KERNEL BASED DESKTOP CONTROLLER
Via VOICE

(O
?” \ > A PROJECT REPORT

Submitted By

P.ANNAPOORANI 71202104002
N.MEENAKSHI 71202104020

in partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
IN
COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE
ANNA UNIVERSITY: CHENNAI 600025

APRIL 2006
ANNA UNIVERSITY:CHENNAI 600025

ANNA UNIVERSITY: CHENNAI 600025

BONAFIDE CERTIFICATE

Certified that this project report “Kernel Based Desktop Controller via
Voice” bona fide work of “P.Annapoorani (71202104002) and N.Meenakshi

(71202104020)”, who carried out the project work under my supervision.

N A

(Signature) (Signature)
Dr.S.Thangasamy Ms. Amutha Venkatesh
Head of the Department Supervisor

Senior Lecturer
Dept. of Computer Science & Engg., Dept. of Computer Science & Engg.,
Kumaraguru College of Technology, ~Kumaraguru College of Technology,
Chinnavedampatti P.O., Chinnavedampatti P.O.,
Coimbatore-641006. Coimbatore-641006.

Submitted for Viva Voce Examination held on J_.[5 ! ol

é : Q flﬂ
Intetnal Exammer External Exammer

DECLARATION

We hereby declare that the project entitled “Kernel Based Desktop
Controller via Voice” is a record of the original work done by us and to the

best of our knowledge.

The report is submitted in partial fulfillment of the requirements for
the award for the Degree of Bachelor of Computer Science and Engineering

of Anna University, Chennai.

Place: Coimabtore.

(P.Annapoorani)

rD QL.I"—-R,{‘CL?L.‘

(N.Meenakshi)

11

ACKNOWLEDGEMENT

We would like to extend our gratitude to the Principal of our college, Dr.
K. K. Padmanaban for providing us the required resources to proceed with our
project.

We would like to express our sincere thanks to our Head of the
Department, Dr.S.Thangasamy for his guidelines that motivated us to develop
a good product.

We are very grateful to our Project coordinator, Ms.P.Devaki, Assistant
Professor, for her constant advice and support during the project.

We take immense pleasure in expressing our heartfelt thanks to our guide
Ms. Amutha Venkatesh for her inspiration and guidance throughout this
project. We are very grateful to her for her help rendered to us in handling
various tough spots during this project.

We would like to express our thanks to all the members of the faculty of
the Department of Computer Science & Engineering for their support. We
also extend our gratitude to all the lab technicians who had helped us during
the course of our project.

Last but not the least we would like to extend our heartfelt thanks to our
parents and our brothers and sisters and friends for their encouragement and
support. Also we thank all those who have helped us directly or indirectly in

our project.

v

ABSTRACT

ABSTRACT

“The Kernel Based Desktop Controller via Voice™ project i1s aimed at
providing software to control the actions of the desktop using the user’s
voice alone. The various applications on the desktop are to be invoked by
this software by correctly identifying the words spoken by the user and
converting them into commands which can invoke the desired event or
apphcation. The entire desktop of the computer, starting from ‘my
computer’ to ‘start button’ is controlled. The spoken words are inputted
to the system in the form of voice and converted in to commands by the

system proposed.

This system consists of the interface which gets the input from the
user. The voice of the user is got through the microphone. It is then sent
to the Speech recognition engine present in the Microsoft SDK 5.1.The
voice 1s converted to text by the SDK. The text is then sent to the
program, which refers the XML files for the grammar. In the XML file,
we define the tokens that are to be sent to the program. Depending on the
tokens, corresponding events are invoked. To verify whether the
computer has correctly converted the speech, the program sends the

converted text to the TTS engine and it also displays the text.

\%

CHAP.NO.

TABLE OF CONTENTS

TITLE
ACKNOWLEDGEMENT
ABSTRACT
LIST OF FIGURES

LIST OF SYMBOLS, ABBREVIATIONS AND

NOMENCLATURE

LIST OF TABLES

INTRODUCTION

1.1 SPEECH FORMS TECHNOLOGY

1.2 MICROSOFT SPEECH SDK 5.1
1.2.1 INTRODUCTION TO SAPI 5

1.3 EXISTING SYSTEM

[.4 PROPOSED SYSTEM
1.4.1 PROPOSED SYSTEM’S APPLICATIONS
1.4.2 PROPOSED SYSTEM’S ADVANTAGES
1.4.3 PROPOSED SYSTEM’S DRAWBACKS

OPERATING ENVIRONMENT

2.1 HARDWARE REQUIREMENTS

2.2 SOFTWARE REQUIREMENTS

2.3 OPERATING SYSTEM

2.4 DESIGN AND IMPLEMENTATIONS

CONSTRAINTS

2.5 USER DOCUMENTATION

2.6 ASSUMPTIONS AND DEPENDENCIES

Vil

PAGE
NO.
v

vi

X1

X1l

MO0 00 00 e N b A h h e B W M

CHAP.NO

TITLE

SOFTWARE REQUIREMENTS SPECIFICATION
3.1 INTRODUCTION
3.2 OVERALL DESCRIPTION
3.2.1 PRODUCT PERSPECTIVE
3.2.1.1 PRODUCT FEATURES
3.2.1.2 USER CLASSES AND
CHARACTERISTIC
3.3 SYSTEM FEATURES
3.3.1 DESIGNING OF FORMS
3.3.2 VOICE TRAINING AND RECOGNITION
3.3.3 GRAMMAR FILE
3.4 EXTERNAL INTERFACE REQUIREMENTS
3.4.1 USER INTERFACE
3.4.2 HARDWARE INTERFACE
3.4.3 SOFTWARE INTERFACE
3.4.4 COMMUNIOCATION INTERFACE
3.50THER NONFUNCTIONAL REQUIREMENTS
3.5.1 PERFORMANCE REQUIREMENTS
3.5.2 SAFETY REQUIREMENTS
3.6 SOFTWARE QUALITY ATTRIBUTES
3.6.1 ADOPTABILITY
3.6.2 AVAILABILITY
3.6.3 INETROPERABILITY
3.6.4 RELIABILITY

V1l

PAGE
NO.
11
11
11
11
11
12

12
12
13
13
14
14
14
14
15
15
15
15
15
15
15
16
16

CHAP.NO

OO0 =

TITLE

3.6.5 REUSABILITY
3.6.6 TESTABILITY
SYSTEM DESIGN
4.1 PROPOSED SYSTEM ARCHITECTURE
4.2 COLLOBORATION DIAGRAM
4.3 SEQUENCE DIAGRAM
DETAILED DESIGN
5.1 MODULE DESCRIPTION
5.1.1 INTERACTION WITH THE USER
5.1.2 SPEECH TO TEXT CONVERSION
5.1.3 VOICE TRAINING AND RECOGNITION
5.1.4 XML FILES
5.2 DESKTOP CONTROLLING
5.2.1 HOW TO START
5.2.2 EXPANSION OF THE MENU
5.2.3 HOW IT WORKS
5.24 COMMANDS AVAILABLE
5.2.5 SPEECH LIBRARY
5.2.6 HOOKING MENU
FUTURE ENHANCEMENTS
CONCLUSION
APPENDIX
REFERENCES

1x

PAGE
NO
16
16
18
18
19
20
22
22
22
26

27
30
30
30
33
34
35
37
39
41
43
51

LIST OF FIGURES

OVERVIEW OF SPEECH BASED HUMAN
MACHINE INTERFACE

ARCHITECTURE OF THE SYSTEM

COLLOBORATION DIAGRAM

SEQUENCE DIAGRAM

MAIN FORM

SYSTEM ARCHITECTURE OVERVIEW

USER INTERFACE

INPUT WINDOW

OUTPUT WINDOW

Page no.

18
19
20
25
26
33
43
44

LIST OF SYMBOLS, ABBREVIATIONS AND
NOMENCLATURE

KBDCvV - Kernel Based Desktop Controller via Voice

ASR - Automated Speech Recognition

DLL - Dynamic Link Library

TTS - Text To Speech

SDK - Software Development Kit

SAPI - Speech Application Protocol Interface
COM - Component Object Model

XML - Extended Markup Language

X1

LIST OF TABLES

LIST OF COMMANDS AVAILABLE

X1l

34

INTRODUCTION

1. INTRODUCTION

The Speech Recognition systems allow people to control a computer
by speaking to it through a microphone, either entering text, or issuing
commands to the computer, e.g. to load a particular program, or to print a

document.
KERNEL BASED DESKTOP CONTROLLER via VOICE
(KBDCvV) — A Computer Program for the Study of Natural Language and

Communication between Man and Machine

e This is a stepping stonte in ARTIFICIAL INTELLIGENCE

It makes certain kinds of natural language conversation between

man and computer possible.

* Input is analyzed and they are converted to text. Only the given

particular set of keywords is processed.

* Responses are generated by invoking the corresponding DLL.
The system 1s designed to control the Desktop by activating programs
by voice. The entire desktop of the computer, starting from my computer to
start button is controlled. The spoken words are inputted to the system in the

form of voice and converted in to commands by the system proposed.

I~

1.1 SPEECH FORMS TECHNOLOGY

Speech is a sequence of structured sounds forming words and
sentence. The speaker converts information that he wants to communicate to

the machine into speech.

Speech then propagates as a sound wave to a microphone which is the

entrance automatic speech recognition systems.

A microphone generates a signal that is decoded by ASR systems.
The linguistic information that is encoded by speaker during speech

production is extracted as a sequence of words.

The machine can further interpret the word sequence and perform the

appropriate action.

Speech messages can be produced with a TTS and emitted towards
with the speaker. Here the acoustic wave given is measured and analyzed 1n
order to extract the linguistic information and derive a sequence of words.

OVERVIEW QF SPEECH BASED HUMAN
MACHINE INTERFACE

TTS
AJDIO INFORMATION
HUMAN INTERFACE PROCESSING
ASR
VOICE
INTERFACE

Fig 1.1

L]

1.2 MICROSOFT SPEECH SDK 5.1

Microsoft speech SDK 5.1 is a software development kit for building
speech engines and applications for Microsoft windows. It has been
designed primarily for the desktop speech developer. The SDK contains the
Microsoft speech application programming interface the SAPI, the Microsoft
continuous speech recognition engine and Microsoft concatenated speech
synthesis (or text to speech) engine, a collection of speech oriented
development tools for compiling source code and executing command and

documentation on the most important SDK features.

1.2.1 INTRODUCTION TO SAPL5

SAPI model is based on the Component Object Model (COM)

interface and Microsoft has defined two distinct levels of SAPI services:

o High level SAPI provides “command and control” level of
services. This is good for detecting menu and system level

commands and for speaking simple text.

e Low level SAPI provides the much more flexible interface and
allows programmer’s access to extended speech recognizer and

text to speech services.

1.3 EXISTING SYSTEM

The Existing system runs the executable file directly without
activating the kernel controls. Hence the area of application is restricted. It
1s platform dependent. Operations done in this system are complex. Speech

soft wares available as of now are expensive
1.4 PROPOSED SYSTEM

In the proposed system, the voice of the user is got through the
microphone. It is then sent to the Speech recognition engine present in the
Microsoft SDK 5.1.The voice is converted to text by the SDK. The text is
then sent to the program, which refers the XML files for the grammar. In the
XML file, we define the tokens that are to be sent to the program.
Depending on the tokens, corresponding events are invoked. To verify
whether the computer has correctly converted the speech, the program sends

the converted text to the TTS engine and it also displays the text.

The proposed system developed is financially feasible when
compared with the existing system. The startup cost is high for the existing
system when compared to the proposed system. It is simple and user

friendly. Controls in the operating systems are directly used.

1.4.1 Application of proposed system

e 'This 1s specially used for the computer users who are physically

handicapped.

= Without the mouse, the entire desktop operations can be controlled.

1.4.2 Advantages of proposed system
* Accessible from remote areas with the help of microphones.
» Platform-independent as NET-framework is used.

1.4.3 Drawbacks

o It is very difficult to restrict the speech library.
» Difficult to change or control the OS instead of kernel.

* Speech SDK can give only appropriate result with no accuracy.

OPERATING ENVIRONMENT

2. OPERATING ENVIRONMENT
2.1 HARDWARE REQUIREMENTS
& Pentium IV processor

e 256 MB RAM

e Multimedia microphone

e Specakers

2.2 SOFTWARE REQUIREMENTS

® The System needs “SPEECH APPLICATION PROGRAMMING
INTERFACE 5” (SAPI 5).

e Microsoft Engine for English.
e Microsoft Speech SDK 5.1

2.3 OPERATING SYSTEM

e Windows XP processor
e Microsoft window 2000
¢ Microsoft window millennium

» Microsoft NT4.0 workstation or server and higher versions.

2.4 DESIGN AND IMPLEMENTATION CONSTRAINTS

The following is the listing of the various design constraints

related to the product under development to function.

¢ The system can only run on the stand-alone computers, where the
system to run on a network is considered to be an enhancement.

e The system must be installed with Microsoft Speech SDK 5.1 and
SAPIS.

e The system must be equipped with a Microphone so that the user
may be able to command the system to execute the various keyboard

and mouse functions.

2.5 USER DOCUMENTATION

The Desktop Controller is designed for a single user who is the
Operator. The necessary documentation is provided to the Operator for using

the system.

2.6 ASSUMPTIONS AND DEPENDENCIES

It is assumed that the voice of the user is familiar to the system so
that the system recognizes the user’s voice commands. The system depends
on the Microsoft Speech SDKS5.1 and Speech Application Programming
Interface (SAPIS).

SOFTWARE REQUIREMENLS SPECIFICATION

10

3. SOFTWARE REQUIREMENTS SPECIFICATION
3.1 INTRODUCTION

This Software Requirement Specification describes the function
and performance requirements of Kemel Based Desktop Controller via
Voice. This 1s a system that is used to execute all the Microsoft Windows
command and work with all applications of Microsoft Windows using voice.
The objective of the system is to minimize the work of the user by doing all

the work of keyboard and mouse through voice.

3.2 OVERALL DESCRIPTION

3.2.1 PRODUCT PERSPECTIVE

The proposed work includes adding “Speech Recognition
Capability” to the system. The system should be able to recognize the
commands issued as voice. The Speech Recognition Engine that is attached
to the system will convert the speech into text, thus providing suitable

commands for execution purposes.

3.2.1.1 PRODUCT FEATURES

The system is capable of recognizing human voices as commands
and matches it with an existing command. Once the command is recognized

the system produces the desired result.

11

3.2.1.2 USER CLASSES AND CHARACTERISTICS

Desktop controlling through voice is being designed for single user.
This general user shall be referred to as user. The user has the access ri ghts

to all the functionality of the system.

3.3 SYSTEM FEATURES

The modules involved in the project are :-

3.3.1 DESIGNING OF FORMS
3.3.1.1 Description and priority

The forms in the system are designed using .NET framework. This is
basically the front end of the product. This is medium priority module as the

front end can change with the wide variety of applications.

3.3.1.2 Stimulus/response Sequences

The user can either activate or deactivate the software. If the software
is activated then the user can control all the desktop activities using his

voice. The mic volume and the accuracy level can be viewed.

3.3.1.3 Functional requirements

The .NET Framework is used for designing the forms. The system
first converts the command in the form of voice into text which requires
Microsoft Speech SDKS.1 and SAPI. The user should be informed about the
command that is executed by Microsoft Agent for better interaction of the

user with the system.

12

3.3.2VOICE TRAINING AND RECOGNITION

3.3.2.1 Description and Priority

The user when using the system for the first time has to train the
system so that it could recognize the users’ voice modulation. Once trained

the system should recognize the commands given by the user.

3.3.2.2 Stimulus/Response Sequences

The nput to this module is given by the user through microphone.
The speech is converted to text and the command is recognized for

execution.
3.3.2.3 Functional requirements

The user can start interacting with the system by saying the “Activate”
command to it. The system would start listening to the user for the
commands that are said to it for execution. Speech Application
Programming Interface (SAPI) is required for matching the commands given

by the user with the commands that the system recognizes.

3.3.3 GRAMMAR FILE

3.3.3.1 Description and Priority

The commands are stored in an XML file and the input from the
user is matched with the available commands in the file and the execution is
done. This module has a high priority, as it is the core functionality of the

product.

13

3.3.3.2 Stimulus/Response Sequences

The input from the user in the form of speech is converted into
text and then the text i1s matched with the commands already available in the

system for execution.
3.3.3.3 Functional requirements

XML is required for storing the commands.

3.4. EXTERNAL INTERFACE REQUIREMENTS

3.4.1 USER INTERFACE

The user interface will consist of forms. It is very user friendly and

the user can easily understand all the options available.

3.4.2 HARDWARE INTERFACE

Microphone 1s used to obtain the command from the user in the form
of speech. The user can dictate the commands directly to the system for
execution, by using his/her voice. The system can understand the commands
and produce the relevant function.

3.4.3 SOFTWARE INTERFACES

The Speech Application Programming Interface converts the speech
into text format. The C# .NET program compares the text with the

commands stored in the XML file and the execution 1s done.

14

3.4.4 COMMUNICATION INTERFACES

The user Communicates with the system using the microphone to train
the system to recognize his voice modulation. Once the system is trained, the
user can easily interact with the system and can do the entire keyboard and

mouse functions by using only his/her voice.
3.5 OTHER NONFUNCTIONAL REQUIREMENT
3.5.1 PERFORMANCE REQUIREMENTS

The performance of the system is based upon the training that the

user gives to the product.
3.5.2 SAFETY REQUIREMENTS

This product is very safe to use and does not corrupt any files.

Anyone can use the software and there is no restriction.

3.6 SOFTWARE QUALITY ATTRIBUTES
3.6.1 ADAPTABILITY

This product works only with in Microsoft Windows Applications.
It works with any Microsoft Windows Operating Systems.
3.6.2 AVAILABILITY

Availability of the product will be dependent upon the operation

hours of any computer system that it is installed and the availability of the

15

speech engine. As such, it must be accessible at every hour on any type of

computer system.

3.6.3 INTEROPERABILITY

The product is platform independent. It works with any Microsoft

platform

3.6.4 RELIABILITY

The reliability of the software is based on the training given by the
user. The overall reliability of the product is predicted to be around 60-70
percent.

3.6.5 REUSABILITY

The C# coding could be used with different speech engines of

ditferent operating systems to change the platform that it works in.

3.6.6 TESTABILITY

The accuracy of the product can be tested by changing the voice of

the user who trained it and by giving wrong commands

16

SYSTEM DESIGN

17

4. SYSTEM DESIGN

4.1 PROPOSED SYSTEM’S ARCHITECTURE

VOICE INPUT
R INTERFACE
F 3
I USER COMMAND IN WAVES
SPEECH RECOGNITION ENGINE
¢ ¥ », USER COMMANDS IN VOICE
REFER XML FILES TEXT TO SPEECH TO TEXT
< h 4 »>
v L 4 A 4
INVOKE EVENT DISPLAY TEXT PLAY BACK TEXT
h i >t L A
L 4
END APPLICATION

-

Fig 4.1

18

4.2 COLLABORATION DIAGRAM

7: system response

<

T —_ command |
s s
N /___

USer : user "'“‘ji.\t_ff[mﬂ?‘}_:e system

_\.\ ' /; II . p
N ya &: user commanding the system through wice
5 deactivating.the system E /4
“__‘.\.‘ \.____.\ /}/
L Y i A
4 activating;the system A, S
‘ / /N /" 3 deaciiating the system
/, o _. |
2: activating the system™. !
Vil oM \ .:
/ b 1
r / !
/// // 5 l
f//) / .\\.___..
Vid deactivate |

. activate

Fig 4.2 Collaboration Diagram

19

4.3 SEQUENCE DIAGRAM

user training Kt activate ~ commands . deactivate |
Lo [L L_._

training the system | . ! :

| R el i I |
. | H 1

| activating the system . !)
— || . . S | |
. ! L. ! I
i | i !
5 deactivating the system |I -
T : . 1

T T ! |
. | d
el ' | '

’ activating the system . | |
;__ o — — —_——— . >.[__i . |
! _ | | ;
i | |

| . |
)] deactivating the system | I
! user oomrbanding the system thro'r.lgh voice .
| > |
. |
| L. ' '
: | | |
SySerm resonse | _| !

<

| | |
1 ! |
| | . |
|

Fig 4.3 Sequence Diagram

20

IGN
TAILED DES
DE

21

5. DETAILED DESIGN

5.1 MODULE DESCRIPTION

The KBDCvV is logically divided into three modules as listed below.

5.1.1 Interaction With The user

The project allows the user to Activate or Deactivate the KBDCvV.
Once activated the system could understand the Commands that are given by
the user to perform the entire keyboard and mouse functions. To increase the
efficiency of this system the user need to train the software and the system
could be able to understand the users’ commands more effectively and
efficiently. The interface is very user friendly and the user could easily
understand the operation of this system. The interface through which the
user interacts with the program consists of 1.Welcome page 2.Command

list 3.Accuracy 4.Profile Change 5 Favorites 6.Add favorites 7.About

Main Form

This is the form which takes care of the speech recognition and the
conversion of voice to text. It integrates the various forms present in the
application. This form also takes care of invoking the various applications
on the desktop. Now let us see in detail about the various functions of this
form. The DLL files required for capturing the system events are added in
the main form. The objects required for the working of the speech

recognition engine are created. The main form contains labels for the status

and accuracy level & a progress bar for mic volume. The menu items present
in this form are start/stop listening, Mic training wizard, user training
wizard, etc. In the form load event we initialize SAPI objects & load initial
grammar. The commands of the menu items are added to the phrase list by
capturing the menu items. The menu items are invoked and if they have a
submenu then hook the sub menu. The main object RecoContext event is
launched when engine recognizes a phrase. Depending on the phrase
identified we take the necessary action. In this Recocontext event we
calculate the accuracy and we dynamically change the maximum accuracy.
We 1dentify the various events using the rule name and not using the phrase.
Whenever an event is to be occurred the corresponding file is included into
the SAPI grammar and it is used for further references. The recognized

words are displayed and they are played back using a Microsoft agent.

Favorites:
The form contains list of the programs and their phrases. The list is
generated each time by reading the XML file and hence it gets updated

automatically whenever a new program is added through Add favorite

command.

Add Favorites:

The form contains two list boxes which displays the favorite programs
and their corresponding phrases, two text boxes in which the program to be
added and its phrase as favorite is written. The form also contains add,
delete, save and browse buttons. When add button is clicked it is checked
whether, the phrase given in the text box is already present in the list or not.

If not present, then it is added to the list otherwise an error message is

23

displayed. The delete button deletes the particular item from the list box and
its corresponding phrase by comparing the index of the selected item in the
list box. The browse button allows the user to select the application by
displaying a Open dialog box. The dialog box is invoked by using the
Common Dialog Control. The selected application’s name is placed in the
text box along with its extension. The Save button enables the application to
be actually added to the favorite list. First, the text boxes are checked for
input and an error message is displayed whenever any one of the text boxes
are empty. Then the given phrase is checked whether it is already present in
the Tist box or not. If the phrase is not present then the application’s name
and the phrase is written into the XML file using the XML Writer. The

application and the phrase is updated in the list box.

Commands List:

The form contains the list of commands in a tree structure. It displays
set of possible commands after a particular command is given. For e.g.
After the activate command, the possible commands like show about, show

command list, deactivate, etc.

Accuracy Limit:

The form contains the minimum accuracy level, above which the
words spoken will be accepted as input The incoming voice is compared
with the vocabulary present and if the percentage of similarity is above the

accuracy level it will be accepted.

24

Profile Change:

{t contains a list of the trained users of this application. The input
of the user will be compared with the existing profiles and the profile which
matches will be checked in the list.

If the current user wants to change the profile he can do
so by manually selecting the required profile from the list and from then the

mput will be compared with that profile.

just activate me when ever you
wiant...

Accuracy I Accuracy 0%

f
p ~-
g

Mic Volume

Fig 5.1

Main Form

5.1.2 Speech To Text Conversion

The system 1s capable of interacting with the user by accepting
all the Commands that is given to it by voice and executing the relevant
function. To make this possible the input given by the user in the form of
voice is converted into text by Microsoft Speech SDKS5.1 and this text is
matched with the default commands that the system can execute, if the
commands match then the particular function for the command is performed

by the system.

XML
Rules

Commands

\‘-_____/
System Architecture overview

Fig 5.2

5.1.3 Voice Training and Recognition

The user needs to train the system before using this software, to

improve the efficiency at which the system accepts the commands from the

26

user. The training is done so that the system can identify the users’ voice

modulation and run efficiently.

5.1.4 Xml Files

The rules that are needed to be executed when a command is
recognized are written in separate XML files. These files are matched with
the respective commands by the Speech Application Programming Interface
(SAPI 5). When the command is recognized by the system the respective
XML file with the rules is executed by the program, to get the desired

function to be performed.

An example of the XML code to activate the System is given below,
<!'-- 409 = american english -->

<GRAMMAR LANGID="409">
<DEFINE>
<ID NAME="RID_Activate" VAL="0" />
<ID NAME="RID_CloseProgram" VAL="2" />
<ID NAME="RID_ShowAbout” VAL="3" />
<ID NAME="RID_ShowCommands" VAL="300" />
</DEFINE>
<RULE NAME="Activate" ID="RID_Activate"
TOPLEVEL="ACTIVE">
<O>please</O>
<P>activate</P>
<O>the</O>
<Q>computer</O=>

</RULE>

<RULE NAME="CloseProgram" ID="RID _CloseProgram"
TOPLEVEL="ACTIVE">
<P>close speech recognition</P>
</RULE>
<RULE NAME="ShowAbout" ID="RID ShowAbout"
TOPLEVEL="ACTIVE">
<P>about speech recognition</pP>
</RULE>
<RULE NAME="ShowCommands" ID="RID ShowCommands"
TOPLEVEL="ACTIVE">
<P>commands list</P>
</RULE>
</GRAMMAR>

We define the following XML documents.
I. xmlactivate.xml
2. xmlcommands.xml
3. xmlalphabeticstate.xml
4. xmlnumericstate.xml
5. xmlfavorites.xml
6. xmlstart.xml
7. xmldeactivate.xml
xmlactivate.xml & xmldeactivate.xml
These xml files define the grammar for activating or
deactivating the application. It also makes the application to “start/stop

listening” to the users voice.

28

xmlcommands.xml
Here we define the actions to be taken for the different
commands that are given by the user. Here we have to take care about the

hierarchy in which the commands are given.

xmlalphabeticstate.xml
In this file we define the grammar for the letters and commands
that are present in the key board. This alphabetic state can be used when the

user 1s using the text editor like notepad, MS Word etc.

xmlnumericstate.xml
This file is similar to the xmiaiphabeticstate.xml. But 1nstead
of the alphabets we have the grammar for the numbers. If we have the
numbers in between the text we can to exit the alphabetic state and then

switch to the numeric state.

xmlfavorites.xml
Here we offer quick access to the frequently used applications
specified in the favorites list in the interface
xmlstart.xml
This xml file allows us to control the start menu present in the

taskbar of our desktop.

29

5.2 DESKTOP CONTROLLING

We planned to make some common tasks that every user does on his/her
computer (opening/ closing programs, editing texts, calculating) possible not

only by mouse/ keyboard but also by voice

5.2.1 How To Start

In order to start talking right away you should do these two steps...

1. The first thing to do is adjusting the microphone by clicking the right
mouse button and choosing the "Microphone training wizard"
2. The second thing to do is training the engine to your voice by

choosing "user training wizard"

After these changes you have to make the program start listening
again by clicking the right mouse button and choosing "Start listen". The
more you train the engine, the better it will recognize your voice. We can see
an improvement from the first training itself. After the program starts
running it may be in a several "states", in every state it recognizes a list of

specific commands.

5.2.2 A Expansion Of The Menu
"Start listen"/"Stop listen" :

To enable/disable the mic (it's switched according to what you
choose), after disabling the label's becomes red (accuracy and state)

indicating our state.

30

"Use agent”:

Though the agent is used only for giving feedback it's could be useful
to kniow 1f your command 1s heard or not. You can disable it if you want or
if you don't have an agent or if it 1s not working and still want to use the
recognition. This also is being take care of, if the program didn't find the

agent file or could not be loaded because of any other reason.

"Add favorites":

In the "activate" state you can say the command "favorites
programs' and open a form with your favorites programs and running them
by saying the program name. This menu will open a form showing your

favorites programs so you can add/delete or edit them as you want.

“Change character™:

This will allow you to change the agent character.

"Change accuracy limit":

The recognition accuracy of the software 1s displayed in the
"Accuracy” label, you can choose this menu and change the accuracy limit
that you want the program to respond to the command that it hears. We
should do this to avoid responding to any voice or sound that he hears. You
can rise this more every time that you train your computer and increase the

recognition.

31

"Change user profile":

If the program is being used by several users you can choose to each
user a profile and train the computer for each one (to add a user profile enter

"control panel -> speech”, here you can only choose existing one's).

"Mic tramning wizard...":

This is very important for improved recognition. The first thing to do
in every computer is to activate this menu and setting up your mic or if you

changed your mic to a new one.

"User training wizard...":

For a better recognition of the input given by the user we use this

wizard.

5.2.3 How It Works

The initial state is in "deactivate” state that means the program is
in sleepy state... After the command "activate" you will wake up the

program and 1t start recognizes other commands.

[i'm listering j

User Interface
Fig5.3
For example "start” to activate the start menu, then you can say
"programs” to enter the programs menu, from this point you can navigate by

1w LU |}

saying "down"," up", "right"... "OK" according the commands list. You can
also say "commands list” from any point to see a form with the list of the
commands that you can say.

One of the important states in the program is "menu" state,
meauning that if a program is running (and focused) you can say "menu” to
hook all menu items and start using them. For example if you are running
notepad you could open new file by saying "menu"->"File"->"new file".
Every time that you hook menu you could see how many menus the program

hooked so you can start using them as commands.

Another nice state is "Numeric state”, for example say the

commands ... "favorites programs”, "calculator”, "enter numeric state",
a2

1 1

one", "plus”, "two

"

, "equal” and see the result. Or you can open a site in

2

"Alphabetic state”, for example say the commands ... "favorites programs”,”

internet explorer”,” enter alphabetic state", "menu", "down", "down", "OK",
"enter alphabetic state", "c", "o", "d”, "e", "dot”, "¢", "o", "m" and see the

2

resuit.

5.2.4 Commands Available

Table 4.1} Commands Available

.« deactivate + switch program
o close speech recognition o tabfrnght
o about speech recognition o shift tab | left .
= close | hide o enter | ok
o activate o escape |
i » deactivate cancel
| = up « press key
: + down o release | stop
= right o up
- left o down
i - enter | run | ok o Tight
| » escape | cancel o left
» tab + shut down
= menu | alt | o right|tab
o All "activate” state o left | shift tab
+ menu items o escape |
= start cancel
! o deactivate o enter|ok
o up - page up
o down » page down
o right . Yyes
o left « NO

o enter | run | ok - enter numeric state |
o escape o eXit numeric .
o tab o State
o commands list _ o back | back
o programs space
o documents o plus
o settings o Iminus
o search o mul]
o help multiply
o Tun 5 o div | divide
| - commands list | o equal
| o close | hide o Numbers
| o pageup from0 -9
| o page down « enter alphabetic
= close f state
» favorites | favorites : o exit
| programs alphabetic
f o close [hide state |
o Aprogramname ° o back space |
from the list : o enter
at ("@")
o underline
")
o dash ("-")
o dot(".")
o back slash
("/")
o Letters from
AtoZ ’
Table 5.1

5.2.5 Speech Library

Using SpeechLib;

When we activate the engine the initialization step takes place. There

are mainly 3 objects involved:

35

l. An SpSharedRecoContext that starts the recognition process (must be
shared so it can apply to all processes). It implements an
ISpeechRecoContext interface. After this object is created we add the
events we are interested in (in our case Audio Level and Recognition)

2. A static grammar object that can be loaded from XML file or
programmatically implements ISpeechRecoGrammar the list of static
recognizable words is shown in Fig 2 and attached for downloading
dynamic grammar that lets adding rules implements
[SpeechGrammarRule; the rule has two main parts :

o the phrase associated

o the name of the rule
Three basic functions that we will need are

« MtSAPI() : To create grammar interface and activating interested

events.

* SAPIGrammarFromFile(string FileName) : To load grammar from

file.

« SAPIGrammarFromArrayList(ArrayList PhraseList) : To change

grammar programmatically.

After initialization the engine still will not recognize anything until we load
a grammar. There are to ways to do this: loading a grammar from file, or we

can change the grammar programmatically.

36

5.2.6 Hooking Menus

When a program’s menu is activated, by saying "Menu" its menu
is hooked and its commands are added to the dynamic grammar. We used
some unmanaged functions which we imported from wuser32.dll. The
program also hooks the accelerators that are associated with each menu (that
have & sign before them). The command is simulated with function

keybd event and is executed.

FUTURE ENHANCEMENLS

6. FUTURE ENHANCEMENTS

The future enhancements of this project would be used to perform all
the advanced desktop operations like cut, copy and paste. It can be used to
interpret directly with the text in the start menu. Application dependent
software can be developed. Through speech recognition we can develop
software to control the entire network by restricting the remaining channel,

It can be further improved to provide security for a particular user.

We can further enhance this project to recognize phrases, interpret
their meaning and function accordingly. We can also make the software to

type the sentences directly into the word processor.

CONCLUSION

40

7. CONCLUSION

The Desktop Controlling through voice system was successfully
developed in an effective and user-friendly approach. The software

development process imparted in materializing this project strictly followed

IEEE standards in all phases.

4]

APPENDIX

42

8. APPENDIX

SCREEN SHOTS

INPUT WINDOW

Stop listen
v Use agenk
Ldd Favorites
Change character
Change accuracy limit
Change user profile
Mic training wizard, .,
User training wizard, .,
Profile proportles wizand...

Ext

Mic Volume

i) start & G mdams ®. Mhoroscit Developre. .. - unhithed - B

Fig A.1

43

OUTPUT WINDOW

Free ACL & Unfimited Internet
Fres Downloads

Mew Office Document

open Office Document
windows Catalog

Windaows Update

WinZip

Yahoo! Massenger

Programs
Daocuments

Settings

Search S R
Mic Volume

Help and Support

Run. .,

Log Off M.

Windows XP Professional

Turn OFf Computer..,

Fig A.2

44

' under your confral.

.

E }

L Y

Mic Volume

Fig A.3

just activate me when ever you

Mic Volume

start F v C O ©ountred - Pk

46

e

Doy

-

['m listening

Mic Volume

LnTiied - 2ank

Fig A.5

47

Free AQL 8 Unlimitad Intarnst
Free Downloads

Kew Office Document,

Cpen CFfice Document
Windows Catalog

Windows Lipdate

WinZp

Yahoal Messenger

w©
%
2

Programs

Cocuments Accuracy !! Accuracy 0% !

Sethings

1
LY

Wi

4

T | 3
soorch T —————
Mic Volume

Help and Support

e

Bun. ..

a Log GFF Nw'3...

@ Tyrn OFf Computer. ..

Windows XP Professional

@& Wi

Fig A.6

48

REFERENCES

49

9. REFERENCES

l. “Professional C# &.NET version 1.1”, by Robinson and Allen, Wrox
publications.

2. “C# and NET in a nutshell”, by Hamilton and Mc Donald.

3. “Developing Windows APIs with Visual C# & .NET”, by Microsoft
press.

4. “Beginning C# & NET 2003”, by Sahad and Raghunathan, Wrox
publications.

5. “C# and .NET Platform”, 2" Edition Andrew Troelsen (2003) Springer
(India) Private Limited.

6. “MICROSOFT NET”, by David S Platt(2001), Prentice-Hall of India
Private Limited.

7. “MICROSOFT VISUAL C# .NET”, by John Sharp and John
Jagger(2003) ,Prentice-hall of India Private Limited.

8. http://www.compuiter.org/toc/html.

9. http://www.csharphelp.com

10. http://www.al-depot.com

50

