P—itor

INTELLIGENT QUERY ANSWERING
(IQA) SYSTEM

- APROJECT REPORT

Submitted By

AYSHWARIA.K.B (71202104004)
KRITIKA.R (71202104018)

In partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
In
COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

ANNA UNIVERSITY: CHENNAI 600 025

MAY 2006

BONAFIDE CERTIFICATE

ANNA UNIVERSITY: CHENNALI 600 025
BONAFIDE CERTIFICATE

Certified that this project report “INTELLIGENT QUERY ANSWERING
(IQA) SYSTEM?” 1s the bonafide work of “Ayshwaria.K.B (71202104004)
and Kritika.R (71202104018)” who carried out the project under my

supervision.

S JL,O — Dol gy

SIGNATURE SIGNATURE
Dr. S. Thangasamy Mrs. D. Chandrakala
HEAD OF THE DEPARTMENT SUPERVISOR
Assistant Professor
Department of Computer Science & Engg. Department of Computer Science & Engg,
Kumaraguru College Of Technology Kumaraguru College Of Technology
Chinnavedampatti Post Chinnavedampatti Post
Coimbatore — 641 006 Coimbatore — 641 006

Submitted for viva-voce examination held on c2los /200t

ok N3t

TERNAL EXAMINER EXTERNAL EXAMINER

ii

DECLARATION

DECLARATION

We hereby declare that the project entitled “INTELLIGENT QUERY
ANSWERING (IQA) SYSTEM?” is a record of original work done by us
and to the best of our knowledge; a similar work has not been submitted to

Anna University or any institution, for fulfillment of the requirement of the

course study.

The report is submitted in partial fulfillment for the award of the Degree of
Bachelor of Computer Science and Engineering of Anna University,

Chennai.

Place : Coimbatore

Date : 91.04.95006

K. '

(Ayshwdria K.B)

Lotcke K

(Kritika.R)

i

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

With profound gratitude, we express our deepest thanks to our internal guide
Mrs.D.Chandrakala, Assistant Professor, Department of Computer Science
and Engineering, who has taken all measures to guide us through the project,
and been a constant source of inspiration and motivation at various levels of

the project.

Our sincere thanks to all the lab technicians who have been operational in

aiding us implement the system.

We would like to thank the Head of the Department, Computer Science and
Engineering, Dr. S. Thangasamy and Mrs. P. Devaki, Project Coordinator
for guiding us through the project.

Our sincere thanks to the Department of Computer Science of Engineering,
Kumaraguru College of Technology, for extending its fullest support by all

means to enable us to complete the project.

Last but not the least, we extend our utmost gratitude to our parents, all our
student peers, and all those who directly or indirectly helped us in successful

completion of the project.

v

ABSTRACT

ABSTRACT

Any database query is used to find some answers from data stored in a
database that meet some conditions or constraints of a retrieval statement.
With the growing size of the database in the present days, it is required by
the users to have the system to be intelligent in answering queries. Intelligent
answers are those that do not provide wrong or misleading answers but in
addition to providing the right answers also provide extra related
information.

To meet this need of intelligent answering of English queries, we
propose to develop an Intelligent Query Answering (IQA) System that
enables easy retrieval of data from a database by means of a manually
fabricated knowledge base. All types of queries can be answered by simple
retrieval or intelligently by analyzing the intent of the query, neighborhood
or associated information using the discovered knowledge base.

We have proposed a Query Rewriting Algorithm to transform the
unstructured English query presented by the user, into the SQL query that
can be executed directly on the database to retrieve the necessary details. We
have also incorporated neighborhood concepts and intent analysis in order to
provide more flexibility to the IQA System.

In order to demonstrate the above algorithm we have developed a
system that uses the proposed algorithm to answer queries posed by the
naive users in order to retrieve details of a student. This Student database
comprises of Personal Details, Academic Details, Placement Details, and
Exfracurricular Details and Club Membership Details of the different
students.

LIST OF FIGURES

Figure No.

6.1
7.1
7.2
7.3
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

12.11

12.12

12.13

LIST OF FIGURES

Name

Architecture of IQA System

Run Time Info

Level 0 DFD

Level 1 DFD

tabdet

fielddet

hashvaltab

Selection Page to resolve keyword ambiguity
Selection Page to select the required field
finaltablst

freshfielddet

combdet

Required set of tuples

Displaying name and ID of the student, the
buttons Other Details and Photo are highlighted
Displaying Selection Page on clicking

Other Details button

Displaying the details selected in the
Selection Page of the particular student

Displaying the photo of the student on clicking
the Photo button

Page No.

13
13
18
19
65
66
66
67
67
68
68
69
69

70

70

71

71

LIST OF TABLES

LIST OF TABLES

Table No. Name Page No.
8.1 Neighborhood 20
8.2 DataDictionary 20
83 TableDetails 20

8.4 Combinations 21

vii

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.
ABSTRACT v
LIST OF FIGURES vi
LIST OF TABLES vii
1. INTRODUCTION 1
1.1 SCOPE 1
2. LITERATURE REVIEW 3
2.1 EXISTING SYSTEM 3
2.2 PROBLEMS IN EXISTING SYSTEM 3
2.3 EXISTING METHODOLOGIES 4
2.4 PROPOSED SYSTEM 5
2.5 ADVANTAGES OF PROPOSED SYSTEM 6
3. PROPOSED LINE OF ATTACK 7
4, PROPOSED METHODOLOGY 8
4.1 INCREMENTAL STAGES IN
DEVELOPMENT OF IQA SYSTEM 9
5. PROGRAMMING ENVIRONMENT 11
5.1 HARDWARE REQUIREMENTS 11
5.2 SOFTWARE REQUIREMENTS 11
6. ARCHITECTURE OF IQA SYSTEM 12
7. IMPLEMENTATION DETAILS 14
7.1QUERY REWRITING ALGORITHM 14

7.2 DATAFLOW DIAGRAM 18

viii

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

8. SYSTEM DESIGN 20
8.1 MODULAR CLASSIFICATION 20

8.2 IMPLEMENTATION TABLES 20

8.3 MODULES IN DETAIL 21

8.3.1 NEIGHBOURHOOD MODULE 21

8.3.2 BASIC IDENTIFICATION MODULE = 22

8.3.3 COMBINATIONS MODULE 23

8.3.4 QUERY REWRITING 25

8.3.5INTENT ANALYSIS 28

9. TESTING 31
9.1 VALIDATION TESTING 31

9.2 BLACK BOX TESTING 32

9.2.1 FEATURES OF RATIONAL ROBOT 32

9.2.2 USE CASE SPECIFICATION 34

9.2.3 TEST SCRIPT 36

10. FUTURE ENHANCEMENTS 41

10.1 ENHANCEMENTS RELEVANT TO

THE DOMAIN CONSIDERED 41

10.2 ENHANCEMENTS IN BROADER SENSE 41

11. CONCLUSION 42
12, APPENDIX 43
12.1 DATABASE SCHEMA 43

12.2 SAMPLE CODE 45
12.3 SCREEN SHOTS 65
13. REFERENCE 72

INTRODUCTION

1. INTRODUCTION

A database query is to find so
database, which meet some conditions or constraints of a retrieval statement
(e.g. Select statement). Database systems rely on an exact matching method
for retrieving records (tuples) from a database. A record either satisfies the
query or does not. A user is required to have detailed knowledge about the
problem domain and some understanding about the database schema to
properly construct a query. Moreover, the user is also expected to know the

right format in which the query is to be presented.

Intelligent query answering refers to a procedure that answers queries
constructed in simple English, effectively and intelligently by searching the
query for specific keywords and values. An intelligent answer should be
correct, non-misleading, and useful to a query. Besides, Intelligent querying
also analyses the intent of a query and providing some generalized,
neighborhood, or associated answers. Due to the complexity of the database
schema, incorrect or incompletely specified queries are frequently posed and
the users often receive no answers. With the increas
and complexity of database schemas, it is getting more difficult to

understand the schema to issue proper query to get the expected answers

from the databases.

Intelligent Query Answering (IQA) System that is designed consists
of analyzing the intent of query, rewriting the query in SQL format and also
providing additional data based on the intention and neighborhood,
generalized or associated information, and providing intelligent answers to

the query. It is now necessary to provide more powerful and sophisticated

query processing capability to meet the needs of users working with
databases, with no proper knowledge about the schema of the database and
format for construction of query.

1.1 SCOPE

The IQA system can be used to retrieve information from a large
repository in order to answer the queries posed by the user. The system can
handle queries framed using simple English language without the use of
SQL formats. Apart from answering the queries, the system also helps the
user to frame sensible queries by providing hints to construct queries. The
IQA system answers to the queries by analyzing the intent of the user by
means of providing links. The system cannot be used to update or delete

entries in the repository.

The IQA system is developed in a much generic sense, by considering
all the possible bottlenecks that would arise when the system is tried to be
integrated with a different database, such that, the same implementation
logic can be used for any database only by including relevant details in the

mapping tables and making corresponding modifications in the code.

In order to demonstrate the working of the IQA model, we use a

Student database. The Student database comprises of Personal Details,

LITERATURE REVIEW

2. LITERATURE REVIEW

2.1 EXISTING SYSTEM

In the existing query answering systems, the user is required to
commit to memory all the commands and their syntax in order to obtain the
required details from a database. Moreover, the answer for a posed query
relies on an exact matching method for retrieving records (tuples) from a
database. Besides, the existing system returns either too many or too few
items or even no answer, as the query may be too general or too specific or
does not match the databases schema. The user is required to have detailed
knowledge about the problem domain and some understanding about the
database schema to properly construct a query. The existing concept of
query rewriting deals with optimized retrieval of result from database using
views. But there are no systems that handle English queries and convert it

into structured queries.
2.2 PROBLEMS IN EXISTING SYSTEM

» Retrieving tuples from multiple tables requires the user to have a

detailed knowledge of the table relations in the database. (Natural-

> There is no means by which the user is informed about domain
specific mistakes in query construction.

» Strictly, exact table names and field names have to be used in order to
acquire the accurate matches for the constructed query.

> If the users are unable to remember the syntax even the help feature

cannot be used effectively.

2.3 EXISTING METHODOLOGIES
Knowledge Discovery

The idea of intelligent query answering is achieved so far by using the
concept of knowledge discovery and framing of knowledge rules as
explained in [1] and [2]. These knowledge rules are stored in a repository
and are used to answer queries in a more generalized manner. This is
achieved by the usage of concept hierarchies and generalized rules. These
rules are used to provide accurate as well as summary information relevant
to the query presented. These queries presented should be constructed in a

particular format to obtain the required answers.

Query Rewriting

The objective of answering queries uses the concept of query rewriting as
expressed in [3]. Query Rewriting is used to form optimized queries from
already existing views. This requires the existence of the table views in order
to from the rewritten queries. The rewritten queries are executed over the
views rather than the base relation to obtain the answers. This concept when

used alone does not provide the facility of answering queries intelligently.

In the proposed methodology, we have combined the concepts of knowledge
discovery and query rewriting. Knowledge discovery is that which refers to
manually fabricating a knowledge base of the database schema and domain
related keywords. Query rewriting is the conversion of the English query to
the SQL query. The main as.pect of this concept is keyword analysis
performed on the presented English query, so as to answer the query

intelligently and interactively.

2.4 PROPOSED SYSTEM

The literature survey performed in the field of query answering revealed
that, till date, there are no systems developed to handle English queries

posed by the users in a user interactive way.

In order to handle this situation, we propose to develop an Intelligent Query
Answering (IQA) System that provides the facility of user friendly querying
from a database. We have proposed to achieve this objective by
incorporating a manually created knowledge base of domain related
keywords and the concept of Query Rewriting. To add flexibility to the
system to handle a large variety of queries with no restriction of format, we

use the concept of Neighborhood and Intent Analysis.

To implement the concept of Query Rewriting, we have put forward a new
algorithm, the “Query Rewriting Algorithm”. The Query Rewriting
Algorithm is intended to convert an unstructured English query to a SQL

query with minimum access to the database.

The Neighborhood concept is aimed at improving the flexibility of the
system in answering a wide range of queries appropriate to the domain. This
concept is incorporated in the algorithm by means of using a Neighborhood
Table which has all the keywords and its synonyms pertinent to the domain

considered.

Intent Analysis is targeted in achieving the objective of making the IQA
system user-friendly. The concept of intent analysis comes up only when the
query is too generalized or when more details relevant to the query are

available to be provided to the user.

2.5 ADVANTAGES OF PROPOSED SYSTEM

» The users of the IQA System need not have a complete understanding
of the schema of the database.

> The users are not required to know the format or the structure in
which the query has to be constructed in order to obtain the desired
information from the database.

» The users are only required to know what information they want to
retrieve or know from the database.

» The system also provides extra information relevant to the query apart
from providing the details requested by the user.

» The system generates an intelligent answer that explains why the
query fails thereby exposing any false presuppositions the user may
have.

» The user preference such as intentions, interests and needs in

databases are considered while answering the queries.

PROPOSED LINE OF ATTACK

3. PROPOSED LINE OF ATTACK

The implementation of the proposed system is split into various modules
such as Neighborhood Module, Basic Identification Module, Combination

Identification Module, Query Rewriting Module and Intent Analysis
Module.

Each of these modules performs its required functions efficiently by using
the various implementation-tables namely, DataDictionary, TableDetails,
Neighborhood Table and Combinations Table. The first four modules are-
integrated by the Query Rewriting Algorithm.

The platform on which the IQA System is developed is Windows XP with
the source coding done using ADO.NET and the front-end designed using
ASP.NET. The database is designed and structured in SQL Server 2000.

PROPOSED METHODOLOGY

4. PROPOSED METHODOLOGY

A process model for developing any project is chosen based on its nature
and application, methods and tools to be used, controls and deliverables that
are required. The proposed line of attack for “Intelligent Query Answering
(IQA) System” is Conversion of English Query to SOL Query and the
objective 1s achieved using one of the significant software engineering

models called the “Yncremental Model”.

The Incremental Model combines the elements of Linear Sequential Model
or Waterfall Model with the iterative philosophy of Prototyping. The
Incremental Model delivers software in small but usable pieces called
“Increments”. In general, each increment builds on those that have already
been delivered. Early increments are stripped down versions of the final
product, but they do provide the capability that serves the user and also

provide a platform for evaluation by the user.

When an incremental model is used the first increment is called the ‘CORE
PRODUCT’. Here the basic requirements are addressed, but many
supplementary features remain undelivered. After evaluation a plan is
developed for the next increment. The plan addresses the modification of the
core product to better meet the needs of the customer and delivery of
additional features and functionalities. The process is repeated following the

delivery of each increment, until the complete product is produced.

4.1 INCREMENTAL STAGES IN THE DEVELOPMENT OF
IQA SYSTEM

The core product of the IQA System consists of the database, domain-
specific implementation-tables namely DataDictionary and TableDetails.
The basic forms were designed to provide a suitable GUI. The Basic
Identification Module uses the two implementation-tables to answer basic
queries which have the exact keyword matches to table names and field

names without value and conditional constraints can be effectively processed

at this stage.

The second increment incorporates the addition of another implementation-
table called Neighborhood Table. The Neighborhood Module which uses
this table is included to enhance the flexibility of handling wide range of
queries posed by the user. This increment was tested and found to be
successful by verifying the systems ability to answer queries which has

words that are synonymous to the exact keywords or field names.

The third increment is intended to handle queries with value and conditional
constraints. This required an additional implementation-table, Combination
Table. The Basic Identification Module is extended to use the values
constraints specified in the query to identify the appropriate tables and
fields. The Combination Module uses the Combination Tabie to identify the
operators mentioned in the query in order to construct the suitable
conditions. This increment was tested and found to be effective in answering

queries with conditional and value constraints.

The fourth increment is aimed to consider user preferences and provide
additional information the user. For this purpose, we included an additional
form to display the various optfions relevant to the query and the
corresponding processing is done in the Infent Analysis Module. This
increment was tested and found to display the relevant options. When any
option is selected, the already posed query along with the selected option is
processed and the exact tuples are displayed.

The Query Rewriting Algorithm is implemented in stages in each and every

increment.

10

PROGRAMMING ENVIRONMENT

5. PROGRAMMING ENVIRONMENT

5.1 HARDWARE REQUIREMENTS

Processor : AMD Sempron
Processor speed : 137 MHz

RAM : 256 MB

Hard Disk : 10 GB

Mouse : 3 button Scroll mouse
Monitor

Keyboard : 101 keys enhanced

5.2 SOFTWARE REQUIREMENTS

Operating Systems : Windows 9x/NT/XP/2000
Front End : ASP.NET

Back End : SQL Server 2000

Web Browser : Internet Explorer 6.0

i1

ARCHITECTURE OF IQA SYSTEM

6. ARCHITECTURE OF IQA SYSTEM

The IQA System consists of two important components namely,

Query Interface

This is the front end of the system which interacts with the user. This
enables the user to pose his English query. The rewritten query and the
corresponding result are displayed to the user by this Query Interface. This is
also used to inform the user, about the mistakes in the posed query and also
provide hints to construct meaningful query, thereby helping the user to

obtain the required details.

Query Answering Engine
This is the important component of the IQA System. This is the one
that does the English query processing. The processing involves two steps
namely,
Query Rewriting
This step uses the proposed ng A
accesses a set of implementation tables, relevant to the application and
domain, that are consolidated to form the Mapping Repository as
shown in Fig No. 6.1. These tables contain domain related keywords
and database schema. With the help of these tables the English query
is rewritten to form the structured SQL query.
Structured Query Execution
The constructed SQL query is executed on the database to
obtain the required result. The relevant tuples are sent to the Query

Interface and displayed to the user.

12

90In0g
ere(q

Query Executior>

SOIqEL
uoneuwadw]

A1oysodoy

Suiddey

\
<a[dn 1 parnbay

uonisoduro))
IOMSUY

-

suiSuy Sutomsuy Aren)

HddOTHAHA

Aa%o 108

Sunumay
A1)

v \
1nsoy

YIS

D

A1onQ) ysisug

N

ti

=

B

E &

]
o S
a
/.M\
./
UOoeIuISAI uone[nULIO]
nsoy Apnd) ysidug

soejIou] A1ond))

13

wid)SAS VOI JO 2IMINYILY 1°9°0N 314

IMPLEMENTATION DETAILS

7. IMPLEMENTATION DETAILS

7.1 QUERY REWRITING ALGORITHM
Input: Unstructured English query

Output: Structured Query

Processing:

Step 1: Split the query

Step 2: Replacing synonymous word with the right keyword or meaning.
Input: (i) A Query Q split into tokens w; (0 <i<1),1is the number of
word in the query (ii) An implementation table, the Neighborhood table
Output: The Query Q with the right keywords.
Method:
for each word w; (0<=i<=l) of Q do
for each row R in the Neighborhood Table do
if w; = R, (“Synonym”) then
Replace w; with R, (“Word™),

Step 3: Identify the tables using keyword references
Input: (i) A Query Q split into tokens w; (0 <i<I),1is the number of
word in the query, each token has specific keyword or values (i) An

implementation table, the DataDictionary

Output: A dataset tabset with the specific keyword and the table that the
keyword refers to.

14

Method:
for each word w; in the query do
for each row R, in the DataDictionary table do
if w; = Ry (“Keyword”) then
Include R, in a dataset tabdet

Step 4: Identify the tables and fields using field references
Input: (i) A Query Q split into tokens w; (0 <i<1),1is the number of word
in the query, each token has specific keyword or values (i) An
implementation table, the TableDetails
Output: A dataset fielddet with the specific fieldname and the table in
which the field appears.
Method:
for each word w; in the query do
for each row R, in TableDetails table do
if w; = R, (“FieldName”) then
Include R, in a dataset fielddet

Step 5: Identify tables and fields using value references

Input: (i) A Query Q split into tokens w; (0 < i <1), 1is the number of word
in the query, each token has specific keyword or values (ii)

Output: A dataset valtab with the value, specific fieldname and the table in

which the value appears.

15

Method:
for each word w; in the query do
for each table T in the database do
for eachcell Cin T do
if w; = C then
Include the C and the corresponding Column

Name and Table Name to a dataset valtab

Step 6: Using the above findings form the final list of tables and fields that
will be needed in order to answer the query

The list of tables needed to answer the query is finalized by consolidating
the tables in the datasets tabdet and fielddet in a dataset finaltablst. The final
list of fields is obtained by consolidating the fields in the fielddet and valtab
in a dataset freshfielddet. Care is taken to eliminate duplicate entries in the
datasets.

Step 7: Form the SQL query by including the identified tables, fields and
values in the appropriate clauses.
Input: (i) The identified datasets fielddet, finaltablst, valtab
Output: A dataset valtab with the value, specific fieldname and the table in
which the value appears.
Method:
//Select Clause
For each row Ry in fielddet do
Include Ry (“FieldName™) to the Select Clause

16

//From Clause
For each row Ry in finaltablst do

Include Ry (“TableName”) to the From Clause

//Where Clause

For each row R, in valtab do
Form the condition R,; (“FieldName”) = R, (“Value™)
Include the condition to the Where Clause

Step 8: If comparison operations are specified in the query, then identify the
fields and values involved in the operation and append the relevant operator
conditions to the query, in the where clause.
For each word w; in the query do
If w; is an operator op then
Identify the fields and values involved in the operation
Form the condition FieldName op Value

Include the condition in the Where Clause

Step 9: If additional information can be provided then specify the option to
the user using links so that query answering can be done by analyzing the

intent of the user

17

7.2 DATA FLOW DIAGRAM

Fig 7.2 Level 0 DFD

English Query Process
GUL English Query
Required Tuples
Database
Fig 7.1 Run Time Info
English Query
USER | QA
Required Tuples System

18

English

USER Process

English Query

Unstructured
Query

Neighborhood

Value and

Keyword Combinations

Field
References

Constraint
Identification

Table
Identification

Field
Identification

Where
Clause

From

Select Clause

Clause

Process

Tuples | Output to
Constructed

Users

SQL Query

Fig 7.3 Level 1 DFD

19

SYSTEM DESIGN

8. SYSTEM DESIGN

8.1 MODULAR CLASSIFICATION

1. Neighborhood Module
2. Basic Identification Module - Identification of tables, fields and

values

3. Combination Identification Module - Identify combinations (Related
fields and values)

4. Query Rewriting Module - Rewriting the query and displaying the
result

5. Intent Analysis Module- Provide links

8.2 IMPLEMENTATION TABLES

Table No. 8.1 Neighborhood

Field Type
Word nvarchar
Synonym nvarchar

Table No. 8.2 DataDictionary

Field Type
Keyword nvarchar
TableName nvarchar

Table No. 8.3 TableDetails

Field Type

TableName nvarchar
FicldName nvarchar
DefaultField nvarchar

20

Table No. 8.4 Combination

Field Type
Operator nvarchar
Opid nvarchar
8.3 MODULES IN DETAIL

The presented query is first split into tokens.
8.3.1 Neighborhood Module

This module is incorporated to enhance the flexibility of the
system. It provides the users with the freedom to use any word that is
relevant to the domain in order to construct the query to retrieve the

details required by him.

For this purpose we use a Neighborhood table as in
TableNo.8.1. Every word in the query is compared with the entries in
the Synonym field of the table and if there is a match then that word is
replaced with the corresponding entry in the Word field of the table.

The query string at the end of this module will have only
keywords, field references, values and/or comparison operators which
can be used to directly identify fields and tables necessary to answer

the query.

21

8.3.2 Basic Identification Module

The output of the neighborhood module is used to identify the
tables and fields necessary to answer the query in the following three

ways.

Identify the tables using keyword references

We use a DataDictionary table as in Table No.8.2. Each
relevant word in the query is compared with the Keyword field in the
table and if there is a match, the corresponding entry in the table is put
in a dataset tabdet. This dataset will have the same fields that are there
in the DataDictonary and the number of rows will be equal to the
number of relevant keyword identified from the query string.

Identify the tables and fields using field references

We use a TableDetails table as in Table No.8.3. Each relevant
word in the query that is not marked is compared with the FieldName
field in the table and if there is a match, the corresponding entry is put
in a dataset fielddet. This dataset will have the same fields as in the
TableDetails and the number of rows will be equal to the number of

relevant field references identified from the query string.

Identify tables and fields using value references

The value references in the query string are used to identify the
fields and the corresponding tables that are needed to identify the
tables needed to answer the query. Each relevant word in the query

string that is not marked are passed to a function formhash() each

22

table in the database. If the function finds the value in a particular
table the function returns the fieldname of the table where the value
has occurred. For every such fieldname returned we create a new row
in a dataset hashvaltab, using the table name, field name and the

value reference identified.

8.3.3 Combination Identification Module

This module is aimed at handling the various comparison
operators that can be used in a query so as to limit the display of

irrelevant details to the user who presents the query.

For the purpose of handling such comparison operators in the
query string we use a Combination table as in Table No.8.4 which has
a list of all the possible comparison operators that can be used in the
query string relevant to the domain of the system. We have also
constructed a dataset combdet. This dataset has Opname, Opid,
Oppos, Opleft, Opright and Oprightl as its fields.

For each word that is unmarked in the query string, it is
compared with the Operator field of the table and if there is a match
then an entry is made in the combdet with the operator name and
operator id in the Opname and Opid fields respectively. Then the
position where the operator occurs in the query string is also entered

in the Oppeos field of the dataset as in Fig. no. ()

The other three fields are used to make entries of the fields on

which the operator operates and the values which are used to set up

23

constraints in the condition. In order to identify fields and values on
which the operators operate we use the functions left (), right (),
Sfright () and right2 (). These functions take the operator id and the
position of the operator in the query string to do the processing. Their
processing functionality is explained one by one in order in the

following paragraphs.

The left () function 1s used to find the fields on which the
operators operate. In any query the left side of the operator will be the
field 01.1 which the operator is used. This function parses the query
string, left from the position where the operator has occurred. Every
relevant word is compared with the fields that are identified and
entered in the dataset. As soon as it finds the nearest field left to the

operator it makes an entry in the Opleft field of the dataset combdet.

The right () and right2 () functions are used to find the values
mentioned in the query string, using which the constraints are set on
the respective fields. This functions similar to the left (), only with a
difference that it will parse the query string, right from the position
where the operator occurred. The value identified first by right () 1s
entered in the Opright field and the value identified second by the
right2 () is entered in the Oprightl field of combdet respectively.

The fright() function is used to add more flexibility to the
left () function. This performs the same functionality as that of the
right () and right2 () function, except that it finds the first field
immediately to the right of the operator, rather than the value. This is
done only if the field on which the operator operates is unknown at

the end of the execution of the above three functions.

24

In all the four mentioned functions, it is checked that if the
value and the field on which the operator is used is compatible and

whether the processing can be actually done.

Operators that can be handled
The various operators that can be handled are
i. >/greater/above
ii. </lesser/below
iil. =/equals
iv. first/best/top
v. second
vi. third
vii. last/worst/least
viii. various/distinct/different/list/enumerate
ix. between/range
X. not
These four datasets formed in module (2) and (3), namely
tabdet, fielddet, hashvaltab and combdet form the basis of rewriting
the English query into the SQL that has to be executed on the database

in order to retrieve the necessary details.

8.3.4 Query Rewriting Module

This module uses the datasets, tabdet, fielddet, hashvaltab and
combdet constructed in the above modules to actually restructure the
English query presented by the user to the structured query that can be
executed directly on the database in order to retrieve the details

required by the user through the English query.

25

This module requires some preprocessing before using the
tables, fields and values identified in the above mentioned datasets.
Considering all the tables and fields identified in these datasets will
cause redundant and unnecessary mentioning of the tables and fields
in the rewritten query. In order to avert this situation, there is a need to
consolidate the necessary fields and tables by comparing the entries in
these datasets. The consolidation of tables and fields are done by
creating two new datasets finaltablst and freshfielddet.

The finaltablst has only one field TableName. The final list of
necessary tables is included in the finaltablst by making an entry for
each entry in the tabdet and fielddet.

The freshfielddet has two fields namely, FreshFname and
FreshTname. 1t is constructed in a similar manner by creating a new

entry for every entry in the fielddet and the hashvaltab.

Care is taken to remove redundant entries from both the
datasets. This is done by deleting those entries in the datasets that

exactly match a row that already exists.

Now is the actual query rewriting phase which is done three
sections. Each section is devoted for a particular clause namely, the
Select clause, From clause and the Where clause. These three clauses

when put together will form the structured query which is required.

26

Select Clause

The parameters for the Select clause are a set of fields from
which specific entries have to be retrieved. These set of fields are
taken from freshfielddet and appended to complete the Select clause
of the query.

From Clause

The parameters of the From clause are a set of tables form
which specific rows have to be retrieved. These set of tables are taken
from the finaltablst and appended to complete the From clause of the
query.

Where Clause

The parameters of the Where clause are conditions or
constraints. These constraints are of the form ‘FieldName op Value’.
If there are more than one constraints in the Where clause, these
constraints are put together by conditional connectives. These
constraints are formed by using the entries in the hashvaltab. To
incorporate conditional comparisons in the Where clause we use the
entries in combdet. Such comparative constraints are formed by using
the appropriate constraint keyword such as between, distinct, orderby,
count etc... This will complete the Where clause.

Then finally appending all the clauses formed with their
respective parameters in the right order will give the fully structured

query that is ready to be executed on the database to retrieve the

required data.

27

8.3.5 Intent Analysis Module

This module is incorporated in the IQA system mainly to
provide user friendliness. The aim of this module is to provide the
user with the ability to choose from the several options that are
available in the database relevant to his query. Such situations
generally arise, mostly when the user’s query is generalized or when
the system has more data relevant to the query submitted, to provide

to the user.

To provide this facility we have used the approach of
redirecting the user to a new page, to provide him with the options
that are available, so that the user can choose the options of his

interest from there.

There are two important things that are to be considered before
redirecting the user to the Selection page or providing a link to the
extra information that can be provided by the system to the user. They
are

» Keyword Ambiguity Problem (KAP)

» Field Ambiguity Problem (FAP)

Keyword Ambiguity Problem (KAP)

Keyword Ambiguity Problem means, that the same
keyword in the DataDictionary maps to more than one table in
the database. This can be identified in tabdet by checking if the
same keyword entry has more than one table entry

corresponding to it. If KAP is identified then steps have to be

28

taken to resolve this problem in order to answer the query

correctly.

The way in which this can be resolved is as follows,
tabdet entries have to be checked to see if there is an entry for
one of the table entries corresponding to the ambiguous
keyword. If such an entry exists, then it means that the KAP
can be resolved by using that entry which has one of the table
names of the ambiguous keyword but corresponding to another
keyword. The other ambiguous entries of the keyword in tabdet

can be deleted.

If such an entry does not exist and the above approach
for resolving KAP cannot be used, then we redirect the user to
another page to display all the tables corresponding to the
ambiguous keyword so that the user can choose one table of his

preference.

Field Ambiguity Problem(FAP)

Field Ambiguity Problem means, that the field with the
same name is present in more than one table. This can be
identified in fielddet when the same field entry has more than
one table entry. . If FAP is identified then steps have to be taken

to resolve this problem in order to answer the query correctly.

The way in which this problem can be resolved is as

follows, tabdet entries have to be checked if there is any entry

29

for only one of the tables that corresponds to the ambiguous
field name. If such an entry exists, then it means that the FAP
can be resolved by using that entry, which has one of the table
names of the ambiguous field. The other ambiguous entries of
that field in fielddet can be deleted.

If such an entry does not exist and the above approach for
resolving FAP cannot be used, then we redirect the user to
another page to display all the tables corresponding to the
ambiguous field so that the user can choose one table of his

preference.

At times there is a possibility that both KAP and FAP
exist and has to be resolved. In such a situation KAP is first
solved using the above mentioned approach and then FAP,

using the above mentioned approach.

Once the KAP and FAP are solved, the usual processing can
carry on. Our next objective is to provide the users with not only
details that can be retrieved by the exact matching method but also
provide a chance for them to obtain extra information relevant to their
query as and when it is possible. Whenever such a situation is
identified, besides answering the query based on the exact matching
method, the IQA system also provide the user with a link, clicking on
which, the user is redirected to a new page that displays the available
extra information the can be viewed by the user. The user can select
the options according to his preference and view the other relevant

particulars.

30

TESTING

9. TESTING

Testing 1s an important, mandatory part of software; it is a technique
for evaluating product quality and also for indirectly improving it, by
identifying defects and problems. It is required that the application should be

tested for any non conformities and defects at every stage of development.
9.1 VALIDATION TESTING

We have tested our application at the end of every increment of the
system. The IQA System being a user oriented one; utmost importance is
given to validation testing. All possible queries that the user can pose, are

considered and the respective validation is performed.

Validations Considered

» When user attempts to present an empty query, he is requested to type
in the query and then proceed.

> The exceptions raised by the invalid queries posed by the user are
handled by informing users about the mistake.

» When handling queries that involve the formation of conditions,
missing parameters are identified and the users are informed about its
absence.

» When the user requests for the tuples that are non-existent the user is
informed about their non-existence.

» When a specified condition fails or there is no tuple that would match

a complex condition, the user is let to know that the condition fails.

31

9.2 BLACK BOX TESTING

The black-box approach is a testing method in which the test data are
derived from tfhe specified functional requirements without regard to the
final program structure. It is also termed data-driven, input/output driven or
requirement based testing. All test cases are derived from the specification.

No implementation details of the code are considered.

We have used the Rational Robot to generate the black-box test script for
the IQA System developed.

Rational Robot automates regression, functional and configuration testing
for e-commerce, client/server and ERP applications. It's used to test
applications based upon a wide variety of user interface technologies, and is
integrated with the Rational TestManager solution to provide desktop

management support for all testing activities.
9.2.1 FEATURES OF RATIONAL ROBOT

» Simplifies configuration testing

Rational Robot can be used to distribute functional testing among
many machines, each one configured differently. The same functional
tests can be run simultaneously, shortening the time to identify
problems with specific configurations.
» Tests many types of applications

Rational Robot supports a wide range of environments and
languages, including HTML and DHTML, Java, VS.NET, Microsoft
Visual Basic and Visual C++, Oracle Developer/2000, PeopleSoft,
Sybase PowerBuilder and Borland Delphi.

32

» Ensures testing depth

Tests beyond an application's Ul to the hundreds of properties of
an application's component objects - such as ActiveX Controls,
OCXs, Java applets and many more - with just the click of a mouse.
» Tests custom controls and objects

Rational Robot allows you to test each application component
under varying conditions and provides test cases for menus, lists,
alphanumeric characters, bitmaps and many more objects.
» Provides an integrated programming environment

Rational Robot generates test scripts in SQABasic, an integrated
MDI scripting environment that allows you to view and edit your test
script while you are recording.
> Helps you analyze problems quickly

Rational Robot automatically logs test results into the integrated
Rational Repository, and color codes them for quick visual analysis.
By double-clicking on an entry, you are brought directly to the
corresponding line in your test script, thereby ensuring fast analysis
and correction of test script errors.
> Enables reuse

Rational Robot ensures that the same test script, without any
modification, can be reused to test an application running on
Microsoft Windows XP, Windows ME, Windows 2003, Windows
2000, Windows 98 or Windows NT

33

9.2.2 USE CASE SPECIFICATION

IntelligentQuery.aspx

Brief Description

This use case describes how an English query 1s converted to SQL query.

The actor who use the use case are all those who use the system.

Flow of events

The use case begins when the actor enters the query

1.
2.

Actor should enter the query
If the actor clicks the ‘Search’ button the query is converted to sql
query and the result is displayed.

. If the actor clicks the ‘NewQuery’ button, the textbox is cleared and

ready for a new query.

Alternative flows

1.

If the actor clicks the search button when the textbox is empty, the

system should display a message to the user asking him/her to enter a

query.

. If the actor types in an invalid query, the system should display an

€ITOT message.

. If the actor enters a wrong or incomplete query, hints are provided to

help the user.

If the query is too general then the ‘OtherDetails’ button is
highlighted.

When the actor clicks the ‘OtherDetails’ a new page is displayed
which helps the user to select his/her specific options.

Pre conditions: Nil

34

Post Conditions: The result is displayed or the appropriate error message

is displayed.

Selection.aspx
Brief Description
The use case describes how the user can select his preference.
Flow of events
The use case begins when the actor clicks details or gives generalized query.
Basic Flow
1. Actors should choose options from the list box.
2. When there are two list boxes the user can select multiple or all the
options by clicking >> or ‘All’ button.
3. When the user clicks >> button, the selections are added one by one.
4. When the user clicks ‘All’ button, all the options are added.

5. When ‘OK’ button is clicked, the selections are passed to the main

form.
6. When the actor clicks the ‘Clear’ button, the selections are cleared.
Alternative Flows
1. If the user selects an option more than once, a message is displayed to
the user about the redundant selection.

Pre conditions

The system should identify that the query is generalized or the user has
clicked the ‘OtherDetails’ button.

Post conditions

The selected option should be passed to the main page.

35

9.2.3 TEST SCRIPT

Sub Main
Dim Result As Integer

"nitially Recorded: 4/11/2003 3:10:54 AM
'Script Name: iquerytest

Window SetContext, "Caption=WebForm1 - Microsoft Internet Explorer”, ""

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 1359

EditBox Click, "Name=TextBox1", "Coords=224,29"

SetThinkAvg 1906

TypingDelays "0, 125, 156, 219, 296, 204, 234, 297, 78, 234, 625, 78, 157, 328, 1172"

InputKeys "all those who a"

SetThinkAvg 78

TypingDelays "0, 187, 125, 391, 94, 140, 407, 93, 203, 235, 281, 94, 203, 375, 203,
156"

InputKeys "re placed in CTS"

SetThinkAvg 157

TypingDelays "0, 219, 234, 157, 140, 781, 78, 187, 110, 343, 125, 204, 1203, 93, 532"

InputKeys " and are in rot"

SetThinkAvg 93

TypingDelays "0, 282, 484, 94, 281, 281, 1141, 94, 390, 328, 2766, 891, 62, 188, 328"

InputKeys "aract club in ¢"

SetThinkAvg 344

TypingDelays "0, 109"

InputKeys "se"

SetThinkAvg 1906

PushButton Click, "Name=Buttonl"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 7922

PushButton Click, "Name=Button5"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 1343

PushButton Click, "Name=Buttonl"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 1453

PushButton Click, "Name=Button5"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 1031

EditBox Click, "Name=TextBox1", "Coords=83,27"

SetThinkAvg 515

TypingDelays "0, 16, 187, 16, 125"

InputKeys "kfun;j"

SetThinkAvg 2578

PushButton Click, "Name=Buttonl"

36

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 4313

PushButton Click, "Name=Button5"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 2969

EditBox Click, "Name=TextBox1", "Coords=74,32"

SetThinkAvg 3344

TypingDelays "0, 78, 94, 312, 32, 266, 344, 78"

InputKeys "students”

SetThinkAvg 1765

PushButton Click, "Name=Buttonl"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 1328

PushButton Click, "Name=Button2"

Browser NewPage,"HTMLTitle=WebForm2",""

SetThinkAvg 1703

ListBox Click, "Name=ListBox2", "Text=City"

SetThinkAvg 719

PushButton Click, "Name=Buttonl"

Browser NewPage,"HTMLTitle=WebForm2",""

SetThinkAvg 578

ListBox VScrollTo, "Name=ListBox2", "Position=12"

SetThinkAvg 766

ListBox Click, "Name=ListBox2", "Text=State"

SetThinkAvg 797

PushButton Click, "Name=Buttonl"

Browser NewPage,"HTML Titie=WebForm2",""

SetThinkAvg 1656

PushButton Click, "Name=Button3"

Browser NewPage, "HTMLTitle=WebForm1",""

SetThinkAvg 906

PushButton Click, "Name=Buttonl"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 5234

PushButton Click, "Name=Button5"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 844

EditBox Click, "Name=TextBox1", "Coords=86,35"

SetThinkAvg 5531

TypingDelays "0, 141, 531, 360, 78, 203, 78, 156, 625, 94, 562, 266, 875, 141, 265,
266"

InputKeys "semesterl > 80 a"

SetThinkAvg 93

TypingDelays "0, 219, 125, 375, 78, 453, 156, 235, 281, 140, 125, 344, 1031, 110,
265"

InputKeys "nd semester {BKSP}2 "

37

SetThinkAvg 1250

TypingDelays "0, 110, 219, 234, 234, 157, 343, 188, 2640, 79, 359, 187, 125, 172,
157"

InputKeys "between 90 and "

SetThinkAvg 953

TypingDelays "0, 62, 938"

InputKeys "95 "

SetThinkAvg 2953

PushButton Click, "Name=Buttonl"

Browser NewPage,"HTMLTitle=WebForm2",""

SetThinkAvg 1047

ListBox Click, "Name=ListBox2", "Text=Semester"

SetThinkAvg 672

PushButton Click, "Name=Button3"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 625

PushButton Click, "Name=Button]"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 18938

PushButton Click, "Name=Button5"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 1282

EditBox Click, "Name=TextBox1", "Coords=134,37"

SetThinkAvg 1812

TypingDelays "0, 78, 125, 266, 94, 187, 1047, 625, 313, 78, 172, 453, 78, 141, 281,
156"

InputKeys "studeb {BKSP}nts who a"

SetThinkAvg 125

TypingDelays "0, 109, 141, 437, 203, 235, 125, 343, 63, 109, 344, 78, 172"

InputKeys "re not placed"

SetThinkAvg 1578

PushButton Click, "Name=Buttonl"

Browser NewPage,"HTMLTitle=WebForml",""

SetThinkAvg 2422

PushButton Click, "Name=Button5"

Browser NewPage,"HTMLTitle=WebForm1",""

SetThinkAvg 797

EditBox Click, "Name=TextBox1", "Coords=124,46"

SetThinkAvg 6188

TypingDelays "0, 265, 797, 1313, 718, 157, 203, 265, 531, 47, 453, 235, 203, 281, 63"

InputKeys "fis{BKSP}rst rank in"

SetThinkAvg 203

TypingDelays "0, 250, 203, 360, 390, 47, 297, 188, 172, 2140"

InputKeys " monthly I"

SetThinkAvg 1516

PushButton Click, "Name=Buttonl"

38

Browser NewPage,"HTML Title=WebForm2",""
SetThinkAvg 891

ListBox Click, "Name=ListBox2", "Text=Mechanical”
SetThinkAvg 406

PushButton Click, "Name=Button3"

Browser NewPage,"HIMLTitle=WebForm1",""
SetThinkAvg 797

PushButton Click, "Name=Buttonl"

Browser NewPage,"HTMLTitle=WebForm1",""
SetThinkAvg 3594

PushButton Click, "Name=Button2"

Browser NewPage,"HTMLTitle=WebForm2",""
SetThinkAvg 1985

PushButton Click, "Name=Button1"

Browser NewPage,"HTMLTitle=WebForm2",™
SetThinkAvg 1703

PushButton Click, "Name=Button2"

Browser NewPage,"HTMLTitle=WebForm2",""
SetThinkAvg 641 ‘

PushButton Click, "Name=Button3"

Browser NewPage,"HTMLTitle=WebForm1",""
SetThinkAvg 1485

PushButton Click, "Name=Button1"

Browser NewPage,"HTMLTitle=WebForm1",""
SetThinkAvg 7938

PushButton Click, "Name=Button5"

Browser NewPage,"HTMLTitle=WebForm1",""
SetThinkAvg 703

EditBox Click, "Name=TextBox1", "Coords=115,8"
SetThinkAvg 1188

TypingDelays "0, 78, 656, 78, 188"

InputKeys "abdul”

SetThinkAvg 1484

PushButton Click, "Name=Buttonl"

Browser NewPage,"HTML Title=WebForm1”,""
SetThinkAvg 3656

PushButton Click, "Name=Button3"
SetThinkAvg 1656

Toolbar Click, "ObjectIndex=4;\;ItemID=1014", "Coords=34,23"
Browser NewPage,"HTMLTitle=WebForm1",""
SetThinkAvg 1484

PushButton Click, "Name=Button5"

Browser NewPage,"HTMLTitle=WebForm1",""
SetThinkAvg 688

EditBox Click, "Name=TextBox1", "Coords=46,23"
SetThinkAvg 1390

39

TypingDelays "0, 78, 1203, 1891, 109"

InputKeys "cse08"

SetThinkAvg 1750

PushButton Click, "Name=Button1"

Browser NewPage,"HTMLTitle=WebForm2",""
SetThinkAvg 2328

ListBox Click, "Name=ListBox2", "Text=ECActivities"
SetThinkAvg 688

PushButton Click, "Name=Button3"

Browser NewPage,"HTMLTitle=WebForm1",""
SetThinkAvg 782

PushButton Click, "Name=Buttonl"

Browser NewPage,"HTMLTitle=WebForm1",""
SetThinkAvg 5281

PushButton Click, "Name=Button5"

Browser NewPage,"HTMLTitle=WebForm1",""
SetThinkAvg 703

EditBox Click, "Name=TextBox1", "Coords=132,23"

End Sub

40

10. FUTURE ENHANCEMENT

The IQA system developed so far has used the Query Rewriting
Algorithm to convert English query to structured query. The system that has
been developed uses the academic database of a particular class of students

in a particular college to demonstrate its functionality.
10.1 Enhancement relevant to the domain considered

» The IQA system developed based on the Student domain, can be
subjected to appreciable enhancement by extending its capability to
answer queries not only based on a particular group of students but
also based on the details of the students, staff, officials and other

administrative details of an entire college or even an entire university.

» The system can be deployed in the intranet of the college or
university, thereby facilitating easy and interactive retrieval of
information to the management, staff and the wards of the students by
giving the users their due privileges, thereby ensuring the security of

the information stored in the database.
10.2 Enhancement in a broader sense

Very often, in any organization, there arises a need to view historical
data. The task of searching and retrieving necessary data from large
repositories becomes very tedious with the many procedures and formats
that have to be followed in retrieving the required data. The IQA system can
be used to make this task easy and interactive, by integrating it with the
concept of Data Warehousing. The large repository of historical data of an
organization can be built into a data warehouse and stored in the form of flat

files which makes data retrieval easier.

41

CONCLUSION

11. CONCLUSION

The project entitled “Intelligent Query Answering (IQA) System ”
provides a well-developed, interactive GUI, which facilitates user-friendly
querying. The proposed “Query Rewriting Algorithm” used to develop the
system is very simple and comprehensive. Besides, the programming

technique used in the design provides a greater scope of expansion for future

use.

Invaluable experience has been gained in the areas of database access
and query processing. The system has been implemented in such a way that

it meets all the requirements gathered initially.

The IQA system has been checked and tested with a wide range of
sample queries, covering most of the possible ways in which English queries
can be posed. The project, being a user oriented one; utmost importance has

been given to the validation phase in the development of the project.

The developed “Intelligent Query Answering (IQA) System” proves
to be a useful solution for novice users of the respected domain who are not

familiar with the Structured Querying Language.

42

APPENDIX

12. APPENDIX

12.1 DATABASE SCHEMA

Student Details

Field Type
Student ID nvarchar
Name nvarchar
Address nvarchar
City nvarchar
State nvarchar
Department nvarchar
Course nvarchar
X Aggregate float

XII Aggregate float
Entrance Float
Payment Scheme nvarchar
Attendance

Field Type
Student ID nvarchar
Semesterl float
Semester2 float
Semester3 float
Semesterd float
Semesters float
Semester6 float
Semester7 float
Semester Average

Field Type
Student ID nvarchar
Semesterl float
Semester2 float
Semester3 float
Semester4 float
Semesters float
Semestert float
Semester7 float
Cumulative Average float

43

Student Placements

Field Type
Student ID nvarchar
Company nvarchar

Extra-Curricular Activities

Field Type
Student ID nvarchar
Category nvarchar
Activity nvarchar
Club Membership

Field Type
Student ID nvarchar
Club nvarchar
Current Semester Marks (CSE/Mech/EEE/ECE/Civil)
Field Type
Student ID nvarchar
Monthly nvarchar
Subjectl float
Subject2 float
Result nvarchar
Total float
Average float
Rank float

12.2 SAMPLE CODE
IntelligentQuery.aspx

Private Sub Page Load{ ByVal sender As System Object, ByVal e As
System EventArgs) Handles MyBase. Load
conn = corn. Connect
Label2. Visible = False
lblset =0
If Page. IsPostBack = False Then
Dim nophoto = Session{"exses")
If nophote = 1 Then
Label2. Visible = True

Label?. Text = "Photo not available”
Dim wl = Session{"first")
Dimw3 =" "

Dim w2 = Session("selection”)

TextBoxl. Text = Wl + w3 + wZ
ElseIf nophoto = 0 Then

Dim wl = Session("first")

Dim w3 now

Dim w2 = Session{"selection")

TextBoxl. Text = Wl + w3 + w2

End If
End If
Button2. Visibkle = False
Button3. Visible = False

End Sub

" Duery Splitting
dupstr = TextBoxl. Text
str = TextBoxl. Text. Trim ToLower.Split

Public Function neighbor()
Dim i As Intlé, newc As Intlé, oldc As Intlé, 1 As Intlé
Dim oldword As String, newword As String, a{) As String
Dim neighcmd As SglCommand
Dim neighadap As SglDatahidapter
Dim neighdet As DataTable
neighdet = New DataTable

i = str.Length
Do While 1
Dim al As String
al = str{i - 1}
If intstr(i - 1) <> 1 Then
olde = neighdet. Rows. Count
neighcmd = New SglCommand(™SELECT *
FROM Neighborhood WHERE Synonym
LIKE '™ & str(i - 1) & "'", conn)
neighadap = New SglDataldapter({ neighcmd)
neighadap. Fill{ neighdet)
newc = neighdet. Rows. Count
If newc > oldc Then
oldword = str(i - 1)

45

newwerd = neighdet. Rows(neighdet. Rows. Count -~ 1)(0)

str{i — 1) = newword
End If
End If
i=1i-1
Loop

End Function

'Identifying keywords and the correspending table
Dim tcmd As SqglCommand, tadap As SglDataAdapter
i = str.Length
tabdet = New DataTable
Do While i
If intstr{i - 1) <> 1 Then
temd = New SglCommand("SELECT distinct *
FROM DataDictionary WHERE Keyword LIKE
Twog str(i - 1) & ™", conn}
tadap = New SqglData’dapter(tcmd)
tadap. Fill(tabdet)
End If
i=1-1
Loop

"Identifying fields and the corresponding tables
Dim fcmd As SqglCommand, fadap As SglDatalAdapter
fielddet = New DataTable
For 7 = 0 To str.Length - 1

If intstz(]j) <> 1 Then
fcmd = New SglCommand{ "SELECT * FROM
TableDetails WHERE FieldName LIKE
Tmog str(d) & "'", conn)
fadap = New SglDataAdapter{ fcmd)
fadap. Fill({ fielddet)

End If

Next

-

Pass the different tables tc the formhash function

Dim columnname As String, tn As String, isnum As Intlé
Dim hvtr As DataRow

hashvaltab = New DataTable

Dim Value As DataColumn = New DataCeolumn("Value™)
Value. DataType = System Type. GetType("System String")
hashvaltab. Columns. Add(Value)

Dim ColNam As DataColumn = New DataColumn("ColNam")
ColNam DataType = System Type. GetTypel{ "System String")
hashvaltab. Columns. Add({ ColNam)

Dim TablName As DataColumn = New DataColumn(" TablName")
TablName. DataType = System Type. GetType({ "System String")
hashvaltab. Columns. Add({ TablName)

i = str. Length
Do While i
If intstr(i - 1) <> 1 Then
Dim regvalue As String
reqgqvalue = str(i - 1)
isnum = 0

46

Dim z As Intlé

For z = 0 To numtab. Rows. Count - 1
Dim templ As String
templ = numtab. Rows(z)(0)
if reqvalue.StartsWith(tenmﬂ) Then

isnum = 1
End If
Nezt

If isnum = 0 Then
foundval = 0
For j = 0 To tables. Rows.Count - 1

tn = tables. Rows{j){0)

columnname = formhash{ tn, reqgvalue)

If foundval = 1 Then
Dim ambsgl As SglCommand,
defsgl As SglCommand,
adadap As SglDataAdapter
Dim amb As String, def BAs String
ambsgl = New SglCommand({"Select *
from TableDetails where
Tablename="" & tn & "' and
FieldName='" & columnname & "'", conn)
adadap = New SqglData’dapter(ambsqgl)
adadap. F11l({ fielddet)
hvtr = hashvaltab. NewRow(}
hvtr. Ttem "Value") = regvalue
hvtr. Item "ColNam") = columnname
hvtr. ITtem{ "TablName") = tn
hashvaltab. Rows. Add{ hvtr)

End If
Next
End If
End If
i=1-1
Loop

" Final identification of the required tables with the above twWo
identification

'Forming a new final table list from tabdet and fielddet

Dim tr As DataRow

finaltablst = New DataTable("Tablelist™)

Dim TableName As DataCclumn = New DataColumn{ "TableName")
TableName. DataType = System.Type.GetType("System.String")
finaltablst. Columns. Add{ TableName)

For i = 0 Tc tabdet. Rows. Count - 1
tr = finaltablst. NewRow()
tr. Item "TableName”) = tabdet. Rows(i) { 1)
finaltablst. Rows. Add{ tr}

Next

For i = 0 To fielddet.Rows.Count - 1
tr = finaltablst. NewRow()
tr. Item "TableName") = fielddet. Rows{ i) (0}
finaltablst. Rows. Add(txr)

Next

47

'Te form freshfielddet

Dim ffr As DataRow

freshfdet = New DataTable("FreshFieldList")

Dim FreshFName As DataColumn = New DataColumn{ "FreshFName")
FreshFName. DataType = System Type. GetType("System String™)

freshfdet. Columns. Add{ FreshFName)

Dim FreshTName As DataColumn = New DataColumn{ "FreshTName")
FreshTName. DataType = System Type. GetType("System String")
freshfdet. Columns. Add{ FreshTName)

For i = 0 To fielddetf. Rows.Count - 1
ffr = freshfdet. NewRowl)
ffr. Item "FreshFName"”) = fielddet. Rows(i)(1)
ffr.Item "FreshTName") = fielddet. Rows(1)(C)
freshfdet. Rows. 2dd{ ££r)

Next

For i = 0 To hashvaltab. Rows. Count - 1
ffr = freshfdet. NewRow(}
ffr. Item "FreshFName") hashvaltab. Rows{ 1) (1)
ffr. Item "FreshTName") = hashvaltab. Rows(i){2)
freshfdet. Rows. Add(£fr)

Next

"Forming the final gquery
fstr = New StringBullder

'Select Clause
fstr. Append("select
StudentDetails. StudentID, StudentDetails. StudentName")
For 1 = 0 To freshfdet. Rows.Count - 1
Dim fn As String
fn = freshfdet. Rows(i){ 0}
If fn <> "StudentID" And fn <> "StudentName" Then
fstr. Append(", "}
fstr. Append{ £n}
End If
Next

"From Clause
fstr. Append(" from ")
For i = 0 To finaltablst. Rows.Count - 1
Dim tnl As String
tnl = finaltablst. Rows(i){0}
fstr. Append(tnl)
fstr. Append(", ")
Next
1 = fstr. Length
fstr. Remove(l - 1, 1)

' Where Clause
If hashvaltab. Rows. Count > 0 Then
If finaltablst.Rows. Count = 1 Then
fstr. 2ppend(" where ")
End If
End If

48

interstr. Append(" where ")
For i = 0 To finaltablst. Rows. Count — 2

j=1i+1

If i = finaltablst. Rows. Count - 2 Then
5 =0

End If

interstr.Append(finaltablst.Rows(i}(O)

+ ".StudentID=")

interstr.Append(finaltablst.Rows(j)(O)

+ ", StudentID")

I£ i <> finaltablst. Rows.Count - 2 Then
interstr. Append(" and ")

End If
Next
Dim val As String
£t=20

If hashvaltab. Rows. Count > 0 Then
For i = 0 To hashvaltab. Rows. Count - 1
If finaltablst. Rows.Count > 1 Then
fstr. Append{ " and ")

End If
fieldname = hashvaltab. Rows(i){ 1)
s = "StudentID”

If s.Equals(fieldname} Then
fstr.Append(“StudentDetails.“)

End If
fstr.Append(hashvaltab.Rows(i)(l))
fstr. Append(” = ")

val = hashvaltab. Rows{ 1) {0}

fstr. Append("' " & val. ToString & "' ")

If finaltablst. Rows.Count = 1 Then
fstr. Append(" and ")
f =1
End If
Next
End If
If £ = 1 Then
1 = fstr. Length
fstr. Remove(1l — 4, 4)
End If

Dim finaladap As SglDataAdapter
Dim finalcmd As SqlCommand
finaltab = New DataTable

' Displaying the answer

finalemd = New SglCommand{™" & fstr. ToString & ™", conn
finaladap = New SqlDataAdapter(finalcmd)
finaladap. Fill{ finaltab)

finaltab = renmredundantrows(finaltab)

49

'Combinations

combitab = New DataTable

Dim combtab As DataTable

Dim combcmd As New SglCommand

Dim combadap As New SglDataAdapter

combdet = New DataTable

combtab = New DataTable

combdet = New DataTable{ "combdet”)

Dim Opname &s DataColumn = New DataColumn(" Cpname™)
Opname. DataType = System.Type.GetType("System.String")
combdet. Columns. Add{ Opname}

Dim Opid &s DataColumn = New DataColumn{ "Opid")

Opid. DataType = System.Type.GetType("System.String")
combdet. Columns. Add{ Opid)

Dim Oppos As DataColumn = New DataColumn{ " Oppos")
Oppos. DataType = System Type. GetType{ "System String")
combdet. Columns. Add(Oppos)

Dim Opleft As DataColumn = New DataColumn{ "Opleft™)
Opleft. DataType = System Type. GetType("System String”)
combdet. Columns. Add(Opleft)

Dim Opright As DataColumn = New DataColumn({ "Opright™)
Opright. DataType = System. Type. GetType("System String”)
combdet. Columns. Add{ Opright}

Dim Oprightl As DataColumn = New DataColumn({ "Oprightl”}
Oprightl. Datalype = System Type. GetType("System String”)
combdet. Columns. Add{ Oprightl)

'Identifying combinations

Dim i As Intlé = 0, oldent As Intlé = 0, newcnt As Intlé = 0
Dim j As Intlé = 0

Dim op As String

Dim cr As DataRow

i = str.Length
Do While i
op = str(i - 1)
oldcnt = combtalk. Rows. Count
combcmd = New SglCommand{"SELECT * FROM Combination WHERE
Cperator LIKE '" & str(i - 1) & nr e conn)
combadap = New SqlDataRdapter(combcrnd)
combadap. Fi11(combtab)
newcnt = combtab. Rows. Count
If newent > oldcnt Then
cr = combdet. NewRow()

cr. Item{ "Opname"”) = combtab. Rows(3){0)
cr. Item "Opid™) = ccmbtab. Rows{ j)(1)
cr.Item{ "Oppos"™) =1 - 1
combdet. Rows. Add{ cr)
=3 +1

End If

i=1i-1

Loop

Publiec Function left{ ByVal cdt As DataTable, ByVal str{) As String,
ByVal rn As Intlé)

50

Dim i As Intlé, op As Intlé, j As Intis, k As Intlé

Dim wl As String, w2 As String, zword As String
Dim temp As String, w As String
Dim entry As Intlé = 0, opident As Intlé

opident = cdt. Rows{ rn) (1)

If opident = 1 Or opident = 2 Or opident = 3 Then
num = 1
End If

temp = cdt. Rows{ rn}{2)
op = CType(temp, Intl6)
entry = 0

Do While op + 1
For k = 0 To freshfdet. Rows. Count - 1

w = str{op)

wl = freshfdet. Rows{ k) (0)

w2 = freshfdet. Rows(k)(1)

If w. Equals(wl. ToLower) Then

If num = 1 Then
Dim zenmd As SgiCommand

0, num As Intlé

=0

Dim zadap BAs SglDatalAdapter, ztab As DataTable

ztab = New DataTable

zcmd = New SglCommand{"SELECT " & wl &

& w2 & "", conn)
Dim g As String

g ="SELECT '" & wl & "' from 'Y w2 & """

zadap = New SglDataAdapter(zcmd)
zadap. Fill{ ztab)
zword = ztab. Rows(0)(0)

Dim isnum As Intlé, templ As String,

isnum = 0

For z = 0§ To numtab. Rows. Count - 1
templ = numtak. Rows{ z)(0)

I1f zword. StartsWith(templ) Then

ispnum =1
End If
Next
If isnum = 1 Then
cdt. Rows(rn){3) = str{op
entry =1
If entry = 1 Then
Exit For
End If
End If
ElseIf num = 0 Then
ecdt. Rows(rn) (3) = str{op)

entry =1
If entry = 1 Then
Exit For
End If
End If

End If
Next
If entry = 1 Then

51

from ™

z As Intlé

Exit Do
End If
op=op -1
Locp

If entry = 0 Then
cdt = fright{cdt, str, rn)
End If

Return c¢dt
End Function

Public Function right(ByVal cdt As DataTable,
Byval str() As String, ByVal rn As Intlé)

Dim i As Intlé, j Bs Intlé, op As Intlé, entry As Intlé = O
Dim temp As String, templ As String, w As String

temp = cdt. Rows{rn){2)
op = CType{ temp, Intlé)
For i = op To str.Length - 1
Response. Write(str. Length)
w = str(i)
For § = 0 To numtab. Rows. Count - 1
templ = numtab. Rows{j}{0)
If w. StartsWith{ templ) Then
cdt. Rows{ rn) {4} = str{i)
entry = 1
newi =1 + 1
If entry = 1 Then
Exit For
End If
End If
Next
If entry = 1 Then
Exit For
End If
Next
Return cdt
End Function

public Function combgle(ByVal cdt As DataTable,
ByVal str{) As String, ByVal rn As Intlé, ByVal id As Intlé)

Dim val As String
Dim i &s Intlé, 1 As Intlé, f As Intlé

Try
f =0
If finaltablst. Rows. Count > 1 Then
combstr. Append{ " and "}
End If
Try
Dim 51 As String
sl = cdt. Rows{ rn)(3)
combstr. Append{ cdt. Rows{ rn}(3))
Catch ex As Exception

52

Label2. Visible = True
Label2. Text = "Criteria name expected” + " " +
cdt. Rows{rn){0) + " ™ + cdt.Rows{rn){4)
lblset =1
dg. Visible = False
exflag = 1
Exit Functioen
End Try

If id = "1" Then
combstr. Append(" > ")
ElselIf id = "2" Then
combstr. Append(" < ")
ElseIf id = "3" Then
combstr. Append(" = ")
End If

Try
val = cdt. Rows({rn)(4)
Catch ex As Exception
Label2. Visible = True

Label2, Text = cdt.Rows{rn){3) + " ™ + cdt.Rows{rn)(0) +
" "oy "Yalue expected within 100"
lblset =1
dg. Visible = False
exflag =1
Exit Function
End Try
combstr. Append(™' " & val.ToString & "'")

If finaltablst. Rows. Count = 1 Then
combstr. Append(" and ")
£f =1
End If
If £ =1 Then
1 = combstr. Length
combstr. Remove{ 1l - 4, 4}
End If
Catch ex As Exception
Label?2. Visible = True
Label?. Text = "Criteria name” + " " + cdt.Rows(rn){0) + " "
+ "Value within 1CO"
iblset = 1
dg. Visible = False
exflag =1
Exit Function
End Try

End Function

Public Function fright({ByVal cdt As DataTable,
ByVal str{) As String, ByVal rn As Intle)

Dim i As Intlé, j As Intls, k As Intlé, op As Intlé

Dim temp As String, w As String, zword As String, wl As String,
Dim w2 As String

Dim entry As Intlé = 0, opident As Intlé = 0, num As Intlé = O

53

opident = cdt. Rows(rn) {1}

If opident = 1 Or opident = 2 Or opident = 3 Then
num = 1

End If

temp = cdt. Rows(rn) (2}

op = CType({ temp, Intlé)

entry = 0

For i = op To str.Length - 1
For k = 0 To freshfdet. Rows. Count - 1

w = str(il)

wl = freshfdet. Rows{k){0)

w2 = freshfdet. Rows{ k} (1)

If w Equals{wl. ToLower) Then

If num = 1 Then
Dim zcmd As SglCommand
Dim zadap As SglDataBAdapter, ztab As DataTable
ztabk = New DataTable
zcemd = New SglCommand("SELECT " & Wl & " from "
& w2 & "V, conn)
Dim q As String
g = "SELECT "" & wl & "™ from'"™ & w2 & "'"
zadap = New SglDatalAdapter{ zcmd}
zadap. Fill({ ztak)
zword = ztab. Rows{ 0} ({0)
Dim isnum As Intlé, templ As String, z As Intls
isnum = 0
For z = 0 To numtab. Rows. Count - 1
templ = numtab. Rows(z)(0)
If zword. StartsWith({ templ) Then
isnum = 1

End If
Next
If isnum = 1 Then
cdt. Rows{rn) (3) = str(i)
entry = 1
If entry = 1 Then
Exit For
End If
End If
Elself num = 0 Then
cdt. Rows{ rn)(3) = str{i)
entry =1
If entry = 1 Then
Exit For
End If
End If
End If
Next
If entry = 1 Then
Exit For
End If
Next

Return cdt
End Function

54

public Function right2{ ByVal cdt As DataTable,
Byval str{) As String, ByVal rn As Intlé)

Dim i As Intl6, 3 As Intlé, op As Intlé, entry As Intle = 0
Dim temp As String, templ As String, w As String

temp = cdt. Rows(rn)(2)
op = CTypel temp, Intlé)
For i = newi To str.Length - 1
Response. Write(str. Length)
w = str{i)
For j = 0 To numtab. Rows. Count - 1
templ = numtab. Rows(Jj){0}

If w. StartsWith(templ) Then
cdt. Rows{rn) (5) = str{i}
entry =1
If entry = 1 Then

Exit For
End If

End If

Next

If entry = 1 Then
Exit For

End If

Next

Return cdt
End Function

Public Function comborder(ByVal cdt As DataTable,
ByVal str{) As String, ByVal rn As Intlé, Byval id As Intlé)

Dim val As String, field As String, w As String
Dim i As Intlé, 1 As Intlé

Dim combocmd As SqlCommand

Dim comboadap As SglDataAdapter

Dim combotab As DataTable

Dim f As Intlé

Try
£f=20
field = cdt. Rows{ rn}(3)
If field. Equals("rank”") Then
combstr. Bppend{ " and rank! ='0' order by monthly, rank "}
Else
combstr. Append{ " order by ")
combstr. Append(field)
combstr. Append({ " desc ")

End If
Dim combquery As String
combquery = "" & combstr. ToString & e

combotab = New DataTable

33

compocnmd = New SqlCommand(combguery. ToString, conn)
comboadap = New SglDataAdapter(comnocmd)
comboadap. F111l{ combotab)

Catch ex As Exception
Label2. Visible = True
Label?. Text = cdit.Rows(rn)(0) + " in 'Criteria Name'
rank/monthly I/monthly II/subjectl/subject2/semester”
lblset =1
dg. Visible = False
exflag = 1
Exit Function

End Try

Dim noc As Intlé

onelinetab = New DataTable

Dim FieldName As DataCclumn = New DataColumn{ "FieldName")
FieldName. DataType = System.Type.GetType(“System.String“)
onelinetab. Columns. Add{ FieldName)

Dim Value &s DataCelumn = New DataColumn(" Value")

Value. DataType = System.Type.GetType("System.String“)
cnelinetalb. Columns. Add{ Value)

noc = combotab. Columns. Count

Dim c¢r As DataRow

For i =0 To noc — 1
cr = onelinetab. NewRow()
cr. Item "FieldName") = combotab. Columns(i) . ColumnName
onelinetab. Rows. Add{ cx)

Next

If id = "4" Then
For 1 = 0 To noc - 1
onelinetab. Rows{ i){(1} = combotab. Rows{ 0) { i}
Next
dg. DataSource = onelinetab
dg. DataBind()
Button3. Visikle = True

p=1
Label5. Text = "" & combstr. ToString & ""
End If

If id = "5" Then
For £ = 0 To noc - 1
onelinetab. Rows(i) (1) = combotab. Rows({1l)({1i)
Next
dg. DataSource = onelinetab
dg. DataBind()
Button3. Visible = True

p=1
LabelS5. Text = "" & combstr. ToString & ""
End If

If id = "6" Then
For i = 0 To noc - 1
onelinetab. Rows(1)(1) = combotab. Rows(2)(1)

56

Next

dg. DataSource = onelinetab
dg. DataBind()

Button3. Visible = True

p=1
LabelB. Text = "" & combstr. ToString & ""
End If

If id = "7" Then

For 1 = 0 To noc - 1
onelinetab. Rows({1){1) =
combotab. Rows(combotab. Rows. Count - 1y (1)

Next

dg. DataSource = onelinetab

dg. DataBind()

Button3. Visible = True

p=1
LabelS. Text = "" & combstr. ToString & ""
End If

End Function

public Function combvarious{ByVal cdt &As DataTable,
ByVal str{) As String, ByVal rn As Intlée, ByVal id As Intlé)

Dim varstr As StringBuilder

Dim field As String, varquery As String, tname As String,
Dim fieldl As String, vartab As DataTable

Dim i As Intleé

Try
varstr = New StringBuilder
varstr. Append("Select distinct ™)
field = cdt. Rows(rn)(3)
varstr. Append(field)
varstr. Append(" from ")
Dim n As Intié
n = fielddet. Rows. Count
For . = 0 To fielddet.Rows.Count - 1
fieldl = fielddet.Rows(i}(1)

If field. Equals{ fieldl. ToLower} Then
tname = fielddet. Rows{1}(0)
varstr. Append(tname)

Exit For

End If
Next
Dim varcmd As SglCommand
Dim varadap As SglDataldapter
vartalb = New DataTable
varcmd = New SglCommand{ varguery, <onn}
varadap = New SglDataddapter{ varcmd)
varadap. Fill{ vartab}

Catch ex As Exception

i = str.Length
Do While i

Dim w As String

w = str(i - 1)

Tf w Equals("student") Then
Exit Function

57

End If

i=3i-1
Loop
Label?. Visible = True
TLabel?. Text = "Criteria can be
Departments/Companies/clubs/Activities/Categories"
iblset =1
dg. Visible = False
exflag =1
Exit Function

End Try

If vartab. Rows. Count > 0 Then
dg. DataSource = vartab
dg. DataBind{)

p=1
Label5. Text = varguery. ToString
End If

End Function

Public Function combnumber()
Dim num As Intlé
Dim numdt As DataTable
Dim nurmr &As DataRow
numdt = New DataTable
Dim Number As DataColumn = New DataColumn{ " Number™")
Number. DataType = System.Type.GetType(“System.String")
nundt. Columns. Add{ Number}
num = finaltab. Rows. Count
numr = numdt. NewRow()
numr. ITtem "Number") = num ToString
nundt. Rows. Add(numr}
If numdt. Rows. Count > 0 Then
dg. DataSource = numdt
dg. DataBind()
p=1
End If
EFnd Function
Public Function combbet(Byval cdt As DataTable,
ByVal str{) As String, ByVal rn As Intlé)
Dim wal As String
Dim i As Intl6, 1 As Intlé, £ As Intleé

£f =0

Tf finaltablst.Rows.Count > 1 Then
combstr. Append{ " and M)

End If

Try
Try
combstr. Append(cdt. Rows{ rn) { 3))
Catch ex As Exception
Label2. Vvisible = True

{,abel?. Text = "Criteria Name Expected"
lblset =1

dg. Visible = False

exflag = 1

58

lab:

Exit Function
End Try
combstr. Append(" between ™)
val = cdt. Rows(rn)(4)
combstr. Append("' " & wval. ToString & """}
combstr. Append{ " and ")
val = cdt. Rows(rn) {3}
combstr. Append(™' " & val.ToString & "'")
If finaltablst. Rows.Count = 1 Then
combstr. Append{” and ")
f =1
End If

If £f = 1 Then
1 = combstr.Length
combstr. Remove(l - 4, 4)
End If
Catch ex As Exception
lLabel2. Visible = True
TLabel2. Text = "Criteria BETWEEN value and value (value
within 100)"
lblset =1
dg. Visible = False
exflag = 1
Exit Functicn
End Try

End Function

Public Function combnot(}

Dim nottab As DataTable
nottak = New DataTable
Dim notcmd As SglCommand, notadap As SglDatahdapter
notemd = New SglCommand{ "SELECT StudentID, StudentName from
StudentDetails", conn)
notadap = New SglDataAdapter{ notcmd)
notadap. Fill(nottab)
If finaltab. Rows. Count = 0 Then
LabelZ. Visible = True
label?2. Text = "No one matches the criteria specified”
lblset =1
dg. Visible = False
exflag = 1
Exit Function
End If
Dim i As Intlé, del As Intle = 0, j As Intlé
For i = 0 To nottab. Rows. Count - 1
del = 0
Dim rolll As String
rolll = nottab. Rows{1i){0)
For j = 0 To firaltahb. Rows.Count - 1
Dim roll2 As String
roll2 = finaltab. Rows(j)(0)
I1f rolll. Equals{roll2) Then
nottab. AcceptChanges()
nottab. Rows(i). Deletel)

59

nottab. AcceptChanges()

del =1
Exit For
End If
Next
If del = 1 Then
Exit For
End If
Next
If del = 1 Then
GoTo lab
End If

If nottab. Rows. Count > 0 Then
dg. DataSource = nottab
dg. DataBind()
p=1

End If

End Function

Public Function links{)

Dim linkcmd As SqlCommand, lirkadap As Sgllata’dapter,
Dim linkdet As DataTable, tname As String, 1 As Intlé
Dim s As String
linkdet = New DataTable
If tabdet. Rows. Count = 0 And fielddet. Rows. Count = 0 Then
If iblset = 0 Then
Label2. Visible = True
Label?. Text = "Click OTHER DETAILS to retrieve the
necessary data"
lblset =1
ButtonZ. Visible = True
TextBoxl. Enakbled = False
Session("sesint™) =1
End If
End If

"If only a students name or id is specified
TIf tabdet. Rows. Count = 0 And fielddet. Rows. Count = 2 Then
Dim fld As String = fielddet. Rows{0)(1)
Dim £f1ldl As String = fielddet.Rows(1){1)
1f fld.Equals({"StudentName") And fidl. Equals{ "StudentID")
Then
If lblset = 0 Then
Label2. Visible = True
Label?. Text = "Click OTHER DETAILS to retrieve the
necessary data”
lblset =1
ButtonZ. Visible = True
TextBoxl. Enabled = False
Session{ "sesint") = 1
End If
End If
End If
Dim valflag As Intle = 0
For i = 0 To hashvaltab. Rows. Count - 1
Dim t1 As String, t2 As String
t1l = hashvaltab. Rows{ i) (0)

60

Dim j As Intlé
For 3 = 0 To tabdet. Rows. Count - 1
t2 = tabdet. Rows({j} {1}
If tl.Equals{ t2. ToLower) Then
If iblset = 0 Then
Label?2. Visible = True

LabelZ?. Text = "Click OTHER DETAILS to retrieve
the necessary data”
lblset = 1

Button?. Visible = True
TextBoxl. Enabled = False
valflag =1
Session{ "sesint”"} = 4
Session("ses") = tZ
Exit For

End If
End If
Next
If wvalflag = 1 Then
Exit For
End If
Next

1f combitab. Columns. Count = 2 Then

If 1blset = 0 Then
lLabel?. Visible = True
lLabel?. Text = "Click OTHER DETATLS to retrieve the
necessary data"
lblset = 1
Button2. Visible = True
TextBoxl. Enabled = False
Session{ "sesint") =1

End If

End If
End Function

Private Sub Button2_plick(ByVal sender As System Object,
Byval e As System. EventArgs) Handles Button2.Click
dupstr = TextBoxl. Text

If Session("sesint") = 4 Then
Session("first™) = dupstr
Response.Redirect("selection.aspx")

Else
Session{ "sesint™} =1
Session("ses") = dupstr
Session({ "first") = dupstr
Response.Redirect(“selection.aspx")

End If

End Sub

61

Selection.aspx

Private Sub Page Load{ ByVal sender As System Object,
ByVal e As System EventArygs) Handles MyBase. Load
conn = con. Connect
ListBoxl. Visible = True
Buttonl. Visible = True
Dim dint = Session{"sesint™)
Dim 4 = Session{"ses")
s = Session{"first")
If Page. IsPostBack = False Then
If dint = 1 Then
Dim sgll As StringBuilder
Dim sglremtab BAs String, adapremcab As SglDatahdapter
Dim dt2 As DataTable
sglremtab = "select TableName from TabkleDetails where
DefaultField='2" "
adapremtab = New SqlDataAdapter(sqlremtab, conn)
dt2 = New DataTable
adapremtab. Fill{ dt2)
sgll = New StringBuilder
sqgll. Rppend("select distinct FieldName from
TableDetails where FieldNawme != ' StudentID' and
FieldName! =' StudentName'")
Dim i As Intlé
For 1 = 0 To dtZ2. Rows.Count - 1
sqll. Bppend{ " and TableName! =" " +
dt2. Rows(1){(0)y + "'™)
Next
Dim dtl As DataTable
adap = New SqlDataAdapter{sqll.ToString, conmn)
dtl = New DataTable
adap. F111({dtl)
ListBox2. DataSource = dtl
IListBox2. DataTextField = "FieldName"
ListBox2. DataBind(}
FlseIf dint = 0 Then
ListBox2. DataSource = d
ListBox2. DataTextField = "TableN"
ListBox2. DataBind{)
ListBoxl. Visible = False
Buttonl. Visible = False
Butten2. Visible False
Buttond. Visible = False
Elself dint = 2 Then
Dim dt As New DataTable
Dim sql = "select distinct TableName from
DataDictionary where Keyword='" & das ™"
adap = New SqglDataddapter{ sql, conn}
adap. Fill(dt)
1.istBox2. DataScurce = dt
ListBox?. DataTextField = *TableName”
1istBox2. DataBind(}
ListBoxl. Visible = False
Buttonl. Visible = False
Button2. Visible = False

62

End

Buttond. Visible = False
ElseIf dint = 3 Then

Dim sqgl = "select FieldName from TableDetails where
TableName="" & d & "' and DefaultField='1l' and
FieldName ! = ' StudentID' and FieldName! =' StudentlName’™

adap = New SqlDataldapter(sql, conn)
Dim dt As New DataTable
adap. F111(dt)
ListBox2. DataSource = dt
ListBox2. DataTextField = "FieldName"
ListBox2. DataBind()

ElseIf dint = 4 Then
Dim sgl "select FieldName from TableDetails where
TableName='" & d & "' and FieldName != 'StudentiD' and
FieldName! =' StudentName' "
adap = New SglDataRdapter(sgl, conn)
Dim dt As New DataTable
adap. Fill{ dt)
ListBox2. DataSource = dt
1istBox2. DataTextField = "FleldName"
ListBox2. DataBind()

Elself dint = 5 Then
ListBox2. DataSource = d
1istBox2. DataTextField = "Ambtab"
ListBox2. DataBind()
ListBoxl. Visible = False

Buttonl. Visible = False
ButtonZ. Visible = False
Buttond. Visible = False
End If
End If
Sub

Private Sub Button3 Click(ByVal sender As System Object,
ByVal e As System EventArgs) Handles Button3. Click

End

Private
ByVal e

Dim ss As StringBuilder

ss = New StringBuilder

Dim 1 As Intlé

For i = 0 To ListBoxl.Items.Count - 1
Dim stl As String
stl = ListBoxl.Items(i). ToString

ss. Append(" ")

5s. Append(st1}
Next
Session{ "selection") = ss.ToString
Session("first") = s
Response.Redirect(“IntelligentQuery.aspx")
Sub

Sub listbon_SelectedIndexChanged(ByVal sender As Object,
As System EventArgs) Handles ListBox2. SelectedlindexChanged
Dim st As String, itm As String
Dim i As Intl6é, present As Intlé =0
st = ListBox2. SelectedItem ToString
For 1 = 0 To ListBoxl.Items.Count - 1

itm = ListBoxl.Items{i).ToString

63

If itm equals(st) Then
present = 1
End If
Next
If present = 0 Then
ListBoxl. Items. Add{ st)
End If
End Sub

Private Sub Button2 Click(ByVal sender As System Object, Byval e As
System EventArgs) Handles Button2.Click
Dim i BAs Intlé, J As Intlé
For i = 0 To ListBox2.Items. Count - 1
Dim st As String, itm As String
Dim present As Intlié =0
st = ListRox2. Items(1i). ToString
For j = 0 To ListBoxl. Items. Count - 1
itm = ListBoxl.Items{j).ToString
If itm Equals(st) Then
present =1
End If
Next
Tf present = 0 Then
TistBoxl. Items. Add(st)
End If
Next
End Sub

Private Sub Buttond Click(Byval sender As System Object, ByVal e As
System EventArgs) Handles Buttond.Click
ListBoxl. Items. Clear()
End Sub
End Class

64

12.3 SCREEN SHOTS

Query

Students who are placed in CTS and members of rotaract club
with percentage > 85

O~ O J@éﬁmwm@meﬁ AE e

e e e >
Google - | (] 45 sech ~ | b EPzbioced | % Check ~ K Awaawk v {7 auoril i options &
Kumaraguru College Of Technology |
Inteffigent Query Answering (1QA) System
\ students who are placed in CTS and members of rotaract club with
Query lpercentage > 85
A Query
Keyword [TableName
percentage |Attendance
ercentage Senester
ubmember |ChiibMembership
lstudent |StudentDetails
@losm T

Fig. 151 tabdet

65

. g)"..'.
3

O~ © B A D S Gy e @ R BBUR
s ume ®

Mﬁ«m"]ﬂm dhostl BotnkQuery. 2spx
Google - 2] G sown - gb Bpzbloded ‘¥ Check -S4 Adelik - {2 e [Options .

Inteffigent Query Answering (1QA) Systent

" students who are placed in CTS and members of rotaract club with

Query ipercemqge » 85

New Query
TableName |[FieldNuanme DefoultField

\Plneernertd: Companiy I
ClubMembership |Clul H

ﬁm sl

Fig. 12.2 ﬁelddet T R R R
T s

Pl EX Vew Fovortee Tok Heb
e - - ‘@@WM%WQM@@&-J% T)
P ~] Ao

-“W‘a * ligerkQuery.asp
"wili K serch v | G0 S2bioced | U Check = T Aubolink

wmaraguri (
Intellfigent Query ﬁnswmug (1QA) System

studems who are piaced' in CTS and members ofrararact ctub with
Query perr:emage > 8

:‘ il m

Valie \ColNum [TabiNamne
rotaract (Club ClubMembersihiy
lets Company |Placement

@zu I

Fig. 12.3 hashvaltab

66

Fin eu . F - ’!,‘E .
Qe - & - ﬁﬂ«m/’m‘ﬁﬁmﬁ‘mﬁﬁﬂ%ﬁ wa%
Mrs@ 1:#ocaky aspc _:}Go iz >

Cocgle - | F}fG‘Sem:h - g5 EDzboded M e -5 Auolnk Oisund Wgoptons @&

Intelligent Query Answering (IQA) Systen

Selecr your option

ﬁm H gmw&ﬂ
Fig. 12 4 Selectzon Page to resolve keyword (percentage)

amblgulty
OO RBG P

Google -{ o] 1G] Seorch - 5 Bpovkded W Cock - N Adtolink .~ 13 dorn - Bl Ostions: B ' o

Intelligent Query Auswering (IQA) System

Select vour opiion

Semester]
Semester?

| CumAverage
Sernasterd !

1

b

b

b

Semesters

Semesters ALL

Clear Selection

Sermesters

K

H

TR

Fig.12.5 Selection Page to select the requ;redﬁela |

67

Fla Edt Wiow Favorkes Toos Help

Qe - 3 - d:ﬂ@}'}m‘é?mﬂ‘m@@ c:,.__,@

P«j&w:i_&]_m I Query.aspx
Google - [[l (] soach - b hzbloded ' check - %, Aikourk - iviend ¥ options - ¥

Inteffigent Query Auswering (1QA) System

* studerts wia are placed in CTS and mensbers of rotaract club with

Query ipercem:zge > 85 Semester CumAverage

New Query

TableName

4 ter
IClubMembership
[Placement
\StudertDetails

Q-0 RABD pmﬁmemeaa@ oL -8

nd-#aasgp@ fNocahost T ey 5P ::]r., Lbs ¥
Coogle ~ |] K3l sowch - gb Bhzboded | 4 Cwek K nlbk v G AR g options B+
Kumaraguru College Of Technology
Intelfigent Query Ansivering (IQA) Systew
{ students who are placed in CTS and members of rotaract club with
Query percentage > 85 Semester Cthverage

FreshEName [FreshT Name

CannAovrage Semester

Club (ClntsMermbersitip

Company lacement

L e e R P e R T T R Y LR S gmw

Fig. 12.7 freshfielddet

68

Flammsmnestwkﬂnb

Q- D DA G Prowr syroom @nts B ¢ La-*,;@i-_s@

i @ r————— S L
Google ~ | o]l K5 Sewch - gb [Sroheced % check ~ X Supuk ¥ 0 kot Rl Options &
1818
Intelligent Query Anstering (IQA) System
| students who are placed in CTS and members of retaract club with
Query ipercemage > 85 Semester CumAverage

seloct StuderdDetails StudentiD.StudenkDetails. StudentName. CumAversge Club, Comparny from

Somestor, ClubMomb orsfip, Clacement, StudeniDetails whors Semestor Student [@=ClubMembers iip Studenti® and’

ClubMembership StudentiQ=Placoment. Studentl end Clacement StudentIO=Student®ctail StudentD and

StudsniDstails StudsrtID=Semester.StudmtiD and Ciub = rotaract’ ard Compary = 'cts’ and cumaverags > ‘35"

i Nere Qurery
Opname [Opid (Oppos |Opleft Opright Oprightl
£ 1 13 etmaverage (85
H&w Miocdowne oL
12 8 combdet

Fe E® Vow Favorkes Took Heo T e]

Q- O @@@ﬁMQMQme@@-L}%

e 0 el fnkobomriuery.asp Bl E

Coogle -| ajgm-ggzw 5 check ~ R, Aol = e] Opltoes - o

1818

]\umamgum (,of[eja Lj Tec zfzoIOJ)f
Intelfigent Query Answering (IQA) System

| students who are placed in CTS and members of rataract club with
Query ipercentage > 85 Semester CumAverage

sefect StudendPetails Studenti . StudentOotails.StudentName, Cumverage. Ciub, Compargy from

Samastor ClubM emb orshin Olacoment, Studsrt@etads whors Semastor Student {D=ClubMamborsfup Student D and’
Clubodsmbersfiip Studertl O=Flacemaent.Student D and Placement Studenti D=StudentDetails. StudentFD and’
StudentDetaiG. StudentiO=SomestorStudentI® and Clud = wotaract’ and Comparty = ‘ots' and cumaverage > 85

StudentID |StudentName \CumAverage |Club |Company
lese01 |Abrdad 38.73142857 14286 [Rotaract |CTS
lese02 stePriya K 38. 2442857142857 ract [CTS

2201 bertMoses.F [89.34 [Rotaraer [CTS

e

Fig. 12 9 Requlred set of tuples

69

Query
Abdul (only the ,,§@4¢n‘,ﬂﬂﬂ!€),

e —F . —=
Le- LR L,JL@%)‘)vam @"""@f{;'m-:ﬁ;g _ _

adses @l ey s 11>
Google - | el (G Search - gk Shzbiocwed | *F Check -S4 stk - a1 opdons)

ru College Of Technology
Intells geut Query Answering (IQA) System
Click OTHER DETAILS to retricve the necessary data

Lovilaed

Query

Cthier etails

lPieIdName Value
[SewdeneD lese01
lShndﬂ:tf\ame Abdul

-r-

ﬁmkmmt

F1g 12 10 Dlsplaylng name and ID of the student the Bnttons
Other Detazls and Photo are h1 ;

Q- O NAD pmﬁm@me@g-dwm-

e . . 'fz;_}'é..nm*
Googhe - | *][(;m-ﬁﬂzm B crack v R Aunlink = 45 scncril [Options @ K . : .

I ntelfigent Query Anstwering (1QA) System

Select vour option

ety el
= |
i Catagory !
0w L mp . yr——
{ohs i ALL E (lear Selection
: | i
I
K= |

g} Localinbranek.

Flg 12 11 Dlsplaylng Selectlon Page on chckmg Other' Detazls
button

70

@w- O RBAG ,-l'm Groers @ @ BB D

Address a 1 Query. aspx eIl wis
Googic - | (] RS sowen - 98 & zblocked e‘m--'-am.-mwﬂmﬁ :

Intelligent er_y Answering (IQA) .5_)131‘:31::

abdid Address City Cowrse Department

lFiele\?ﬂme Value

| StudentiD cse 02

| StuderdName {Abded

[Address 23D .nearRajendraPloza RNRoad
City [Erode

Course [BE

,qu itment (.om puttrSaence

DYoo S e e i e DU e e X Local whrariot:

Fig. 12 12 Dlsplaymg the detalls selected n the Selectlon Page of
the art1cular student -

mm-rmhdo
addrass L) " B wis ™
Google -| mlmm-ﬁgzw ¥ heck = Iy otk = LT ekl B optors. B

W et Ikt

F1g 12 13 D1splay1ng the photo of the student on chckmg the
Photo button

71

___ REFERENCES
———_—__——_—"‘“—_—-—

13. REFERENCE

13.1 PAPERS
[1] T.Y. Lin, Xiaohua Hu, Nick Cercone, Jianchao Han, ‘Intelligent Query
Answering Based on Neighborhood Systems and Data Mining Techniques’
Proceedings of the International Database Engineering and Applications
Symposium (IDEAS’04), IEEE 2004.

[2] Jiawei Han, Yue Huang, Nick Cercone, Yongjian Fu, ‘Intelligent Query
Answering By Knowledge Discovery Techniques’, Work for The Natural
Sciences and Engincering Research Council Of Canada and Center for

Systems Sciences of Simon Fraser University.

[3] Sara Cohen, Werner Nutty, Alexander Serebrenik, ‘Algorithms for
Rewriting Aggregate Queries Using Views’

[4] Doina Caragea’, Jie Bao, Jyotishman Pathak and Vasant Honavar,
‘Ontology-based information integration using INDUS system’

13.2 WEB SITES

www, vbdotnetheaven.com

13.3 BOOKS

1} Danny Ryan and Tommy Ryan, ASP.NET, Published by Hungry Minds
ii) Mridula Parihar et al (2002), ASP.NET Bible, Published by Hungry
Minds

1ii) Evangelos Petroutsos; Ash Bilgi, Mastering Visual Basic.NET Database
Programming, pp 228-263

iv) Rational Testing Products, Rational Software Corporation

72

