P-1598

VIRTUAL 3D GAME DEVELOPMENT

A PROJECT REPORT
Submitted by
SUNDARAM.RM [71202104046]
ARUN KUMAR.B [71202104055]

in partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE-641006

ANNA UNIVERSITY: CHENNALI 600 025

MAY 2006

DECLARATION

We hereby declare that the project entitled “VIRTUAL 3D
GAME DEVELOPMENT? is a record of original work done by us and
to the best of our knowledge; a similar work has not been submitted to
Anna University or any institution, for fulfilment of the requirement of

the course study.

The report is submitted in partial fulfilment for the award of the
Degree of Bachelor of Computer Science and Engineering of Anna
University, Chennai.

Place: Coimbatore

Date: 26/%/06

[

[Sundaram.RM]

[Arun Kumar.B]

ii

ANNAUNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “Virtual 3D Game Development” is the
bonafide work of “Sundaram.RM and Arun Kumar.B” who carried

out the project work under my supervision.

THANGASWAMY.S SIVAN ARUL SELVAN.K
HEAD OF THE DEPARTMENT SUPERVISOR
SENIOR LECTURER
Department of Computer Science Department of Computer Science
& Engineering & Engineering
Kumaraguru College of Technology Kumaraguru College of Technology
Chinnavedampatti Chinnavedampatti
Coimbatore — 641 006 Coimbatore — 641 006

Submitted for the viva voce examination held on _ A7k g

& B’ Ririda

INTERNAL EXAMINER EXTERNAL EXAMINER

ACKNOWLEDGEMENT

With profound gratitude, we express our deepest thanks to our
internal guide Mr. K. Sivan Arul Selvan, Senior Lecturer, Department of
Computer Science and Engineering, who has taken all measures to guide
us through the project, and been a constant source of inspiration and

motivation at various levels of the project.

Our sincere thanks to all the lab technicians who have been

operational in aiding us implement the system.

We would like to thank the Head of the Department, Computer
Science and Engineering, Dr. S. Thangasamy and Mrs. P. Devaki, Project

Coordinator for guiding us through the project.

Our sincere thanks to the Department of Computer Science and
Engineering, Kumaraguru College of Technology, for extending its
fullest support by all means that enabled us to complete the project in a

timely manner.

We extend our utmost gratitude to our friend Mr. C.S. Shyam
Sundar who gave us the idea and avenue to do such a project in gaming.
Last but not the least; thanks to our parents, friends, and all those who

directly or indirectly helped us in successful completion of the project.

ABSTRACT

The objective of this project is to create a 3D game (First Person
Shooter), which has an interactive mixture of Audio and Video output

based on the actions performed by the player.

The project focuses on creating a virtual world that provides the
user (player) with an animated scenario on which inputs can be made as

actions and outputs can be visualized reactions in the virtual world.

The system displays the virtual world using 3D models that are
modelled, textured (to provide realism) and rendered in an interrelated
manner so as to simulate a virtual world. The rendering is finally done
with the use of Direct X (a Microsoft graphics library which provides C
API’s using which one can manipulate the Audio & Video of a system,

without getting into the hardware level intricacies).

3D Studio Max is used for the modelling and texturing of the
objects used in the virtual world with the use of various modelling

techniques.

DarkBASIC, a game programming language, with BASIC
language’s syntax, provides an interface to the DirectX ‘C’ APIs. This is

used for the programming where the complete synchronisation is done.

3.2.3 DIRECTINPUT 15

3.2.4 DIRECTSOUND 16

3.3 DARKBASIC OVERVIEW 17

34 MAJOR COMMAND SETS 17

4 MODELLING OBJECTS 19
4.1 PENCIL SKETCH & REFERENCE IMAGE 19

4.2 POSITIONG AND SHAPING THE BASE 20

43 APPLYING MESHSMOOTH 21

4.4 FINISHING TOUCHES - FINE TUNING 22

5 TEXTURING MODELS 23
5.1 PRE-TEXTURING WORK 23

5.2 SECTIONING PARTS FOR TEXTURING 23

5.3 TEXTURE MAPPING 24

6 THE GAME ENGINE

ANIMATION & SYNCHRONISATION 26
6.1 OVERVIEW 26
6.2 ANIMATION 26
6.2.1 KEY FRAMES 26
6.2.2 TIME CONTROLS 26
6.2.3 TIME SLIDER 27
6.2.4 TRACK BAR 27
6.2.5 ANIMATION WITH KEY FRAMES 28
6.2.6 THE AUTO KEY MODE 28
6.2.7 THE SET KEY MODE 29
6.2.8 SETTING THE KEY FRAME 29
6.3 SYNCHRONISATION 3t
6.3.1 PRINCIPLE APPLIED 31
6.3.2 LOADING AND APPENDING OF STATES 32
6.3.3 SETTING ANIMATION SPEED 33
634 PLAYING/LOOPING THE ANIMATION 33

6.3.5 A CHARACTER’S LIFE CYCLE 33

TABLE OF CONTENTS

ABSTRACT

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVATIONS

INTRODUCTION
1.1 OVERVIEW
1.2 THE BASIC ENGINE

MODELLING METHODS IN 3D STUDIO MAX
2.1 OVERVIEW
22 MODELLING METHODS
2.2.1 MODELLING WITH PRIMITIVES
2211 BOX
22.1.2 SPHERE
2.2.1.3 CYLINDER
2.2.14 TORUS
2.2.1.5 CONE
2.2.1.6 PYRAMID
2.2.1.7 PLANE
222 NURMS
2.2.3 SURFACE TOOL
224 NURBS
2.2.5 POLYGON MODELLING
2.3 PARTICLE SYSTEMS

DIRECTX LIBRARIES AND DARKBASIC
3.1 DIRECTX OVERVIEW
3.2 DIRECTX APIs

3.2.1 DIRECTDRAW

3.2.2 DIRECT3D

vi

GAME - CONTROLS AND OBJECTIVES
7.1 INPUT CONTROLS
7.1.1 POSITIONING AND ANGULAR CONTROLS
7.1.2 COMBAT CONTROLS
7.1.3 SNIPER RIFLE CONTROLS
72 GAMEPLAY & OBJECTIVES
7.2.1 PRIMARY OBJECTIVES
7.22 SECONDARY OBJECTIVES
7.3 GAME STATUS INDICATORS

CONCLUSION

POSSIBLE FURURE ENHANCEMENTS

APPENDIX 1 -3DS FILE FORMAT ARCHITECTURE

APPENDIX 2 - DIRECTX FILE FORMAT ARCHITECTURE

APPENDIX 3 - SAMPLE CODING

APPENDIX 4 - SCREENSHOTS

REFERENCES

viii

CHAPTER NO TITLE PAGE NO

DT - N TRV T N N VR IS)

NN~ o o

35
35
36
36
36
36
37
37
37

38

39

40

42

45
50

TABLE NO

LIST OF TABLES

CAPTION PAGE NO
Game Input Controls 35
Format of a Chunk 40

LIST OF ABBREVATIONS & SYMBOLS

ABBREVATION

3D

2D

3ds Max
Max
BLIT
NURMS
NURBS
B - spline
PArray
PCloud
API
SDK
COM
D3D
DS3D
REF
Win32
FTP
AVI
DLL
LAN
FPS

DESCRIPTION

Three Dimensional

Two Dimensional

3D Studio Max

3D Studio Max

Bit Block Transfer

Non-Uniform Rational Mesh Smooth
Non-Uniformal Rational B-Spline
Bézier spline curve

Particle Array

Particle Cloud

Application Programming Interface
Software Development Kit
Component Object Model
Direct3D

DirectSound3D

Reference Rasterizer

32 bit Windows

File Transfer Protocol

Audio Video Interleaved

Direct Link Library

Local Area Network

First Person Shooter

Xi

FIGURE NO

© N A e

—_
e

LIST OF FIGURES

CAPTION PAGE NO
The Basic Engine 2
The Box Primitive 4
Sphere Primitive — Wire frame 5
The Cylinder Primitive 6
The Torus Primitive 7
The Cone Primitive 8
The Triangle Primitive 9
Two Intersected Planes 9
A Simple NURBS Curve 11
Particle Systems 12
Reference Image & Setting a Base 19
Positioning and Scaling the Base 20
Moving and shaping the vertices 20
Applying Meshsmooth 21
Appending simple models 21
Wire frame of a finished model 22
A finished model 22
Pre-Texturing work and Sectioning 23
Mapping textures to different zones 24
UVW Texturing & Segregation 25
Texture Creation & Textured Model 25
Track Bar 27
Animation in 3ds Max 30
Animation - Synchronisation Principle 32
State Chart of a Character 32

INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Games are something that have always fascinated and attracted the
young and the old equally. This project titled Virtual 3D Game
Development is a 3D game that is designed to enthral different varieties of

players.

This virtual 3D game named Dark Rider is a typical first person
shooter (camera view is shown from the hero character’s perspective view)
game. It posses all the necessary features and gaming experience a 3D

game offers.

The project is said to be completed in four phases. Namely:

¢ Modelling
This phase involves the creation of all the visual
components of the game; this is done using 3D Studio Max. Each of
the visual components should be created separately so that the load
can be minimized. Each and every object needed to be shown on
screen is to be modelled separately using this tool, so that it can be

loaded before game play.

Texturing

Modelling creates the objects physical shape alone. To
get the realism and the real world feel for objects, they are to be
textured.

MODELLING METHODS IN
3D STUDIO MAX

* Animation
Once the objects are created and textured, they are ready
for actions that make them act real. This is done by animating the
objects as needed in the game. Different actions and expression are
pre-animated and embedded within the object. When needed, the

particular animation sequence within is called.

e Synchrenisation
This is the stage where all the above done phases show
out their functionality. All objects are loaded and placed in the
required place within the created virtual world. As per the player’s

input the animations are run and the sound effects are played.

1.2 THE BASIC ENGINE

FModel Wire frame —| Matrix Surface
Map Applied

| Texture Applied .3ds |

Blitted Surface
with Map

Rendered
Model .x

[Camera Mapped to (X, Z) Plane of Blitted Surface]

[On Screen: Loaded Virtual World |

Fig 1.1: The Basic Engine

CHAPTER 2

MODELLING METHODS IN 3D STUDIO MAX

2.1 OVERVIEW

3D Studio Max is a three dimensional vector graphics and

animation software, by Autodesk Media & Entertainment.

3ds Max is one of the most widely used 3D animation suite. It has
strong modelling and texturing capabilities, a ubiquitous plug-in
architecture and a long heritage on the Microsoft Windows platform. 3ds
Max is mostly used by video game developers but can also be used for pre-
rendered productions such as movies, special effects and architectural

presentations.

2.2 MODELLING METHODS

3ds Max offers a wide range of modelling techniques so as to
model almost all real world objects and organisms. There are 5 basic

modelling methods. They are as follows:

« Modelling with primitives

« NURMS (Non-Uniform Rational Mesh Smooth)
« Surface tool/Editable patch object

« NURBS (Non-Uniformal Rational B-Spline)

« Polygon modelling

2.2.1 MODELLING WITH PRIMITIVES

This is a basic method, in which the modelling of a complex object
is done only using boxes, spheres, cones, cylinders and other predefined
objects. One may also apply boolean operations, including subtract, cut
and connect. For example, one can make two spheres which will work as
blobs that will connect with each other. This is called "blob-mesh

modelling," or "balloon modelling."

STANDARD PRIMITIVES
The Standard Primitives are: Box, Sphere, Cylinder, Torus,

Teapot, Cone, Geosphere, Tube, Pyramid, and Plane.

2.2.1.1 BOX

In geometry, a cuboid is a solid figure bounded by six rectangular
faces: a rectangular box. All angles are right angles, and opposite faces of
a cuboid are equal. It is also a right rectangular prism. This primitive
model is subdivided into segments of definite length and breadth. The

number of segments defines the model’s smoothness.

If the dimensions of a cuboid are a, b and c then its volume is abc
and its surface area is 2ab + 2bc + 2ac.

The length of the space diagonal is € = Va? + % + ¢,

Fig 2.1: The Box Primitive

This equation is for an elliptic cylinder, a generalization of the
ordinary, circular cylinder (a = b). Even more general is the generalized

cylinder: the cross-section can be any curve.

If the cylinder has a radius r and length h, then its volume is given

by V = «r’h and its surface areais A = 27r(r+ h)

The cylinder model is made of fine spherical discs of definite

radius. The number of discs defines the curvature of the model.

Fig 2.3: The Cylinder Primitive
2.2.1.4 TORUS

In geometry, a torus (pl. tori) is a doughnut-shaped surface of
revolution generated by revolving a circle about an axis coplanar with the
circle. The sphere is a special case of the torus obtained when the axis of
rotation is a diameter of the circle. If the axis of rotation does not intersect
the circle, the torus has a hole in the middle and resembles a ring
doughnut, a hula-hoop or an inflated tire. The other case, when the axis of
rotation is a chord of the circle, produces a sort of squashed sphere
resembling a round cushion.

This model is made of a number of interconnected circles. The

vertical ones are for curvature and horizontal ones for bulging dimension.

2.2.1.2 SPHERE

A sphere is a perfectly symmetrical geometrical object. In
mathematics, the term refers to the surface or boundary of a ball, but in
non-mathematical usage, the term is used to refer either to a three-
dimensional ball or to its surface. It is heavily used in almost all complex

models.

If r is the radius of the sphere then its volume is 4/3 71’ and the

surface area is 4 71°. The diameter is 2r.

The sphere model is made of a number of interconnected arcs. This

model has the number of segments parameter to define its smoothness.

Fig 2.2: Sphere Primitive — Wire frame
2.2.1.3 CYLINDER

A right circular cylinder, in mathematics, a cylinder is a quadric,
i.e. a three-dimensional surface, with the following equation in Cartesian

coordinates:

@

Fig 2.4: The Torus Primitive

A torus can be defined parametrically by:

r(u,2) = (R + rcost)cosu

y(u,2) = (R+rcosz)sinu

z(u,v) = rsinev

where

u, v [0, 2r],

R is the distance from the centre of the tube to the centre of the torus,

r is the radius of the tube.
2.2.1.5 CONE

In common usage and elementary geometry, a cone is a solid
object obtained by rotating a right triangle around one of its two short
sides, the cone's axis. The disk swept by the other short side is called the
base, and the endpoint of the axis which is not on the base is the cone's

apex or vertex. An object shaped like a cone is said to be conical.

The volume, V, of a cone of height, 4, and base radius, r, is 1/3 of
the volume of the cylinder with the same dimensions, i.e. V = 1k / 3. The
centre of mass (assuming the cone is filled with uniform density) is located

on the axis, 1/4 of the way from base to apex.

EXTENDED PRIMITIVES

The Extended Primitives available in 3ds Max include Hedra,
ChamferBox, OilTank, Spindle, Gengon, Prism, Torus knot, ChamferCyl,
Capsule, L-Ext, C-Ext and Hose.

2.2.2 NURMS

Non-uniform rational mesh smooth (NURMS) or subdivision
surface technique uses a low-polygonal mesh to control the shape of the
smooth surface. This is the 3ds Max implementation of subdivision surface
modelling, a methodology that is rapidly displacing NURBS modelling as
the methodology of choice for both low- and high-polygon modelling. Max
implements NURMS as a modifier, to be applied to a polygon or mesh
object. After creating a rough-edged model (including all the desired
detail) with polygons, Meshsmooth (the modifier containing NURMS) is
applied. An advantage of NURMS Meshsmooth is that every vertex and
edge has its own weight. The numeric value, weight, determines how

strongly each vertex/edge will influence the final shape.

2.2.3 SURFACE TOOL

Surface tool is for creating common 3DS Max’s splines, and then
applying a modifier called "surface." This modifier makes a surface from
every 3 or 4 vertices in a grid. This is often seen as an alternative to 'Mesh'
or Nurbs' modelling, as it enables a user to interpolate curved sections
with straight geometry (for example a hole through a box shape). Although
the surface tool is a useful way to generate parametrically accurate
geometry, it lacks the 'surface properties' found in the similar Edit Patch
modifier, which enables a user to maintain the original parametric

geometry whilst being able to adjust "smoothing groups" between faces.

10

2.2.5 POLYGON MODELLING

Polygon modelling is more common with game design than any
other technique. Usually, the modeller begins with one of the 3ds max
primitives, and using such tools as bevel, extrude, and polygon cut, adds
detail to and refines the model. This technique is most often used for game
design, as the very specific control over individual polygons allows for

extreme optimization.

2.3 PARTICLE SYSTEMS

--3ds max allows the designer to create an object called a particle
emitter which allows the designer to treat all the particles of a particular

type as a single group.

A particle emitter is an object in a 3D modelling program which
emits objects that are treated as a group. As of version 7, there are 7 3ds
max particle emitters. The 7 3DS Max particle emitters are PF Source,
Spray, Snow, Blizzard, PArray, PCloud, and Super Spray. The most
flexible of these particle systems is PF Source, which makes use of a

technology called particle flow.

Fig 2.8: Galaxy & Fire Effect created using Particle Systems

2.2.4 NURBS

NURBS stands for Non-Uniformal Rational B-Spline. A NURBS
curve is defined by its order, a set of weighted control points, and a knot
vector. NURBS curves and surfaces are generalizations of both B-splines
and Bézier curves and surfaces, the primary difference being the weighting
of the control points which makes NURBS curves rational (non-rational B-
splines are a special case of rational B-splines). Whereas NURBS curves
evolve into only one parametric direction, usually called s or u, NURBS

surfaces evolve into two parametric directions, called s and ¢ or # and v.

Fig 2.7: The Simple NURBS Curve

By evaluating a NURBS curve at various values of the parameter,
the curve can be representéd in Cartesian two- or three-dimensional space.
Likewise, by evaluating a NURBS surface at various values of the two

parameters, the surface can be represented in Cartesian space.

The statement that NURBS curves are a generalization of Bézier
curves means that all Bézier curves are NURBS curves, but not all NURBS

curves are Bézier curves.

This type is primarily useful for modelling indefinite shape objects

such as plants, trees, hair, curved surfaces like mountains, slopes, etc.

DIRECTX LIBRARIES AND DARKBASIC

CHAPTER 3

DIRECTX LIBRARIES AND DARKBASIC

3.1 DIRECTX OVERVIEW

DirectX is a collection of APIs for easily handling tasks related to
game programming on the Microsoft Windows operating system. It is most
widely used in the development of computer games for Microsoft
Windows. The DirectX SDK is available free from Microsoft. The DirectX
runtime was originally redistributed by computer game developers along
with their games, but later it was included in Windows. DirectX 9.0c is the
latest release version of DirectX. DirectX 10 Beta is available as of
Windows Vista build 5238. The latest versions of DirectX are still usually
included with PC games, since the API is updated so often. It is this library
that synchronises all the audio and video into a single system without

letting the programmer to bother about the hardware intricacy.

3.2 DIRECTX APIs

The various components of DirectX are in the form of COM-

compliant objects. The components comprising DirectX are:

« DirectX Graphics, comprised of two APIs (DirectX 8.0 onwards):
o DirectDraw: for drawing raster graphics
o Direct3D: for drawing 3D graphics primitives
« DirectInput: used to process data from a keyboard, mouse, joystick,
or other game controllers

« DirectPlay: for networked communication of games

3.2.2 DIRECT3D

Direct3D is used to render three dimensional graphics in
applications where performance is important, such as games. Direct3D also
allows applications to run full screen instead of embedded in a window,
though they can still run in a window if programmed for that feature.

Direct3D uses hardware acceleration if it is available on the graphic board.

Direct3D is a 3D API. That is, it contains many commands for 3D
rendering, but contains few commands for rendering 2D graphics.
Microsoft strives to continually update Direct3D to support the latest
technology available on 3D graphics cards. Direct3D offers full vertex
software emulation but no pixel software emulation for features that aren’t
available in hardware. For example, if a program programmed using
Direct3D requires pixel shaders and the graphics card on the user's
computer does not support that feature, Direct3D will not emulate it. The
program will most likely exit with an error message. The API does define a
Reference Rasterizer (or REF device), which emulates a generic graphics
card, although it's too slow to be used in any application to emulate pixel

shaders and is usually ignored.
3.2.3 DIRECTINPUT

Microsoft DirectInput is an application programming interface
(API) for input devices including the mouse, keyboard, joystick, and other

game controllers, as well as for force-feedback (input/output) devices.

Apart from providing services for devices not supported by the

Microsoft Win32 API, Directlnput gives faster access to input data by

« DirectSound: for the playback and recording of waveform sound
o DirectSound3D: for the playback of 3D sounds.

» DirectMusic: for playback of soundtracks authored in DirectMusic
Producer

« DirectSetup: for the installation of DirectX components

« DirectX Media: comprising of DirectAnimation, DirectShow and
DirectX Transform for animation, media streaming applications, and
interactivity respectively

« DirectX Media Objects: support for streaming objects such as

encoders, decoder and effects

3.2.1 DIRECTDRAW

DirectDraw is used to render graphics in applications where top
performance is important. DirectDraw also allows applications to run full
screen instead of embedded in a window such as most other Windows
applications. DirectDraw uses hardware acceleration if it is available on

the client's computer.

DirectDraw is a 2D API. That is, it contains commands for 2D
rendering and does not support 3D hardware acceleration. A programmer
could use DirectDraw to draw 3D graphics, but the rendering would be
slow compared to an API such as Direct3D which does support 3D

hardware acceleration.

As of DirectX version 8.0, DirectDraw was no longer updated and
available directly in DirectX. Some of DirectDraw's functionality was
rolled over into a new package called DirectX Graphics, which was really
just Direct3D with a few DirectDraw API additions.

communicating directly with the hardware drivers rather than relying on

Microsoft Windows messages.

Directlnput enables an application to retrieve data from input
devices even when the application is in the background. It also provides
full support for any type of input device, as well as for force feedback.
Through action mapping, applications can retrieve input data without

needing to know what kind of device is being used to generate it.

The extended services and improved performance of DirectInput
make it a valuable tool for games, simulations, and other real-time

interactive applications running under Windows.
3.2.4 DIRECTSOUND

It is a part of the DirectX library, supplied by Microsoft, which
resides on a computer with the Windows operating system. It provides the
interface between applications and the sound card, enabling applications to
produce sounds and music. Besides providing the essential service of
passing audio data to the sound card, it provides many needed capabilities.
Of these audio mixing and volume control are the most essential.
DirectSound also allows several applications to conveniently share access
to the sound card at the same time. Its ability to play sound in 3D added a
new dimension to games. It also provides the ability for games to modify a
musical script in response to game events in real time, i.e. the beat of the
music could quicken as the action heats up. DirectSound also provides
effects such as echo, reverb, and flange. After many years of development,
today DirectSound is a very mature API, and supplies many other useful
capabilities, such as the ability to play multi-channel sound and sounds at

high resolution.

3.3 DARKBASIC OVERVIEW

DarkBASIC Professional is one of the most advanced games
development package built on the BASIC language currently available. No
other package out there makes it as easy to incorporate all of the special
features and effects you see in today’s games and no other package
natively offers the benefits of Microsoft’s DirectX 9 technology. The sole
purpose of the language was game creation using Microsoft's DirectX 3D
library for graphics but is well rounded enough to do almost any
programming task.

3.4 MAJOR COMMAND SETS

« BASIC Commands: Common commands shared with most other
BASIC languages. Control loops, User functions, Condition
statements, etc.

« Input Commands: Includes input functions for FTP, Files, and
Joysticks in addition to mouse and keyboard inputs.

» Math Commands: Math functions, ranging from arithmetic to
trigonometry.

+ Basic 2D: As the header implies, basic 2D drawing functions such as
lines and ellipses

» Text: Contains functions for printing text to the screen, and
manipulating strings.

« Screen: Controls display modes, screen resolution, etc.

+ Bitmap: Contains functions for bitmap manipulation such as fading
and flipping.

« Sprite: Functions for image and sprite manipulation.

« Sound: Sound manipulation and 3D sound systems.

MODELLING OBJECTS

« Music: Loading and playing music.

» Animation: Manipulation of AVI files.

« Basic 3D: Controls 3D object position, rotation, limbs, and
animation.

» Camera 3D: Controls 3D camera position, rotation, field of view,
and effects.

« Light 3D: Manipulation of 3D lighting.

« Matrix 3D: Create and manipulate 3D matrices.

o System: Contains DLL, window, and hardware commands.

o Memblock: Memblock manipulation of images, sounds, meshes, and
other data down to a per-byte level.

» Multiplayer: Commands for programs working across multiple

machines over LAN or the internet, especially net-games.

CHAPTER 4

MODELLING OBJECTS

4.1 PENCIL SKETCH & REFERENCE IMAGE

Modelling is started with importing a reference images to right,
and left view as background image. These images are very helpful in
modelling process as a reference. When importing image as background

"Fit Image" is chosen for the images to fit to the view port.

Fig 4.1: Fixing the Reference Image & Setting a Base

In right perspective view, draw a rectangular box that is not wider
or higher than model to be created. Box has 6x4 segments (/*b) and 2 side
segments (depth).

This box will be one half of the model. Maybe in top view the box
isn’t fitting the model. But do not move the box. Try to rescale the

background image so it fits the box.

Once done, the background is locked, so when the box is moved,

the image goes with it.

4.2 POSITIONG AND SHAPING THE BASE

The box is just one half of the Shark. This is useful in modelling
practise because one can mirror this box as instance, and work 6ily on one
half of the head (box). And every time a change is made on one half it can
be seen reflected on the other half too. Convert the box to an Editable
Mesh by right-clicking and choosing ‘Convert to Editable Mesh’.

Fig 4.2: Positioning and Scaling the Base

Shape the vertices to match the reference images. You can see
some big difference from the box. Most of work on this phase is moving
those vertexes on the sharp edges of the box to make some

smooth surfaces.

Fig 4.3: Moving and shaping the vertices

The model is now fine tuned by pulling and pushing the edges and

vertices so as to get the desired level of bump or depression in the model.

20

4.4 FINISHING TOUCHES - FINE TUNING

Once the coarse model is complete, some final touches are made to
make it look alive. Cutting and deleting of faces is done to reflect reality.
These are done in place where greater smoothness is needed. Extruding
edges around holes is done by selecting them and moving them from the

model while pressing shift. This gives more curvature to holes.

Fig 4.6: Wire frame of a finished model

Fig 4.7: A finished mode]

4.3 APPLYING MESHSMOOTH

Once complete, apply the ‘Meshsmooth Modifier’ by right clicking
and selecting the option. By turriing off show end result button in Editable
Mesh box, one can get to the previous step of modelling process, to fine

tune it further.

Fig 4.4: Applying Meshsmooth

The next step is to model a nose hole for the model. This is done
by adding (cut tool) more edges. Delete faces where the hole is to be
created. And extrude edges inside the model. Select all edges around that

hole, press and hold shift and move them inside as shown in Fig 4.4 b.

Fig 4.5: Appending simple models to the base

Eye would be a sphere in this phase. The eye object is positioned
and locked in the side view. Similar to the creation of nose hole, the eye

socket is also created and a sphere is placed for eye ball.

21

TEXTURING MODELS

CHAPTER 5

TEXTURING MODELS

5.1 PRE - TEXTURING WORK

Before starting the process of texturing some preset settings are to
be loaded. Only the editable mesh is kept for texturing. Then in Sub-object
Polygon mode, ‘All Polygons (faces) is selected. All the faces are
selected. In ‘Modifier Stack’, the Material ID is set 1. Now every face has

number 1 material assigned.

Fig 5.1: Pre-Texturing work and Sectioning
5.2 SECTIONING PARTS FOR TEXTURING

Polygons (faces) that represent different texturing parts are
selected. Then they are given different material ID, instead of the old ID of
the base. Now the base will be with a material 1 and other parts like back

fin will have material 2 assigned, tail will have material ID 3 assigned.

23

P e e e s o]
Fig 5.3: UVW Texturing & Segregation of Textures

After adjusting, moving, scaling one should have Fig 5.3 (b) in
Edit UVW window. The main body is rotated 180 degrees, scaled down a

little and mesh is much cleaner in the parts where it needs to be.

Fig 5.3: Texture Creation & Textured Model

When adjusting of unwrapped mesh is done, the image is taken to
Photoshop. Print Screen is used to paste it in to Paint window. This image
is pasted on to a separate layer. One layer is the image of mesh; other is

dark parts of the back.
Once the painting is done, it is exported to 3ds Max and applied on

to the model via the Material Editor, thus resulting in a fully textured

model with a high degree of realism.

25

5.3 TEXTURE MAPPING

All faces with a particular material ID that is to be textured is
selected. While these faces are selected UVW Mapping modifier with
Cylindrical mapping method is used. The cylindrical gizmo is put in the
right direction; Sub-Object-Gizmo is used for selection. Click on rotate
button with left mouse button and than with right mouse button to open

this rotate menu. Rotate gizmo -90 around Z axes.

Fig 5.2: Mapping textures to different zones

The green line in Fig 5.2 (a) at the top of the gizmo denotes where
mesh will get split when unwrapped. The same process is done to other

zones of the model which have a different material ID.

When all parts are done with mapping in the Edit Modifier Stack
‘Collapse All’ method is applied. As a result the model is collapsed.
Unwrap UVW modifier is applied. Then on pressing the Edit a new Edit
UVW Window is opened. This window shows texture cylinder in
unwrapped state which has all the material’s unwrapped texture in an

overlapped format Fig 5.3 (b).

24

THE GAME ENGINE
ANIMATION & SYNCHRONISATION

a N

v}

€% 5 posn
o A

CHAPTER 6

THE GAME ENGINE
ANIMATION & SYNCHRONISATION

6.1 OVERVIEW

The models thus created by modelling and texturing are animated
for all of their possible actions using 3D Studio Max’s key — framing

animation techniques.

The idle model is first loaded. It is possible to animate the position,
rotation, and scale of a model, and almost any parameter setting that
affects the object’s shape and surface. It is possible in link objects for
hierarchical animation, using both forward and reverse kinematics, and to

edit the animation in Track View.
6.2 ANIMATION

6.2.1 KEY FRAMES

Key Frames are the ones, where one can define the animation for a
parameter by specifying its exact value at a given set of times. The
software can then work out by interpolating what the value should be

between the keys.
6.2.2 TIME CONTROLS

Time Controls can be found on the lower interface bar between the

key controls and the Viewport Navigation Controls. The Time Control

26

keys at the same time. Selection of multiple key markers can be done by
clicking an area of the Track Bar that contains no keys and then dragging
an outline over all the keys to be selected. Moving the cursor over the top
of a selected key, the cursor is displayed as a sct of arrows enabling to drag
the selected key to the left or right. While dragging a key hold the ‘Shift’
button to create a copy of the key. Pressing the Delete key deletes the

selected key.
6.2.5 ANIMATION WITH KEY FRAMES

Keys define a particular state of an object at a particular time.
Animations are created as the object moves or changes between two
different key states. The easiest way to make keys is using the Key

Controls. These controls are located to the left of the Time Controls.

Max includes two animation modes: Auto Key and Set Key. One
can select either of these modes by clicking the respective buttons at the
bottom of the interface. When active, the button turns bright red, and the
border around. the active viewport also turns red to remind that it is in
animate mode. Red also appears around a spinner for any animated

parameters whose value changes as the track bar slides.

6.2.6 THE AUTO KEY MODE

With the Auto Key button is enabled, every transformation or
parameter change creates a key that defines where and how an object

should look at that specific frame.

To create a key, drag the Time Slider to a frame where a key is

needed and then animate by moving or scaling or rotating the selected

28

buttons include buttons to jump to the Start or End of the animation, or to
step forward or back by a single frame. You can also jump to an exact
frame by entering the frame number in the frame number field. The Time

Controls also include the Time Slider found directly under the view ports.
6.2.3 TIME SLIDER

The Time Slider provides an easy way to move through the frames
of an animation. To do this, just drag the Time Slider button in either
direction. The Time Slider button is labelled with the current frame
number and the total number of frames. The arrow buttons on either side of

this button work the same as the Previous and Next Frame (Key) buttons.
6.2.4 TRACK BAR

The Track Bar is situated directly under the Time Slider. The
Track Bar displays a rectangular marker for every key for the selected
object. These markers are colour-coded depending on the type of key.
Position keys are red, rotation keys are green, scale keys are blue, and
parameter keys are dark grey. The current frame is also shown in the Track
Bar as a light blue transparent rectangle.

Key Frame Current Frame
W ERERRRRNERE AEERARORTRITARARY] TTHITEL
*‘ mym%tmmuur:iusxox I} ;%UM ¥

Fig 6.1: Track Bar

The Track Bar shows key markers only for the currently selected
object or objects, and each marker can represent several different keys.
When the mouse is moved over the top of these markers, the cursor
changes to a plus sign and a marker can be selected by clicking on it.

Selected markers turn white. Using the Ctrl key, one can select multiple

27

6.3 SYNCHRONISATION

When a character in the game is taken, an animation for its idle,
walk, attack, impact, die states are animated and saved as separate 3D
Studio Max Mesh (.3ds) files. These files are converted to DirectX Model
(x) file format. Now these created character animations are to be
synchronised in the game so as to give the illusion of the character
walking, attacking, etc. The idle state is the default state of almost all
models. That state is mostly active and displayed on screen. This state is
switched to walk state or attack state, a temporary switching, to which the
character transforms for a short time due to an appropriate input by the

player, like the cursor keys for walk.
6.3.1 PRINCIPLE APPLIED

The principle used in games is the same as with televisions.
Human eye can retain the last seen frame for a few micro seconds more,
even after it’s gone out of the eye’s focus. The frame persists for a bit
longer during which the next new frame is displayed. Thus the required
frames are cycled so as to give the illusion that something really happens,

believable to human eyes.

First the idle state animation of a character is loaded and displayed.
Then the other states’ animations like walk, attack, etc. are appended to the
character, but hidden from view by cycling the frames only till the move
state’s animation, thus not displaying the remaining appended states
beyond it. When the player instructs the character to be moved to a new
location, then the move state animation frames are cycled, along with the
whole object is constantly moved to the target location, thus giving the

illusion that the character really walks on screen.

31

object or change a parameter value associated with it, and a key is
automatically created. When the first key is created, Max automatically
goes back and creates a key for frame 0 that holds the object’s original
position or parameter. Upon setting the key, Max then interpolates all the
positions and changes between the keys. The keys are displayed in the
Track Bar.

Each frame can hold several different keys, but only one for each
type of transform and each parameter. For example, move, rotate, scale,
and change the Radius parameter for a sphere object with the Auto Key
mode enabled, then separate keys are created for position, rotation, scaling,

and a parameter change.
6.2.7 THE SET KEY MODE

The Set Key button offers more control over key creation and sets
keys only when Set Key button is clicked. It also creates keys only for the
key types enabled in the Key Filters dialog box. The Key Filters dialog box
can be opened, by clicking the Key Filters button. Available key types
include All, Position, Rotation, Scale, IK Parameters, Object Parameters,
Custom Attributes, Modifiers, Materials, and Other (which allows keys to

be set for manipulator values).

6.2.7 SETTING KEY FRAME

Once the model or any other primitive object for the animation is
ready, press the "Auto Key" button in the bottom right-hand corner of the
screen. The “Auto Key” button will turn red. While it's red, anything you

change will create a key frame in that state at that frame.

29

6.3 SYNCHRONISATION

When a character in the game is taken, an animation for its idle,
walk, attack, impact, die states are animated and saved as separate 3D
Studio Max Mesh (.3ds) files. These files are converted to DirectX Model
(x) file format. Now these created character animations are to be
synchronised in the game so as to give the illusion of the character
walking, attacking, etc. The idle state is the default state of almost all
models. That state is mostly active and displayed on screen. This state is
switched to walk state or attack state, a temporary switching, to which the
character transforms for a short time due to an appropriate input by the

player, like the cursor keys for walk.
6.3.1 PRINCIPLE APPLIED

The principle used in games is the same as with televisions.
Human eye can retain the last seen frame for a few micro seconds more,
even after it’s gone out of the eye’s focus. The frame persists for a bit
longer during which the next new frame is displayed. Thus the required
frames are cycled so as to give the illusion that something really happens,

believable to human eyes.

First the idle state animation of a character is loaded and displayed.
Then the other states’ animations like walk, attack, etc. are appended to the
character, but hidden from view by cycling the frames only till the move
state’s animation, thus not displaying the remaining appended states
beyond it. When the player instructs the character to be moved to a new
location, then the move state animation frames are cycled, along with the
whole object is constantly moved to the target location, thus giving the

illusion that the character really walks on screen.

A slider at the bottom of the screen tells the current frame. It
should be at 0. It is dragged to the frame where the sphere needs to be in its
new position by. Say 25 frames, for instance. Now the sphere is moved or

rotated or scaled, with respect to the animation needed.

Fig 6.2: Animation in 3ds Max

The animation is done now. The play button is clicked to watch the
animated sphere in action. When the track bar is moved to a new frame and
the sphere moved, then a third new key frame will be created with the
sphere at its new position. Turn the animate mode off and move the sphere
it moves the entire animation by that displacement. When the play button

is clicked, the whole animation is looped in the viewport.

Thus the required model is animated.

30

100 175 225
L ol 1 L]

Animation Timeline (frames)

O e B Asack
. Walk . Die

wmd Current State Loop

Fig 6.3: Animation — Synchronisation Principle

PN

AR :

® |
S

Fig 6.4: State Chart of a Character

6.3.2 LOADING AND APPENDING OF STATES

Load object call is made for the first time to assign an Object ID.
After an object is created with that ID, then further states are appended to it
by a call to Append object function.

6.3.3 SETTING ANIMATION SPEED

An object animation that is slower in 3DS Max may run faster
when played using DarkBasic’s DirectX call or vice-versa, this is because
of the faster/slower frame rate of a game, than of the default movie
animation of Studio Max. So it’s always better to set the animation’s speed

before playing it.
6.3.4 PLAYING/LOOPING THE ANIMATION

Once the animation speed is set the animation can be played once or
looped as a repeated cycle, until halted using stop animation. Animation
looping is required in many points, almost all, of the game since the basic
movement itself is based on the animation that is looped until the

movement ceases.

6.3.5 A CHARACTER’S LIFE CYCLE

A character in the game comprises of a model associated to it
which is loaded with the respective animations associated to it. These
animations have all action sequences doable by the character. Once loaded

and animations are appended the speed of animation is set.

Then in the main loop of the game, which runs repeatedly until the
game is quit, input for a move command on the character is scanned. If a
new location is set for that character then the idle state animation is hided
and the walk animation is looped, simultaneously moving its model in the
real world plane. Once the required target position is reached the walk

sequence of the model is hided and the idle state sequence is loaded again.

33

GAME - CONTROLS AND OBJECTIVES

In the main loop of the game, every character is checked for its
collision with other characters. If a collision between an enemy model and
hero’s bullet occurs, them the life variable of that character is reduced

according to arm used by the player.

If the health variable of the character reaches 0 then the character’s

death sequence is played on its model and is unloaded from the mewmoiy.

34

CHAPTER 7

GAME - CONTROLS AND OBJECTIVES

7.1 INPUT CONTROLS

Operations like collection of health, cartridges, are automated i.e.
the collection is automatically credited once the hero object touches or

walks over them.

ositioning Movement

Move Forward Cursor Up (?)
Move Back Cursor Down (?)
Move Left Cursor Left (?)
Move Right Cursor Right (?)
Angular Movement
Look Up Mouse Steer Up
Look Down Mouse Steer Down
Turn Left Mouse Steer Left
Turn Right Mouse Steer Right
Combat Controls
Attack [Left Mouse Click
Reload Weapon [Right Mouse Click

‘Weapon Swap Controls

Load Pistol 1
Load Short Gun 2
Load Machine Gun |3
Load Sniper Rifle 4
Sniper Rifle Controls
Zoom In [z
Zoom Qut | Enter

Table 7.1: Game Input Controls

35

7.1.1 POSITIONING & ANGULAR CONTROLS

These are the general hero model manipulating commands such as
move forward, backward, etc for hero’s locomotion. Angular movements

like look up, look down, etc are for directional changes and looks.
7.1.2 COMBAT CONTROLS

These are for attack & reload operations, with respect to the
current weapon selected. The attack operation won’t occur if there aren’t
enough bullets for the current weapon. Likewise, the reload operation

won’t occur if there aren’t enough cartridges for the selected weapon.
7.1.3 SNIPER RIFLE CONTROLS

These are Sniper Rifle specific commands i.e. these will work only
if the Sniper Rifle is selected. Z is to focus the target using the zoom
operation that the rifle provides. The view on screen shrinks to a small

viewfinder of the rifle. Enter is to return back to normal mode.
7.2 GAME PLAY & OBJECTIVES

The game play is of first person shooter (FPS) interface i.e. 3D
view of the virtual world for the player whose view will be a simulated
view of the hero object. The game play has a night environment with a dim
ambient light thought out the world. The game play is by the input that can
be fed using a keyboard and a mouse. The output can be visualized using
any 1024 x 768 resolution supporting monitor. The audio and special
effects can be heard using any speakers that can be jacked-in to the sound

card.

36

CONCLUSION

7.2.1 PRIMARY OBJECTIVES

» The hero should be alive through out the game

» To clear a level all enemies are to be neutralised

> To move to the next level a key should be obtained as clearance for
that level, which will appear at a random location, once all enemies

are neutralised.
7.2.2 SECONDARY OBJECTIVES

e Obtain all ammunition for survival
o For full health restoration collect the heart objects in all levels
¢ Use sniper rifle for targets that are at a long distance and difficult to

eliminate
7.3 GAME STATUS INDICATORS

The top left bar (Health Bar) indicates the player health which
when reaches 0 triggers game over. The currently encountered enemy’s life
is indicated by the bar (Enemy Health) next to the health bar. Above this
bar is the count that shows the number of enemies eliminated / total

number of enemies.

The current arm selected is displayed in the top right corer with
the number of bullets in it. The number of cartridges for that weapon is

also displayed below it.

37

CHAPTER 8

CONCLUSION

This game will be a whole new experience for the young gamers
who are constantly in search for something newer and better with
breathtaking surrealism. This game has been tested on various systems for

its performance in different architectures.

Feedbacks where collected from a few gamers (friends) who
actually played it throughout the end of the game, and was found to be

good, with certain tips for enhancements.

Though 2D, Role Playing Games and animations haven’t lost its
charm yet, it can be foreseen that the upcoming era belongs to the 3D
perspective, which is much wider, clearer and extensible. Keeping this in
mind the project opens up new avenues for a whole new experience in the

3D gaming arena.

38

POSSIBLE FUTURE ENHANCEMENTS

APPENDICES

CHAPTER 9

POSSIBLE FUTURE ENHANCEMENTS

The first and foremost enhancement possible for the game can be
the refinement of the overall engine to make it faster and better. This can
be done by less complex objects and reduction of the number of objects
loaded for a single stage of the game. It gives a richer look and much lesser

response time that keeps the player glued to the game.

Network play (Multiplayer) functionality can be a thoroughly
amazing enhancement for the game, which enable more than one player to
play simultaneously either as teams or against themselves. Chat facility
between the players can also be provided for better communication

between players to device game plans.

An additional view other than the default 3D view can be provided
for the player e.g. 3™ person shooter. This allows the player to have a
better view of the arena they are in. Rotation and titling of the whole view
point can also be added to the engine which adds more reality to the

gaming experience.

APPENDIX 1

3DS FILE FORMAT ARCHITECTURE (.3DS)

The 3ds file format is made up of chunks. Chunks describe what
information is to follow and what is made up of; its ID and the location of
the next block. The next chunk pointer is relative to the start of the current
chunk and in bytes. The binary information in the 3ds file is written in a
special kind of way. Namely the least significant byte comes first in an int.
For example: 4A 5C 5C 3B 8F where 5C 4A is the low word and 8F 3B is
the high word.

Table al: Format of a Chunk

Start | End. |.Size Name

0 1 2 Chunk ID
2 5 4 Pointer to next chunk relative to the place where
Chunk ID is, in other words the length of the chunk

Listing a2: Sample 3ds file’s hierarchy

MAIN3DS (0x4D4D)
[

+--EDIT3DS (0x3D3D)

[

| +--EDIT MATERIAL (OxAFFF)
i

|| +--MAT_NAMEO1 (0xA000)
o

| +--EDIT_CONFIG1 {0x0100)
| +--EDIT_CONFIG2 (0x3E3D)
| +--EDIT_VIEW_P1 (0x7012)
ot

|
|
|
|
I
|
i
I
|

| +--TOP (0x0001)
| +--BOTTOM (0x0002)
| +--LEET (0x0003)
| +--RIGET (0x0004)
| +——FRONT (0x0005)
| +--BACK (0x0006)
| +--USER (0x0007)
| +--CAMERA (OXFFFF)
| +--LIGHT (0x0009)
| +--DISABLED (0x0010)
| +--BOGUS (0x0011)

40

Chunks have a hierarchy imposed on them that is identified byte
it's ID. A 3ds file has the Primary chunk ID 4D4Dh. This is always the first
chunk of the file. Within the primary chunk are the main chunks.

A preview and a reference to the hierarchy of chunks, above listing
(a) is to show the different chunk ID's and their place in the file. The
chunks are given a name because below the diagram is a list which defines
the names to the actual chunk id's. This makes it easier to put it in some

source code (how convenient that some sample code is included)

41

A SIMPLE CUBE IN .X FILE FORMAT
This file defines a simple cube that has four red sides and two

green sides. Notice in this file that optional information is being used to

add information to the data object defined by the Mesh template.

Material RedMaterial {

1.000000;0.000000;0.000000;1.000000; ; // R=1.0, G=20.0, B=20.0
0.000000;

0.000000;0.000000;0.000000; ;

0.000000;0.000000;0.000000; ;

}

et reenMaterial

J- 1.000000;0.000000;1.000C00;; // R=10.0, G=1.C, 3=20.0
0

o 5.060000;0.000000;;

J. -000000;0.000000C; ;

// Define a mesh with 8 vertices and 12 faces (triangles). Use

// optional data objects in the mesh to specify materials, normals,
// and texture coordinates.

Mesh CubeMesh {

8; // 8 vertices
1.000000;1.000000; 0000060;, // vertex 0O
-1.000000;1.000000;-1.000000;, // vertex 1
=1.000000;1.000000;1.000000;, // etc...

1.000000;1.000000;1.000000;,
1.000000;-1.000000;-1.000000;,
-1.000000;~-1.000000;-1.000000;,
-1.000000;-1.000000;1.000000;,
1.000000;~1.000000;1.000000;;

12; // 12 faces
3:;0,1,2;, // face 0 has 3 vertices
3:0,2,3;, // etec...
3:0,4,5;,

3;0,5,1;,

3;1,5,6;,

3;1,6,2;,

3:2,6,7;,

3:2,7,3;,

3;3,7,4;5,

3;3,4,0;,

3;4,7,6;,

3;4,6,5;;

// Bll required data has been defined. Now define optional data
// using the hierarchical nature of the file format.
MeshMateriallist {

2; // Number of materials used
12; // A material for each face
o, // face 0 uses the first

43

APPENDIX 2

DIRECTX FILE FORMAT ARCHITECTURE (.X)

The DirectX file format is an architecture- and context-free file
format. It is template-driven and is free of any usage knowledge. The file
format may be used by any client application and currently is used by
Direct3D Retained Mode to describe geometry data, frame hierarchies, and
animations.

This following are the sections of the file format. The file format
uses the extension .x when used with the DirectX Software Development

Kit (SDK) or other programming file references.

» Reserved Words
« Header

« Comments

« Templates

+ Data

« Use of Commas and Semicolons

42

o, // material

1, // face 8 uses the second
1, // material

1::

{RedMaterial} // References to the definitions
{GreenMaterial} // of material 0 and 1
}

MeshNormals {

8; // define 8 normals
0.333333;0.666667;-0.666667;,
-0.816497;0.408248;~0.408248;,
-0.333333;0.666667;0.666667;,
0.816497;0.408248;0.408248;,
0.666667,;-0.666667;-0.333333;,
-0.408248;-0.£08248;-0.816497;,
-0.666667;-0.666667;0.333333;,
0.408248;-0.408248;0.816497;;

2; /1 E
30,1,2;, // ce
i0,2,3;:,
i0,4,5;,
i0,5,1;,
i1,5,6;,
il,6,2;,
:2,6,7;,
i2,7,3:,
:3,7,4;,
i3,4,0;,
:4,7,6;,
4,6,5;;

eshTextureCoords {
// Define texture coords
000000;1.000000; // for each of the vertices
000000;1.000000;
000000;1.000000;
000000;1.000000;
000000;0.00000C;
000000;0.000000;
000000;0.000000;
000000;0.000000; ;

P OHOPOHOXE- WWWWWWWWWWWW!

44

APPENDIX 3

SAMPLE CODING

Sync on
Sync Rate 30
hide mouse

camvalue=200
Backdrop on
Set camera range 1,5000

Fog on

Fog distance 3000

fog color RGB(25, 25, 25)
Color Backdrop RGB(0, 0, 0)

set ambient light 75

3
o

Rem texture matrix
Load image "Medel\Ground.bmp", 2
Prepare matrix texture 1, 2, 2,

currentArm=9000
swapArm(currentArm, 0)

Rem intialize particle counter

Pnl=20

dim LifeRecord(9,12)
Life=0

for i=0 to 12

for j=0 to 9
LifeRecord(j,i}=Life
next j

next i

make object box 7, €0,390,40
set object collision on 7
hide object 7

‘setting up sniper viewfinder
set image colorkey 255, 255, 255

load image "Model\viewfinder.bmp", 701
set sprite 2,0,1

sprite 2, 0, 0, 701

hide sprite 2

“setting up crosshair

set image colorkey 255,0,255

load image "Model\crosshair.bmp”, 700
‘rem Setup crosshair sprite

set sprite 1,0,1

45

ZTest} = Newzvalue(Z#,CameraAngleY#, 50
If XTest#>0 and XTest#<matrix_x and ZTest#>0 and
ZTest#<matrix_y

X#=XTest#
Z§=2Test#
Endif
Endif

If Downkey()=1
XTest# = Newxvalue (X#,Wrapvalue (CameraAngleY#-180),10
ZTest# = Newzvalue(Z#,Wrapvalue (CameraAngleY#-180),10
If XTest#>0 and XTest#<matrix_x and ZTest#>0 and
ZTest#<matrix_y -
X#=XTest#
Z#=2Test#
Endif
Endif

If Leftkey()=1
XTest# = Newxvalue (X#,Wrapvalue (CameraAngleY#-90),10)
ZTest} = Newzvalue(Z#,Wrapvalue (CameraAngleY$-90),10
If XTest#>0 and XTest#<matrix_x and zTest#>0 and
ZTest#<matrix y -
X#=XTest#

If Rightkey()=1
XTest Newxvalue (X#,Wrapvalue (CameradngleY#+9C),10
ZTest# = Newzvalue (2#,Wrapvalue (CameraAngle¥#+90},10)
If XTest#>0 and XTest#<matrix_x and ZTest#>0 and
ZTest#<matrix_y -
X#=XTest#
Z#=ZTest#
Endif
Endif

if delay<>0 then delay=delay-1

if Mouseclick()=1 and BulletLife=0 and delay=0
if currentArm=9000

if pistol>=1

pistol=pistol-1

BulOb; istol
delay:
else
goto shoot_guit:
endif
play sound 22

endif
if currentArm=3001
if short>=1

short=short-1

dela)

BulObj=short

else

goto shoot_guit:

endif

play sound 23
endif

if currentArm=9002

47

sprite 1,screen width()/2-15,screen height ()/2,700

load music "Effects\CRICKETS.WAV", 6000

Rem Make bullet

Make Object Sphere 2, .05

Hide Object 2

automatic object collision 2, .05, 0

Make Object Sphere 3, 20
set object collision on 3

Load T

mage "Model\bgallal.ijpg",22

Texture object 3,22

Rem load particles

For x

=0 to 10

Make object plain x+10,5,5
Texture object x+10,22

Set

object x+10,1,0,0

Ghost object on x+10

set
Next x

Rem st

376
40
Y# G

positi
Positi

object cellision o

art point of player object
0
et ground height (1,X#,Z#

on object 7, X#, 0, Z#
on Camera X#,Y#+camvalue, Z#

bulletVelocity=60

loop music 6000

Rem load gun picture
load image "Effects\Pistol.png”, 40

set sprite 3, 0,

sprite

Rem Ma
Do

3, 500, -10, 40

in loop

OldCamAngleY# = CameraAngleY#
OldCamAngleX# = CameraAngleX#

CameraAngleY# = WrapValue(CameraAngleY#+MousemoveX () “0.2)
CameraAnglex# = WrapValue (CameraAngleX#+MousemoveY () *0.2)
CameraAngleZz# = Camera angle Z()

colli=object collision{(7,0

if colli=0

lastUnColliX#=X#

lastUnColliz#=Z#

Forwar

sho:

if

Rem Control input for camera
Tf Upkey ()=
XTest#

Newxvalue (X#, CameraAngleY#, 50)

46

if mgun>=1
mgun=mgun-5
delay:
BulObj=mgun
else
goto shoot_quit:
endif
play sound 24
endif
if currentArm=9003
if sniper>
sniper=sniper-1

=sniper

goto shoot_quit:
endif
endif
if sniperMode=1
Position object 2,RealposX#+ (X#-

dX#), Y#+190, RealposZ#+(Z#-ForwardZ4
else
Position object 2,X#,Y#+190,2#
endif

Set object to camera orientaticn 2
BulletLife=25

set object speed currentArm, 250
play object currenthrm, 51, 75

End
ot_quit:

currentArm=9003 and keystate(44) and sniperMode=0

hide object 9003

hide sprite 1

show sprite 2

RealposX#=x4

Realposz#=z#

KTest# Newxvalue (X#, CameraAngleY#, 1500

ZTest# = Newzvalue(Z#,CameraAngleY#, 1500

If XTest#>0 and XTest#<matrix_x and 2Test#>0 and ZTest#<matrix y
#=XTest#

Endif
ForwardX#=xX#
Forwardz#=24#
sniperMode=1

endif

if

(returnkey() and sniperMode=1)
hide sprite 2

show object 9003

show sprite 1

X#=RealposXi+ (X#-Forwardx4)
Z#=RealposZi+ (Z#-ForwardZt)
sniperMode=0

endif

else

X#=lastUnCollix#

48

Z#=lastUnCollizZ#
endif

Rem Rotate camera
cTestX#=WrapValue (CameraAngleX#-180

if cTestX# > 225 then CameraAnglex#=45
i1f cTestX# < 135 then CameraAngleX:

Yrotate camera CurveAngle(CameraAngleY#,0ldCamAngleY#,24)
Xrotate camera CurveAngle{CameraAngleX#,OldCamAngleX#, 24

if mouseclick()=2 and reLoad=0
if currentArm=9000 and pistol_cart>=1
pistol=10
pistol_cart=pistol cart-1
BulOb: istol
delay=0
set object speed currentArm, 80
play object currentArm, 76, 100
reLoad=1
endif
endif

If Bullet:

Dec BulletLife
Move object 2, bu

etvelocity

“likewise for all weapons
if currentArm=95001
For x 21l to 30
show object x
Next x
obX#=Object position X(2)
obY#=Object position Y(2)
obZ#=Object position Z(2
endif

ObjectLife (pwd)

if object collision(2, €) > 0
BulletLife
position object 2, -100,-100,-100
For x = 21 to 30

hide object x

Next x

endif

if BulletLife = 0
position object 2, -100,-100,-100
if currentArm=9001

49

51

APPENDIX 4

SCREENSHOTS

50

