P-1559

MOBILE AGENTS IN WIRELESS DEVICES

A PROJECT REPORT
Submitted by
AARTHI.] 71201205001

DHIVIYA.D 71201205011

in partial fulfillment for the award of the degree

of
BACHELOR OF TECHNOLOGY

IN

INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

ANNA UNIVERSITY: CHENNAI 600 025

APRIL 2005

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “M/IOBILE AGENTS IN WIRELESS

DEVICES” is the bonafide work of “Ms.AARTHI.J - 71201205001

and Ms.DHIVIYA.D - 71201205011” who carried out the project work

under my supervision.

< Jd.

SIGNATURE 0 E

Dr.S.Thangasamy

HEAD OF THE DEPARMENT

Dept of Computer Science and Engg.
Kumaraguru College of Technology

Coimbatore — 641 006

A e

INTERNAL EXAMINER

ii

SIGNATURE

Mrs.N.Chitra Devi
SUPERVISOR
Senior Lectqrer,
Dept of Iﬁformation Technology

Kumaraguru College of Technology

Coimbatore — 641 006

a. S. e
EXTERNAL EXAMINER

EXCiacE

ACKNOWLEDGEMENT

We express our sincere thanks to Dr.K.Arumugam, B.E
(Hons), M.S. (USA), MIE., Correspondent, Kumaraguru College of
Technology and the management, for proving us an opportunity to
undertake this project work.

We express our profound gratitude to Dr.K.K.Padmanabhan
B.Sc. (Engg)., M.Tech., Ph.D., Principal, Kumaraguru College of
Technology, Coimbatore, for permitting us to undergo a project work.

We are greatly indebted to Dr. S. Thangasamy, Ph.D.,
Professor and Head of the Department of Computer Science and
Engineering, for the immense support he has provided us throughout our
project.

We extend our sincere thanks to our project coordinator
Prof.K.R.Baskaran, B.E., M.S., Assistant Professor, Department of
Information Technology, for his constant support and encouragement.

We would like to express our heart felt thanks to our guide and
Class advisor, Mrs.N.Chitra Devi, M.E., Senior Lecturer, Department of
Information Technology, for her everla§ting counseling and untiring help
throughout our project.

We like to express our deep sense of gratitude to our families

and friends whose help aided the successful completion of the project.

1ii

AT

[“HN ‘1Ae@eny) N SIIA

£q pepinn 109014
[@edamyal
gy
[[paey]
ey Gy ooT o s 1aeq

91018qUII0Y) :998[d

*2101BQUITO))
‘A3orouyoe], JO o8er0p ningerewny ¢ A30[ouyos] UOHBWIONU]
30 Juounteda(‘TOIMO JOMUSS AN ‘TAd(BNIYD'N'SIA JO oouepin3
pue uoIsTAzedns oy} J9pUnN Sn Aq dUOP JI0M [eUISLIO JO PI0OI B ST 93139(]
(A3orouyoa], uomeuofu]) ASofouyod], JO I10[oYded JO JIom 109fo1d
oy se A)Is1oATu() eUUY O} Juswyny [ented ur panmudns ‘ SHOIAHA
SSATMIIM NI SINADV HTIFON,, PIIUS 10ofoid o 181 S1R[0(

1T0S0CIOCIL A VAIAIHA
100S0CI0CIL [MTHLIVY
‘QM

NOILLVIVIOHd

ABSTRACT

This project ‘MOBILE AGENTS IN WIRELESS DEVICES’ is
a prototype agent — based framework that minimizes the load on wireless
link and supports disconnected operations in connections between a
mobile device and a remote host.

The ‘user accesses Remote hosts through a GPRS enabled
handheld device. The device initially submits the request to the Server,
which in turn processes it using the Mobile Agent platform. The Agent
transports itself to the Remote host to fetch the results back to the Server.
Once the results are available at the Server, the user can re-connect to
download the results. This is implemented in a Book Search Application.

The objective of this project is that it reduces communications
over wireless links to overcome low bandwidth and network
disconnection. In addition, it enhances service functionality by operating

without constant user input. Finally, the system is platform independent.

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

ABSTRACT v

LIST OF TABLES ix

LIST OF FIGURES X

LIST OF ABBREVIATIONS xi

1. INTRODUCTION 1

1.1 OVERVIEW 1

1.2 PROBLEM DESCRIPTION 1

2. SYSTEM AND SOFTWARE OVERVIEW 2

2.1. EXISTING SYSTEM AND

LIMITATIONS
2.2 PROPOSED SYSTEM AND 2
ADVANTAGES
2.3 JAVA 2 MICRO EDITION 3
2.4 MOBILE AGENTS 5
2.5 AGLETS WORKBENCH 7
2.5.1 AGLETS 7
2.5.1.1 SYSTEM ARCHITECTURE 8

2.5.1.2 AGLET OBJECT AND LIFECYCLE 9

2.5.1.3 AGENT TRANSFER
PROTOCOL
2.5.2 TAHITI SERVER 11

11

vi

2.6 APACHE TOMCAT 5.0
2.6.1 SERVLETS
3. REQUIREMENT ANALYSIS

3.1 SOFTWARE REQUIREMENTS
SPECIFICATION
3.1.1.1 INTRODUCTION

3.1.1.2 GENERAL DESCRIPTION
3.1.1.3 SPECIFIC REQUIREMENTS
4. SYSTEM DESIGN
4.1 DESIGN DOCUMENTS
4.1.1 USE - CASE DIAGRAM
4.1.2 SEQUENCE DIAGRAM
4.1.3 COLLABORATION DIAGRAM
4.1.4 CLASS DIAGRAM
4.1.5 DATABASE DESIGN
4.1.5.1 TABLE RELATIONSHIPS
5. SYSTEM IMPLEMENTATION
5.1 OPERATING PRINCIPLE
5.2 MODULE DESCRIPTION
5.2.1 USER INTERFACE
5.2.2 COMMUNICATION MANAGER

5.2.3 AGENT GATEWAY

vii

12

13

14

14

14

15

16

18

18

18

19

20

21

22

23

24

24

25

25

26

27

5.2.4 MESSAGING SUPPORT 28
5.2.5 REMOTE HOST DATABASE 28

SYSTEM TESTING AND IMPLEMENTATION 29

6.1 TESTING METHODS 29
6.1.1 UNIT TESTING 29
6.1.2 VALIDATION TESTING 29
6.1.3 OUTPUT TESTING | 30
6.1.4 TEGRATION TESTING | 30

CONCLUSION 31

APPENDIX | 32

REFERENCES 63

viii

LIST OF TABLES

TABLENO. TABLENAME PAGE NO.

1. PUBLISHERS 22
2. TITLES 22
3. TITLEAUTHOR 23

4. AUTHORS 23

X

LIST OF FIGURES

FIGURE NO. FIGURE NAME PAGE NO.
1. | AGLET LIFE CYCLE 10
) COMMUNICATION 11
THROUGH ATP
3. USE CASE DIAGRAM 18
4. SEQUENCE DIAGRAM 19
-5. COLLABORATION DIAGRAM 20
6. CLASS DIAGRAM 21
7. TABLE RELATIONSHIPS 23

8. OPERATING PRINCIPLE 24

LIST OF ABBREVIATIONS

e SRS . Software Requirement Specification
o SDK : Java Development Kit

e API : Application Programming Interface

o J2ME : Java 2 Micro Edition

e GUI . Graphical User Interface

e MIDP : Mobile Information Device Protocol
o WMA : Wireless Messaging API

e MMAPI : Mobile Media API

e SMS : Short Messaging Service

e ASDK . Aglet Software Development Kit

e ATP : Agent Transfer Protocol

o ATCI . Agent Transfer and Communication Interface
e ISBN . International Standard Book Number
e HTTP : Hyper Text Transfer Protocol

e GPRS : General Packet Radio Service

e IDE . Integrated Development Environment
e URL : Universal Resource Locator

Xl .

1. INTRODUCTION
1.1 OBJECTIVE:
The objective of this project is to employ Mobile Agents to
provide a prototype agent based framework that minimizes the load over
wireless links and supports disconnected operations. This is achieved by

implementing a Book Search Agerit application.

1.2 PROBLEM DESCRIPTION:

The Project aims at providing an optimal solution for the
potential problems involved in Network Data Transfer.

The main problem involved in communication from a
Mobile Devicé to Remote Host is the time that that the User has to remain
connected to the network. In conventional systems, the User remains
connected to the GPRS network through out the Search process.

The second problem is the Network congestion encountered
during the Data transfer operation. Conventional systems suffer from low
bandwidth and high load in the process of operation.

The next problem is the Support for Disconnected
operations. Since the User remains connected to the network for a longer
duration there is every possibility for network disconnection. The result
availability cannot be guaranteed on re-connection.

Finally the system to be developed should be Platform

independent to cooperate with geographically separated systems.

2. SYSTEM AND SOFTWARE OVERVIEW

2.1 EXISTING SYSTEM AND ITS LIMITATIONS:
The existing system connects the Mobile device through a
GPRS connection to the Remote host. The Middle layer in this 3-tier

architecture is the Server, which directly looks up in the database of the

remote host. The connection is alive throughout the time of data

transmission from the mobile device to the Remote host and back.

LIMITATIONS:
e Requires the Mobile device to remain connected throughout the
process increasing the total cost of operation
¢ Inability to operate in Low Bandwidth

e High incidence of network errors

2.2 PROPOSED SYSTEM AND ITS ADVANTAGES:

The proposed system introduces an Agent Platform between
the Server and the Remote Host. The GPRS connection is closed once the
User submits the request to the Server. The Server in turn submits the
request to the listening Agent, which retrieves requested information from
the Remote host. The result availability is announced to the User through

an SMS, who then reconnects to download the results.

ADVANTAGES:

¢ Reduces communication over wireless links to overcome
bandwidth and network disconnection

* Enhances service functionality by operating without constant user
input

¢ Platform independant

2.3 JAVA 2 MICRO EDITION
The J2ME Wireless Toolkit supports the development of
Java applications that run on devices compliant with the Mobile
Information Device Profile (MIDP) version 2.0, such as cellular phones,
two-way pagers, and communicators. In addition, the Wireless Toolkit
supports development of applications compliant with the Wireless

Messaging API (WMA) and the Mobile Media API (MMAPI).

Features of the Wireless ToolKit:

The KToolBar, included with the J2ME Wireless Toolkit, is
a minimal development environment with a graphical user interface
(GUI) for compiling, packaging; and executing MIDP applications. There
is a need for is a third-party editor for Java source files and a debugger.

An IDE compatible with the J2ME Wireless ToolKkit, such as
the Sun TM One Studio 4, Mobile Editor, provides even more
convenience. While using the Wireless Toolkit within an IDE, it is
possible to edit, compile, package, and execute Or debug MIDP

applications, all within the same environment.

Compiling, Preverifying, and Debugging:

When compiling MIDlets through the KToolBar (or an IDE
compatible with the toolkit), the source files are compiled using the
J2SETM SDK compiler. Preverification of the compiled files is done
with the Preverifier that prepares class and JAR files and class directories.
Preverification takes place immediately after compilation. It is possible to
debug applications within the environment using the Emulator, which

simulates the execution of the application on various devices.

Packaging:
It is possible to package your MIDlet suite from the
KToolBar or with a compatible IDE.The KToolBar gives the choice of
creating a standard package or creating an obfuscated package that
produces a smaller JAR file by reducing the size of the classes in the suite

through the obfuscation process.

Authenticating and Authorizing MIDlets:

Trusted applications can be created that have permission to
use protected APIs. Permission can also be requested to access network
protocol APIs through the Project Settings dialog box from the
KToolBar. The MIDlet suite can be signed and assigned a security
domain that defines the suite’s authorization level with the Sign MIDlet

Suite window.

Performance Tuning:

The Wireless Toolkit’s Profiler enables us to optimize the
performance of the MIDlet suite by determining where bottlenecks might
be occurring during runtime execution time of the MIDlet suite can bé
improved by examining the time spent in method calls, the number of
times a method is called during runtime, and the amount of time a method
runs compared to the overall runtime of the application. The performance
speed of the application can be adjusted in the Performance panel of the
Project Settings dialog box. Setting the speed features does not
demonstrate how the application would run on an actual device; however,
by adjusting the speed emulation parameters, a better representational

performance of the application on a device can be achieved.

Memory and Network Monitoring:

The Wireless Toolkit provides tools to examine and analyze
memory usage by the application and network transmissions between the
device and the network. It is possible to get an overall view of memory
usage during runtime of the application and get a breakdown of memory
usage per object to see where in the application memory usage can be
optimized.

With the Network Monitor, network transmissions for several types of

network protocols can be examined.

Working With the Emulator:

The J2ME Wireless Toolkit comes with a selection of
emulated devices to run and test the applications on. Representations of
mobile devices are available from the Device list on the KToolBar. The
emulated devices are capable of emulating the features in the CLDC,
MIDP, MMAPI, and WMA specifications. The functionality for an
emulated device through the Preferences window can be set. Various
emulator utilities such as the Profiler, the Network Monitor, the Memory
Monitor, and the Certificate Manager from the Utilities window are also

present.

2.4 MOBILE AGENTS

A mobile agent is a program that can migrate from host to host in a
network of heterogeneous computer systems and fulfill a task specified
by its owner. It works autonomously and communicates with other agents
and host systems. During the self-initiated migration, the agent carries all
its code and the complete execution state with it. Mobile agent systems

build the environment in which mobile agents can exist.

Migration of agents is based on an infrastructure that has to provide
the necessary services in the network. The infrastructﬁre is a set of agent
servers that run on platforms within a possibly heterogeneous network.
Each agent server hides the vendor specific aspects of its host platform
and offers standardized services to an agent that is docking on to such a
server concluding migration. Services include access to local resources
and applications, e.g. traditional web-servers, the local exchange of
information between agents via message passing, basic security services,

°

creation of new agents, etc.

Mobile agents are defined in formal terms by computer scientists,
as, objects that have behavior, state, and location. A subset of behaviors
of every agent is inherited from the model, notably those behaviors that
define the means by which agents move from place to place. Mobile
agent models almost always define a method of interagent messaging as
well. Finally, a mobile agent model is not complete without defining a set
of events that are of interest to the agent during its lifetime. The set of
events varies a bit from model to model, but the following is a list of the

most common ones:

« Creation -- Analogous to the constructor of an object. A handler
for this event should initialize state and prepare the agent for
further instructions.

. Disposal -- Analogous to the destructor of an object. A handler for
this event should free whatever resources the agent is using and
prepare the agent for burial.

. Dispatch -- Signals the agent to prepare for departure to a new
location. The agent itself upon requesting to migrate can generate
this event explicitly, or another agent that has asked this agent to

move can trigger it.

]

« Arrival -- Signals the agent that it has successfully arrived at its
new location and that it should commence performing its duties.

« Communication -- Notifies the agent to handle messages
incoming from other agents and is the primary means of inter-agent

correspondence.

2.5 AGLETS WORKBENCH

The Aglets Workbench, developed at IBM's research labs in Japan,
is aimed at producing stand-alone mobile agents. The complete package
offers a graphical environment for building mobile agent applications in
Java, an agent server, and the specification for an Agent Transfer
Protocol (ATP). The Aglets Workbench supports both mobility and

itinerary.
2.5.1. AGLETS

The Aglet represents the next leap forward in the evolution
of executable content on the Internet, introducing program code that can
be transported along with state information. Aglets are Java objects that
can move from one host on the Internet to another. That is, an aglet that
executes on one host can suddenly halt execution, dispatch itself to a
remote host, and resume execution there. When the aglet moves, it takes
along its program code as well as its data. A built-in security mechanism

makes it safe to host untrusted aglets.
The major System Goals of Aglets are

» Provide an easy and comprehensive model for programming
mobile agents without requiring modifications to Java VM or

native code.

« Support dynamic and powerful communication that enables
agents to communicate with unknown agents as well as well-
known agents.

» Design a reusable and extensible architecture.

« Design a harmonious architecture with existing Web/Java

technology.
2.5.1.1 System Architecture

The Aglets architecture consists of two APIs and two

implementation layers.

o Aglet API
« Aglets Runtime Layer - The implementation of Aglet API
» Agent Transport and Communication Interface

« Transport Layer

The Aglets runtime layer is the implementation of Aglet
API, which provides the fundamental functionality such as creation,
management or transfer of aglets. This layer defines the behavior of APIs
such as Aglet and AgletContext, and can serve multiple AgletContext
objects.

The transport layer is responsible for transporting an agent to
the destination in the form of a byte stream that contains class definitions
as well as the serialized state of the agent. This layer is also defined as an
API, called Agent Transfer and Communication Interface (ATCI), which
allows the Aglets runtime to use the transport layer in a protocol-
independent manner. The implementation of ATCI is responsible for
sending and receiving an agent and establishing a communication

between agents. The current Aglets implementation uses the Agent

Transfer Protocol (ATP), which is an application-level protocol for
transmission of mobile agents. ATP is modeled on the HTTP protocol,
and can be used to transfer the content of an agent in an agent-system-
independent manner. To enable communication between agents, ATP
also supports message-passing.

When an aglet issues a request to dispatch itself to a
destination, the request travels down to the Aglets runtime layer, which
converts the aglet into the form of a byte array consisting of its state data
and its code. If the request is successful, the aglet is terminated, and the
byte array is passed to the ATP layer through the ATCI. The ATP, which
is the implementation of ATCI, then constructs a bit stream that contains
general information such as the agent system name and agent identifier,

as well as the byte array from the Aglets runtime.

2.5.1.2 Aglet Object and Its Life Cycle

The Aglets class provides the basic functionality for a
mobile object, and every mobile object (aglet objects) has to be an
instance of a subclass of the com.ibm.aglet.Aglet class. To be useful, an
aglet has to be instantiated first. There are two ways to create a new
instance of an aglet. The first is to instantiate a completely new aglet from
class definitions by calling AgletContext.createAglet(URL codebase,
String name, Object init). This primitive creates a new instance within the
specified context and initializes it if necessary, then invokes
Aglet.onCreation(Object init) on the created object along with the
initializer object passed to the createAglet primitive. The other way is to
create a copy of an existing aglet by using the Aglet.clone() primitive.
The cloned aglet has the same state as the original one but has a different

AgletID object, an thus a distinct identity.

Once created, an aglet object can be dispatched to and/or retracted from a

remote host, deactivated and placed in secondary storage, then activated

later.
Clone __ContextA ContextB
WDlspatcg PR 4
, 9 " | Dispose
D Retract '
Create| ¢ ,
EE;"S "" — | secondary
ity | storage

— —c—

Figure 1. Aglet Life Cycle

An aglet can dispatch itself to a remote host by calling the
Aglet.dispatch(URL dest) primitive. To be more precise, an aglet
occupies the aglet context and can move from this context to others
during its execution. Because the runtime system may serve multiple
contexts within one Java VM, these contexts can be in the same VM.
Dispatching causes an aglet to suspend its execution, serialize its internal
state and bytecode into the standard form and then to be transported to the
destination. On the receiver side, the Java object is reconstructed
according to the data received from the origin, and a new thread is
assigned and executed.

Aglets support persistency of aglet objects. All mobile aglet
objects can be persistent in nature, because they must be convertable into
a bit-stream; consequently, this stream can be stored in secondary storage.

Unlike normal Java objects, which are automatically

released by garbage collector, an aglet object, since it is active, can

10

decide whether or not to die. If you call the dispose() method to kill the

aglet, onDisposing() is called to perform the finalization suitable for the

current state of the aglet.

2.5.1.3 Agent Transfer Protocol (ATP)

The ATP protocol is based on a request/response paradigm
between agent services. Agent service A establishes a connection with
agent service B, then sends a request to B and waits for the response.
Thus, A acts as a sender (of the request) and B acts as a recipient.

ATP defines four standard request methods for agent services:

« Dispatch
« Retract
« Fetch.
o Message
f ™ DISPATCH [N
__RETRACT >
ATP FETCH ATP
Layer P Layer
MESSAGE >
™ Responst N
Figure 2. Communication through ATP
2.5.2 Tahiti Server

Tabhiti is an application program that runs as an agent server.
Multiple servers (Tahiti) can be run on a single computer by assigning
them different port numbers. Tahiti provides a user interface for
monitoring, creating, dispatching, and disposing of agents and for setting

the agent access privileges for the agent server.

11

All the agents are displayed in the list box in Tahiti. By

selecting one of the list items, the corresponding agent can be controlled.

. Create: Creates a new aglet. A dialog window for the aglet's
URL specification will appear.

. Dialog: Sends a request to an aglet to open its dialog panel.
(When this button is clicked, an onDialog () message is sent to
the aglet)

. AgletInfo: Shows the properties of the agent.

. Dispose: Destroys the agent.

. Clone: Make a copy of the agent. Cloned agent runs on the

same context.
. Dispatch: Sends the agent to another server. After dispatching

agent, original agent on the current server does no more exist on
the current server. The protocol for the destination URL is

Agent Transfer Protocol. It is specified as:

atp://aglets.trl.ibm.com:434

. Retract: Retracts (draw backs) a dispatched agent from a

remote server. First the target server is specified and a list of

agents on the target server will be provided. Then, one of the

aglets from the server can be selected.

2.6 APACHE TOMCAT 5.0

Tomcat 5 implements the Servlet 2.4 and JavaServer Pages 2.0
specifications from the Java Community Process, and includes many

additional features that make it a useful platform for developing and

deploying web applications and web services.

12

2.6.1 Servlets

A Servlet is a Java class used to extend the capabilities of
servers that host applications accessed via a request-response
programming model. Servlets are not tied to a specific client-server
protocol but they are most commonly used with HTTP.

A Servlet Engine provides the runtime environment in which
a servlet executes. It manages the life cycle of servlets from when they
are first created through to their imminent destruction. It executes within
a Java Virtual Machine.
The general rules to be followed while writing a HTTP Servlet:

e Extend HttpServlet class, which implements the Servlet
interface

e Override doGet () - to handle GET requests. Override doPost ()
method to handle POST requests.

e Within the doGet/Post method, an HttpServletRequest object
represents user’s request and an HttpServletResponse object
represents response to the user.

e The response can be written to the user through PrintWriter

object obtained from the HttpServletResponse object.

13

3. REQUIREMENTS ANALYSIS

3.1 SOFTWARE REQUIREMENTS SPECIFICATION
3.1.1. Introduction
3.1.1.1 Purpose:
The purpose of this document is to specify the
requirements of project “MOBILE AGENTS IN WIRELESS DEVICES”,
an agent — based framework that minimizes the load on wireless link and

supports disconnected operations in connections between a mobile device

and a remote host.

3.1.1.2 Scope:
SRS forms the basics for agreement between the client
and the supplier and what the software product will do. It also provides a
reference for the validation of the final project.
Any changes made to the SRS in the future will have to go through

formal change approval process.

3.1.1.3 Definition:
Customer:
A person or organization, internal or external to the
producing organization, who takes financial responsibility for the system.
In a large system this may not be the end user. The customer is the

ultimate recipient of the developed product and its artifacts.

User:

A person who uses the Developed System.

14

Analyst:
The Analyst details the specification of the system's
functionality by describing the requirements aspect and other supporting

software requirements

3.1.1.4 Abbreviation:

SRS . Software Requirement Specification
JDK : Java Development Kit

J2ME . Java 2 Micro Edition

MIDP : Mobile Information Device Protocol
SMS . Short Messaging Service

ASDK . Aglet Software Development Kit
ATP . Agent Transfer Protocol

3.1.2. General Description
2.1Product Overview:
The project aims to connect the Mobile User to the
Remote host Database through the Aglet Platform. The Agent migrates to
the Remote host through a process called Dispatching. It then performs
the r requested search operation local to the Remote Database. This helps
reduce the active connection time of the user being connected.
3.2.2.2 User Characteristics:
The Users of this system include the Common public who
wish to access the Data from a geographically distant host.
3.2.2.3 General Constraints:
The project platform is independent of any operating
system sirice the entire code is written in Java, a platform independent

language.

15

3.2.2.4 General assumptions:

The User has a GPRS enabled mobile phone and has

good GPRS coverage in order to use this system.

3.3.3. Specific Requirements
3.3.3.1 Inputs and Outputs:
The User Interface of the System is provided by thé
MIDlet. The MIDlet prompts for Search and download options.
Depending on the options selected, the data corresponding to the Search
key is entered by the User. The final output is the display of Book

Information from the Database.

3.3.3.2 Functional requirements:
e The system should be able to initiate the Search
operation with the Data.
e The system should display the desired output in the
mobile screen and the data should not get lost during

transmission.

3.3.3.3 System Requirements:
Hardware Requirements:
Processor : Pentium IV
RAM size : 128 MB RAM
Hard disk capacity : 20GB

~ Software Requirements:
Operating System : Windows 2000/XP

Database Used : Microsoft Access
Language - J2SDK 1.4.2_04

16

Mobile Simulator . J2ME Wireless Toolkit
Server : Apache Tomcat 5.0
Agent Platform : Aglet SDK

3.3.3.4 Performance constraints:
The system should be Capable of supporting
disconnected operations in the Internet. The connection time is greatly

reduced on deploying Agents to carry out the Search operation.

3.3.3.5 Software Constraints:

The User mobile needs to be Java enable and capable
of supporting MIDP2.0 protocol.

The Communication Manager requires that J2SDK
1.4.0.2 with Apache Tomcat Server be installed and running in the server
system. The Aglet SDK is to be installed on the Agent Gateway.

The Remote host also has to support the Aglet

platform.

17

4. SYSTEM DESIGN
4.1 DESIGN DOCUMENTS
4.1.1 Use — Case Diagra'm

>

Search By ISBN

T
Search By Author / ‘User\ Download Results

C_

Search By Publisher Search By Title

Figure 3. Use Case Diagram

18

4.1.2 Sequence Diagram

x

User: User

N

Mobile Devicet‘ Server iMessaging] Agent l Remote l
| | i Support | Host |

1 Launch Application |

|
L |
l

| Display Options

Select earch Option and Se d Data

L

|

|

|

|
Submlt Data lj

.

Tr
l
n
4

|
|
|
|
|
|
i
|
|

|
|
|
|
» Retrie}lle Data
|
|
|
|
|

Store Search Results

|
|
|
|
| l
’ iy |nr¥}téate Messaglﬁg

Send LMS that the RLsults are Av ilable
i ‘

|

Display Downioad Option <

lll t!

SLlect Download Optlon
[i
L

|
| gl

1
|
|
|

Ffetrleve Resultrs ~

|

T |
|

n
[
o

v
’ Dlsplay Results ,

Figure 4. Sequence Diagram

This diagram explains the Sequence flow of the Search Application

19

] 4.1.3 Collaboration Diagram

C
\ 1: Launch Application [\

‘ User: User 3: Select Search Option and Send Data
‘ ; ™~ 14: Select Download Optio
| \\.k 4: Select Download Option 4: Submit Data Sorver

1 \\\ 15: Retrieve Results -

—— —

~ /./’_/
2: Display Options - —
13: Display Download Option M°b'||\:°%?l‘é'“ :

16: Display Results
play = /

//7/\
5: Retrieve Data ™.
10: Store Search Resu}s/

6: Create Aglet " =
o 12: Send SMS that the Results.are Available
m‘ //(\\\
L / 11: Initiate Messaging N
Agent — Messaging

Support

9: Dispatch Back

\E: Dispatch

8: Sfr% Database
>

Remote
Host

Figure 4. Collaboration Diagram

This diagram explains the Collaboration between different components of

the Search Application

20

4.1.4 Class Diagram

SearchMid

imainForm : Form
BPdisplay : display
BmainList : List
Blcmd_exit : Command
¥cmd_back : Command
#Acmd_ok : Command
BBname : TextField
Foytes : byte[]
BBU_method : String
FAURL : String
BAsplachScreenAlert : Alert
fZiQResponse : TextBox

ipublic SearchMid()
Eoubiic wid startApp()
B¥pubiic woid pauseApp()
¥ ubliic wid destroyApp()
E8oublic void commandAction()
EBoublic void Start_Tread()
Elpublic void run()
B¥orivate wid readContents1()
B¥orivate woid readContents()
fBorivate void title()
¥private void author()
EBprivate void pub()
E8private void bookisbn()

7y

%

Worker =

sock : DatagramSocket
&30 : DatagramPacket

E¥oublic static void main()

ByTitle_soc
ZiBtype : String
#4Breq : String
&iBname : String
B4Bresult : String
iBsel : String
@iBinfo : String
7 &Rout : PrintWriter

ESpublic void doGet()
E8ioublic wid doPost()

b

SendetAglet

gisimpleltinerary : ltinerary
Bisock : DatagramSocket
BApack : DatagramPacket
B%Bname : String

E¥Binfo : String

BC1 : String

RAc2 : String

#lc3 : string

hpcon : URLConnection
#ihp: URL

Bloubiic void onCreation()

| @public void db()

B¥oublic wid title()
Bpublic woid author()
Epublic void pub()
Eoublic wid isbn()
f@oubiic synchronized void startTrip()
B¥oublic boolean handleMessage()
Blipublic wid sayHelio()

§3public woid atHome()

Figure 4. Class Diagram

21

4.1.5 Database Design

4.1.5.1 Table Design

TABLE NAME: PUBLISHERS

S.NO FIELD NAME DATATYPE
L. PubID Auto Number
2. Name | Text
3. Company Name: Text
4. Address Text
5. City Text
6. State Text
7. Zip Text
8. Telephone Text
9. Fax Text
10. Comments Memo

TABLE NAME: TITLES

S.NO FIELD NAME DATATYPE
1. Title Auto Number
2. Year Published Number
3. ISBN Text
4. PubID Number
5. Description Text
6. Notes Text
7. Subject Text
8. Comments Memo

22 °°

TABLE NAME: TITLE AUTHOR

S.NO FIELD NAME DATATYPE
1. ISBN Text
2. Au_ID Number
TABLE NAME: AUTHORS

S.NO FIELD NAME DATATYPE
1. Au_ID Auto Number

2. Author Text

3. Year Born Number

4.1.5.1 Table Relationship

Name

Company Name
Address

City

State

Zip

Telephone

Fax

Comments

Title

Year Published
1 158N

= {PUbID
Description
Notes

Subject
Comments

Figure 6. Table Relationships

Year Born

5. SYSTEM IMPEMENTATION
5.1 OPERATING PRINCIPLE

‘ Http Conlnli/}lgézztel;)n Agent gateway Mobile
Mobile Agent
device [€7 l Agent > services

A platform

!

Messaging Support Module

Figure 7. Operating Principle

24

5.2 MODULE DESCRIPTION
5.2.1 User Interface

The User Interface is programmed using the J2ME Wireless
Toolkit 2.0.The motive behind using this software, is the Emulator, which
is a Mobile Interface Simulator. The Emulator provides user-interface
functionalities typical to a Mobile Device.

The User Interface programming begins with the coding of
MIDlets. A MIDlet is a MID Profile application. The application must -
extend this class to allow the application management software to control
the MIDlet and to be able to retrieve properties from the application
descriptor and notify and request state changes. The methods of this class
allow the application management software to create, start, pause, and
destroy a MIDlet. A MIDlet is a set of classes designed to be run and
controlled by the application management software via this interface.

The MIDlet employed in the project employs the basic
functionalities as the Top-level option structure for a Book Search

Application,

e [Initiating a New Search

¢ Downloading the Results

When the New Search is initiated, the MIDIet takes in charge of
taking in the Search Criteria. There are four options deciding the key
using which the search is to be performed. They are,

e Title

e Author

e Publisher

25

e ISBN

The User selects one of the above options and enters the
required information in the Text Area that follows. This is submitted to
the Server through HTTP Connection. After submission, the Mobile is
disconnected from the network.

Additional displays include the use of Splash Screen, which

appears when the application is being loaded.

5.2.2 Communication Manager

The Communication Manager constitutes the Server
functionality within the project. The server used is Apache Tomcat 5.0.
This module performs the task of receiving the Search request from the
MIDIet and processing it to be sent over to the Agent Platform.

This functionality is provided by the use of Servlets. Servlets
are Java classes used to extend the capabilities of servers that host
applications accessed via a request-response programming model. The

Servlet used here has to communicate with two programs,

e Submitting MIDlet
e Listening Aglet

Depending on which program is communicating with the
Servlet at a particular instance, it decides on the subsequent action. In
case of MIDlet, it receives the request and stores it locally. This is then
passed on to the listening Aglet. In case of the Aglet communication, it
receives the search results and stores it to be sent back to the User

Interface.

26

5.2.3 Agent Gateway

The Aglet gateway executes agents with the Tahiti server.
This server listens on the specific port to the outgoing responses from the
Servlet. The Aglet platform performs the task of dispatching itself to the
Remote host and performing the Database Search Operation.

The Agent is a piece of code that can transport itself over the
network, to a remote host to perform a specific task. Since the Aglet
resides local to the Database, the search is less time consuming. The
Tahiti server implements an agent protocol called ATP (Agent Transfer
Protocol). This allows each system to be designated in terms of the URL
as,

atp://< System Name>: <Port Number>

The Aglet dispatches itself to the ATP URL of the remote
host where the database resides. This code transportation allows the
Remote host to perform the Search more cost-effectively. The Aglet
connects to the Local database through the JDBC Driver. The Database
query changes depending upon the request sent from the User. The results
from the database are retrieved in a Record Set Objecf before being
processed. They are then retrieved in the appropriate form to be sent to
the Server.

Once the search has been completed, the Aglet returns to the
Agent Gateway. The Aglet then establishes the URL connection with the
Servlet. Using this connection, the search results are sent back to the
Servlet. The availability of the results is intimated to the Mobile Device
through the form of an SMS (Short Me;saging Service). This messaging
is initiated from the Aglet through the Socket Connection.

27

5.2.4 Messaging Support

This module interacts with both the Aglet as well as the
Mobile Device. The module is of high importance as it performs the task
of intimating the User of the Result Availability.

The Aglet searches the Database for the request submitted
and returns back to the Agent Gateway with the results. This is then
submitted to the Servlet through the URL connection. The availability of
the results is indicated to the Mobile Device through an SMS. The Aglet
initiates this action through the Messaging Support Module. When the
results are submitted to the Servlet, the Aglet initiates messaging in this
module. This in turn sends the message to the Mobile Device. The User
can then download the Results from the Servlet, by selecting the

Download option in the User Interface.

5.2.5 Remote Host Database
The Database in the Remote Host is in Microsoft Access
2000. The entire data is split into four tables. Each of the tables has a
significant relationship with one another. This makes the necessary data
available to the user with the use of simple SQL queries.
The creation of the database involved creation of the tables,

establishing relationships and finally collection and addition of relevant

data.

28

6. SYSTEM TESTING AND IMPLEMENTATION

The System Testing deals with the process of testing the system as
a whole. This is done after the integration process. The entire system 18
tested by verifying each module frdm top to bottom. The verification and
validation process are being carried out. The errors that occur at the

testing phase are eliminated and a well functioning system is developed.

6.1 TESTING METHODS
6.1.1 Unit Testing:

It focuses verification effoert on the smallest unit of software
design, the Module. The modules are tested separately during
programming stage itself.

Each and every module is tested separately to check if its
intended functionality is met. Some unit testing performed are, |

- Checking the proper working of the system information and
process list retrieval modules in the User Interface module

- Checking for proper connectivity between Mobile and Server and
between the Server and Agent

- Ensuring that the Messaging support module functions
independently without interfering with other functions.

Verifying the integrity of the MIDlet interface and ensuring

correctness of command transmission

6.1.2Validation Testing
Validation testing can be defined in many ways but a simple

definition is that validation succeeds when the software functions in a

manner that can be reasonably expected by the users.

29

After a validation test has been conducted one of the two
possible conditions exists: :
o The function or the performance characteristics confirm to
the specification and are accepted
e Deviation from the specification is uncovered and the

deficiency list is created

6.1.3 Output Testing
After performing the validation testing the next step is output
testing of the proposed system since no system is useful if it does not
produce the required output in the specific format. The outputs generated
are displayed by the system under consideration are tested by asking the

users about the formats required by them.

6.1.4 Integration Testing
It is the testing performed to detect errors on interconnection
between modules. Here, all the modules pertaining to the Mobile, Server
and Agent are combined to form the integrated applications. This is tested
to ensure that they work in synchronization and without interference from

one another.

30

7. CONCLUSION

The Project “Mobile Agents in Wireless Devices” uses an Agent -
based structure to reduce Network load and latency. The project
demonstrates these features through the use of a Book Search
Application. The application entailed the use of the Aglet Workbench to
Create and Dispatch Agents to the Remote host Database. The agent
achieves this objective locally at a distant host. Thus it significantly
reduces the connection time of the User by notifying the result
availability through an SMS. It further enhances service functionality by

operating without constant user input.

31

8. APPENDIX

APPENDIX A - SAMPLE CODE
SearchMid.java — MIDlet File

// MIDlet File

import javax.microedition.midlet.*;

import javax.microedition.io.*;

import javax.microedition.lcdui.*;

import java.io.*;

import java.lang.Object;

import java.util.*;

public class SearchMid extends MIDlet

CommandListener,Runnable {

private Form mainForm;
private static Display display;
private List mainList;

private List Options;

implements

private final static Command CMD_EXIT = new Command("Exit",

Command.EXIT, 1);

private final static Command CMD_BACK = new Command("Back",

Command.BACK, 1);

private final static Command CMD_OK = new Command("ok",

Command.OK, 1); °
private TextField Bname;
private String Binfo = new String();
private String Breq = new String();
private String AN = new String();

32

private String reply;
private String Tmp=new String();
Datagram dg;
byte[] bytes;
/** user interface alert component. */
Alert splashScreenAlert;
// Wait for 2sec
static final int DefaultTimeout = 2000;
Image splashScreen;
boolean imageLoaded;
// The current command processing thread.
private Thread commandThread;
// The URL to GET from the network.
private String URL;
// URL Method.
private String U__Method;
/[Final output screen box
TextBox QResponse;
public SearchMid() {

display = Display.getDisplay(this);
QResponse = new TextBox("SEARCH BOOK","Data sent for
processing please wait...",100, TextField. ANY);
Bname= new TextField("ENTER TEXT :","", 50, TextField. ANY);
try { |
splashScreen =
Image.createImage("/pic/sp.png");
imagelLoaded = true; |

} catch (java.io.IOException ex) { }

33

splashScreenAlert = new Alert("Welcome to Book Search”, "",

splashScreen, AlertType. INFO);

splashScreenAlert.setTimeout(DefaultTimeout);

public void startApp() {

String[] stringArrayl = {
"New Search",
"Download Results",
b
mainForm = new Form("Text Field");
mainForm.addCommand(CMD_BACK);
mainForm.addCommand(CMD_OK);
mainForm.setCommandListener(this);
Image[] imageArray = null;
try {
// load the duke image to place in the image array
Image icon = Image.createlmage("/pic/Icon.png");
// these are the images and strings for the choices.
imageArray = new Image(] {‘
icon,
icon,
icon,
icon
b
} catch (java.io.IOException err) {

// ignore the image loading failure the application can recover. }

34

Options = new List("Options”, Choice. EXCLUSIVE,
stringArray1,null); |

Options.addCommand(CMD_EXIT);

Options.addCommand(CMD_OK);

Options.setCommandListener(this);

String[] stringArray = {

"Title",

"Author",

"Publisher”,
"ISBN" ¥
mainList = new List("Search Book By", Choice.IMPLICIT,

string Array,imageArray);

mainList.addCommand(CMD_BACK);
mainList.setCommandListener(this);
mainForm.append(Bname);
mainForm.setCommandListener(this);

display.setCurrent(splashScreenAlert,Options);

// Invoked when Application is Paused
public void pause App() {

}

// Invoked when Application is Destroyed

public void destroyApp(boolean unconditional) {
}

35

public void commandAction(Command ¢, Displayable d)
{
if (d.equals(Options))
{
if (c == CMD_OK)
{

this.Breq = Options.getString(Options.getSelectedIndex());
if("New Search".equals(Breq))

{
Breq="Search";
display.setCurrent(mainList);

}
else if("Download Results".equals(Breq))

{
Breq="Download";
try{
//URL to which data are to be directed
URL="http://localhost:8080/servlets-
examples/servlet/ByTitle_soc?Btype=]2ME&Breq=Download";
//URL Method |
U_Method = "GET";
| Start_Tread();
QResponse.addCommand(CMD_BACK);
QResponse.setCommandListener(this);
display.setCurrent(QResponse);
}catch(Exception e){ }
}
} else if (c == CMD_EXIT)
{

36

}

Bname.setString("");

display.setCurrent(mainList);

)

else if (d.equals(mainList))

{

// 1n the main list

}

if (¢ == List. SELECT_COMMAND)
{

this.Binfo = mainList.getString(mainList.getSelectedIndex());
display.setCurrent(mainForm);

} else if (c == CMD_BACK)
{

display.setCurrent(Options);

}

else if (d.equals(mainForm))

{
if (c == CMD_OK)

{

try{ .
this. AN=Bname.getString();

StringBuffer b=new StringBuffer();
int i;
for(i=0;i<AN.length();i++)

{

if(AN.charAt(i)=="")

{
b.append("%20"); }

37

else
b.append(AN.charAt(i));
}
String C22=""+b;
String textstr ="Data sent for processing please wait..."; |
QResponse.setMaxSize(textstr.length());A
QResponse.setString(textstr);
//URL to which data are to be directed
| URL="http://localhost:8080/servlets-
examples/servlet/ByTitle_soc?Btype=J2ME&Bname="+C22+"&Binfo="
‘ +Binfo+"&Breq="+Breq;
‘ //URL Method
i U_Method = "GET";
| Start_Tread();
QResponse.addCommand(CMD_BACK);
QResponse.setCommandListener(this);
display.setCurrent(QResponse);
}catch(Exception e){}
} else if (c == CMD_BACK)
{
Bname.setString("");

display.setCurrent(mainList);

}
} else if (d.equals(QResponse))
{
if (c == CMD_BACK)

{

Bname.setString("");

display.setCurrent(Options);

38

if (c == CMD_EXIT)
{

destroyApp(false);
notifyDestroyed();

}

//Function invoked when threads are required.

public void Start_Tread(){
/[Thread starts here
synchronized (this) {
if (commandThread != null) {

return; // process only one command at a time
}
commandThread = new Thread(this);

commandThread.start();

//Funtion invoked when new.thread is created
public void run() {
readContents(U_Method);
readContents1();
synchronized (this) {
// signal that another command can be processed

commandThread = null;

bl

39

private void readContents1()

{
String reply=new String();
try{
DatagramConnection dc=(DatagramConnection)

Connector.open("datagram://localhost:4444");
bytes=new byte[1000];
String req;
req=new String("sdsa");
bytes=req.getBytes();
dg=dc.newDatagram(bytes,bytes.length);
dc.send(dg);
dg=dc.newDatagram(1000);
dc.receive(dg);
dc.close();
reply=new String(dg.getData(),0,dg.getLength());
}
catch(Exception e){ }
QResponse.setMaxSize(reply.length());
QResponse.setString(reply);

// Read the content of the page for both HTTP request (GET or POST)
private void readContents(String request) {

StringBuffer buff = new StringBuffer();

HttpConnection conn = null;

OutputStream os = null;

InputStream is = null;

long len = -1; // length of input stream

40

int ch=0; //Character read through Input stream in ascii.
try{
// URL is opened and typecasted to HttpConnection
conn = (HttpConnection)Connector.open(URL);
/Il Set the request method as POST or GET
conn.setRequestMethod(request);
//open the input stream.
is = conn.openlnputStream();
//getting the length of theinut stream
len=((HttpConnection)conn).getLength();
/' If Content is not empty
if (len !=-1) {
// Read exactly Content-Length bytes
for (inti=0; i< len; i++) {
if ((ch = is.read()) !=-1) {
buff.append((char)ch);

}
}

else {
if (len==-1){
len=100;
}
byte data[] = new byte[(int)len];
int n = is.read(data, 0, data.length);
for (inti=0;1i<n;i++) {
ch = data[i] & 0x000000ff;
buff.append((char)ch);
} }

41

Tmp = ""+bulff;
QResponse.setMaxSize(Tmp.length());

QResponse.setString(Tmp);
if("Download".equals(Breq))
{

i if("Title".equals(Binfo))

| title();

else if("Author".equals(Binfo))
author();

else if("Publisher".equals(Binfo))
pub();

else if("ISBN".equals(Binfo))
bookisbn();

}

catch(IOException ioe){ }
//Closing the connections

if (conn != null) {

try {
is.close();
o0s.close();
}
catch (Exception ce) {}
}
}
private void title()
{ try
{

String t=new String();

42

StringBuffer isbn=new StringBuffer();

intij;

for(i=0;i<(Tmp.length()-1);i++)

{

if(Tmp.charAt(i)=="!")

{

}

isbn.append("TITLE:");
for(j=i+1;(Tmp.charAt(j)!='@");j++)
{

isbn.append(Tmp.charAt(jo));

}
isbn.append("\n");

if(Tmp.charAt(i)=="@")

{

}

isbn.append("ISBN:");
for(j=i+1;(Tmp.charAt(j)!="*");j++)
{

isbn.append(Tmp.charAt(j));
}
isbn.append("\n");

if(Tmp.charAt(i)=="*")

{

isbn.append("PRICE:");

for(j=i+1;(Tmp.charAt(j)!=""");j++)

{ v
isbn.append(Tmp.charAt(j));

43

isbn.append("\n\n");

)

t=""+isbn;
QResponse.setMaxSize(t.length());
QResponse.setString(t);
}catch(Exception e){ }

private void author ()

{

// Contains printing format for Searching By Author Name

}

private void pub ()
{

// Contains printing format for Searching By Publisher Name

}

private void bookisbn ()

{
// Contains printing format for Searching By ISBN

}

44

ServletAglet.java — Aglet File

// Aglet File

import com.ibm.aglet.*;

import com.ibm.aglet.event.*;

import com.ibm.aglet.util. *;

import com.ibm.agletx.util.Simpleltinerary;
import java.lang.InterruptedException;
import java.io.Externalizable;

import java.io.ObjectInput;

import java.io.ObjectOutput;

import java.io.IOException;

import java.io.*;

import java.sql.*;

import java.util.*;

import java.net.*;

import java.awt.*;

import java.awt.event.*;

import java.util. Enumeration;

public class ServletAglet extends Aglet {
StringBuffer buf=new StringBuffer();
String home = null;
Simpleltinerary itinerary = null;
String Bname=new String();
String Binfo=new String();
String Cl=new String();
String C2=new String();
String C3=new String();

45

String ser=new String();

String C4=new String();

static DatagramSocket sock;

static DatagramPacket p;

static String str,addr;

String destination=null;

public void onCreation(Object init)

{

itinerary = new Simpleltinerary(this);

home = getAgletContext().getHostingURL().toString();

try

{

URL hp= new URL("http://90.0.1.26:8080/servlets-
examples/servlet/ByTitle_soc?Btype=AGENT&Bsel=name");

URLConnection hpcon =hp.openConnection();

DatalnputStream | in=new
DatalnputStream(hpcon.getInputStream()); |

ser=in.readLine();

StringTokenizer st=new StringTokenizer(ser,"*");

while(st.hasMoreTokens()) ‘

{

Binfo=st.nextToken();

Bname=st.nextToken();

| .
}catch(Exception e){ }

setText("Reading the Search value fro the servlet,.....");

System.out.println(Bname+Binfo);

waitMessage(10000);
startTrip();

46

}

public void db()
{
setText("Searching database,.....");
waitMessage(10000);
if("Title".equals(Binfo))
title();
else if(" Author".equals(Binfo))
author();
else if("ISBN".equals(Binfo))
isbn();
else if("Publisher".equals(Binfo))
pub();
}
public void title()
{
// JDBC driver
String driverName = "sun.jdbc.odbc.JdbcOdbceDriver";
// JIDBC connection URL

String connectionURL = "jdbc:odbc:bsearch";
Connection conn = null;

Statement stmt = null;

String sqlStatement = null;

ResultSet rs = null;

ResultSetMetaData rsmd = null;

int rowCount = Q; //To store no of rows

47

try{

Class.forName(driverName);

conn = DriverManager.getConnection(connectionURL,
"

stmt = conn.createStatement();

sqlStatement = "SELEC°T titles.isbn as a,titles.title

",

b,titles.price as ¢ from titles where titles.title like " + Bname + "%'"";
rs = stmt.executeQuery(sqlStatement);
rsmd = rs.getMetaData();
int 1;
StringBuffer b;
while (rs.next())
{
rowCount++;
C1 = rs.getString("a");
C2 =rs.getString("'b");
b=new StringBuffer();
for(i=0;i<C2.length();i++)
{
if(C2.charAt(i)=="")
{
b.append("%20");
}
else
b.append(C2.charAt(1));
}
String C22=""+b;
C3 = rs.getString("'c");

43

"

as

buf.append("!"+C22+"@"+C1+"*"+C3);
}
buf.append("!");
rs.close();
stmt.close();

conn.close();

catch (Exception e)

{

e.printStackTrace();
}

}

public void author()

{

// Performs Database Search operation with the Author key

}
public void pub()

{
// Performs Database Search operation with the Publisher key

}
public void isbn()

{
// Performs Database Search operation with the ISBN key

public synchronized void startTrip()

{
// get the address for trip

49

try{ |
destination = "atp://its251:4434";
itinerary.go(destination, "sayHello");
}

catch(Exception e){ }
}

public boolean handleMessage(Message msg) {
if (msg.sameKind("atHome")) {
atHome(msg);
} else if (msg.sameKind("sayHello")) {
sayHello(msg);
} else {
return false;

}

return true;

public void sayHeilo(Message msg) {

// try back home

try {
db();
setText("I'll go back to.. " + home);
waitMessage(1000); /l 1 second
/I Go back home and Send "atHome" message to

owner this

itinerary.go(home, "atHome");

} catch (Exception ex) {

ex.printStackTrace();

50

| public void atHome(Message msg) {
setText("I'm back."); /I greetings
| String Result =buf.toString();

try

{

int c;

Socket s= new Socket("90.0.1.26",1234);

InputStream in=s.getInputStream();

OutputStream out=s.getOutputStream(); |

String str=new String("Results are available. Pléase
download it!!"); |

byte Buf[]=str.getBytes();

out.write(Buf);

out.flush();

s.close();

jcatch(Exception e){ }

try

{

URL hp= new URL("http://90.0.1.26:8080/servlets-
examples/serviet/ByTitle_soc?Btype=AGENT&Bsel=result&Bresult="+
Result);

URLConnection hpcon =hp.openConnection();

DatalnputStream In=new
DatalnputStream(hpcon.getInputStream());

String Bnamel 1=in.readLine();

51

System.out.printin(Bnamel1);
}catch(Exception e){ }
/lwaitMessage(5 * 1000); // show message, 2 seconds
dispose(); // dispose it self
) v

Bytitle_soc.java — Servlet

//Servlet File

import java.sql.*;

import java.util.*;

import java.io.*;

import javax.servlet.http.*;

import javax.servlet.*;

import java.net.*;

import java.lang.*;

public class ByTitle_soc extends HttpServlet
{

String Btype=new String();

String Breg=null;

String Bname=null;

String Bresult=new String();

String Bsel=null;

String Binfo=new String();

String abcl;

public void doGet(HttpServletRequest req,HttpServietResponse res)

throws ServletException,JIOException

{

52

res.setContentType("text/html");
PrintWriter out = res.getWriter();

//Get value of Query String Variable
Btype=req.getParameter("Btype");

//To process request from J2ME user
if("J2ME".equals(Btype))
{
this.Breq=req.getParameter("Breq");
if("Search".equals(Breq))
{
this.Bname=req.getParameter("Bname");
this.Binfo=req.getParameter("Binfo");

out.write("Your Request is Accepted. Thank You");

}
else if("Download".equals(Breq))

{
if("".equals(this.Bresult))

out.write("Please Retry after some time.Network Busy!!!1");

else

out.write(this.Bresult);

//To submit/receive data to/from Agent

} else if("AGENT".equals(Btype))

53

| Bsel=req.getParameter("Bsel");
1
if("name".equals(Bsel))

{

out.write(this.Binfo+"*"+this.Bname);

}

else if("result".equals(Bsel))
{

this.Bresult=req.getParameter(" Bresult");
out.write(Bresult);

1

} else

| out.write("Sorry Your Request cannot be processed now. Please try

after some time");

}

54

Worker.java — Messaging Support

import java.io.*;
import java.net.*;
import java.util.*;

import java.lang.*;

public class Worker

{

static DatagramSocket sock;

static DatagramPacket p;

static String str,head,req,uname,pwd,addr;

static boolean b,reply;

public static void main(String a[]) throws Exception
{

sock=new DatagramSocket(4444);
Date d=new Date();
p=new DatagramPacket(new byte[1000],1000);
sock.receive(p);
addr=p.getAddress().toString();
str=new String(p.getData(),0,p.getLength());
long j2meTime=d.getTime();
System.out.print(d.getTime());
StringBuffér buf=new StringBuffer();
intc; .
ServerSocket sc= new ServerSocket(1234);

Socket s= sc.accept();

InputStream in=s.getInputStream();

55

OutputStream out=s.getOutputStream();
while((c=in.read())!=-1)

{

buf.append((char)c);
}
s.close();

String reply = ""+buf;

System.out.println(reply);

byte[] bytes=reply.getBytes();

p=new)
DatagramPacket(bytes,bytes.length,p.getAddress(),p.getPort());

sock.send(p); |

long recTime=System.currentTimeMillis();

System.out.println(System.currentTimeMillis()); |

long diff=((recTime-j2meTime)/1000);

System.out.println("The time difference” + diff + " seconds");

56

APPENDIX B - SCREEN SHOTS

APPLICATION STARTUP

57

USER OPTIONS

£1 +5556000 - DefaultColorPhon

@
Opownload Resuits

e

58

SEARCH OPTIONS

4 -5550000 - DefautiColorPhone
 MIDlet “Help

59

SMS RECEPTION

3

60

TITLE:101DatabaseExercises
{SBN:0-0280074-6-4.
PRICE:11.0000

TITLE:101 Database Exercises
ISBN.0-0706146-6-0
PRICE:10.0000

TITLE: 101 Questions About dBASE Il :
Software Application Guide
ISBN;0-1363489-0-4

PRICE: 20.0000

TITLE:101. Questions About dBASE I
ISBN:0-1363481.6-1
PRICE:17.0000

RESULT DISPLAY FOR - SEARCH BY TITLE

61

AGLETS - TAHITI GUI

62

REFERENCES

Bill Venners , ‘Solve real problems with aglets, a type of mobile
agent’ in JavaWorld

Bill Venners, ‘Under the Hood: The architecture of aglets’ in
JavaWorld

Bret Sommers, ‘Agents: Not just for Bond anymore’ in
JavaWorld |

Danny Lange and Mitsuru Oshima, ‘Programming and Deploying
Java™ Mobile Agents with Aglets™’, Addison Wesley, 1998,
(ISBN: 0-201-32582-9)

George Lawton , ‘Agents to roam the Internet’ in SunWorld
Online :
http://www.javaworld.com/javaworld/jw-04-1997/jw-04-
agents.html

http://www.javaworld.com/javaworld/jw-04-1997/jw-04-
servlet.htmli

http://www.sun.java.com
http://www.trl.ibm.co.ip/aglets
Jonarthan Knudson, ‘Wireless Java Programming with J. 2ME 2.0°

LN
B “_:‘\5‘»

w

LGSR
NS

63

