) ;“{"*kﬁ
A PROJECT REPORT 4‘3"‘;{%‘\}
\ Dl
Submitted by Nmpate f)b)*
_ f
KRITHIGA.M 71201205025 ¢

LAKSHMI NAIR 71201205026

in partial fulfillment for the award of the degree
of
BACHELOR OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

ANNA UNIVERSITY:: CHENNAI 600 025

APRIL 2005

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “REMOTE-ADMIN SERVICE
CONTROL” is the bonafide work of “Ms. KRITHIGA.M and
Ms. LAKSHMIN NAIR” who carried out the project work under my

supervision.

ALy -

SIGNATURE ‘7" O GNATURE
Dr.S.Thangasamy Mr.K.R.Baskaran
HEAD OF THE DEPARMENT SUPERVISOR

Assistant Professor

Computer Science and Engineering Depé . of INFORMPATION TECRNGLOGY
Kumaraguru College of Technology Kumaraguru College of Technolo;
Coimbatore — 641006 Coimbatore — 641006

The candidates with University Register Nos. 71201205025, 71201205026

were examined by us in the project viva-voce examination held
on__ (1. 04 9008

Wz\uw/ fho

INTERNAL EXAMINER EXTERNAL EXAMINER
1 o (6504

ABSTRACT

The Remote-Admin Service Control System has been designed for
anyone who wishes to have control of their OS anywhere by using a GPRS
enabled Mobile Phone. In order to control the OS, we make use of an
intermediate server to transmit the commands between the Mobile and the
PC to perform the necessary operations. The OS services and processes can
be controlled through the Mobile.

Multiple users can use the intermediate server (one OS can be
controlled by only one mobile at a time). Initially, both the mobile user and
the PC client is registered with the intermediate server. The intermediate
server accepts the request ffom the mobile and recognizes the command and
sends it to the PC Client where it is executed.

Finally, the Remote Admin Service Control System provides a user
friendly interface for remote users. It also focuses on security aspects by

allowing only authorized mobile users to access the PC.

ACKNOWLEDGEMENT

We wish to express my sincere thanks to Dr.K.K.Padmanaban
Ph.D., Principal, Kumaraguru College of Technology, Coimbatore for
permitting us to undertake this project.

We express our deep sense of gratitude to Dr.S.Thangasamy Ph.D.,
Head Of the Department, Computer Science and Engineering, for his
valuable guidance, assistance. and encouragement for the successful
completion of this project.

We also extend our heartfelt thanks to our course Co-coordinator and
our guide Mr.K.R.Baskaran, Assistant Prof., Department of Information
Technology for spending his time with us and helping us out during the
phases of this project.

We thank all the teaching and non-teaching staff of our department for
providing us the technical support in the duration of our project.

We also thank all our friends who helped us to complete our project

successfully.

DECLARATION

Krithiga.M 71201205025
Lakshmi Nair 71201205026

Declare that the project entitled “REMOTE ADMIN SERVICE
CONTROL”, submitted in partial fulfillment to Anna University as the
project work of Bachelor Of Technology (Information Technology) Degree,
is a record of original work done by us under the supervision and guidance
of Mr.K.R.Baskaran, Assistant Prof., Department of Information

Technology , Kumaraguru College Of Technology, Coimbatore.

Place: Coimbatore (\/\
Date : @)@Q\/‘
_ [Krithiga.M]
B
[Lakshmi Nair]
Project Guided by

[Mr.K.R.Baskaran.}

CHAPTER NO.

TABLE OF CONTENTS

TITLE

ABSTRACT

LIST OF TABLES
LIST OF FIGURES
INTRODUCTION

1.1 Description

1.2 Problem Description
1.3 Objectives of Project
SYSTEM ANALYSIS
2.1 Feasibility Study

2.1.1 Existing System and Limitations

2.1.2 Proposed System and Advantages

2.2 Hardware Requirements
2.3 Software Requirements

2.4 Software Overview

2.4.1 Java 2 Micro Edition

2.4.2 Visual Basic

2.4.3 Introduction to Java

SYSTEM DESIGN

3.1 Fundamental Design Concepts

3.2 Database Design
3.2.1 Table Design
3.3 Overall Architecture

PAGE

VIII
VIII

O AN N L v B WW W N

—_ et e et el e
lo IR e N © N = N S

3.4 UML Diagrams 19

CHAPTER NO. TITLE PAGE
3.4.1 Use-Case Diagram | 19
3.4.2 Class Diagram 20
3.4.3 Interaction Diagram 21
3.4.4 Collaboration Diagram 22
4. SOFTWARE IMPLEMENTATION MODEL 23
4.1 Module Description 23
4.1.1 Mobile Server Connection 23
4.1.2 Client User Interface Design 23
4.1.3 Intermediate Server Connection 24
4.1.4 Invoking Admin Services 24
4.2 Input/Output Design Formats 28
4.2.1 Client Side Logging in 28
4.2.2 Mobile User End 28
5. PRODUCT TESTING 29
5.1 Testing Methods 29
5.1.1 Unit Testing 29
5.1.2 Validation Testing 30
5.1.3 Output Testing 30
5.1.4 Integration Testing 30
6. FUTURE ENHANCEMENTS 31
7. CONCLUSION 32
8. APPENDIX 33

9. REFERNCES 63

LIST OF TABLES

TABLE NO TABLE NAME PAGE NO
3.2.1 User_access 17
LIST OF FIGURES
FIGURE NO FIGURE DESCRIPTION PAGE NO
3.3.1 Overall Architecture 18
3.3.2 ' Use Case Diagram 19
3.33 Class Diagram 20
334 Interaction Diagram 21
3.3.5 Collaboration Diagram 22
8.1 Main Screen 58
8.2 Login Screen 59
8.3 Registration Form 60
8.4 Mobile User Screen 61

8.5 Display of Services 62

1. INTRODUCTION

1.1 DESCRIPTION:

The main aim of the project is the remote control of administrator
services in the PC. The command for the various services to be controlled are
sent or selected through the remote mobile user, then passed on to the
intermediate server and finally invoked in the client side user. The project
involves the controlling of a single PC by the corresponding registered mobile
user. Both the mobile and the PC should be registered in order to control the

services.

1.2 PROBLEM DESCRIPTION:

This Project tries to envisage the ability to control the administrator
services of the PC when its user is notophysically present in front of the system.
The Client initially registers itself to the system using the registration form .An
already registered user gets connected to the intermediate server the moment he
signs in.

At the other end, the mobile user enters his username with which he has
already registered and the corresponding password. Both the user name and the
password go to the server for verification where it is checked with the database
that stores the username and password of every registered user.

The admin service that the user wishes to control is selected from the
mobile. Each command has a particular header attached to it .When the selection
is made the header is passed to the server and finally given to the client side .At
the client side the corresponding service is invoked when the header is

recognized .The same is followed when a service is to be stopped .

1

In addition to the admin services that are to be invoked the “File open”
application is also invoked when the header is recognized at the client side , shell
command is used to open the specified file for the user at the PC.

The user operating the PC currently can also be recognized and
information is sent to the mobile user if asked for.

Other operations such as shut down and log off are also invoked in case of

emergency from a remote location.

1.3 OBJECTIVES OF THE PROJECT

The main objective of the project is as listed:

e To control the admin services of the PC from a remote location
e To open a file for the user at the client side

e To log off and shut down the system in case of emergency

e To get information about the user accessing the PC at any

instant.

2. SYSTEM ANALYSIS

This is the phase where all the requirements needed for developing and
implementing the project is gathered and placed as documentation for further
reference. This serves as a manual for the users for easy use of the system. For

implementing this project the needed requirements are:

2.1 FEASIBILITY STUDY
The main objective of the feasibility study is to test the technical
feasibility of developing a computer system. The assessment of technical
feasibility is based on the outline requirements of the system requirements in
terms of inputs, outputs, files, programs and procedures. The system is built
with J2ME technology (mobile end), java (intermediate server) and Visual

Basic (client side).

2.1.1 EXISTING SYSTEM AND ITS LIMITATIONS:

As of now, facilities are available to access any information

from the internet remotely without the help of a PC through the mobile using the
GPRS connection but no such system exists that can control the administrator
services with the help of a mobile through an intermediate server. The system
that has been designed in this project enables the control of these services even

when the user is not present around the system.

LIMITATIONS:

* Requires the administrator to be physically present near the PC

to control the services

2.1.2 PROPOSED SYSTEM AND ITS ADVANTAGES:

The proposed system focuses on the shortcomings of the
conventional network monitoring and handling kits. In addition to carrying on
the basic functionalities of the conventional systems ‘Mobile Admin’ aims to
bring about a new system that is more flexible, user friendly and allows the
administrator to remain mobile while having total control over the network. This

process is made effective by working on the drawbacks of the previous system.

ADVANTAGES :
¢ Allows the mobile user to control his network from anywhere in
the world as long as he has a GPRS connection.
¢ Includes a wide array of functions to perform commonly used
functions with an extremely user friendly interface which

requires no training

2.2 HARDWARE REQUIREMENTS:

Processor : Pentium IV
Speed : 2.2GHz
RAM size : 128 MB RAM

Hard disk capacity : 40GB

2.3 SOFTWARE REQUIREMENTS:

2.3.1 Mobile User End:

Operating System Windows XP
Database Used Microsoft Access
Language : J2ME Wireless Toolkit

2.3.2 Intermediate Server

Operating System : Windows XP
Database Used : Microsoft Access
Language : JDK 1.4, Java
2.3.3 PC Client End

Operating System Windows XP
Database Used : Microsoft Access

Language ; Visual Basic 6.0

2.4 SOFTWARE OVERVIEW

2.4.1 Java 2 Micro Edition (J2ME)
The J2ME Wireless Toolkit supports the development of Java

applications that run on devices compliant with the Mobile Information Device
Profile (MIDP) version2.0, such as cellular phones, two-way pagers, and
communicators. In addition, the Wireless Toolkit suppofts development of
applications compliant with the Wireless Messaging API (WMA) and the Mobile
Media API (MMAPI).

2.4.1.1 Features of theOWireless Toolkit:
The KToolBar, included with the J2ME Wireless Toolkit, is

a minimal development environment with a graphical user interface (GUI) for
compiling, packaging, and executing MIDP applications. The only tools there is

a need for is a third-party editor for Java source files and a debugger.

An IDE compatible with the J2ME Wireless Toolkit, such as
the Sun TM One Studio 4, Mobile Editor, provides even more convenience.
While using the Wireless Toolkit within an IDE, it is possible to edit, compile,
package, and execute or debug MIDP applications, all within the same

environment.

2.4.1.2 Compiling, Preverifying, and Debugging:
When compiling MIDlets through the KToolBar (or an IDE
compatible with thetoolkit), the source files are compiled using the J2SETM

SDK compiler.Preverification of the compiled files is done with the Preverifier

“

that prepares class and JAR files and class directories. Preverification takes place
immediately after compilation. It is possible to debug applications within the
environment using the Emulator, which simulates the execution of the

application on various devices.

2.4.1.3 Packaging:
It is possible to package your MIDlet suite from the
KToolBar or with a compatible IDE.The KToolBar gives the choice of creating a
standard package or creating an obfuscated package that produces a smaller JAR
file by reducing the size of the classes in the suite through the obfuscation

process.

2.4.1.4 Authenticating and Authorizing MIDlets:

Trusted applications can be created that have permission to
use protected APIs. Permission can also be requested to access network protocol
APIs through the Project Settings dialog box from the KToolBar. The MIDlet
suite can be signed and assigned a security domain that defines the suite’s

authorization level with the Sign MIDlet Suite window.

2.4.1.5 Performance Tuning:

The Wireless Toolkit’s Profiler enables us to optimize the
performance of the MIDIet suite by determining where bottlenecks might be

occurring during runtime. Execution time of the MIDlet suite can be improved

by examining the time spent in method calls, the number of times a method is
called during runtime, and the amount of time a method runs compared to the

overall runtime of the application. The performance speed of the application can

-

be adjusted in the Performance panel of the Project Settings dialog box. Setting
the speed features does not demonstrate how the application would run on an
actual device; however, by adjusting the speed emulation parameters, a better

representational performance of the application on a device can be achieved.

2.4.1.6 Memory and Network Monitoring:

The Wireless Toolkit provides tools to examine and analyze
memory usage by the application and network transmissions between the device
and the network. It is possible to get an overall view of memory usage during
runtime of the application and get a breakdown of memory usage per object to
see where in the application memory usage can be optimized. With the Network
Monitor, network transmissions for several types of network protocols can be

examined.

2.4.1.7 Working with the Emulator:

The J2ME Wireless Toolkit comes with a selection of
emulated devices to run and test the applications on. Representations of mobile
devices are available from the Device list on the KToolBar. The emulated
devices are capable of emulating the features in the CLDC, MIDP, MMAPI, and
WMA specifications. The functionality for an emulated device through the
Preferences
Window can be set. Various emulator utilities such as the Profiler, the Network
Monitor, the Memory Monitor, and the Certificate Manager from the Utilities

window are also present.

2.4.2 Visual Basic:

Visual Basic is a member of the Visual Studio 6.0 family of

development products, which includes:

¢ Visual Basic

e Visual C++

e Visual FoxPro
¢ Visual InterDev
e Visual J++

e Visual SourceSafe

¢ MSDN Library

Visual Basic provides a complete set of tools to simplify
rapid application development.

The "Visual" part refers to the method used to create the
graphical user interface (GUI). Rather than writing numerous lines of code to
describe the appearance and location of interface elements, prebuilt objects can
be added into place on screen.

The "Basic" part refers to the BASIC (Beginners All-Purpose
Symbolic Instruction Code) language, a language used by more programmers
than any other language in the history of computing. Visual Basic has evolved
from the original BASIC language and now contains several hundred statements,
functions, and keywords, many of which relate directly to the Windows GUI.
Beginners can create useful applications by learning just a few of the keywords,

yet the power of the language allows professionals to accomplish anything that

can be accomplished using any other Windows programming language.

e

C
///!&‘ t*«

\\%\ /_4"

The Visual Basic programming language is not unique to
Visual Basic. The Visual Basic programming system, Applications Edition
included in Microsoft Excel, Microsoft Access, and many other Windows
applications uses the same language. The Visual Basic Scripting Edition
(VBScript) is a widely used scripting language and a subset of the Visual Basic
language.

Data access features allow creation of databases, front-end
applications, and scalable server-side components for most popular database
formats, including Microsoft SQL Server and other enterprise-level databases.

ActiveX™ technologies allow the use of functionality
provided by other applications, such as Microsoft Word processor, Microsoft
Excel spreadsheet, and other Windows applications. Even automate applications
and objects created using the Professional or Enterprise editions of Visual Basic.

Internet capabilities make it easy to provide access to
documents and applications across the Internet or intranet from within the
application, or to create Internet server applications.

The finished application is a true .exe file that uses a Visual

Basic Virtual Machine

2.4.2.1 Visual Basic Editions:

Visual Basic is available in three versions, each geared to

meet a specific set of development requirements.

2.4.2.2 Learning Edition:
The Visual Basic Learning edition allows programmers to
easily create powerful applications for Microsoft Windows and Windows NT®.

It includes all intrinsic controls, plus grid, tab, and data-bound controls.

2.4.2.3 Professional Edition:

The Professional edeition provides computer professionals
with a full-featured set of tools for developing solutions for others. It includes all
the features of the Learning edition, plus additional ActiveX controls, the
Internet Information Server Application Designer, integrated Visual Database

Tools and Data Environment, Active Data Objects, and the Dynamic HTML
Page Designer. |

Enterprise Edition:

The Enterprise edition allows professionals to create robust
distributed applications in a team setting. It includes all the features of the
Professional edition, plus Back Office tools such as SQL Server, Microsoft
Transaction Server, Internet Information Server, Visual SourceSafe, SNA

Server, and more.

Winsock Control:

A WinSock control allows the connection to be created to a
remote machine and exchange data using either the User Datagram Protocol
(UDP) or the Transmission Control Protocol (TCP). Both protocols can be used
to create client and server applications. Like the Timer control, the WinSock

control doesn't have a visible interface at run time.

11

Selecting a Protocol:
When using the WinSock control, the first consideration is
whether to use the TCP or the UDP protocol. The major difference between the

two lies in their connection state:

« The TCP protocol control is a connection-based protocol, and is
analogous to a telephone — the user must establish a connection

before proceeding.

« The UDP protocol is a connectionless protocol, and the transaction
between two computers is like passing a note: a message is sent
from one computer to another, but there is no explicit connection
between the two. Additionally, the maximum data size of individual

sends is determined by the network.

2.4.3 Introduction to JAVA:

Java is an object-oriented programming language with a
built-in application programming interface (API) that can handle graphics and
user interfaces and that can be used to create applications or applets. Because of
its rich set of API's, similar to Macintosh and Windows, and its platform
independence, Java can also be thought of as a platform in itself. Java also has

standard libraries for doing mathematics.

Java is a general purpose programming language with a
number of features that make the language well suited for use on the World

Wide Web. Small Java applications are called Java applets and can be

downloaded from a Web server and run on your computer by a Java-compatible

Web browser, such as Netscape Navigator or Microsoft Internet Explorer

The inventors are Java wanted to design a language, which could offer
solution to some of the problems encountered in modern programming. They
wanted the language to be not only reliable, portable and distributed.

Although the above appears to be a list of buzzwords, they aptly describe
the full potential of the language. These features have made Java the first
application language of the World Wide Web. Java will also become the primer

language for general-purpose stand-alone applications.
2.4.3.1 Properties of java:

e Compiled and interpreted

e Platform-Independent and Portable
e Robust and Secure

e Multithreading and Interactive

¢ Dynamic and Extensible

Compiled and Interpreted:

Usually a computer language is either compiled or
interpreted. Java combines both these approaches thus making Java a two-stage
system. First, Java compiler translates source code into what is known as byte

code instructions.

Platform Independent and Portable:

The most significant contribution of Java over other
languages is its portability. Java programs can be easily moved from one
computer system to another, anywhere anytime. Changes and upgrades in
operating systems, processors and system resources will not force any changes in
Java programs. This is the reason why Java has become a popular language for
programming on Internet, which inter connects different kinds of systems
worldwide. We can download a Java applet from a remote computer on to our
local system via Internet an extension of the user's basic system providing

practically unlimited number of accessible applets and applications.

Robust and Secure:

Security becomes an important issue for a language that is
used for programming on Internet. Threat of virus and abuse of resources is
everything. Java systems not onlyvverify all memory access but also ensure that
no viruses are communicated with an applet. The absence of pointers in Java
ensures that programs cannot gain access toO memory locations without proper

authorization.

Distributed:

Java is designed as a distributed language for creating
applications on networks. It has the ability to share both data programs. Java
applications can open and access remote objects on Internet as easily as they can
in a local system. This enables multiple programmers at multiple remote

locations to collaborate and work together on a single project.

1A

Multithreaded:
Multithreaded means handling multiple tasks simultaneously.
Java supports multithreading programs. This means that we need not wait for the
application to finish one task before beginning another. For example, we can
listen to an audio clip time download an applet from a distance computer. This

feature greatly improves the interactive performance of graphical applications.

Dynamic and Extensible:
Java is a dynamic language. Java is capable of dynamically
linking in new class libraries methods and objects. Java can also determine the
type of class through a query, making it possible to either dynamically link or

abort the program, depending on the response

2.4.3.2 Advantages of J AVA

Java has gained enormous popularity since it first appeared.
Its rapid ascension and wide acceptance can be traced to its design and
programming features, particularly in its promise that we can write a program
once, and run it anywhere. As stated in Java language white paper by Sun
Microsystems: "Java is a simple, object-oriented, distributed, interpreted, robust,

secure, architecture neutral, portable, multithreaded, and dynamic."

3. SYSTEM DESIGN

3.1 FUNDAMENTAL DESIGN CONCEPTS:

A Software design is a model of a real world system that has many
participating entities and relationshipos. This design is used in a number of
different ways. It acts as a basis for detailed implementation. It serves as a
communication medium between the designers of the subsystems; it provides
information to system maintainers about the original intentions of the system
designers.

System design is a transition from user oriented documents to
document oriented programmers or database personnel. Design phase acts as a
bridge between the software requirement specification and implementation

phase, which satisfies the requirements.

3.2 DATABASE DESIGN
A Database is a repository for stored operational data. It is simply a
collection of interrelated data stored with minimum redundancy to serve many
users quickly and effectively. The main objective in the database concept is to
bring data integration so as to allow several users to share a common data for
various applications. It facilitates quick and easy access for all the users .The

maintenance of database is done by the DBMS.

The major objectives for maintaining such databases are:
e Reduced redundancy
¢ Enforcing Standards

e Sharing of Data

¢ Marinating Integrity

e Data Independence

e Applying Security Restrictions

3.2.1 TABLE DESIGN
FIELD NAME TYPE WIDTH | DESCRIPTION
S.NO NUMBER 3
M_UNAME VARCHAR 50 Mobile User Name
M_PASSWORD | VARCHAR 50 Mobile Password
C_UNAME VARCHAR 50 Client User Name
C_PASSWORD | VARCHAR 50 Client Password

Table 3.2.1: User_access

3.3 OVERALL ARCHITECTURE

Mobile with GPRS

Connection PC Client

Figure 3.3.1 Overall Architecture

The architecture emphasizes on the fact that the services are
controlled when the commands are passed from the mobile user to the client side
through the intermediate server.

Multiple users can use the intermediate server (one OS can be controlled

by only one mobile at a time)

3.4 UML DIAGRAMS

3.4.1 USE CASE DIAGRAM

-

File Open

O O
Intermediate Sener / // Log Off
/7 \\\ / — -
/ / / \/ D
: \ / / Shut\ l?own
e (D
/ N \\ ////

.
N

Mobile User PC Client \\A

Senvces

Figure 3.4.1 Use Case Diagram

3.4.2 CLASS DIAGRAM

UDPInterface

| Remote nMiDLet |
' lemot eS

()
. Reghandier
B

: _ “ Brequest
“‘*&Sysmfo &reply

Bihead

8shutDown()

. ‘IogOﬁ(
ﬁlnvoke Apache Tomcat()
___ #8Invoke Telephony()
Sener y “U.SSF D)

Gdestip ¥ EBFile Open()
&3req_cmd
Bresponse
&imobile_ip
Emobile_port
{®checkAuth()
iflogrequest()
B oetSysinio()
FMsendCtriCommand()
E8invoke Senices()

i
N / B
Cllent

Blsener_ip
&isener_port
Eirequest
@response

%sendSyslnfo()
E8getRequest()
#8showMessage()
#control()

@8 Telephony()

¥ Teinet()

& Themes()
{#®Apache Tomceat()
E8UserlD()

§&File Open()

Figure 3.4.2 Class Diagram

Py

3.4.3 INTERACTION DJAGRAM

Mobile User intermediate Database PC Client
Sener
|
l Registers ‘ ' '\
’l }Update Databasﬁ ‘
-
M q%
| i |
| Login l ‘ !
/L]J{ Verifies |
I e
['W'j RegiLters i
; | I

Update Database‘

"l

User $ign In

A.

;
|

U

Jeration
gl

.
I

Verifies

|
|
|
|
|
|
|
Select$ the Required Op

Header Passed

|
| |
Tt |
| |
| |
| |
| |

-

Figure 3.4.3 Interaction Diagram

.....

]

!
-
!
|

3.4.4 COLLABORATION DIAGRAM

1: Registers -
3: Login \
9: Selects the Required Opaeration }

Mobile | > Intermediate . .
User Sener 10: Header Passed and Senice Invoked

/ ™~ /\

\ [
/ S -
5: PC Client Registers ™ p(
7:Client Signln | Client
2: Update Database T N
4: Verifies
6. Update Database
8: Verifies

Database

Figure 3.4.4 Collaboration Diagram

isls]

4. SOFTWARE IMPLEMENTATION MODEL

4.1 Module Description:
There are 5 modules in this system. They are:
¢ Mobile - Server Connection (JZME)
< Client User Interface Design (VB)
¢ Intermediate Server Connection (Java)

¢ Invoking Admin Services (J2ME-Java-VB)

4.1.1 Mobile Server Connection:

The interface is established between the mobile and the
intermediate server. Initially the login screen is displayed where the user has to
enter the username and password .Both are then passed on to the server and
verified with the information in the database.

After the username and password is authenticated, the screen

containing the list of services that can be invoked is displayed.

4.1.2 Client User Interface Design:

The client initially gets connected to the intermediate server
by registering to it. In case of an existing user, connection to the intermediate
server is established when the user logs in.

The connection to the intermediate server is acquired with the
help of Winsock control. The necessary data is passed with the help of socket

programming to the server

4.1.3 Intermediate Server Connection:

The intermediate server is connected both to the client side as
well as the mobile user. The connection to the server from the mobile user is
established using socket programming in java and the connection from the client
side to the server is done with the help of Winsock control

Role of the intermediate server:

e Verification of the username and password of the mobile

user with the database. A

e Passing the header associated with the corresponding

commands from the mobile user to the client side.

e To pass the information about the user currently accessing

the PC Client back to the mobile user.

4.1.4 Invoking Admin Services:

The following Admin services are invoked in the project

o

undertaken:

e File Open

e Log Off

e Shut Down

e UserID

e Services
= Apache Tomcat
* Telnet
= Themes

» Telephony

~ A

FILE OPEN:

A header named “OPN” will be associated with the File Open
command. As soon as the command is selected from the mobile user the header
is passed from the mobile to the intermediate server and then passed on to the
client. The program running at the client side recognizes the header and invokes
the corresponding service. In this case the shell command is invoked that would

open the file from the location and display it to the user at the client side

LOG OFF:

Here the header called “LOG” is passed on from the mobile
user to the intermediate server and finally to the client side where the program
recognizes the header and invokes the log off function. All the currently running
programs will be terminated and the system logs off the current user

automatically.

SHUT DOWN:
The header associated with this command at the mobile user
side is “SHT”. As soon as the command is invoked from the header is passed to
the intermediate server and then finally passed to the VB client side. The header

is récognized at the client side and the corresponding function is invoked. All the

programs thus terminate and the system shuts down automatically.

USER ID:
This service is used to get the information about the user who
is currently using the system. When the service is invoked at the mobile user side

the header that is associated with the service is (UID) is passed to the

~

intermediate server and passed to the client side using a socket in java. As the
header is recognized at the client side, a function is called that retrieves the user
information and passed back to the server. The user information is passed back
to the intermediate server using the Winsock control .The information required is

passed from the server back to the J2ME interface using sockets. The necessary

information is then displayed using the textbox.

SERVICES:
The services that invoked in this project are:
e Apache Tomcat
e Telnet

e Themes

e Telephony

Apache Tomcat:
This administrator service is started and then stopped.
The header associated with the service reaches the client side and then the
corresponding service is invoked. The service can be started as well as stopped
Two different header’s are associated with the two operations .When the
operation is selected the header associated with it is passed and the service is

invoked at the client side. When the particular service is started, operations in

tomcat can be performed and it can be stopped when the service is not required.

s Y4

Telnet:

Users can work and perform operations in telnet once it
is started and can be stopped correspondingly when it is selected. The
corresponding headers associated with them are passed to the client side through
the intermediate server and then recognized at the VB Interface. When the
header is identified the service is either started or stopped. Operations in Telnet

can be invoked as the service is started.

Themes:

The themes can be invoked or deactivated according to
the wish of the user using the PC currently. The header associated with the
“Themes”: service is passed on to the client side through the intermediate server
and it will be invoked if started or the default windows theme will be displayed
when the service is stopped .The changes can be clearly noted when it is started

or stopped.

Telephony:

This service provides Telephony API (TAPI) support
for programs that control Telephony devices and IP based voice connections on
the local computer and, through the LAN, on servers that are running on the
service. This service can be invoked like all the above services when the

corresponding header is passed to the client side from the mobile user through

the intermediate server.

~y~t

4.2 INPUT/OUTPUT DESIGN FORMATS:

4.2.1 Client side logging in
Input: username, password

Output: User is logged into the server.

4.2.2 Mobile User End

Input: username and password of the user

Output: Displays the list of services that can be controlled

~NO

5. PRODUCT TESTING

The system testing deals with the process of testing the system as a whole.
This is done after the integration process. The entire system is tested by moving
each module from top to bottom. The verification and validation process are
being carried out. The errors that occur at the testing phase are eliminated and a

well functioning system is developed.

5.1 TESTING METHODS
5.1.1 Unit Testing:

It focuses verification effort on the smallest unit of software
design, the module. It is also known as module testing. The modules are tested
separately. The testing is carried out during programming stage itself.

Each and every m(;dule 1is tested separately to check if its
intended functionality is met. Some unit testing performed are,

- Checking the proper working of the system information and process
list retrieval modules in the client application.
- Checking for proper connectivity: between server and client and
server and mobile.
- Ensuring that the messaging module works and does not interfere
with other functions.
Veritying the integrity of the mobile’s application interface and ensuring

correctness of command transmission

~

5.1.2Validation Testing
Validation testing can be defined in many ways but a simple
definition is that validation succeeds when the software functions in a manner
that can be reasonably expected by theusers.
After a validation test has been conducted one of the two
possible conditions exists:
» The function or the performance characteristics confirm to the
specification and are accepted
* Deviation from the specification is uncovered and the

deficiency list is created

5.1.3 Output Testing
After performing the validation testing the next step is output
testing of the proposed system since no system is useful if it does not produce the
required output in the specific format. The outputs generated are displayed by the
system under consideration are tested by asking the users about the formats

required by them.

5.1.4 Integration Testing
It is the testing performed to detect errors on interconnection
between modules. Here, all the modules pertaining to the client system and
server system are combined to form the client and server applications
respectively and tested to ensure that they work in synchronization and without

interference from each other.

~ N

6. FUTURE ENHANCEMENTS

The project Remote Admin Service Control is designed in such a way that
future enhancements can be made in an easy manner. The project is quite
flexible and can be easily customized according to the user’s requirements.

One possible enhancement to the project is the control of additional
services that are configured in the PC being worked in. This module would
enable the mobile user to control other PC services using his mobile. The outputs
of the commands executed would then be displayed on the mobile’s screen.

Another useful enhancement is the addition of a screen capture module
which would transmit a screenshot of the client’s desktop to the administrator’s
mobile. This would better enable the administrator to monitor the clients in the
network.

One another enhancement would be the transfer of the file contents that
has been opened at the client side desktop, back to the mobile user end.

The mobile user could also be given the power to block or deny access to

any user whom he feels is unauthorized to access his PC.

7. CONCLUSION
The project Remote Admin Service Control offers the following
advantages:

e Allows the administrator to remain mobile while having total control of
the administrator services of his PC.

e Quite flexible in nature allowing addition of newer service control
more easily.

e Processing is done in the client side thus reducing the load on the
server and reducing time taken.

e High security is present thus preventing misuse of the system.

e User friendly interface which requires no training.

o~y

8. APPENDIX

APPENDIX A - SAMPLE CODE

VB CLIENT SIDE CODE

Registration

Private Sub Form_Load()
tcpClient.RemoteHost = "90.0.1.30"
tcpClient.RemotePort = 1011
tcpClient.Protocol = sckUDPProtocol
tcpClient.Connect

End Sub

Private Sub Command1_Click()
validate

tcpClient.SendData (txtuname.Text + "*" + txtpswd.Text + "*" + a)
Forml.Hide

End Sub

Public Function validate()
With Me

If (.txtuname.Text = "" Or .txtpswd.Text = "" Or .txtcpswd.Text =

" Or .txtemail. Text = "" Or .txtname.Text = "" Or .cboocc.Text =

Hll) Then

MsgBox "Please enter all the required fields"
Elself ((.txtpswd.Text) <> (.txtcpswd.Text)) Then

MsgBox " Please Re-enter the Password "

nn

txtpswd.Text =

"

txtcpswd. Text =

27

Else

MsgBox " The user has been Successfully Registered!!!"
End If
End With

End Function

Services

Dim str As String

Private Sub Command1_Click()
Winsock1.SendData (Textl.Text)

End Sub

Private Sub Form_Load()
Form4.Width = 7000

Form4.Height = 5000

init

Winsockl.RemoteHost = "90.0.1.30"
Winsock1l.RemotePort = 1022
Winsock1.Protocol = sckUDPProtocol
Winsock1.Connect

End Sub

Public Sub init()

reqhand.Bind

End Sub

Private Sub reqhand_DataArrival(ByVal bytesTotal As Long)
Dim head As String

Dim str As String

YA

Dim strl As String
reghand.GetData head
str = head
head = Left(head, 3)
If (head = "LOG") Then

Shell ("LOGOFF.EXE")
End If
If (head = "SHT") Then

Shell ("shutdown -s -t 00")
End If
If (head = "OPN") Then

str = Right(str, (Len(str) - 4))
If Dir$(str) = "" Then

MsgBox "Not file"

Else
strl = "c:\\WINDOWS\Notepad.exe " & str
Shell (strl)

End If

End If

If (head = "TEL") Then
Shell ("c:\b.bat")
End If

If (head = "TES") Then
Shell ("c:\c.bat")
End If

o ¥~4

If (head = "APA") Then
Shell ("c:\d.bat")

End If

If (head = "APS") Then
Shell ("c:\e.bat")

End If

If (head = "THE") Then
Shell ("c:\f.bat")

End If

If (head = "THS") Then
Shell ("c:\g.bat")

End If

If (head = "TPH") Then
Shell ("c:\h.bat")

End If

If (head = "TPS") Then
Shell ("c:\i.bat")

End If

If (head = "UID") Then
str = getnames(True)
Textl. Text = str

End If

End Sub

Function getnames(ByVal user_req As Boolean) As String "returns

the computer name and user name

1

Dim m_name As String ' machine name

Dim u_name As String 'user name
Dim buf As String * 25 'user info buffer
Dim siz As Long
Dim x, y As Long
m_name = Space(16)
siz = Len(m_name)
x = GetComputerName(m_name, siz)
y = GetUserName(buf, 255)
u_name = Left(buf, InStr(buf, Chr(0)) - 1)
m_name = Trim(m_name)
m_name = Left(m_name, Len(m_name) - 1)
If user_req = True Then
getnames = m_name & "*" & u_name & "*"
Else
If user_req = False Then
getnames = m_name
End If
End If

End Function

S~

MOBILE USER CODE

Code that passes password for verification

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.™;
import javax.microedition.io.*;
import java.i0.*;
public class UDPInterface extends Thread{
private String req;
private String reply;
private RemoteSerMIDLet parent;
private Display display;
private Form frm;
private Alert a;
Datagram dg;
boolean b;
byte[] bytes;
public UDPInterface(RemoteSerMIDLet p,StringBuffer request) {
req=request.toString(); '
parent=p;
frm=new Form("");
display=Display.getDisplay(parent);
}
public void run(){
b =sendRequest();

if((b==true) && reply.equals("PWDOK"))
{

parent.authen_ok();

J

else

{

a=new Alert("Authentication Failed");
display.setCurrent(a);
}
}

public boolean sendRequest(){
try {
DatagramConnection dc=(DatagramConnection)
Connector.open("datagram://localhost:4444");
bytes=new byte[1000];
bytes=req.getBytes();
dg=dc.newDatagram(bytes,bytes.length);
dc.send(dg)‘;
dg=dc.newDatagram(1000);
dc.receive(dg);
dc.close();
reply=new String(dg.getData(),0,dg.getLength());
return true;

}

~ My

catch(Exception e){

return false;

}

Code that passes the request to the server

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.*;
import javax.microedition.io.*;

import java.io.*;

public class reqhandler extends Thread
{

String req;

String reply;

boolean b;

byte[] bytes;

Datagram dg;

DatagramConnection dc;

String filename;

public reghandler() {
try |
dc=(DatagramConnection)

Connector.open("datagram://localhost:5555");

AN

}
catch(Exception €)
{

}

public void run()

{

}

public void logoff(){
try{
req= new String("LOG");
bytes=new byte[1000];
bytes=req.getBytes();
dg=dc.newDatagram(bytes,bytes.length);
dc.send(dg);
dg=dc.newDatagram(1000);
}
catch(Exception e){

//return false;

}

public void shutdown(){
try{
req= new String("SHT");
bytes=new byte[1000];

bytes=req.getBytes();
dg:dc.newDatagram(bytes,bytes.length);
System.out.println("sent");

dc.send(dg);

System.out.println("rec”);
dg=dc.newDatagram(1000);

}

catch(Exception e){

//return false;

}

public void fileopen(String file){
try{
req= new String("OPN");
filename=file;
req=req.concat("*");
req=req.concat(filename);
System.out.println(req);
bytes=new byte[1000];
bytes=req.getBytes();
dg=dc.newDatagrarh(bytes,bytes.length);
System.out.println("file sent");
dc.send(dg);
System.out.println("rec”);
dg=dc.newDatagram(1000);

}

catch(Exception e){

//return false;

public void telnet(){
try{
req= new String("TEL");
bytes=new byte[1000];
bytes=req.getBytes();
dg:dc.newDatagram(bytes,bytes.length);
System.out.printin("sent");
dc.send(dg);
System.out.println("rec”);
dg=dc.newDatagram(1000);
}
catch(Exception €)
{ J

}

public void telnets(){
try{
req= new String("TES");
bytes=new byte[1000];
bytes=req.getBytes();
dg=dc.neWDatagram(bytes,bytes.length);

AN

System.out.println("sent");
dc.send(dg);
System.out.println(’rec");

dg=dc.newDatagram(1000);
}

catch(Exception €){

J

public void apache(){
try{
req= new String("APA");
bytes=new byte[1000];
bytes=req.getBytes();
dg=dc.newDatagram(bytes,bytes.length);
System.out.println("sent");
dc.send(dg);
System.out.println("rec");
dg=dc.newDatagram(1000);
}
catch(Exception e){

//return false;

public void apaches(){
try{
req= new String("APS");
bytes=new byte[1000];
bytes=req.getBytes();
dg=dc.newDatagram(bytes,bytes.1ength);
System.out.println("sent");
dc.send(dg);
System.out.println("rec");
dg=dc.newDatagram(1000);
}
catch(Exception €){

//return false;

public void themes(){
try{
req= new String("THE");
bytes=new byte[1000];
bytes=req.getBytes();
dg=dc.newDatagram(bytes,bytes.length);
System.out.println("sent");
dc.send(dg);

System.out.println("rec");

A -

dg=dc.newDatagram(1000);
}
catch(Exception e)f{

//return false;

public void themess(){
try{
req= new String("THS");
bytes=new byte[1000];
bytes=req.getBytes();
dg=dc.newDatagram(bytes,bytes.length);
System.out.println("sent");
dc.send(dg);
System.out.println("rec");
dg=dc.newDatagram(1000);
}
catch(Exception €){

//return false;

)
public void telephony(){

try {
reg= new String("TPH");
bytes=new byte[1000];

Y

bytes=req.getBytes();
dg=dc.newDatagram(bytes,bytes.length);
System.out.println("sent");

dc.send(dg);

System.out.println("rec");
dg=dc.newDatagram(1000);

}

catch(Exception e){

//return false;

}

public void telephonyvs(){
try{
req= new String("TPS");
bytes=new byte[1000];
bytes=req.getBytes();
dg=dc.newDatagram(bytes,bytes.length);
System.out.println('7sent”);
dc.send(dg);
System.out.println("rec");
dg=dc.newDatagram(1000);
}

catch(Exception e){

//return false;

}

A™

public String user(){

try{
req= new String("UID");
bytes=new byte[1000];
bytes=req.getBytes();
dg=dc.newDatagram(bytes,bytes.length);
System.out.println("sent");
dc.send(dg);
dg=dc.newDatagram(1000);
dc.receive(dg);
dc.close();
reply=new String(dg.getData(),0,dg.getLength());
System.out.println("rec");
System.out.println(reply);
return reply;
}
catch(Exception e){

reply="false";

return reply;

SERVER SIDE CODE

Code that handles the password

import java.10.;
import java.net.*;
import java.util.StringTokenizer;
public class Worker{
static DatagramSocket sock;
static DatagramPacket p;
static String str,head,req,uname,pwd,addr;
static boolean b,reply;
public static void main(String a[]) throws Exception
{ -
DatalnputStream in= new DatalnputStream(System.in);
String ss;
sock=new DatagramSocket(4444);
p=new DatagramPacket(new byte[1000],1000);
sock.receive(p);
addr=p.getAddress().toString();
System.out.println("packet received From " + addr);
str=new String(p.getData(),0,p.getLength());
parseRequest();
b=checkRequest();
if(b==true){
String reply="PWDOK";
byte[] bytes=reply.getBytes();

p=new
DatagramPacket(bytes,bytes.length,p. getAddress(),p.getPort());
System.out.println("Press return to accept");
ss=in.readLine();
sock.send(p);
System.out.println("Request from :" + addr
+"\nRequest Accepted.. Connected");
}

else

{
String reply="PWDFAILED";

byte[] bytes=reply.getBytes();
p=new

DatagramPacket(bytes,bytes.length,p. getAddress(),p.getPort());
System.out.printin("Press return to accept");
ss=in.readLine();
sock.send(p);
System.out.printin("Request from :" + addr +"\nBad

authentication..Request rejected");

}

}

public static void parseRequest() throws Exception
{

head=str.substring(0,3);
req=str.substring(3,str.length());

StringTokenizer s=new StringTokenizer(reg,"* "),

uname=s.nextToken();
pwd=s.nextToken();
}
public static boolean checkRequest() throws Exception{
if(head.equals("PWD"))
{
Database d=new Database(uname,pwd);
reply=d.check();
if(reply){
return true;
}
else{

return false;

else{

return false;

Code that handles the request

import java.io.*;

import java.net.™;

import java.util.StringTokenizer;

public class mobhandle{

static DatagramSocket sock;

static DatagramPacket p;

static String str,addr,msg,fname,req,head;

public static void main(String a[]) throws Exception
{

DatalnputStream in= new DatalnputStream(System.in);
String ss;

sock=new DatagramSocket(5555);

p=new DatagramPacket(ngw byte[1000],1000);
sock.receive(p);

System.out.println("packet received");

str=new String(p.getData(),0,p.getLength());
System.out.println(str);

head=str.substring(0,3);

if(head.equals("LOG")==true)
{

DatagramSocket sock=new DatagramSocket();
byte buf[J=new byte[3000];

InetAddress addr=InetAddress.getByName(null);
buf=str.getBytes();

sock.send(new DatagramPacket(buf,buf.length,addr,9898));
System.out.println("logoff-data send");

if(head.equals("SHT")==true)

{

J

DatagramSocket sock=new DatagramSocket();

byte buf[]=new byte[3000];

InetAddress addr=InetAddress.getByName(null);
buf=str.getBytes();

sock.send(new DatagramPacket(buf,buf.length,addr-,9898));

System.out.printin("shutdowm-data send");

if(head.equals("OPN")==true)

{

req=str.substring(3,str.length());

StringTokenizer s=new StringTokenizer(req,"*");
fname=s.nextToken();

System.out.println(fname);

DatagramSocket sock=new DatagramSocket();

byte buf[J=new byte[3000];

InetAddress addr=InetAddress.getByName(null);
buf=str.getBytes();

sock.send(new DatagramPacket(buf,buf.length,addr,9398));

System.ouf.println("ﬁle sent");

if(head.equals("TEL")==true)
{
DatagramSocket sock=new DatagramSocket();
byte buf[]=new byte[3000];
InetAddress addr=InetAddress.getByName(null);
buf=str.getBytes();
sock.send(new DatagramPacket(buf,buf.length,addr,9898));

System.out.println("Telnet Invoked");

if(head.equals("TES")==true)
{
DatagramSocket sock=new DatagramSocket();
byte buf[]=new byte[3000];
InetAddress addr=InetAddress.getByName(null);
buf=str.getBytes();
sock.send(new DatagramPacket(buf,buf.length,addr,9898));
System.out.println("Telnet Terminated");
}
if(head.equals("APA")==true)
{

DatagramSocket sock=new DatagramSocket();
byte buf[j=new byte[3000];
InetAddress addr=InetAddress.getByName(null);

buf=str.getBytes();
sock.send(new DatagramPacket(buf,buf.length,addr,9898));
System.out.println("Apache Started");
}
if(head.equals("APS")==true)
{
DatagramSocket sock=new DatagramSocket();
byte buf[]=new byte[3000];
InetAddress addr=InetAddress.getByName(null);
buf=str.getBytes();
DatagramPacket(buf,buf.length,addr,9898));
System.out.println("Apache Stoped");
}
if(head.equals("THE")==true)
{
DatagramSocket sock=new DatagramSocket();
byte buf[]=new byte[3000];
InetAddress addr=InetAddress.getByName(null);
buf=str.getBytes();
sock.send(new DatagramPacket(buf,buf.length,addr,9898));
System.out.println("Themes Invoked");
} .
if(head.equals("THS")==true)
{
DatagramSocket sock=new DatagramSocket();
byte buf[]=new byte[3000];

InetAddress addr=InetAddress.getByName(null);
buf=str.getBytes();
sock.send(new DatagramPacket(buf,buf.length,addr,9898));
System.out.println("Themes Stopped");
J
if(head.equals("TPH")==true)

{

DatagramSocket sock=new DatagramSocket();
byte buf[]=new byte[3000];
InetAddress addr=InetAddress.getByName(null);
buf=str.getBytes();
sock.send(new DatagramPacket(buf,buf.length,addr,9898));
System.out.println("Telephony Started");
}
if(head.equals("TPS")==true)
{
DatagramSocket sock=new DatagramSocket();
byte buf[]=new byte[3000];
InetAddress addr=InetAddress.getByName(null);
buf=str.getBytes();
sock.send(new DatagramPacket(buf,buf.length,addr,9898));
System.out.println("Telephony Stopped");

if(head.equals("UID")==true)
{

DatagramSocket sock=new DatagramSocket();
byte buf[}=new byte[3000];
String request;
InetAddress addr=InetAddress.getByName(null);
buf=str.getBytes(); |
sock.send(new DatagramPacket(buf,buf.length,addr,9898));
Userld u=new Userld();
u.start();
DatagramPacket pac=u.Reuserid();
request= new Stringo(pac. getData(),0,pac.getLength());
buf=new byte[1000];
buf=request.getBytes();
sock.send(new
DatagramPacket(buf,buf.length,p. getAddress(),p. getPort()));
System.out.printin(request);

System.out.printin("ID passed");

APPENDIX B - SAMPLE OUTPUT

Screen

ng Users', C

" \qum B e

FIGURE 8.1 MAIN SCREEN

w Login Screen

e
o

FIGURE 8.2 LOGIN SCREEN

RS

FIGURE 8.3 REGISTERATION FORM

MIDlet

User Hame: (hai

lPassword: |"*”1

FIGURE 8.4 MOBILE USER SCREEN

FIGURE 8.5 DISPLAY OF SERVICES

9. REFERENCES

Books:
1. Francesco Balena,” Programming Microsoft Visual Basic 6.0,
Microsoft Press, 2001

2. Jonarthan Knudson,” Wireless Java Programming with J2ME 2.0”
Website:

www.sun.java.com

www.java.sun.com/j2me/documentation .htmli

