¥4 0= 0
This leads to only one equation:
a4¥%x4 = Fu*
Using Back Substitution, after we obtain x4 from the preceding equation, we
can compute x2 from the reduced equation (2) and x6 from equation (3).

Finally, we use the original equations to obtain x1, x3, x5, and x7.

4.2. SERIAL CYCLIC REDUCTION (SCR) FOR TRIDIAGONAL SYSTEMS:

T T T T T AL (R (NS IF— |

7
leading to a poor balance. Serial cyclic reduction for tridiagonal systems

includes Memory allocation and generation of the tridiagonal system, cyclic
reduction is done on the system and Back substitution is done to recover the
solution. Serial cyclic reduction for tridiagonal systems is rarely used because
it is (1) More expensive than standard LU decomposition (2) Complex
indexing needed

4.3. PARALLEL CYCLIC REDUCTION (PCR) FOR TRIDIAGONAL

SYSTEMS

The idea relies on a novel data distribution scheme, which reduces the
amount of serial computation involved per processors and minimizes the
communication overhead. One of the major problems; with the PCR algorithm
is its inability to maintain maximum CPU utilization due to frequent waits for
non-local data particularly for higher or lower terms in equation, delaying the
overall computation times and hampering its scalability under strict parallel
execution. Parallel implementation for tridiagonal system includes the MPI
initialization, memory allocation and generation of the tridiagonal system. The
process is followed by cyclic reduction of the tridiagonal system and Back
substitution to obtain the solution which is done in parallel in the available

machines in the cluster.

4.4. CYCLIC REDUCTION COMMUNICATION PATTERN FOR 7 -
PROCESSOR CASE

When n is the number of processors used in the parallel processing, 2n-1 is

the number of rows of the tridiagonal system

Figure 1: Cyclic Reduction stages when 7 processors are used

Processors PO, P1, P2 operate simultanébusly on the first 3 rows of the matrix
namely rows 1, 2, 3 anc_l pass on the reduced row to processor P1.
Processors P2, P3, P4 opefate simultaneously on the next3 rows of the matrix
namely rows 3, 4, and 5 and pass on the reduced row to Processor P3.
Processors P4, P5, P6 operate simultaneously on the next 3 rows of the
matrix, namely rows 5, 6, 7 and pass on the reduced row to P5. Processors
P1, P3, P5, process the three rows and the reduced row is passed on to the

processor P3.

4.5. BACKSUBSTITUTION

Processor P3 processes the reduced row and obtains the value of the
unknown variable and passes the resuit to P1 and P5. P1 and P5 would
process the set of rows and give the result to PO, P2, P4 and P6
The resuit would show a clear advantage of available processors of this
method, due to an alternate data distributions among processors that

increases the overlap between communications and execution, increasing the

Figure 2: Backward Solve communication when 7- processors are used

4.6. AN OVERVIEW OF GAMMA: .

A high performance Beowulf (PC cluster) machine installed with Linux OS and
MPI for interprocessor communications has been constructed using Fast
Ethernet and the communication software GAMMA. Each unit of the PC
cluster machine, sometimes called a Beowulf cluster machine, has a scalar-
type processing unit and its own memory. Thus, high performance
computation comparable to a supercomputer is made possible at orders of
magnitude lower cost. Scalability of application programs on the number of
processors and reliability over a long period of time (days) has also been
confirmed for the GAMMA communications.

The GAMMA system is based on the active message mechanism that enables
direct communications between the application program and the network
interface while bypassing the operating system. Nice features of the present
method is that all the software including the Linux operating system and
GAMMA software are either free or low priced, and that the hardware
including processors, gigabit Ethernet cards and switching hubs are
aennahly nriced commerecial nroducts. On the other hand, for obtaining high

10
first network is a gigabit Ethernet for the GAMMA data transmissions, and the

second one is a TCP/IP network for the NFS file system and general
administration purposes.

The computational speed increases nearly linearly up to four processors, and
improves gradually beyond that. The computation speed by GAMMA
communications is about 1.5 times that by TCP/IP. It is important to use a low
latency communication system for the computational speed fo scale linearly
with the number of processors (P << 1), since the communication overhead
constitutes a non-parallelizable part.

Benefits of GAMMA include:

Supports both single and dual CPU processing nodes
Runs on Fast Ethernet and Gigabit Ethernet NICs
Compatible with standard network protocols and services (4) Good

programmability due to fairly high abstraction level (5) Reliable due to
mechanisms for retran'smission of missing packets

. Drawback of a standard NOchIuster architecture is the poor performance of
_its support to-inter-process communication over any LAN hardware.

Current impllementations' of industry-standard communication primitives
(RPC), APls (sockets), and protocols (TCP, UDP) usually show high

communication latencies and low communication throughput.

CHAPTER 5
CLUSTERING WITH LAM, PVM, GAMMA
5.1. PC Clusters using LAM:

The most popular and cost-effective approach to parallel computing is cluster
computing based on PCs running the Linux operating system. The
effectiveness of this approach depends on the communication network
connecting the PCs together, which may vary from fast Ethernet to Myrinet
that can broad cast messages at a rate of several gigabits per second.
(Gbps).

11
In addition to enhancements in the speed of individual processors,

there have been several key developments that have enabled commodity
supercomputing.

Cluster configuration involves changes in few configuration files and installing
few applications, which allows running a network of workstations into a
supercomputer cluster.

Following are the steps required for the configuration of the cluster:
Configuring /etc/hosts files

Configuring /etc/hosts.equiv files

Configuring rsh, login and other services

Configuring NFS server

Installing LAM/MPI

Configuring /etc/hosts files:

This file contains |P addresses and host names for local network as
well as any other systems. Any network program on the system consults this
file to determine the IP addresses that corresponds fo a host name.
Configuring /etc/hosts.equiv files:

The hosts.equiv file lists the hosts and the users that are trusted by the local
host when a connection is made using the rshd service. The hosts.equiv file is
found in the /etc directory and lists the remote names that may connect to the
local machine and the local user names those machines may connect as.
Each line of the file as follows:

Hostname [username]

Where, hostname may be given as a hostname, an address indicating that all
the hosts are considered to be trusted.

Username (optional) specifies a username on a remote machine. When
username has been specified only the users with entries on the specified
hosts may log in the local machine. When username, is not specified then any
user that has the same username on both the remote and local machine may
log into the local network. This configuration is must for a cluster to boot.

Setting rsh, rlogin and other services

12
Remote Shell (rsh) executes command on the specified

hostname. To do so, it must connect to the rshd service on the hostname.

Rsh usually sends two usernames to the rshd daemon-remote
user and local user. Remote user is the username that is currently logged into
the client machine. This user is the name that must appear in the
fetc/hosts.equiv file. Local user is the name that the service or daemon uses
to execute the command on the server. Rsh daemon is used by the
application LAM/MPI for booting and checking the parallel environment
making it the most important service for the cluster.

rlogin:

rlogin starts a terminal session on the remote host specified as
host. The remote host must be running the rlogind daemon for rlogin to
connect to. rlogin uses the /etc/hosts.equiv file for authorization. When no

username is specified, rlogin connects as the user.

5.2. PC Clusters using PVM:

PVM does not require special privileges to be installed. PVM uses two
environment variables when starting and running. Each PVM user needs to
set these two variables to use PVM. The first variable is PYM_ROOT, which is
set to the location of the installed pvm3 directroy. The second variable is
PVM_ARCH, which tells PVM the architecture of this host and thus what
executables to pickfrom the PVM_ROOT directory. These two variables can
be set in the .cshrc file.

Setenv PVYM_ROOT $HOME/pvm3

PVM_ARCH is set by concatenating to the file .cshrc the content of the
$PVM_ROOT/lib/cshre.stub. The stub should be placed after PATH and
PVM_ROOT are defined. This stub automatically determines the PYM_ARCH
for this host and is particularly useful when the user shares a common file
system across different architectures. Building for each architecture type is
done automatically by logging on to a host, going into the PVM_ROOT
directory,and typing make. The makefile will automatically determine which

Y D A L D I S |

13
$PVM_ROOT/ib/PVM_ARCH, with the exception of the pvmgs which is

placed in $PVYM_ROOT/bin/PVM_ARCH.
Set up summary:

Set PVM_ROOT and PVYM_ARCH in the .cshrc file

Build PVM for each architecture type

Create a .rhosts file on each host listing all the hosts
Create a $HOME/.xpvm_hosts file listing all the hosts

Starting PVM:

On the hosts where PVM is installed type

% pvm

So that the PVM is now running on the host.

Now hosts are added to the virtual machine by typing at the console
prompt '

Pvm> add hostname

To see the present virtual machinetype

Pvm> conf

To see the pvm tasks that are running on the virtual machine,type

Pvm> ps —a

To finish the virtual machine, type

Pvm> halt

To run the program tridiag_solver on a cluster of 3 machine, type
spawn at the prompt

pvm> spawn —3 -> tridiag_solver

5.3. GAMMA CLUSTERING
GAMMA Installation:
Requirements:

User Requirements:

14

Hardware / Software Requirements:

A pool of personal computers (PCs)

3COM 3c905

A single crossover cable for a “pack-to-back” connection
Linux kerne! version 2.4.21

A good C compiler, and C libraries, gcc2.95.3 works successfully
Assumptions about file placement:
Pathname of the Linux source tree is fusr/srcflinux/.
Configuration of GAMMA source code:
Gamma-7.-—-—-.tar.gz is used

Unpack the GAMMA source code:
Gamma.tar.gz is placed in a directory. Command tar xvzf
gamma.tar.gz is invoked. This operation creates a subdirectory named

gamma, containing the GAMMA software.

Configuring the GAMMA source code:

Entering the subdirectory gamma/ and run the script named configure.
The script creates a number of symbolic links to the appropriate files
containing source code.

Enabling collision-safe transmission has a negative impact on
communication performance but greatly decreases the rate of missing packets
in case of congestion.

With “safe transmission” enabled, the GAMMA protocol will be forced
to test for successful transmission of packets previously enqueued to the NIC
transmission queue before attempting to enqueue a new packet. This makes

AAMMA <lightlv less performing but much more stable.

15
For best performance we disable the IP traffic allowed on LAN feature.

because pure poliing leads to better performance, especially with
MPI/GAMMA. GAMMA uses signals internally, to occasionally force a process
to consume its pending messages.

Pathname of the Linux source tree for compilation in GAMMA
enhanced Linux kernel is set as fusrifsrcilinux/.

Once compiled, the directory to install the GAMMA user library is set as
fusrflib/. The directory to install the GAMMA utilities for startup and recovery is

set as /usrflocal/bin/.
TUNING SOME GAMMA PARAMETERS:

NIC-specific settings: '
Al GAMMA parameters are defined as constants in file

gamma.nic.dependent.h
Protocol-specific settings:

GAMMA parameters which affect the behaviour of GAMMA
independent of the particular NIC in use are defined as constants in file

gamma_def.h

Maximum cluster size:
Maximum allowed cluster size s defined by the constant
MAX_NUM_NODES in file lib/lgamma_userlev.h

CONFIGURATION OF LINUX KERNEL FOR USE WITH GAMMA:

Enter the directory /usr/src/linux/.
Type:
make config
A script starts which will prompt the following questions

concerning Linux kernel configuration:

16
Make config script asks the following question:

3c590/3c900 series (592/595/597) “ Vortex / Boomerang” support
(CONFIG.VORTEX) [N/y/m/?]
Answer “N” is given to prevent the 3¢59x.c Linux network driver
from OS on your 3COM adapter, letting the GAMMA driver operate safely.

Building dependencies in the Linux source tree:
After the command make config has run to termination, run the
command make dep to build dependencies in the Linux source tree. This

operation may take quite a while.
COMPILING AND INSTALLING GAMMA:

After configuration and tuning, and after the Linux kernel has
been configured correctly, the GAMMA source code is compiled and installed,
i.e., integration of the GAMMA source code into the Linux kémel; Now Linux
kernel after having installed GAMMA is recompiled. Entering into subdirectory
gamma/, we compile GAMMA by invoking make. Now GAMMA is installed by

invoking make install.
Setting up the environment

GAMMA configuration file

GAMMA needs a configuration file called /etc/gamma.conf, containing
global information about the cluster. More precisely, /etc/gamma.conf must
contain the mapping between each PC hostname and the MAC address of the
NIC operating GAMMA communications. The same configuration file must be
placed in all PCs of the cluster. The host names is excerpted from files
fetc/HOSTNAME on each PC in the cluster

GAMMA startup and recovery utilities:

Enter the directory /usr/local/bin/ and copy all the GAMMA utilities on

17
CHAPTER 6

Performance Evaluation:

Performance Evaluation is a necessity in systems, which are too
complex to test and validate and indeed build. Performance evaluation is an
active area of interest especially within the parallel systems community.
Performance evaluation strategies have been proposed and utilized fo allow
analysis to take place at various stages of application code development. A
system’s performance is parameterized in terms of the underlying operations.
These can include a characterization of the disk accesses, the communication
traffic on the interconnection network in a parallel syétem, and can describe
the use of the functional units of a processor.

Performance Evaluation is usually performed through three
general methodologies. These are performed at different stages of the
planning, the design, the construction of the system, and the operation of the
finished product. The three techniqueéare: measurements, simulation and

analytical modeling.

6.1. MEASUREMENTS AND PERFORMANCE COMPARISON:

With the promising facilities provided by GAMMA, our impiementation
of a tridiagonal solver had outperformed the record produced in a NOW with
the traditional protocols. We provide some preliminary results obtained from

an experimental impiementation on NOW.
6.1.1. The Measurement Test bed:

To get the figures for GAMMA and TCP and PVM, dedicated
environments were created and the implementation of the tridiagonal solver is

done on all the three environments.

SCREEN SNAPSHOTS OF IMPLEMENTATION

Paraliel Implementation on a LAM cluster of 3 nodes

ple EdE Njew]‘_e_nmnal Go Heb
|ean0dnd yaal§ lamboot -v hosts -

Liol 7.0.5/MFT 2 Cer/ROUIO - Indiand pniversity

1-1¢1113» ssishoct;base; linear: hocting nb (192,159, 27.1)
n-1£1113> 581 yoerihase: linezr: boeting ol (192 153 27.7)
n-1c1113= 55t hont shase: lingsr: hoeting n? (1972.16%.27.4)
n-1x1113= 251 ~hootibase: lingar: finished

{pungtilE yud s i

Screen — 1: Booting up machines on the LAM cluster

18

19

9 ram®dog~/smithajcorrecy32:05
File Edit View Temina Go Help

ranid(8 32-05]% vi ¢2mef.c

ramd(® 3-2-05]5 mpice ¢nel.¢ -0 clnef -lm
ranid6 3-2-05]§ rep c2ne7 192,168.%7 . 1o~
rawid8 3-2-05)8 Tep cane? 192.168.27 . 3.~
ramid8 3-2-05]§ rep cmel 192,168.27 4.~
ramid(® 3-2-051§ mpirun N ./coned I

3]

Tridiagonal matrix before manipulation |

is 2 1 0 0 0 0 0 ,
i= 1 2 1 0 0 0 0 1 -
is o 1 2 L 0 0 0 2 .
is 6 o I -2 1 0 0 3 P
i= o0 0 !} -2 1 0 4 P
i= 0 0 0 0 1 -2 1 5 :
i= o o 0 5 0 1 -2 6
© Imitial set of wiplets ;
i=0 o -2 +LXL =0 :
i=1 +1M0 2% +1X2 =1 ‘
i=2 #1YL -2K2 +1X} =2
i=3 $1%2 263 +1 K =3
i=4 +1X3 2% +1%5 =4
iz5 +1% 25 +1X6 =65
i=§6 +1X5 -2%6 =6]
!
ssesdpeoerrsray Triplet ¢ -1X1 +0.5X3 =2 W .
i i
spsveasaaseeas Triplet @ # 0.5X1 -L¥3 #0535 =6K |
sasaarspearesy Triplet © +0.5X3 -1X5 =1047 E

susaasapapenss Triplet ¢ 0.5X3 =12X7

/ M ramedos~- |@rm@dos~/smit / @ €1i Feb 25
* iggAmritaMall - Moz 431 AM

Screen 2: Extraction of Triplets in a LLAM cluster

v o
Fle Et e Tenid Go Hp

b R P e O

Lok derigin ek,

-
k=1
[=7

ii
a1
a9 0
0

LR R ¥
oom

Lo
"

AT et P e
b=,

' % L
] |:|' ‘:I

s
u
w

0

0
]
0

i

a-

a
M

L e

Slving dor o roe paves .

]
i
i
i
[
i

L

VAT PR LTI S A BT TR LR T ORI N ROV S RIS ST P rA SN

frifizrel sr=iy afte ipdic Yoductie dethed

b
fi
K1l
i
iU
Il

T S T e BT B LR)

a-d b8

-

P TR

P T R S N T

B 1 FE VAT I R e

Em BRI |

ML
A IR U
1] = -H
o X
I
tjd] = -d

20

Screen - 3: Back substitution and solution of odd rows in a LAM cluster

21

Parallel Implementation on PVM

'3 rootlinux2g:~
File Edit View Teminal Go Heip

pve> spawn -3 -» snitha
spavn -3 -» smitha

03]

3 successful

140011

£40012 |
it40013 |
pvn> [3:140015] *
(3:£40015]

[3:140015] EQF . :
1[3:140011) .

[3:t40010] Reduction i = 0 j = 0 indexl =€ index2 = 2 count = 1

" |[3:040811] Initsend : 5

1t40011] Packing : 0

:t40011] Bfast : 4

1840011} ===se=s=z=ssssx=szs Tridiggonal Matrix during Reductign=ss=====s=s=z===zszcazs====)
Tt40011])] 21000000 .

(140011] 1 7-1005000°2 ;
1td0811] = 2 01-210002
3
4
5

— =
L w3 L) or

(#1]

1140011 001-21003

1t40011] DOO0L-2104 '
1140011] 00001-205

1t40011) i =6 80000106

1t4001E] Reduction i =7 j = & indexl = 0 index? = 2 count = 1 E
1t40011] Initsend i
11400111 Packing : 0 ‘
:t40014] Bfast : 0

1440011] =se======z=======c2= Tridiagonal Matrix during Reductionssze====z==z=ss===sz=sz=== |
(140011} i = 210000600 v

49 Qtt

Screen ~ 4: Extraction of Triplets in a PVM cluster

wy

(=)

W oL W
P T
M
-

LAy

w

L L

Wroot@linux28;/pub_domair 0 g Sat Apr 02 ‘
‘@ rno@inxs- | 1,02 PM

e Edt View Temind Go Help

£d0011)
140011]
140011]
£40011]
- £40011]
:£40011]
:t40011]
1 £40051]
:140011]
:140011]
1£40011]
1140011]
1140011}
1td001t]
3 140011]
1 t40011]
£ 40011]
2 t40011)
1 14001L]
31140011]
3 e40311L)
3:140011]
3:£40011]
3: 140011]
3:t40041])
3:140011)
3:t40011)
3:t400k1]
3:t40011]
3:t40011]
3:t40011]

Reduction i = 7
Initsend : 7
Packing : C

Bfast : 0

n
[

Packing : O

j=8 index! = 0 index? = 2 count =1

=== Tridiagonal Matrix during Reduction====ss=s=sss===sssssssssss
210000014

0-10050002

pl1-210002

0050-100.5068

0001-2104

to001-205

gogoo0lCEe

=== Tridiagenal Matrix during Reductionsssssesssssss=sssssssassss
21000000

0-10050602

01-210002

00.50-10050%8
= 0001-2104
= 0000.50-1L010
= oocogLOSR
infa : 0 ==== x[3] = -24
i=1
i=5
Tridiagonal Matrix after Cyclic Reduction Method
i=0 -2 000000 U
i=1 0 0 0000C0

—

fa)

S

&¢

' .-[imct@linuxzs:fpub_domair ; @
Rot@lm2g~ |-

Sat Apr 02
1.03PM

Screen - 5: Extraction of Triplets (Contd..)

23

[otlivwse- I
Fle Edt View Temind Go Help
[2:140000] === e oz
I[2:’[40[]0b] Tridiagonal Matrix after Cyclic Reduction Method
[2:t4000] : - -
I[2:t4000b] i=0 ¢ co0000C0
l[2:téﬂﬂﬁb} i=t 000000023
[2:14000b] i=2 00000000
[2:140000] 1=3 00000O0CO0TD
‘[2:t4000b] _ 1:=4 0 o0Ccd000
[2:t4000b]"" 1=5 goo00cg000
i[2:t4000b] 1=8 0000000 28
[2:4000b] zzzzzmmza 2zz: szzzszzzsssmzzsaa
[2:14000b) X Values
[2:140000] ===== — - -=zzzzzzsssmsmszos
[2:44000b] ¥[0] = -7
[2:14000] X[1] = -14
[2:14000b] x[2] = -2
[2:14000b] (3] = -4
[2:14000b] x[4] = -25
L[2:t4000b] X[5] = -22)
[2:£4000b] 6] = 2 Flapsed time : 3 secs
2:14000b} EOF
| @root@linux28;fpub_dormai, 0
W oooinos- |

Sat Api (2
1:00 PM

Screen - 6: Back substitution and solution of odd rows in a PVM cluster

24

PARALLEL IMPLEMENTATION ON GAMMA CLUSTER

jQEile Edit Vew Teminal Go Help

[gamma@netix gamma 1§ mpice e2me? ¢ -0 c2me7 -lm
[gamma@netix gamma 18 mpirun ¥ . /cdnc]

gamma,_init_argv() : arge 6: /home/gamma/c2me?| INI I-GAMMANP| (11
gamma_init argv(): first call, 3 instances

gamana_init(): created virtual GAMMA #3 with nodes: |
0:1-> metix ‘
0:1-> mtechl? i
0:1-> mtechll

Tridiamonal matrix before manipulation "

| i=0 2 1 00 0 0 0D :
i=1 it -2 L 00 0 0 1 i
, =2 0 -2 ' 0 0 0 2 !
i iz3 0 0 ¢ 2 L 0 0 3 L
i i=d O 0 o0 1 o2 L oo 4)
i=5 0 6 0 0 1 2 1 5 :
i=8 6 0 0 0 0 ¢ -2 8
Imtial set of triplets
i=0 2% +1% =0
i=1 F100 -2 #1R2 =1
is2 FIXL 232 4193 =2
i=3 +152 -2%3 +1W =3
i=d +1K3 2N 4105 =4
i i=5 +1% -2X5 +1%6 =5
; i=6 +1X5 2%8 =6 T

L]

Screen - 7: Extraction of Triplets in a GAMMA cluster

gammag@netiz gamma

Fle Edt View Temind Go e

|
|

Backsubstitution proceeds

Salvirg for odd rows proceeds ...

Tridiagonal matrix after Cyclic Reduction Nethod

i=9 o 00 0 0 0 0D
i=1} 0 0 0 0 0 0 0 0
i=2 P00 0 0 0 0 0
i=3 ¢ ¢ 0 0 0 0 0 0
i=4 G 00 0 0 40 0 d
' i=) 0 0 0 0 06 00 0
? i=h g 00 0 0 000
I ——— — == ——
; ¥ values
0] = -7
X1 = -l
x[2] = -0
X[3] = -4
4] = -3
x[5) = -2
K[E]:-H
*44% Elapsed time - 0, 15986 secs™**

25

LIganmn@neﬁx gammal}

.

Screen - 8: Back substitution and solution of odd rows in a GAMMA

cluster

26
The focus lies on measuring speedup, efficiency and efficacy. For all

measurements, three machines were used. For GAMMA, interrupts and

TCP/IP communication were disabled.

6.1.2. Performance Results:

6.1.2.1. Computation Time Needed For Processing A Tridiagonal Solver

As given in the graph, the computation time for the sequential
execution of the tridiagonal solver comes upto 9secs, the parallel
implementation of the solver on a LAM cluster of three machines, consumes
about 5.25secs. This time consumption is due to the communication overhead
involved in the parallel computation. The communication overhead can be
fully avoided by the usage of GAMMA. The graph shows the computation time
of 0.1559sec for the solver when executed on a GAMMA cluster of thfee

machines. This proves the Active Message Paradigm.

Table 1: Computational Time involved

Execution on Computation time
Single machine 9

LAM cluster (3 machines) 5.25

PVM cluster (3 nodes) 3

GAMMA cluster (3 machines) 0.155986

COMPUTATION TIME

GAMMA cluster(3 nodes)
PVM Cluster(3 nodes) —
LAM cluster(3 nodes)

singie Node

Chart 1: Computation speed

6.1.2.2. Speedup Obtained:

Speedup is a measure of how much faster the programs run

Execution on Speedup

LAM cluster (3 nodes) 1.71

PVM cluster (3 nodes) 3

GAMMA cluster (3 nodes) 57.6974

Table 2: Speedup obtained

27

28

Speedup Obtained

Speedup

LAM cluster(3 nodes) PVM Cluster(3 nodes) GAMMA cluster(3
nodes)

Chart 2: Speedup obtained

on a parallel machine than it does on a serial machine.
Clusters with higher computation time will produce lower speedups. A Poor
speedup results due to the decomposition, inefficiently parallelized section of

the code and computation overhead.

6.1.2.3. Efficiency:

Efficiency gives the average contribution of the processors towards the global
computation. With GAMMA cluster, the efficiency comes upto 19.232, which is
a major contribution GAMMA can offer to the world of parallel computation.

GAMMA cluster

Results obtained on LAM cluster PVM cluster

19.232

Etficiency

Efficacy 0.9747 3 1109.66

Table 3: Efficiency and Efficacy obtained

29

Chart 3: Efficiency obtained

6.1.2.4. Efficacy:

An important property of the Efficacy curve when plotted as a function of

number of processors is that its first maximum corresponds to an optimal

system operating point.

30
When a processor can be added to the computation with a resuilting increase

in efficacy, then the gain of the extra processor out measures the cost of
adding it. When on contrary, the efficacy diminishes, then the cost of the
addition outweighs the potential performs. In the efficacy graph, the GAMMA
cluster with three nodes shows the maximum efficacy.

This type of analysis is very important for algorithms that will run on distributed
memory machines, where locality and communication costs will play a major

role in efficiency

7. CONCLUSION:

Many discretization methods for the solution of partial diﬁerential equations for
the modeling of physical phenomena result in large sparse systems of
equations. Cyclic reduction can be applied to solve these systems. The
method has a similar sequential execution fime as other discrete methods, but
provides enough parallelism for an efficient parallel executioﬁ._Method can be
efficiently implemented for rhessage—passing programming models by
organizing the computations and communicétions such that only neighbor
communications are necessary. Message passing leads to better reliable
runtime behavior. And a significant improvement in performance is given by

paralle! model when executed over GAMMA.

REFERENCES:

[1] Giuseppe Ciaccio ., How to install GAMMA: the Genoa Active Message

Machine.,

[2] G.Chiola, G.Ciaccio., Implementing a low cost, low latency parallel

platform.

[3] G.Chiola,Giiuseppe Ciaccio ., Porting and Measuring the Linpack
Benchmark on GAMMA.,

31

[4] X.-H.Sun, H.Zhang and L.Ni, Efficient tridiagonal solvers on

multicomputers, |EEE Trans.Comput, 41(3)(1992), 286-296

arallel method for tridiagonal equations, ACM Trans, Math

[5] H.wWang, AP
A home

Software, 7(1981), 170-1 53G.Chiola and G.Ciaccio. GAMM

page, http:llwww.disi.unige.itlpro]ectlgammal.

[6] G.Chiola and G.Ciaccio. Efficient Parallel processing on Low-cost
clusters with GAMMA Active ports, Parallel Computing, (26): 333-354,

2000

Ciaccio. Messaging on Gigabit Ethernet: Some Experiments

[7] Giuseppe
d Distributed

with GAMMA and other systems. international Parallel an
Processing Symposium (IPDPS '01), 1530-2075, 2001.

~ [8] Cyclic reduction on Distributed Shared memory., Sebastian Aliman,
Thomas Rauber, Gudula Rungér, |[EEE. Ninth Euromicro Workshop on

Paralle! and Distributed Processing(EUROPDP’01) 1066 — 6192/01

2001

BOOKS

[1] George Em Kamniadakis., Robert M.Kirby Il., Parallel scientific

computing in C++ and MPI — A Seamless approach to parallel

algorithms & their implementations

[2] Peter S.Pacheco ., Parallel Programming with MP!.

WEBSITE FOR THE SOFTWARE

(1] http:/fwww.netlib.org/pvm3/index.html/pvm3.3.9.tar.gz

[2] www.disi.unige.it/project/gamma/gamma-04-08-13.tar.gz

[3] www.mpi-softech.com/mpich-1.1.2.tar.gz

32

Serial Implementation of the Tridiagonal Solver

#include <iostream.h>
#include <time.h>
#include <conio.h>
class test
{
public: double n,p;
int start, end, trip_no, no_triplets, add_count, no_of _term,
copy_n,ho_nodes;
int no_unknowns,count_of_triplets,count,found,
a[3),exponent; |

double x{20],LHS;
struct node
{
double coef;
int exp;
int flag;
node *next;

} *cpos, *cpos1, *poly[10], *head[10], *curr[10],
*mul_head[5][10], *head1{10], *curr1[10), *temp1, *curr_pos,
*added_triplet[30}, *cur[10][10],*copy_triplet[20],*copy[20];
void get_no_proc();

void calc_n();

void disp_n();

void init_poly();

void init_copy_triplet();

void create_poly();

void copy_poly();

void disp_poly(};

void disp_copy_poly();
void form_triplet();

void disp_mult_head();

void add_triplet().

void disp_added_triplet();
void reduce_added_triplet();
void disp_reduced_triplet();
void rearrange_added_triplet();
void eliminate_zero();

void eliminate_last();

void eliminate_odd_entry();
int check _odd(int);

void back_soive();

void back_solve1();

void arrange_solved();

void displ{);

void copy_reduce_added(int),

|8

void test::get_no_proc()

{
cout<<"Enter the number of processors . "
cin>>p;

}

void test::calc_n()

{
n= pOW(Z,p) - 11
no_unknowns =N,
copy_n=n,

}

void test::disp_n()

{

cout<<"n = "e<n<<=N;itt)

{
polyli] = new node(),
head[i] = new node();
head{i] = new node();
copyli] = new node();

mui_head[1][i] = new node(),
mul_head[2][i] = new node();
mul_head[3][i] = new node();
currfi] = new node();

curr1fi] = new node();
poly[i]->next = NULL;
added_triplet[i] = new node(),

x[i] = -9999;
}
} .
void test::init_copy_triplet()
{
for(int i=0;i<=20;i++)
{
copy_triplet[i] = new node();
copy_triplet[i]->next = NULL;
}
} |
void test::create_poly()
{
int c,e=0;

node *temp1,*temp2;
for(int i=1;i<=n;i++)
{
head]i] = poly[il;
currfi] = head[i];
copy_ti’iplet[count_of“triplets] = poly[i];
count_of _triplets++; '
for{int j=1;j<=3;j++)
{ |
cout<<"Enter the coeficient : *;
cin>>c;
temp1 = new node();
temp1->coef = ¢;

temp1->exp = €,
temp1->ﬂag =0,
temp1->next = NULL;
currfij>next = temp1;
currfi] = curr{ij]->next;

e+t

}

temp2 = new node(),

cout<<"Enter value of right hand side : ";
cin>>temp2->coef;

cout<exp = 0,

temp2->flag = 1,

temp2->next = NULL,

currfi]->next = temp2;

e=e2; '

}
void test::disp_poly()

{
for(int i=1;i<=n;i++)
{

currfi} = head[i]->next;

while(currfi}->next != NULL)

{ .
cout<coef<<"x"<exp<<" +
currfi] = curtfi}->next;

}

cout<<" = ";

cout<coef,

cout<<=end;i++)

curr{i] = head[i]->next;
curr1{i] = mul_head]trip_no][i];
cout<<"Enter the value of a["<<i<<"]",

cin>>ali};

while(curr{i]->flag != 1)

{
curr1[i}->coef = curr{i]->coef * afi];
curri[i]->exp = curr{i]->exp;
curr[i]->flag = currfi}->flag;
curr(i] = currfi]->next;
temp1 = new node();
temp1->coef = curr[il->coef,
temp1->exp = currfil->exp;
temp1->flag = 0;
temp1->next = NULL;
curr1[i]->next = tempf;
curri[i] = currfil->next;

}

curr1[il->coef = curr1(i]->coef * a[i};

currifil->exp = 0;

currfi]->flag = 1;

curri(il->next = NULL,

}
}
void test::add_triplet()
{
node *temp3;
add_count=1;
int s,last;

. cpos = added_triplettrip_no];
for(int i=start;i<=end;i++)
{
cpos1 = mul_headl[trip_no][i];
while(cpos1 = NULL)
{
temp3 = new node();
- temp3->coef = cpos1->coef,;

temp3->exp = cpos1->exp;
temp3->flag = cpos1->flag,
temp3->next = NULL,
cpos->next = temp3;

cpos1 = cpos1->next,
cpos = cpos->next,
add_count++;

}
cpos->next = NULL;

}
void test:.disp_added_triplet()
{
cout<<endi<<"Added Triplet is "<<=trip_no-1;i++)
{
cout<<"t\t"<next;
while(cpos = NULL)
{
cout<coef<<"x"<exp<<" +";
cpos = cpos->next;
}
}
cout<<=trip_no-1;i++)
{
cpos = added_tripletfil;
int tot =0;
while(cpos->next = NULL)
{

if(cpos->next->flag == 1)

{
tot = tot + cpos->next->coef;
cpos->next = cpds->next->next;
add_count--;

}
if(cpos->next == NULL)

{
temp = new node();
temp->coef = tot;
temp->exp = 0;
temp->flag = 1,
temp->next = NULL;
cpos->next = temp;
}
cpos = cpos->next,
}
}
}
void test::disp_reduced_triplet()
{
cout<<endi<<"Reduced Triplet is "<<=trip_no-1;i++)
{
cout<next;
copy_reduce_added(i);
count_of_triplets++;
while(cpos->next 1= NULL)
{
cout<coef<<"x"<exp<<" + ",
cpos = cpos->next;
}
cout<<" = "<coef,
cpos->next = NULL;
}
}
void test::copy_reduce_added(int i)
{

node *temp,*curr,*currt;

int check _coef check_exp;

curr = added_triplet{i]->next;

curri = copy_triplet{count_of_triplets);

while(curr != NULL)

{
temp = new node();
temp->coef = curr->coef,
check_coef = temp->coef,
temp->exp = curr->exp,
check_exp = temp->exp,;
temp->next = NULL,
curri->next = temp;

currl = curr1->next,
curr = curr->next;
}
} _ |
void test::reduce_added_triplet()
{
int tot_coef;
for{int i=1;i<= trip_no-1;i++)
{
cpos = added_triplet[i];
while(cpos->next->next->next != NULL)
{
if(cpos->next->exp == cpos->next->next->next->exp)
(.
cpos1 = cpos->next->next;
tot_coef = cpos->next->coef + cpos1->next->coef;
cpos->next->coef = tot_coef;
cpos1->next = cpos1->next->next;
}
if(cpos->next->exp == cpos->next->next->exp)

{

cpos1 = cpos->next;

tot._coef = cpos->next->coef + cpos1->next->coef;
cpos1->coef = tot_coef;
cpos1->next = cpos1->next->next,

'}

}
cpos = cpos->next;
}
3
for(int m=1;m<=trip_no-1,m++)
{
cpos = added_triplet[m);
for(int n=1;n<=3;n++)
{
if(cpos->next->exp == cpos->next->nexi->next->exp)
{
cpos1 = cpos->next->next;
tot_coef = cpos->next->coef + cposi->next->coef;
- cpos->next->coef = tot_coef;
cposi1->next = cpos1->next->next;
}
cpos = cpos->next;
!
}
void test::eliminate_last()
{
node *temp;,
for(int i=1;i<=n;i++)
{
cpos = polyfi];
for(int j=1;j<=4;j++)
{

if(cpos->next->exp == (n+1))

{

temp = cpos->next;

}

temp = cpos->next->next;
temp= cpos-:-nekt',

cpos->next = cpos->next->next,
delete temp;

}

cpos = cpos->next,

void test::eliminate_zero()

{

}

cpos = added_triplet[1];
if(cpos->next->exp == 0)

cpos->next = cpos->next->next,

void test::eliminate_odd_entry()

{

cpos = added_triplet[1};

head[1} = added_triplet[1}];

no_of_term =1, _

while((cpos->next->next I= NULL)&&{cpos->next = NULL))

{

}

if(check_odd(no__of_term) ==1)

{
if(cpos->next->flag 1= 1)
{
cpos->next= cpos->next->next;
no_of_term++;
}
}

no_of_term++;
cpos = cpos->next,

copy_reduce_added(1);

count_of_triplets++;

for(int i=2;i<=trip_no-1 i)

{
cpos = added_triplet{il;
head][i] = added_triplet]i;
no_of_term =0;
while((cpos->next->next != NULL)&&(cpos->next 1= NULL})
{
if(check__odd(no_of_tenn) ==1)
{
if(cpos->next->flag != 1}
{
cpos->next= cpos->next->next;
no_of_term++;
}
}
no_of term++;
cpos = cpos->next,
}
copy_reduce_added(i};
count_of_triplets++;
}
}
int test::check_odd(int term)
{
if(term%2 == 1}
return 1;
else
return O;
}
void test::back_solve()
{

cpos = copy_trip!et[count_of_triplets];

exponent = cpos->next->exp,;
x[exponent] = cpos->next->next->coef / cpos->next->coef;

found++;
}
void test::back_solve1()
{
cpos = copy_triplet[count_of_triplets];
exponent = cpos->next->exp;
x[exponent] = cpos->next->next->coef / cpos->next->coef;
copy_triplet[count_of _triplets] = NULL,;
found++;
}
void test::arrange_solved()
{
while{found < copy_n)
{
inti=1;
while(i<=copy_n)
{

count_of_triplets = count_of_triplets-1;

if(count of triplets <=0Q) -

{
count_of_triplets = copy_n+1;
exponent = 0;

cpos = copy_tripletfcount_of _triplets];
if(copy_tripletfcount_of triplets] 1= NULL)
{
for(int j=1;j<=copy_n;j++)
{
if(x[j] > -9999)
exponent = j;

cpos = copy_tripletfcount_of_triplets];
if(exponent != 0)

{
while((cpos->next->exp 1= exponent)&&(cpos = NULL))
{
CPOS = CPOS-
>next;
}
if(cpos I=NULL)
{
cpos->next->coef = cpos->next->coef * x[exponent];
| LHS = cpos->next->coef;
cpos->next = cpos->next->next;
dof
cpos = cpos->next;
Jwhile(cpos->next 1= NULL);
if(cpos->next == NULL)
{
cpos->coef = cpos->coef - LHS;
i = copy_n;
}
}
}
}
i++:

- cpos = copy_triplet{count_of_triplets];
int count = 0;
dof
cpos = cpos->next;
count++;
Jwhile(cpos->next I=NULL),
if(count == 1)
cpos = NULL,;
if(count == 2) back_solve1();

}

cpos = copy__triplet[count_of_triplets];

}
void test::displ()
{
clrscr(),
int i=1;
do
{
cout<<"t'<<endi<<" i = "<<i<<"
cpos = copy_triplet]i};
dof
cout<next->coef<<“x"<next->exp<<"+";
cpos = cpos->next; |
while(cpos->next |= NULL);
cout<<endi<<= count_of_triplets);
}
int main()
{

time_t first, second;
test t1;

int no_iterat,odd;
cirscr();
t1.count_of_triplets=1;
t1.get_no_proc();
t1.calc_n();
t1.init_poly();
t1.init_copy_triplet();
t1.create_poly();

first = ime(NULL); /* Gets system time */

t1.no_nodes = 4;

t1.eliminate_last();

cout<<endl<<"Tridiagonal system"<<=t1 .no_triplets;count++)

{
t1.form_triplet();
t1.add_tripiet();
t1.trip_no++;

}

t1.disp_added_triple();
t1.rearrange_added_triplet();
t1.reduce_added_friplet();
t1.eliminate_zero();
t1.disp_reduced_triplet();
t1.no_of term =1;
t1.eliminate_odd_entry();
t1.n = t1.no_triplets;
~ t1.no_nodes—;
while(t1.no_triplets > 1);
t1.found = O;
t1.cou nt_of_tripléts—-;
t1.back_solve();
cout<<endl<<"Display copy of triplets”<< t1 .no_unknowns);
cout<<endl<<"Result"<<=t1 found;i++)
cout<<endl<<"x"<<i<<" = ne<<endl<<"The difference is:
“<<difftime(second,ﬁrst)<<“seconds";

b

MPI Program to solve a Tridiagonal system on a

LAM cluster

#include <stdio.h>
#include <stdlib.h>
#inciude <mpi.h>
#include <math.h> -
#include <time.h>
'#define size1 2000
int main(int argc,char *argv[])
{ _

int no_processes;

// Number of Processes involved...

int my_rank;
// Process Rank...
int size;
_ // Sixe of the Tridiagonal Matrix...
int numrows;

int i,j,k,index , index1 , index2;
int numactivep, activep[20];
// Number of Active Processes...
double alpha,gamma;
time_t first,second;
first = time(NULL);
// Assigns the time to the variable first...
MPI1_Init(&argc,&argv);
//lntializes for the MP! environment
MPI_Comm_size(MPI_COMM_ﬁWORLD,&no_processes);
' , // Returns the number of processes...
MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
// Returns the process number(rank)...
MPI_Status status;

double A[10][10];
// A is the Tridiagonal system ...
double x[10];
// x is the array of unknowns ...
double tmp;
int x__value__found[10];
// Boolean array which indicates whether that particular array
value is found or not...
int count;
int dest;
int found , proceed;
int process_rank;
found = 0;
proceed = 0;
numrows = pow(2,no_processes)-1; '
// As per the number of processes, the no.
of rows are decided...
size = 'numrows;
 for(a=0;a<=size1;a++)
alpha = 1+(int)(10.0*rand()/(RAND_MAX+1.0));
for(a=0;a< size+1 ; j++)
{
printf(" %g ".ATilLiD:;

}
MP|_Barrier(MP1_COMM_WORLD);

// blocks the calling process until all group
' processes have called the function...
// Printing the Initial set of Triplets...
if(my_rank == 0)
¢
printf(“\n\t\t\t========================“);
printf("\n\t\fitinitial set of triplets ");

printf("\n\t\t\t::::==:==:==============“);
for(i=0;i< size+1 ; k++)
{

if(k!=size)

{
If(Afi][K] > 0)

printf(" + %gX%d ", Alil[k] , k);
}
else if(Afil[k] < 0)

{ o
printf(" %gX%d ",AliJ(k] , K);

}
if(k == size)

{ .
printf(* = %g “,AlillK] . k),
} .

}

MP}_Barrier(MPI_COMM_WORLD);
| numactivep = no_processes,
for(j=0 ; j< no_processes-1; i++)
{
for(j=0 ; j<=size1;a++)index1 = (2%)) + &,
for(a=0;a<=size1;a++)
index2 = (2%) + (3*i) + 2;
if(my_rank == j)
{ .
alpha = -0.5;
gamma = -0.5;

for(a=0;a<=size1;a++)
count = (index1+index2)/2;
printf("\n Triplet : ");
for{ k=0 ; k<=size ; k++)
{
Alcount][k] -= alpha*A[index1][k]+

gamma*A[index2][k]);
// Reducing the Triplets ...

if(kl=size)
{
if(A[count][k] > 0)
{
printf(" + %gX%d
",Alcount][k] , k);
}
eise if(A[count][k] < 0)
{
printf(" %gX%d ",A[count]{k] , k);
) _
If(k == size)
printf(" = %gX%d ",A[lcount][k] , k);
) o
}

MPI_Bcast(&A,100,MPI_DOUBLE ,j , MPI_COMM_WORLD);
| // sends the updated matrix to all other processors
within the communicator...
MPI_Barrier(MPI_COMM_WORLD);
// blocks the calling process until all group
processes have called the function...

numactivep = 0;
for(j=activep[1] ; j< size+1 ; j++)

printf(" %g " A[lj];

}
MP!_Barrier(MPI_COMM_WORLD);
// blocks the calling process until all group
processes have called the function...
S BACK SUBSTITUTION ---eemeeeee */
printf("\nBacksubstitution\n");
for(j=0 ; j< size+1 ; j++) |

printf(" %g " A[illil);

)
}
MPI_Barrier(MPI_COMM_WORLD);
| // blocks the calling process until all group
processes have called the function...
for(process_rank=0 ; process_rank <=no_prbcesses ;
process_rank++)
{ . .
MPI_Barrier(MPI_COMM_WORLD);
// blocks the calling process until all group
processes have called the function...
if(my_rank == process_rank)
{
for(i=0 ; ik ; found--)
{
if(x_value_found[found] == 1)proceed = 1;
else proceed = 0;
}
if(proceed == 1)
{
x[k] = Alil[size] / A[i][k];

x_value_found[k] = 1;

}
}
for(i=0 ; i< size+1 ; j++)
{
printf(" %g " A[l[j]);
T
}
b -
‘MPI_Barrier(MPI_COMM_WORLD);
// blocks the calling process until all group
processes have called the function...
if(my_rank == 0)

{ .
printf("\n\t\t\t========");
printf("\n\t\t\tX values");
printf("\n\t\t\t========");
for(i=0 ; I<numrows ; |++)
printf(“\n\t\t\t x[%d] = %g”,1,x[1]);
/7 prints the unknowns...

}

MPI_Barrier(MPI_COMM-_WORLD);
// blocks the calling process until all group
processes have called the function...
MPI_Finalize();
_ // Exits from the message-passing system
Printf(“\n”);
Second = time(NULL);
// Assigns the time to variable second...
If(my_rank == 0)
printf("\n\t\t\t **** Elapsed time : %d secs **** \n", second - first);
// prints elapsed time in the system with rank 0 ...)

PVM Program to solve a Tridiagonal system on

a PVM cluster

#include <stdio.h>
#include "/pub_domain/pvm3/include/pvm3.h"
int main(int argc,char *argvi])
{
int i,j,count,k,activep[20],a;
int my_rank,mygid,
int index1,index2;
float alpha,gamma;
int no_processes,numactivep,size;
int instance_no,process_rank;
int info.msgtag,p'ower_value_;
float tri_mat[20][20],x[20];
int tid[10];
int x_value_found[10];
int proceed = 0;
int found = 0;
int mstat;
time_t first,second;
first = time(NULL);
my_rank = pvm_mytid();
printf("\n tam %x ", pvm_mytid(});
| J/ returns the tid of this process...
mstat = pvm_mstat("linux28");
printf("\nStatus of host 90.0.2.78 : %d", mstat);
mstat = pvm_mstat("linux30");
p'rintf("\nStatus of host 90.0.2.79 : %d",mstat);
mygid = pvm_joingroup("JoinSmitha"),

/fenrolls the calling task in the group named
« JoinSmitha”and returns the instance number of this
-task in this group...
if(mygid == 0)

{
pvm_spawn(argv[O],argv+1 ,0,"",2,tid);
// starts up 2 copies of an executable file task on
' the virtual machine
}

printf("\n My Parent is : %x \n",pvm_parent());
printf("\nNumber of Members in the specified group
:%d",pvm_gsize(“JoinSmitha"));

instance_no = pvm_getinst(“JoinSmitha",pvm__mytid());
printf("\ninstance number of the tid in the group
-%d",instance_no);

if(instance_no == 0)
printf("\n Initialization........ ");
size = 7,

for(i=0;i<size;i++)

{
for(j=0;j<size;j++)
{
tri_matfi]{j] = 0.0;
}
}

/! Tridiagonal system formed...
for(i=0;i<size;i++)
{
for(j=0;j<size;j++)
{
tri_mat[ii[i] = -2.0;
tri_mat[i][i-1] = 1.0;
tri_mat[illi+1] = 1.0;

tri_mat[i][size] = i;
}
for(i=0;i<10;i++) x[il = 0,
if(instance_no == 0)
{
printf("\n .=:===============::====:===")',
printf("\n Tridiagonal Matrix before Manipulation™);
printf(“\n ===:==========:=======:======");
for(i=0;i<size;i++)
{
printf("\n i = %d ")
for(j=0;j<=size;j++)
{
printf(" %g". tri_mat{i][il);

}
printf("\n----------- Triplets----------- "

for(i=0;i<size;i++)
{ .
printf("\n"); |
for(j=0;j<=size;j++)
{
if(j 1= size)
{
if(j == i-1)
{ .
if((tri_mat[il[j]>O)l|
(tri_mat[i][j]<0))
printf(“%gx%d".tri__mat[i][j],j)'.
}
else
{
if(tri_mat[il{i] > 0)
printf(" + %gX%d " tri_mat[iiljl.i);

else if(tri_matfi]fj] < 0)
printf(" %gX%d",tri_mat[il{jl.j);
}

}

if(j == size)

printf(" = %g ",tri_mat[i][i].));

}
no_processes = 2;
numactivep = 2;
if(instance_no == 0)
printf{"\n----- Triplets------- \n");
info = pvm_barrier("JoinSmitha",2);
for(i=0;i<no_processes-1 ; i++)
{ |
for(j=0 ; j<numactivep-1;j++)
(.
index1 = (2*)) + i,
index2 = (2*%j) + (3*i) + 2;
if(instance_no == j) '
{
alpha = -0.5;
gamma = -0.5;
count = (index1+index2)/2;
printf(" \n Count : %d\n \t\t “,count);
for(k=0;k<=size;k++)
{
tri_mat[count][k] = tri_matfcount][K] -
(alpha * tri_mat[index1][k] + gamma * tri_mat[index2][k]);
if(k!=size)
{
if(tri_mat{count]{k] > 0)
{

if(instance__no==0)printf(“%gX%d+“,tri_mat[count][k],k);
}
else if(tri_mat[count][k] <0)
{ .
if(instance_no == o)printf(" %g X%d
",tri__mat[count][k],k);

}

}

if(k == size)

{
printf(* = %g
X%d“,tri_mat[count][k],k);

}

}

}
info = pvm__initsend(PvmDataRaw);
// clears the send buffer & creates a new one for packing a
new message into the buffer
info=pvm_pkfloat(&tri_mat[O][O],70.1);
//packs the active message buffer with
arrays of floating type...
msgtag = 5; '
info = pvm_bcast("JoinSmitha“,msgtag);
info = pvm__barrier(“JoinSmitha“,2);
}
numactivep = 0;
power_value =1;
for(a = 0; a <= i+1;a++)
{
power_vaiue = power_value * 2;
} _
for(j=activep[1] ; j < no_processes , j=
j+power_va|ue.first++)

{

activep[numactiVep++] =i;

}
info = pvm_barrier("JoinSmitha",2);
for(i=0 ; i<size ; i++,first--)
{
x[i] = 0.0;
x_value_found[i] = 0;
}
info = pvm_barrier("JoinSmitha",2);
if(instance_no == 0)
printf("\n Back Substitution\n");
if(instance_no == 0)
{ .
x[(size-1)/2] = tri_mat{count][size] /
tri_mat[count][(size-1)/2];
printf(" \n x[%d] = %g", (size-1)/2 , x[(size-1)/2]);
for(i=0 ; i<size ; i++)
{
tri_mat[i][size] -= tri_mat[i][count] * x[(size-1)/2];
tri_mat[ij[count] = 0; |

}
info = pvm_barrier("JoinSmitha",2);
info = pvm_initsend(PvmDataRaw);
// clears the send buffer & creates a new one for packing a
new message into the buffer
info = pvm_pkfloat(&tri_mat[0][0].70,1);
//packs the active message buffer with
arrays of floating type...
msgtag = 5;
info = pvm_bcast("JoinSmitha",msgtag);
info = pvm_barrier("JoinSmitha",2);
info = pvm_initsend(PvmDataRaw);

// clears the send buffer & creates a new one for packing a
new message into the buffer
info = pvm_pkint(&x_value_found[0],10,1); _
//packs the active message buffer with
arrays of integer type...

msgtag = 5;
info = pvm_bcast("JoinSmitha",msgtag);
info = pvm_barrier("JoinSmitha",2);
info = pvm_iinitsend(PvmDataRaw);
// clears the send buffer & creates a new one for packing a
new message into the buffer
info = pvm_pkfloat(&x[01,10,1);
//packs the active message buffer with
arrays of floating type...
msgtag = 5;
info = pvm_bcast("JoinSmitha" msgtag);
/1 Solving for Odd Rows...... _
if(instance_no == 0)printf("\n Solving for odd Rows \n");
process_rank = 0;
for(i=1 ; i<size; i=i+4)
{
if(instance_no == process_rank)
{
printf("\ni = %d ", i),
for(k=0 ; k<size ; k++)

{
if(tri_mat{i][k] != 0)
{
x[k] = tri_mat[il[size] / tri_mat[i][k];
x_value_found[k] = 1;
}
}

info = pvm_barrier("JoinSmitha”,2);

info = pvm_initsend(PvmDataRaw);
// clears the send buffer & creates a new one for packing a
new message into the buffer
info = pvm_pkfloat(&tri_mat[0][0],70,1);
//packs the active message buffer with
arrays of floating type...
msgtag = 5;
info = pvm_bcast("JoinSmitha",msgtag);
info = pvm_barrier("JoinSmitha",2);
info = pvm_initsend(PvmDataRaw);
// clears the send buffer & creates a new one for packing a
new message into the buffer
info = pvm_pkint(&x_value_found[O],10,1);
msgtag = 5;
info = pvm_bcast("JoinSmitha",msgtag);
info = pvm_barrier("JoinSmitha",2);
info = pvm_initsend(PvmDataRaw);
// clears the send buffer & creates a new one for packing a
new message into the buffer
info = pvm_pkfloat(&x[0],10,1);
" msgtag = 5;
info = pvm__bcast("JoinSmitha";msgtag);
process_rank++;
for(i=0 ; i<size ; i++)

for(k=0 ; k<size ; k++)
i
if((tri_matli][k] != 0) && (x_value_found[k]} == 1))
{
tri_mat[i]{size] -= tri_mat{i]{k] * x[k];
tri_mat[il[k] = O;

}
info = pvm_barrier("JoinSmitha",2);
if(instance_no == 0)
{
printf("\n ========z===============s====="),
~ printf("\nTridiagonal Matrix after Cyclic Reduction
Method");
printf("\n ===================z===========");
for(i=0 ; i<size ; i++)
{
printf("\n\t\t\t i = %d \M\t",i);
for(j=0 ; j<size+1 ; j++)
{
printf(" %g ",tri_mat[il[jl);

}
info = pvm_barrier{"JoinSmitha",2);
for(process_rank = 0 ; process_rank <= no_processes ;
process_rank++)
{
info = pvm_barrier("JoinSmitha",2);
if(instance_no == process_rank)
{
for(i=0 ; i<size ; i=i+2)
{
for{k=0 ; k<size ; k++)
{
if(tri_matfil{k] != 0)
{
for(found = size-1 ; found > k ;
found--)

{

if(x_vailue_found[found] == 1)
proceed = 1;

eise proceed = 0;

}

if(proceed == 1)

{

x[k] = tri_mat[i][size] / tri_mat[i][k];
x_value_found[k] = 1;

}
}
}
}
for(i=0 ; i<size ; i++)
{ |
for(k=0 ; k<size ; k++)
{
if((tri_mat[i][k] != 0) &&
(x_value_found[k] == 1))
{
tri_mat[i][size] -= tri_mat[i][k] *
x[K];
tri_mat[i}j[k] = O;
}
}
}

}
info = pvm_barrier("JoinSmitha",2);
} _
info = pvm_barrier{("JoinSmitha", 2);
instance_no=pvm_getinst("JoinSmitha", pvm_mytid());
if(instance_no == 0)
{
printf("\n::::::===================::::“);
printf("\nX Values ");

© printf("\n============================"),
for(i=0 ; i<size ; i++)
if(instance_no == 0)
printf("\n x[%d] = %g",i,x[i]);
}
info = pvm_barrier("JoinSmitha",2);
second = time(NULL);

// Assigns the time to the variable second...
if(instance_no == 0)

printf("\n Elapsed time : %d",second-first);

// Prints the'elapsed time on the screen...
pvm_exit();

// Process leaves PVM

