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ABSTRACT

To establish an Intelligent Agent Systems that uses Genetic Algorithm and
uses an novel technique to learn user profiles from user’s search histories, to
collect and to improve retrieval effectiveness.

Web search engines typically respond to user keyword queries by
retrieving relevant URLs from their own databases. They range from general, like
AltaVista, to very specific, like Web seek. Search features as well as database
size vary, and no one Search engine provides the best index for all subjects.
Users have therefore had to learn different features and interfaces for every
search engine.

Meta search engines offer a partial solution to this problem. Instead of
maintaining a local database, they use the indexes of other search engines and
give users a single interface to and from the search results. Meta search is a
valuable Web search tool, but it still leaves some problems unsoived. For
instance, it does not help users form good search strategies, nor does it offer
ways to handle an overload of results.

In recent years, inteiligent software agents have emerged from artificial
intelligence (Al) research as a tooi for addressing this problem. Here a prototype
agent system is deployed for collecting information from the Internet and filtering
it according to a profile of user interests. These systems are called intelligent
assistants. It includes a genetic algorithm, which enables it to learn the user’s
interests and to adapt as user interests change over time. The learning process
is driven: by user feedback to the agent’s filtered selections.

In this project, an intelligent assistant system is developed, its learning
agent, and the genetic algorithm. We conclude with results from two preliminary
experiments that tested the accuracy and adaptability of the learning agent.
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CHAPTER 1

INTRODUCTION

1.1 HOW SEARCH ENGINE WORKS

Search engine is the popular term for an information retrieval (IR) system. While
researchers and developers take a broader view of IR systems, consumers think of them
more in terms of what they want the systems to do — namely search the Web, or an intranet,
or a database. Actually consumers would really prefer a finding engine, rather than a search
engine.

Search:engines match queries against an index that they create. The index consists of
the words in each document, plus pointers to their locations within the documents. This is
called an inverted file. A search engine or IR system comprises four essential modules:

A document processor
A query processor
A search and matching function

oW onNn o

A ranking capability

While users focus on "search," the search and matching function is only one of the
four modules. Each of these four modules may cause the expected or unexpected results that
consumers get when they use a search engine.

1.1.1 Document Processor

The document processor prepares, processes, and inputs the documents, pages,
or sites that users search against. The document processor performs some or all of the
following steps:

1. Normalizes the document stream to a predefined format.
2. Breaks the document stream into desired retrievable units.
3. Isolates and metatags sub-document pieces.



Identifies potential indexable elements in documents.
Deletes stop words.

Stems terms.

Extracts index entries.

Computes weights.
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Creates and updates the main inverted file against which the search engine
searches in order to match queries to documents.

Steps 1-3: Preprocessing

While essential and potentially important in affecting the outcome of a search,
these first three steps simply standardize the multiple formats encountered when deriving
documents from various providers or handling various Web sites. The steps serve to merge
all the data into a single consistent data structure that all the downstream processes can
handle. The need for a well-formed, consistent format is of relative importance in direct
proportion to the sophistication of later steps of document processing. Step two is important
because the pointers stored in the inverted file will enable a system to retrieve various sized
units — site, page, document, section, paragraph, or sentence.

Step 4: Identify elements to index

Identifying potential index able elements in documents dramatically affects the
nature and quality of the document representation that the engine will search against. In
designing the system, we must define the word "term." Is it the alpha-numeric characters
between blank spaces or punctuation? If so, what about non-compositional phrases (phrases
in which the separate words do not convey the meaning of the phrase, like "skunk works" or
"hot dog"), multi-word proper names, or inter-word symbols such as hyphens or apostrophes
that can denote the difference between "small business men" versus small-business men."
Each search engine depends on a set of rules that its document processor must execute to
determine what action is to be taken by the "tokenizer," i.e. the software used to define a term
suitable for indexing.



Step 5: Deleting stop words

This step helps save system resources by eliminating from further processing,
as well as potential matching, those terms that have little value in finding useful documents in
response o a customer's query. This step used to matter much more than it does now when
memory has become so much cheaper and systems so much faster, but since stop words
may comprise up to 40 percent of text words in a document, it still has some significance. A
stop word list typically consists of those word classes known to convey little substantive
meaning, such as articles (a, the), conjunctions (and, but), interjections (oh, but), prepositions
(in, over), pronouns (he, it), and forms of the "to be" verb (is, are). To delete stop words, an
algorithm compares index term candidates in the documents against a stop word list and
eliminates certain terms from inclusion in the index for searching.

Step 6: Term Stemming

Stemming removes word suffixes, perhaps recursively in layer after layer of
processing. The process has two goals. In terms of efficiency, stemming reduces the number
of unique words in the index, which in turn reduces the storage space required for the index
and speeds up the search process. In terms of effectiveness, stemming improves recall by
reducing all forms of the word to a base or stemmed form. For example, if a user asks for
analyze, they may also want documents which contain analysis, analyzing, analyzer,
analyzes, and analyzed. Therefore, the document processor stems document terms to analy-
so that documents which include various forms of analy- will have equal likelihood of being
retrieved; this would not occur if the engine only indexed variant forms separately and
required the user to enter all. Of course, stemming does have a downside. It may negatively
affect precision in that all forms of a stem will match, when, in fact, a successful query for the
user would have come from matching only the word form actually used in the query.

Systems may implement either a strong stemming algorithm or a weak stemming
algorithm. A strong stemming algorithm will strip off both inflectional suffixes (-s, -es, -ed) and
derivational suffixes {-able, -aciousness, -ability), while a weak stemming algorithm will strip
off only the inflectional suffixes (-s, -es, -ed).



Step 7: Extract index entries

Having completed steps 1 through 6, the document processor extracts the
remaining entries from the original document.

Step 8: Term weight assignment

Weights are assigned to terms in the index file. The simplest of search engines just
assign a binary weight: 1 for presence and 0 for absence. The more sophisticated the search
engine, the more complex the weighting scheme. Measuring the frequency of occurrence of a
term in the document creates more sophisticated weighting, with length-normalization of
frequencies still more sophisticated. Extensive experience in information retrieval research
over many years has clearly demonstrated that the optimal weighting comes from use of
"tffidf." This algorithm measures the frequency of occurrence of each term within a document.
Then it compares that frequency against the frequency of occurrence in the entire database.

Not all terms are good "discriminators” — that is, all terms do not single out one
document from another very well. A simple example would be the word "the." This word
appears in too many documents to help distinguish one from another. A less obvious
example would be the word "antibiotic." In a sports database when we compare each
document to the database as a whole, the term "antibiotic" would probably be a good
discriminator among documents, and therefore would be assigned a high weight. Conversely,
in a database devoted to heailth or medicine, "antibiotic® would probably be a poor
discriminator, ‘since it occurs very often. The TF/IDF weighting scheme assigns higher
weights to those terms that really distinguish one document from the others.

Step 9: Create index

The index or inverted file is the internal data structure that stores the index
information and that will be searched for each query. Inverted files range from a simple listing
of every alpha-numeric sequence in a set of documents/pages being indexed along with the
overall identifying numbers of the documents in which the sequence occurs, to a more
linguistically complex list of entries, the tf/idf weights, and pointers to where inside each
document the term occurs. The more complete the information in the index, the better the
search results.



1.1.2 Query Processor

Query processing has seven possible steps, though a system can cut these
steps short and proceed to match the query to the inverted file at any of a number of places
during the processing. Document processing shares many steps with query processing. More
steps and more documents make the process more expensive for processing in terms of
computational resources and responsiveness. However, the longer the wait for results, the
higher the quality of resuits. Thus, search system designers must choose what is most
important to their users — time or quality. Publicly available search engines usually choose
time over very high quality, having too many documents to search against.

The steps in query processing are as follows (with the option to stop
processing and start matching indicated as "Matcher"):

Tokenize query terms.
Recognize query terms vs. special operators.

> Matcher

» Delete stop words.

« Stem words.

« Create query representation.
> Matcher

+ Expand query terms.

Compute weights.

> Matcher
Step 1: Tokenizing

As soon as a user inputs a query, the search engine — whether a keyword-based
system or a full natural language processing (NLP) system — must tokenize the query
stream, i.e., break it down into understandable segments. Usually a token is defined as an
alpha-numeric string that occurs between white space and/or punctuation.



Step 2: Parsing

Since users may employ special operators in their query, including Boolean,
adjacency, or proximity operators, the system needs to parse the query first into query terms
and operators. These operators may occur in the form of reserved punctuation (e.g.,
quotation marks) or reserved terms in specialized format (e.g., AND, OR). In the case of an
NLP system, the query processor will recognize the operators implicitly in the language used
no matter how the operators might be expressed (e.g., prepositions, conjunctions, ordering).

At this point, a search engine may take the list of query terms and search them
against the inverted file. In fact, this is the point at which the majority of publicly available
search engines perform the search.

Steps 3 and 4: Stop list and stemming

Some search engines will go further and stop-list and stem the query, similar
to the processes described above in the Document Processor section. The stop list might
also contain words from commonly occurring querying phrases, such as, "l'd like information
about." However, since most publicly available search engines encourage very short queries,
as evidenced in the size of query window provided, the engines may drop these two steps.

Step 5: Creating the query

How each particular search engine creates a guery representation depends on
how the system does its matching. If a statistically based matcher is used, then the query
must match the statistical representations of the documents in the system. Good statistical
queries should contain many synonyms and other terms in order to create a full
representation. If a Boolean matcher is utilized, then the system must create logical sets of
the terms connected by AND, OR, or NOT.

An NLP system will recognize single terms, phrases, and Named Entities. If it uses
any Boolean logic, it will also recognize the logical operators from Step 2 and create a
representation containing logical sets of the terms to be AND, OR, or NOT.



At this point, a search engine may take the query representation and perform.the
search against the inverted file. More advanced search engines may take two further steps.

Step 6: Query expansion

Since users of search engines usually include only a single statement of their
information needs in a query, it becomes highly probable that the information they need may
be expressed using synonyms, rather than the exact query terms, in the documents which the
search engine searches against. Therefore, more sophisticated systems may expand the
query into all possible synonymous terms and perhaps even broader and narrower terms,

This process approaches what search intermediaries did for end users in the
earlier days of commercial search systems. Back then, intermediaries might have used the
same controlled vocabulary or thesaurus used by the indexers who assigned subject
descriptors to documents. Today, resources such as WordNet are generally available, or
specialized expansion facilittes may take the initial query and enlarge it by adding associated
vocabulary.

Step 7: Query term weighting (assuming more than one query term).

The final step in query processing involves computing weights for the terms
in the query. Sometimes the user controls this step by indicating either how much to weight
each term or isimply which term or concept in the query matters most and must appear in
each retrieved document to ensure relevance.

Leaving the weighting up to the user is not common, because research has
shown that users are not particularly good at determining the relative importance of terms in
their queries. They can't make this determination for several reasons. First, they don't know
what else exists in the database, and document terms are weighted by being compared to the
database as a whole. Second, most users seek information about an unfamiliar subject, so
they may not know the correct terminology.



Few search engines implement system-based query weighting, but some do an
implicit weighting by treating the first term(s) in a query as having higher significance. The
engines use this information to provide a list of documents/pages to the user.

After this final step, the expanded, weighted query is searched against the inverted
file of documents.

1.1.3 Search and Matching Function

How systems carry out their search and matching functions differs according
to which theoretical model of information retrieval underlies the system's design philosophy.
Since making the distinctions between these models goes far beyond the goals of this article,
we will only make some broad generalizations in the following description of the search and
matching function.

Searching the inverted file for documents meeting the query requirements, referred
to simply as "matching," is typically a standard binary search, no matter whether the search
ends after the|first two, five, or all seven steps of query processing. While the computational
processing required for simple, unweighted, non-Boolean query matching is far simpler than
when the model is an NLP-based query within a weighted, Boolean model, it also follows that
the simpler the document representation, the query répresentation, and the matching
algorithm, the less relevant the results, except for very simple queries, such as one-word,
non-ambiguous queries seeking the most generally known information.

Having determined which subset of documents or pages matches the query
requirements to some degree, a similarity score is computed between the query and each
document/page based on the scoring algorithm used by the system. Scoring algorithms
rankings are based on the presence/absence of query term(s), term frequency, tf/idf, Boolean
logic fulfillment, or query term weights. Some search engines use scoring algorithms not
based on document contents, but rather, on relations among documents or past retrieval
history of documents/pages.



After computing the similarity of each document in the subset of documents, the
system presents an ordered list to the user. The sophistication of the ordering of the
documents again depend on the model the system uses, as well as the richness of the
document and query weighting mechanisms. For example, search engines that only require
the presence of any alpha-numeric string from the query occurring anywhere, in any order, in
a document would produce a very different ranking than one by a search engine that
performed linguistically correct phrasing for both document and query representation and that
utilized the proven tiffidf weighting scheme.

However the search engine determines rank, the ranked resulis list goes to the user,
who can then simply clicks and follow the system's intemnal pointers to the selected
document/page.

More sophisticated systems will go even further at this stage and allow the user to
provide some relevance feedback or to modify their query based on the results they have
seen. If either of these are available, the system will then adjust its query representation to
reflect this value-added feedback and re-run the search with the improved query to produce
either a new set of documents or a simple re-ranking of documents from the initial search.

1.2 What Docuiiment Features Make a Good Match to a Query

We have discussed how search engines work, but what features of a query make for
good matches? Let's look at the key features and consider some pros and cons of their utility
in helping to retrieve a good representation of documents/pages.

* Term frequency:

How frequently a query term appears in a document is one of the most obvious
ways of determining a document's relevance to a query. While most often true, several
situations can undermine this premise. First, many words have multipile meanings — they are
polysemous. Think of words like "pool" or "fire." Many of the non-relevant documents
presented to users result from matching the right word, but with the wrong meaning.



Also, in a collection of documents in a particular domain, such as education, common
query terms such as "education” or "teaching" are so common and occur so frequently that an
engine's ability to distinguish the relevant from the non-relevant in a collection declines
sharply. Search engines that don't use a tffidf weighting algorithm do not appropriately down-
weight the overly frequent terms, nor are higher weights assigned to appropriate
distinguishing {and less frequently-cccurring} terms, e.g., "early-childhood."

* Location of terms:

Many search engines give preference to words found in the title or lead paragraph or in
the metadata of a document. Some studies show that the location — in which a term occurs
in a document or on a page — indicates its significance to the document. Terms occurring in
the title of a document or page that match a query term are therefore frequently weighted
more heavily than terms occurring in the body of the document. Similarly, query terms
occurring in section headings or the first paragraph of a document may be more likely to be
relevant.

» Link analysis:

Web-based search engines have introduced one dramatically different feature for
weighting and ranking pages. Link analysis works somewhat like bibliographic citation
practices, such as those used by Science Citation Index. Link analysis is based on how well-
connected each page is, as defined by Hubs and Authorities, where Hub documents link to
large numbers of other pages (out-links), and Authority documents are those referred to by
many other pages, or have a high number of “in-links" .

* Popularity:
Google and several other search engines add popularity to link analysis to help
determine the relevance or value of pages. Popularity utilizes data on the frequency with

which a page is chosen by all users as a means of predicting relevance. While popularity is a
good indicator at times, it assumes that the underlying information need remains the same.
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* Date of Publication:

Some search engines assume that the more recent the information is, the more likely
that it will be useful or relevant to the user. The engines therefore present results beginning
with the most recent to the less current.

» Length :

While length does not necessarily predict relevance, it is a factor when used to
compute the relative merit of similar pages. So, in a choice between two documents both
containing the same query terms, the document that contains a proportionately higher
occurrence of the term relative to the length of the document is assumed more likely to be
relevant.

* Proximity of query terms :

When the terms in a query occur near to each other within a document, it is more likely
that the document is relevant to the query than if the terms occur at greater distance. While
some search engines do not recognize phrases per se in queries, some search engines
clearly rank documents in results higher if the query terms occur adjacent to one another or in
closer proximity, as compared to documents in which the terms occur at a distance.

* Proper nouns :
Sometimes have higher weights, since so many searches are performed on people,
places, or things. While this may be useful, if the search engine assumes that you are

searching for a name instead of the same word as a normal everyday term, then the search
resulis may be peculiarly skewed.

11



CHAPTER 2

JUSTIFICATION OF THE PROJECT

All traditional search engines have some draw backs, they are.

1. Overload of results.
2. Partial solution 1o a problem.{User queries)
3. Database size varies.

In order to eliminate this, an intelligent agent systems using Genetic

Algorithm is used.

The Webnaut learning agent uses Al techniques to accomplish the
difficult task of learning a user’s interests. At the same time, the learning
agent collects new documents of interest from the Web and recommends
them to the user. While surfing the Web, a Webnaut user can bookmark a
document as “Very Interesting.” The words in the document are then
processed by the text information extractor (described below) and used io
direct the agent’s search for similar Web documents. By searching for
documents with relevant words combined with logical operators, the learning
agent can create complex representative structures of the user’s long-term
interests.

a) Vector-space model:

Webnaut uses the vector space model, borrowed from the field of
information retrieval, to represent information included in collected
documents.1 According to this model; all words included in a document
collection are extracted to create the dictionary vector D, whose every
element is a word di. A vector W can thus represent a document from the
collection, where every element of wi is the weight of the word di for that
particular document.

12



Information-retrieval systems typically represent the user’s guestion in
this way so that a query vector can be created. The cosine angle between the
query and the weight vectors of every document in the collection can be used
as a similarity measure to recover documents that match the user’s request.

In the Webnaut prototype implementation, all keywords that hold the
greater weight from all the text documents that the user provides as examples
are merged in a file called Dictionary. The representation of the Dictionary is
an N x 3 matrix, where N is the number of keywords. The first column of the
matrix includes the keywords, the second column includes the total number of
documents that contain the keywords, and the last column includes the sum
of the keywords’ frequencies in all the texts that appear.

The N x 3 matrix allows the comparison of different keyword weighting
schemes. The Dictionary’s keywords are sorted according to their weight,
which is given by the following formula:

Wi= (tf1/ thmax) / N (th/ thax)®

Where tfi is the frequency of the keyword i in all texts in which it
appears; tfmax is the maximum keyword frequency of all keywords in the
Dictionary; and N is the number of keywords in the Dictionary. The number of
keywords stored in the dictionary is a user-defined parameter; in our
implementation it was limited to 1,000 words to avoid a memory overload.

The inverse document-frequency weighting schema tfidf has been
implemented but was not used in this prototype, since the Dictionary is
considered a virtual document that includes only those keywords of interest 1o
the user. The fidf is quite popular in similar applications, but a collection of
documents is necessary for it to be applied. The user may change the
system’s configuration and select to use the Hidf weighting schema, but to do
so he or she must create a collection of documents; that is, a sufficient
number of examples must be provided before the learning agent can begin
the process of searching for new information.

13



In the approach described here, keyword weights do not depend on the
number of documents in which the word appears, and the learning agent can
help the user from the very first example. On the other hand, the weights
depend solely on keyword frequency, which makes it easy to decrease or
increase them according to user feedback.

The Webnaut learning agent also presents all new information
coliected by the genetic algorithm (GA) agent. The user’s positive or negative
feedback on GA agent recommendations is used to modify the keyword
weights, included in the Dictionary.

b) Text information extractor:

This component, which consists of a lexical analyzer, a stop word
removal :algorithm, and a stemming algorithm, analyzes HTML pages. The
lexical analyzer tokenizes the input HTML page in three steps: It selects all
hyperlinks in the document, removes the HTML tags, and finally removes any
script language commands.

The stop word algorithm removes all high-frequency words such as
“for” and “the,” ali common words such as days and months, and all numbers.
(Common words are included in a Thesaurus file, which can be enriched by
the user.} Porter's algorithm2 is applied to the remaining text, stripping it of
inflectional and derivational word endings. This stemming algorithm reduces
the morphologic variants of a word to a single index term (yielding fewer
words in the dictionary) and increases recall by grouping similar concepts
under single terms, hereby increasing quality of predictions.

2.1 Genetic Algorithm Agent
The GA agent collects and evaluates new HTML pages from the Web,

using information included in examples provided by the user. Pages that
score high are served to the user by the learning agent.

14



2.2 GA Agent Implementation

The GA agent implements evolutionary techniques to a genetic
algorithm. A primary genetic algorithm (PGA) creates a population of sets of
unique keywords selected at random from the Dictionary. A secondary genetic
algorithm (SGA) then creates a population of sets of logic operators for each
of the PGA’s members. The MetaSearch agent serves the queries, as
described earlier.

A user's Dictionary, for example, may contain the following words:
intelligent, agents, genetic, algorithms, source, code, reinforcement, and
learning.

The user may be interested in intelligent agents and genetic algorithms
but not reinforcement learning. In this case, the keywords can be combined
with logic operators to describe the user’s interests as follows: intelligent AND
agents AND genetic AND algorithms NOT reinforcement NOT learning.

A user-defined number of members, each with a vector of random
unique keywords from the Dictionary, is created during the initialization of the
PGA population. During evaluation, each keyword set is combined with the
SGA population members, or random sets of logic operators. Each set of logic
operators and keywords creates a number of different queries that are then
served by the MetaSearch agent, which collects and provides appropriate
URLs.

Sim(Dp,Ds) = ¥ Wok,Wsk /N Y Wpk® Y Wsk?

The “fitness” of each member in the SGA population is the average of
the similarity between the MetaSearch agent’s resuits, which correspond to
the specific query and the Dictionary. The similarity function between two
documents DS and DD, represented in a space of N keywords by their
weighted keyword vectors WDk and WSk is a predefined number of the fittest
members from all queries are stored in a vector to provide the basis for an
evaluation using the total population of logic operators. The average value of

15



the similarities of the documents stored in this vector is also the fitness for
gach member in the PGA population. After the population evaluation, genetic
operators are applied to form a new population of logic operands.

2.3 Genetic operators:

The main genetic operator is the crossover, which operates on two
individuals. The crossover operator takes two SGA members, randomly splits
them at a point, and then recombines them to produce two new members.

As the inversion operator, mutation operates on a single individual,
switching a selected SGA member's operator to another operator at random.
If the operator is OR, for example, it will be changed randomly to AND or NOT
from a selected point on.

After the recombination operators are applied, the fittest members are
selected to form a new population, and the same loop will continue running for
a predefined number of generations. The same recombination operators, not
including inversion, will be applied slightly differenily to the new sets of
keywords. In the PGA, the crossover operator takes two sets of keywords,
randomly. splits them, and then recombines them to produce two new sets of
key keywords. Keywords from the two seis are exchanged if and only if the
same words don’t appear in the new sets more than once.

Two different algorithms are used for mutation in the PGA. The first
algorithm selects two members of the population and exchanges their words
at a selected point if and only if the same words don't appear in either set
more than once. The second algorithm selects one member of the population
and exchanges the keyword at a selected point with a new keyword from the
Dictionary. Finally, the fittest members of the PGA population are selected
and the same loop continues for a number of generations.

16



2.4 Primary Genetic Algorithm
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CHAPTER 3
WEB SEARCHING AND INFORMATION RETRIEVAL

3.1 Search-Engine Architectures

We can distinguish three architectures for Web searching: traditional
(or centralized), metasearch, and distributed search. Search engines can also
be part of the more general architectures such as search services or portals.

3.1.1 Centralized Architecture

The goal of general-purpose search engines is to index a sizeable
portion of the Web, independently of topic and domain. Each such engine
consists of several components, as Figure shows.

Page repository
URL database

Utllity data siructures

Fig-3.1

A crawler (also called a spider or robof) is a program controlled by a
crawl control module that “browses” the Web. It collects documents by
recursively fetching links from a set of start pages; the retrieved pages or their
parts are then compressed and stored in a page repository. URLs and their
links, which form a Web graph, are transferred to the crawler control module,
which decides the movement in this graph. Obviously, off-site links are of
interest. To save space, documents’ identifiers (doclDs) represent pages in
the index and other data structures; the crawler uses a database of URLs for
this purpose.
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The indexer processes the pages collected by the crawler. It first
decides which pages to index—for example, it might discard duplicate
documents. Then, it builds various auxiliary data structures. Most search
engines build some variant of an inverted index data structure for words (fext
index) and links (structure index). The inverted index contains for each word a
sorted list of couples (such as dociD and position in the document).

The query engine processes user queries—and returns matching
answers—in an order determined by a ranking algorithm. The algorithm
produces a numerical score expressing an importance of the answer with
respect to the query. Its capabilities and features depend on additional data
structures (called utility data structures) such as lists of related pages,
similarity indexes, and so forth. The numerical score is usually a combination
of query-independent and query-dependent criteria.

The former judge the document regardless of the actual query; typical
examples include its length and vocabulary, publication data (such as the site
to which it belongs, the date of the last change to it, and so on), and various
connectivity based data such as the number of links pointing to a page (called
in-degree). Query-dependent criteria include a cosine measure for similarity in
the vector space model (which is well known from traditional IR terhniques)
and all connectivity-based techniques. All defined measures can contribute to
the resulted measure.

3.1.2 Metasearch Architecture

One way to provide access to the information in the hidden Web’s text
databases is through Meta searchers, which can be used to query muitiple
databases simultanecusly. A Meta searcher performs three main tasks. After
receiving a query, it finds the best databases to evaluate the query (database
selection), translates the query in a suitable form for each database (query
translation), and then retrieves and merges the results from the different
databases (result merging) and returns them to the user.
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A Meta searcher’s database selection component is crucial in terms of
both query processing efficiency and effectiveness. Database selection
algorithms are traditionally based on pre-collected statistics that characterize
each database’s contents. These statistics, often called content summaries,
usually include at least the document frequencies of the words that appear in
the database. To obtain a database’s content summary, a meta searcher
relies on the database to supply the summary (for example, by using
Semantic Webtags).

Unfortunately, many Web-accessible databases are completely
autonomous and don’t report any detailed metadata about their contents that
would faciltate meta searching. With such databases, only manually
generated descriptions of the contents are usable, so this approach is not
scalable to the thousands of text databases available on the Web today.
Moreover, we wouldn’t get the good quality, fine-grained content summaries
required by database selection algorithms. Some researchers recently
presented a technique to automate content summary extraction from
searchable text databases: it seems that the deeper recesses of the Web
aren't really hidden. By systematically retrieving small sample contents, we
can model information sources.

3.1.3 Distributed Search Architecture

Whatever successful global ranking algorithms for centralized search
engines are, two potential problems occur: high computational costs and
potentially poor rankings. Additional semantic problems are related to the
exclusive use of global context and the instability of ranking algorithm
.Distributed heterogeneous search environments are an emerging
phenomenon in Web search. Although the original Internet was designed to
be a peer-to-peer (P2P) system, Web search engines have yet to make full
use of this potential. Most major Web search engines are currently based on
cluster architectures.

Earlier attempts to distribute processes suffered many problems—for
example, Web servers got requests from different search-engine crawlers that
increased the servers’ load. Most of the objects the crawlers retrieved were
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useless and subsequently discarded; compounding this, there was no
coordination among the crawlers. A new completely distributed and
decentralized P2P crawler called Apoidea is both self-managing and uses the
resource’s geographical proximity to its peers for a better and faster crawl.

Ancther recent work explores the possibility of using document
rankings in searches. By partitioning and combining the rankings, the
decentralized crawier manages to compute document rankings of large scale
web data sets in a localized fashion. The most general approach is a
federation of independently controlled metasearchers along with many
specialized search engines. These engines provide focused search services
in a specific domain.

3.2 Page Importance and its Use in Refrieval

In general, we must measure a page’s importance in order to rank it.
Three approaches help with this process: link, content (similarity), and anchor.
In terms of IR, these measures reflect a model/ of Web documents. The best-
known link-based technique used on the Web today is a variant of the
PageRank algorithm implemented in the Google search engine.

It tries to infer a Web page’s importance from just the topological
structure of a directed graph associated with the Web. A page’s rank depends
on the ranks of all the pages pointing to it, with each rank divided by the
number of out-links those pages have. In the simplest variant, the PageRank
of a page k, Pr (k} is a nonnegative real number given by

Pr(k) = £(h,k) Prih)lo(h), k=1,2, ..., n,

where Pr(h) is the PageRank of page h, o(h) is the out-degree of page h, and

the sum is extended to all Web pages h pointing to page & (n is the number of

pages on the Web). If a page h has more out links to the same page k, all

these out-link count as one. According to this definition, then, Pr (h) depends

not only on the number of pages pointing to it, but also on their importance.
This definition raises some problems—something like a rank sink
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can occur (a group of pages pointing to each other could have some links
going to the group but no links going out).

Another interesting technique—Kleinberg’s algorithm, also called HITS
(Hypertext Induced Topic Search)—is used at query time and processed on a
small subset of relevant documents, but not all of them. It computes two
scores per document. Authoritative pages relevant to the initial query have
large in-degree: they are all the authorities on a common topic, and a
considerable overlap in the sets of pages point to them. The algorithm then
finds hub pages, which have links to multiple relevant authoritative pages: if a
page were a good authority, many hubs would point to it. These ideas are not
new. Some were exploited decades ago in bibliographic citation analysis and
later in the field of hypertext systems. In the content-based approach, we
compute the similarity score between a page and a predefined topic in a way
similar to the vector model. Topic vector g is constructed from a sample of
pages, and each Web page has its own vector p. The similarity score Sim (p,
q) is defined by the cosine similarity measure.

Anchor text is the visible hyperlinked text on the Web page. In the
anchor-based approach, page quality can be judged by pattern matching
between the query vector and the URL's anchor text, the text around the
anchor text (the anchor window), and the URL’s siring value. Approaches
used in isolation suffer various drawbacks. The usual content-based approach
ignores links and is susceptible to spam, and the link-based approach is not
adequate for pages with low in-degree. Due to the Web’s dynamism, this
problem appears most frequently when we attempt to discover new pages
that have not been cited sufficiently. The approach relying on text near
anchors seems to be the most useful for Web similarity-search tasks. Similar
to vector models, it must involve additional considerations concerning term
weighting and anchor window width. With small anchor windows, for example,
many documents that should be considered simiiar are in fact orthogonal
(they don’t have common words).

Obviously, all previously defined measures can contribute to the end
page measure result for page ranking.
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3.3 Issues and Challenges in Web Search Engines

Search engine problems are connected with each component of the
engine’s architecture and each process it performs—search engines can’t
update indexes at the same speed at which the Web evolves, for example.
Another problem is the quality of the search results. We've already looked at
their lack of stability, heterogeneity, high linking, and duplication (near 30
percent). On the other hand, because the hidden Web’s contents’ quality is
estimated to be 1,000 to 2,000 times greater than that of the surface Web,
search result quality can be expected to be higher in this case. One of the
core modules of each search engine is its crawler. Several issues arise when
search engines crawl through Web pages.

* What pages should the crawler download? Page importance metrics can
help, such as interest-driven metrics (often used in focused crawlers),
popularity-driven metrics (found in combination with algorithms such as
PageRank), and location-driven metrics (based on URL).

* How should the search engine refresh pages, and how often should it do so?

Most search engines update on a monthly basis, which means the Web
graph structure obtained, is always incomplete, and the giobal ranking
computation is less accurate. In a uniform refresh, the crawler revisits all
pages with the same frequency, regardless of how often they change. In a
proportional refresh, the crawler revisits pages with a frequency proportional
to the page’s change rate (for example, if it changes more often, it visits more
often).

* How do we minimize the load on visited Web sites?

Collecting pages consumes resources (disks, CPU cycles, and so on),
so the crawler should minimize its impact on these resources. Most web users
cite load time as the Web's single biggest problem.

* How should the search engine parallelize the crawling process?
Suppose a search engine uses several crawlers at the same time (in
parallel).
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How can we make sure they aren’t duplicating their work?
A recent research study highlighted several problems concerning the
quality of page ranking.

e Spam. To achieve a better ranking, some Web authors deliberately try to
manipulate their placement in the ranking order. The resulting pages are
forms of spam. In text spam, erronecus or unrelated keywords are repeated in
the document. Link spam is a collection of links that point to every other page
on the site. Cloaking offers entirely different content to a crawler than to other
users.

» Content quality. There are many examples of Web pages containing
contradictory information, which means the document's accuracy and
reliability are not automatically guaranteed. If we calculate page importance
from the anchor text, for example, we would want at least this text to be of
high quality (meaning accurate and reliable).

» Quality evaluation. Direct feedback from users is not reliable because such
user environment capabilities are usually not at our disposal. So, search
engines often collect implicit user feedback from log data. New metrics for
ranking improvement, such as the number of clicks, are under development.

* Web conventions. Web pages are subject to certain conventions such as
anchor text descriptiveness, fixed semantics for some link types, metatags for
HTML metadata presentation, and so on. Search engines can use such
conventions o improve search results.

* HTML mark-up. Web pages in HTML contain limited semantic information
hidden in HTML mark-up. The research community is still working on
streamlined approaches for extracting this information (an introductory
approach appears elsewhere12).
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Most search engines perform their tasks by using important keywords, but the
user might not always know these keywords. Moreover, the user might want
to submit a query with additional constraints such as searching a specific Web
page or finding the pages within a Web graph structure.
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CHAPTER 4

LITERATURE SURVEY

4.1“Agents that Reduce Work and Information Overload “by P.Maes.

This article focuses on a novel approach to building interface agents. It
presents results from several prototype agents that have been built using this
approach, including agents that provide personalized assistance with meeting
scheduling, email handling, electronic news filtering and selection of
environment.

4.2 “Effectively Finding Relevant Web Pages from Linkage Information

By Jingyu Hou and Yanchun Zhang, Member, IEEE Computer Society

This paper presents two hyperlink analysis-based algorithms to find
relevant' pages for a given Web page (URL). The first aigorithm comes from
the extended co citation analysis of the Web pages. It is intuitive and easy to
implement. The second one takes advantage of linear algebra theories to
reveal deeper relationships among the Web pages and to identify relevant
pages miore precisely and effectively.

The experimental results show the feasibility and effectiveness of the
algorithms. These algorithms could be used for various Web applications,
such as enhancing Web search. The ideas and techniques in this work would
be helpful to other Web-related researches.
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4.3 “Domain-Specific Web Search with Keyword Spices “

By Satoshi Oyama, Takashi Kokubo, and Toru Ishida, Fellow, IEEE

Domain-specific Web search engines are effective tools for reducing
the difficulty experienced when acquiring information from the Web. Existing
methods for building domain-specific Web search engines require human
expertise or specific facilities.

However, we can build a domain-specific search engine simply by
adding domain-specific keywords, called “keyword spices,” to the user’s input
query and forwarding it to a general-purpose Web search engine. Keyword
spices can be effectively discovered from Web documents using machine
learning technologies. This paper will describe domain-specific Web search
engines that use keyword spices for locating recipes, restaurants, and used
cars.

4.4“WEB SEARCHING AND INFORMATION RETRIEVAL

By JAROSILAV POKORN “Y,Charless University

The first Web information services were based on traditional
information retrieval algorithms, which were originally developed for smaller,
more coherent collections than the Web. Due to the Web’s continued growth,
today’'s Web searches require new techniques—exploiting or extending
linkages among Web page.
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CHAPTER 5

PROPOSED LINE OF ATTACK

In a Dynamic Document Search every word in the document is parsed
(read) and matched with the search words. Results are displayed based on

the matches found.

Reading every word of the article matching it with the search word over
thousands or even lakhs of documents is very difficult task. Also by default,
PHP is configured to run maximum 30 seconds.

5.1 Building Database:

The database consists of three tables.
* Content Table,
» Keyword Table,
¢ Link Table.

5.1.1 Content Table

Content table holds article’s title, and abstract. Keyword table holds
keyword. Keyword field is indexed. Link table holds keyword id, content id.

The SQL Statement for creating these three tables are shown below.
Content Table:

CREATE TABLE content (
contid mediumint(9) NOT NULL auto_increment, title text,
abstract longtext, PRIMARY KEY (contid) ) TYPE=MyISAM,;
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5.1.2 Keyword Table

CREATE TABLE keytable (

keyid mediumint NOT NULL auto_increment,
keyword varchar(100) default NULL,
PRIMARY KEY (keyid),

KEY keyword (keyword) ) TYPE=MyISAM,;

5.1.3 Link Table

CREATE TABLE link (

keyid mediumint NOT NULL,
contid mediumint NOT NULL)
TYPE=MyISAM

5.2 Preparing Database

An input interface with HTML form is created to enter title and
document. After filling and hitting enter, the title and the abstract is stored in
the content table. The generated new content id is stored in a variable
temporarily. In the next step and ‘Upload Engine’ that parses each word in the
abstract and process the whole text. It removes common words like is, was,
and, if, so, else, then etc. Then stores each word in wordmap array. See that
every word has only one entry in the wordmap array.

For every word in the wordmap array, keyword table is parsed and
math is found. If there is a match, the generated key id, and content id
generated id earlier is stored in the link table. Else, the new keyword is
inserted in the keyword table and with the generated keyword table and
content id the link table is updated.

Searching keyword table for every word is a long process. This also
reduces the efficiency of the program. To implement this all the keywords in
the keyword table is stored in an associative array $allWords. An associative
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array is one, which works on B-Tree algorithm and very useful to perform
searches. Here is the function.

5.2.1Common Words

$COMMON_WORDS is an associative array that stores an array of words,
which are commonly used in English Language. These words have to be
removed while parsing the file.

$COMMON_WORDS-=array (“a’=>1, “as’=>1);

You can add as many common words as you like. See source code for full list
of common words.

5.2.2 Functions:

5.2.2.1 Extract Words Function:

This function filters words by allowing only alphabetic
characters. To implement this, a technique called STATE MACHINE is used
1o filters the characters.

Alphabetic characters are taken as STATE1 and other characters
(Numeric and Special Characters) as STATEQ. Initially the machine will be in
the STATEO. While parsing letters, it encounters alphabetic characters, the
machine switches to STATE1 else it will remain in the same state. As a result
we get a word with only alphabetic characters. As a result we get a list of
words stored in an array returned to the called function.
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5.2.2.2 Filter Common and Duplicate Words Function

This function is called after ExtractWords () function. This parses
filtered words removes common words like ‘a’, is’, 'was’,” and’.... Other words
are taken as valid words, remove duplicate among them and then stored in an
associative array $wordMap and this array is returned to the called function.

5.3 Process Form function

This is the core part of the upload program. After finishing filtering,
removing common words and duplicate words, this function is called. First this
function inserts the title and abstract in the content table. The newly
generated content id stored in $contentld. Then it updates keyword and link
table.

For every word in the $wordMap array, if the word is already exists in keyword
table, it inserts the key id, content id in to link table. Conversely, if the word is
not found, it inserts the new word in keyword table, the generated new key id
is stored in $keyld. Then it updates link table by inserting key id content id in
link table.

5.4 Search Engine:

PHP script is written that makes it possible to query the database
through a HTML fo_rm. This will work as any other search engine: the user
enters a word in a textbox, hits enter, and the interface presents a result page
with links to the pages which contains the word that is searched for.

For example, the resuits are displayed the order in which the pages are
presented is selected by the number of search words appeared in each
document.
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Declare an associative array $CommonWords that contains common words

like ‘is’, ‘in’, ‘was’ etc.

First convert all the search words in to lower case.
$search _keywords=striolower(trim($keywords));

Next, we have to perform an explode operation on search words that will store
each search word in an array. The code is shown here.

$arrWords = explode (" ", $search_keywords);
Next, remove duplicate words in $arrWords.
$arrWords = array_unique($arrWords);

In a search operation, first we have to remove the common words like
‘is’, ‘in’, ‘was’ ... This refines our search criteria. To implement this we store
common words in an associative array $CommonWords.

Next, remove common words in the search words. Search words are
stored in $searchWords and common words are stored in $junkWords. Here
is the code.

<?php
$searchWords=array();
$junkWords=array();
foreach($arrWords as $word)

if(!$CommonWords[$word]){
$searchWords[]=$word;
Jelse{

$junkWords[]=$word;

}

?>
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We can display results in two ways.
Type 1: Display the document if all the search words present in the document.

Type 2: Display the document if any one of the search words is present.

If you want to perform the Type 1 operation, include the following code
snippet in to your program.

$noofSearchWords=count ($searchWords);

$noofSearchWords stores the number of search words. Later after searching
search words in key word table we get results. There we can perform logical
AND operation that will display our desired results. If $noofSearchWords is
equal to number of records, the next part of the program gets executed. Else
“NO SEARCH RESULT FOUND” is displayed.

In the next step, we have to search for words in $searchWords array in
the keyword table. The following code snippet will return you a list of keyids
that matched query. As discussed earlier, if you need to perform Type 1
operation, you have check whether the number of search words and number
of records in query. If they are equal, you can proceed to the next step else
display search result not found.

The HTML page to get input from user is given below.

<html>

<head>

<title>Search Engine</titie>
<style type="text/css">

body{ font-size:20; font-weight;bold; font-stretch:semi-expand; font-
family:MSserif; color:#0066CC;

background-color:#EEEEEA4;
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align:center; background-color:white }

h4{ background-color:#0066CC; color:#FFFFFF; font-family:verdana; }
h3{ color:#0066CC; }

th{ background-color:#6996ED; color:#FFFFFF; font-family:Arial; }
aftext-decoration:none;}

</style>

</head>

<body>

<?php

if($submit)

{

if(I$keywords){

$errmsg="Sorry, Please fill in search field";

form($errmsg);

Jelse{

/fStart Timer

$start = getmicrotime();

//PERFORM SEARCH OPERATION AND DISPLAY RESULT
telse {

/fend Timer

$end = getmicrotime();

//TOTAL TIME TAKEN TO DO SEARCH OPERATION
$time_taken=(float}($end-$start);
$time_taken=number_format($time_taken,2,'.'");

echo "<p>Your Query Executed in $time_taken Seconds";

$errmsg="<p>No Search result found for ‘Skeywords";

echo $errmsg;

echo "<br /><a href=\"#\" onclick=\"history.back(\">Back</a>";
}/endof isset ref

}/end of if key word exists



} else { //display the form
form($keyword);

} //END OF FORM DISPLAY 7>
</body>

<f/htmi>

<?php

function form($errmsg)

{?>

<h4 align="center">Search Engine</h4>

<b><?php echo $errmsg; ?></b>

<form method=POST action=<?php echo $PHP_SELF ?>>
Enter keywords to search on:

<input type="text" name="keywords" maxlength="100" />
<input type="submit" name="submit" value="Search" />
<fform>

</body>

</html>

<?php

}

function getmicrotime(}

{

list{$usec,$sec)=explode(" *,microtime());
return {(float)$usec+(float)$sec);

}

?>

Function getmicrotime() returns time in microseconds. This function is called

during start and end of the search process.
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(Document Processing)
Webnaut combines keywords from the primary genetic algorithm and

logic operators from the secondary genetic algorithm to create a number of
different queries that are served by the MetaSearch agent to provide the user
with appropriate URLs.

(a) Dictionary keywords from the document examples;

(b) Initialization of the primary genetic algorithm;

(¢) Initialization of the secondary genetic algorithm;

(d) Queries created by combining member from both populations.
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CHAPTER 6

CONCLUSION

Using the genetic algorithm for searching the web documents is an
efficient method to improve the retrieval effectiveness. And the search also

adapts to the user’'s interest using the user profiles and their search
histories.

There occur some problems while performing search, which is
ubiquitous, so a real time application which eliminates the problem using
geneticalgorithm should be deployed. Because the agent based filtering
system based upon the Al and neural networks had produced good results.
Research in agent-based information filtering systems for the Internet or large
databases has underscored the need for better feature-extraction algorithms.
Such algorithms are especially necessary when information is being culled
from an unstructured page with many repeated words, irrelevant information,
and nonstandard definitions.

Here the searching is performed in an efficient manner and the

searching time is compared with the other search engines. There is some
improvement in the search engine when genetic algorithm is implemented.
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CHAPTER 7

RESULT
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7.2 Parser and upload window
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7.4 Result Window
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7.5 PERFORMANCE REPORT
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Fig-7.5
Percentage of relevant recommendations per evaluation. In this
experiment, a set of 10 pages on Java programming was used for creating
user profiles for a group of four users. At the end of the fifth evaluation, on
average, 80 percent of the prototype’s recommendations were relevant to the
user's needs.
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Relevant recommendations per evaluation for different sets of related
initial examples. In this experiment, the percentage of relevant
recommendations increased in proportion to the number of initial examples
given and the number of evaluations performed.
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CHAPTER 8

RELATED WORKS IN AGENT WEB BASED SERVICES

The artificial intelligence research community has promoted the use of
intelligent software to collect information from large, complex, unstructured,
and heterogeneous information spaces like the World Wide Web. During the
past few years, the notion of software agents has become popular as a
means to advise users of the discovery of useful information.1,2 Several
agent systems have been proposed to help users with Web browsing3,4 and
with filtering Internet news and e-mail messages,5,6 and shopping7 and
lifestyle sites.

Many information-retrieval methods, machine-learning algorithms,
and heuristics have been applied to the task of creating user profiles. One
system ‘'similar to Webnaut is Syskill & Webert.9,10 Syskill & Webert
recommends pages from a collection of preselected pages or URLs and trains
a Bayesian classifier to create a probabilistic profile.The user uses a three-
point scale to rate pages on a specific topic, such as biomedical engineering,
collected from an index maintained by an expert or group of expe:ts; Syskill &
Webert then defines the user profile by analyzing the information on each
page.The profile can be used in two ways: to suggest links that might be of
interest to the user and to construct a Lycos query that would find such links.
Bayesian classifier-based machine-learning techniques require many
examples to be effective and are best suited in cases where the user's
interests remain constant in a single domain for a long period of time.
Furthermore, a Bayesian classifier cannot draw a decision boundary when the
user has many interests that do not belong to a single domain.
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Webnaut, by contrast, uses machine-learning techniques based on an
evolutionary algorithm.The algorithm learns document features that can be
combined with logic operators to form rich concepts. Webnaut also makes it
easy to explore new areas of interests.
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