P-ltcy

FROBRESS WSDUGH INBHLEDET

COLLABORATED SERVER ARCHITECTURE
IMPLEMENTATION USING RFB PROTOCOL

A PROJECT REPORT

Submitted by
LAVANYA MANICKAN (71202104019)
NISHA VENUGOPAL MENON (71202104024)

in partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
in

COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE
ANNA UNIVERSITY:: CHENNAI 600 025

APRIL 2006

ANNA UNIVERSITY : CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report «COLLABORATED SERVER
ARCHITECTURE IMPLEMENTATION USING RFB PROTOCOL”
is the bonafide work of “Lavanya Manickan 7 1202104019) and

Nisha Venugopal Menon (7 1202104024)” who carried out the project work

under my supervision.

A Yossiot
SIG%ATURlT\ /O/ \[\‘ \b

SIGNATURE
Dr. S. Thangasamy Mrs. V. Vanitha
HEAD OF THE DEPARTMENT SUPERVISOR
Department of Computer Sci & Engg. Department of Computer Sci & Engg
Kumaraguru College of Technology Kumaraguru College of Technology
Chinnavedampatti Post Chinnavedampatti Post
Coimbatore-641 006 Coimbatore-641 006

Submitted for Viva-Voce examination heldon _©3-C5 - =< cct

[N T N
"o’ g;;‘., B0 B
INT

ERNAL EXAMINER EXTERNAL EXAMINER

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

It is our pleasure to express our thanks to Prof. K. Arumugam, B.E., (Hons),
M.S. (U.S.A), M.LE., Correspondent, Kumaraguru College of Technology

for his kind contact, inspiration and constant encouragement.

We sincerely thank our beloved Principle Dr. K.K.Padmanabhan, B.Sc.
(Engg), M.Tech., for his Invaluable support and appreciation he had shown

towards our project.

We express our heartfelt gratitude to our Head of Department, Computer
Science and Engineering Branch, Dr. S. Thangasamy, B.E.(Hons), Ph.D.,
for the encouragement and the technical knowledge he has bestowed

towards the completion of the project successfully.

We are thankful to out Internal Guide, Mrs. V. Vanitha M.E., Senior
Lecturer, Department of Computer Science and Engineering, Kumaraguru
College of Technology, who inspired us to do the project. Her knowledge in
the subject helped us to circumvent the obstacles and helped us to complete

the project successfully in a short period of time.

We would also like to thank our project co-ordinator Mrs. S. Devaki M.S.,
Assistant Professor, Kumaraguru College of Technology, who has been very
helpful and has guided us throughout the project.

We express our sincere thanks to Mr. CJeyaram, System
Administrator for his valuable suggestions and doing the needful for the

completion of the project.

We express our debt of gratitude to our Almighty God, family and friends

who have been the driving force for our accomplishments.

ABSTRACT

ABSTRACT

This project is in essence a collaborated server architecture that is used to
enhance the operability of the existing Virtual Network Computing
environment.

Virtual Network Computing is basically a remote display system which
allows one to view a computing 'desktop’ environment not only on the
machine where it is stored, but anywhere from a wide variety of machine
architectures. The VNC architecture has two main components:

Remote System, which generates a display and a

Viewer, which actually draws the display on its screen.

The existing system has the following disadvantages:

1) The remote system has to keep track of and update multiple viewer
machines when it is simultaneously accessed.

2) Since graphical information needs to be transferred, the time required to
do the same is increased.

3) Due to the above reasons, the speed of the remote system reduces.

In order to boost up the remote system’s speed, in case of 1: N remote
system-viewer scenario, we go for collaborated server. Viewers share
remote system’s desktop in read-only mode through collaborated server.
Many remote systems can register themselves to the collaborated server thus
providing the viewer an option to choose one amongst them. The
collaborated server takes care of updation in all viewers thereby reducing the
workload of the remote system and hence increasing its speed.

Thus the project allows multiple viewers to capture the desktop of the

remote system from several places simultaneously.

TABLE OF
CONTENTS

CHAPTER NO

CONTENTS

ABSTRACT
LIST OF TABLES
LIST OF FIGURES

LIST OF SYMBOLS

CHAPTER OF REPORT

INTRODUCTION

1.1 OVERVIEW OF THE PROJECT
1.2 AIM OF THE PROJECT
1.3 PURPOSE

SYSTEM ANALYSIS

2.1 EXISTING SYSTEM
2.2 PROPOSED SYSTEM

SYSTEM SPECIFICATION

3.1 HARDWARE CONFIGURATION

3.2 SOFTWARE CONFIGURATION

3.3 DOMAIN REQUIREMENTS FOR
THE PROJECT

3.4 FLOWCHART

3.5 DATA FLOW DIAGRAMS

PAGE NO

11

v

Vi

11
12

13
14
17

PROJECT IMPLEMENTATION

4.1 PROCESS MODULE

4.2 MODULE DESCRIPTION

4.3 MODULE IMPLEMENTATION
4.4 MODULE FEATURES

4.5 TESTING

4.6 OUTPUT

PROJECT FEATURES

5.2 ADVANTAGES
5.3 LIMITATIONS
5.4 APPLICATIONS

CONCLUSION

FUTURE ENHANCEMENTS

APPENDICES

APPENDIX 1: SAMPLE CODE
APPENDIX 2: USER MANUAL

REFERENCES

19
20
23
36
42
44

52
53
54

55

56

57
72

76

(TABLE 1)

OPERATING CONDITION DURING TEST ANALYSIS

LIST OF FIGURES

—

(FIG 1) EXCLUSIVE CONNECTION

(FIG 2) EXCLUSIVE MODE DISCONNECTION

(FIG 3) SHARED MODE CONNECTION

(FIG 9) SHARED MODE CONNECTION IN COLLABORATED SERVER VIEWER

(FIG 5) VNC VIEWER-REMOTE SYSTEM

(FIG 6) COLLABORATED SERVER VIEWERCONNECTION ESTABLISHMENT Al
UPDATION

(FIG7) CONNECTION ESTABLISHMENT

(FIG 8) COLLABORATED VIEWER COLLABORATED SERVER

(FIG 9) RFB PROTOCOL

(FIG 10) RUNNING VNC REMOTE SYSTEM

(FIG 11) SETTING VNC REMOTE SYSTEM PROPERTIES
o

(FIG 12) RUNNING COLLABORATED SERVER

(FIG 13) RUNNING COLLOBORATED VIEWER

(FIG 19) CONNECTING TO THE COLLOBORATED SERVER

(FIG 15) CHOOSING A VNC REMOTE SYSTEM

(FIG 16) COLLOBORATED VIEWER VIEWING VNC REMOTE SYSTEM DESKTOP:

(FIG 17) UPDATION INFORMATION OF VNC REMOTE SYSTEM IN

COLLOBORATED SERVER

LIST OF SYMBOLS

iv) LIST OF SYMBOLS

CSA

DES

JDK

RGB

SOCK

TCP

COLLABORATED SERVER ARCHITECTURE

DATA ENCRYPTION STANDARD

JAVA DEVELOPMENT KIT

RED, GREEN, BLUE

REMOTE FRAME BUFFER

SOCKET

TRANSMISSION CONTROL PROTOCOL,

VIRTUAL NETWORK COMPUTING

INTRODUCTION

1.1 OVERVIEW OF PROJECT

In recent advancements of Information Technology areas, a new era called
Virtual Network Computing has evolved. Virtual Network Computing
enables PC-PC communication using a protocol called RFB (Remote Frame
Buffer). From the olden days there are solutions used, which enables one to
work with his/her PC from a remote place (ex. Telnet, Rlogin, MainFrame
nodes, Unix/Linux Terminals). As PC cost was drastically reduced, there
was less need for remote controlling solutions. But still these solutions are

not out of the market.

Now days the Industry expects a better quality service/maintenance for any
software solution, which a company would have deployed in the past.
Software Installation is one of the major tasks for the system administrators
in a Software Production department of an organization. Product
Demonstration/ Broadcasting a video over network is a tedious task for the
Tech-Executives. The software licensing is enabling people not to adapt to
latest technologies unless otherwise they bought the software. Application
Maintenance or Software Debugging is also a Major task in a Software
Development/Training Industry for Coordinators. Accessing/controlling
Hardware Resources, which are associated with a remote machine, is also
becoming a routine Job for the network users/administrators. To provide a

cost effective solution with respect to above described problems, we are

proposing this solution.

Thus Remote controlling solutions are widely picked up in the market from
the last decade. There are various solutions provided for the same need but
which are not effective (cost wise, flexibility wise, performance wise) as the
proposed solution.

To name a few,

Telnet — Here from a dumb terminal a command can be executed remotely
(emulation).But, when pc cost is reduced there is no need of dumb terminal.
Thus telnet is not ultimate and no graphical pictures are possible to be
viewed. Further the work environment is entirely different and not further
customizable in Telnet.

Windows 98 - Netmeeting 3.0 — This will enable certain features but not to
a full extent and further this solution is not customizable and maintainable
by corporate companies unless otherwise Microsoft comes forward to do the
same. Further working with Netmeeting & Remote Desktop Sharing both is
not possible at the same time.

New Microsoft Windows- XP has come out with a better solution but
which may not be feasible, for every consumer to upgrade from Windows —
98 to Windows XP. Considering all these factors and need of the system, the
proposed system is an Intranet solution, which can be further customizable

to corporate needs if required.

Thus, the proposed solution will enable to view a remote machine desktop
over Intranet provided the access rights are enabled. This remote control
solution will enable at the same time to serve many viewers who would like
to view the desktop of a remote PC. Along with this feature it serves all the

needs described above.

1.2 AIM OF THE PROJECT

The project is used to enhance the operability of the existing Virtual
Network Computing architecture. The proposed collaborated architecture
solution identifies the need for increased speed in transferring graphical
information from one remote desktop to all viewers.

It thus enables to view a remote machine desktop over Internet/Intranet
(depends on bandwidth) provided the access rights are enabled. The remote
control solution will enable at the same time to serve many viewers who

would like to view the desktop of a remote desktop.

1.3 PURPOSE

The project solves the speed lag, which is present in the existing VNC
architecture and can be extended to support video broadcasting applications.
The enhanced operability provides casy mobile computing without requiring
the user to carry any device whatsoever.

In addition, it allows a desktop to be accessed from several places

simultaneously thus supporting application sharing in the style of Computer

supported Co-operative work.

SYSTEM ANALYSIS

SYSTEM ANALYSIS:

2.1 EXISTING SYSTEM

The existing system use VIRTUAL NETWORK COMPUTING which will
enable PC-PC communication using a protocol called RFB(remote frame
buffer). Any event triggered on the viewer side is captured‘ and transmitted to
the remote system along with the portion (X, y coordinates). Remote System
updates its desktop according to the event received and reflects the same
changes in the viewer. In this way, viewer and remote system shares the
desktop. Two types of connection are possible,

* Exclusive connection

* Sharable connection
In the exclusive connection, at a time only one viewer and a remote System
can be connected. If another viewer establishes a connection with the remote
system in exclusive mode, the previous viewer will be disconnected from the

Temote system irrespective of its mode of connection.

EXCLUSIVE

CONNECTION
Remote System Viewer

(FIG 1)- EXCLUSIVE CONNECTION

Disconnect

VNC Remote VNC viewerl
System N

VNC viewer2

Exclusive

(FIG 2)-EXCLUSIVE MODE DISCONNECTION

In the sharable mode, more than one viewer can be connected to a RFB
remote system so that many viewers can access and update a single RFB
remote system..All the viewers which get connected to the remote system in
this mode can initiate updation which is processed by the remote system and
reflected to all the viewers. Thus, any viewer can update the remote system

desktop with equal priority.

Sharable
VNC Remote VNC Viewerl
System
Sharable mode
Sharable
mode
VNC viewer3 VNC

viewer2

(FIG 3) SHARED MODE CONNECTION

2.2 PROPOSED SYSTEM

The proposed system CSA (Collaborative Server Architecture), It is in
essence a remote display system, which allow you to view a computing
desktop environment not only on the machine where it is running but from a
wide variety of machine architectures. It is a networking project using JAVA

as platform and the TCP/IP protocol.

The protocol used is a simple protocol for remote access to graphical user
interface. It is based on the concept of remote frame buffer. The protocol
simply allows the remote system to update the frame buffer displayed on a
viewer. Because it works on the frame buffer level it is applicable to all

operating systéms.

Writing a viewer is a simple task. It requires only a reliable transport
(usually TCP/IP) and a way of displaying pixels. Writing a remote system is
slightly harder. The protocol is designed to make the viewer as simple as
possible, so it is usually up to the remote system to perform any translation.
For example, the remote system must provide the pixel data in the format the

viewer wants.

The VNC remote system makes the existing desktop on the PC available
remotely rather than creating a separate desktop as it happened with the
UNIX server. This will run on windows NT/95 and on any future Win32
based system without the need to replace any system files or run any OS
specific versions of the program. VNC Remote System can also be run as a

service which means that you can log in remotely and do some work and log

out again. Either the viewer or the remote system can initiate updation on
remote system desktop and the same is reflected on both. When the number
of viewers connected to the remote system increases, the speed of the remote
system faces a setback. In order to boost up the remote system’s speed, in
case of 1: N scenario, we go for collaborated server. The collaborated server
functions as an intermediate between the remote system and the viewer. It
maintains the connection with each viewer and also with each remote
system. This is taken care of by the collaborated server. The viewer is
allowed to choose from different remote Systems who are connected to
collaborated server. Thus it is possible to have multiple user and multiple
remote systems. The speed of the remote system here is not affected by
number of viewers. Whenever the viewer wants to communicate with the
remote system a connection has to be established. An important factor to be
considered here is that there can be more than one viewer that can be

connected to the remote system at a time.

There are two basic scenarios as far as the operation of this is concerned. On
one side, the viewers will reflect any changes made in the remote system’s
side. In other words, the viewer is able to view the changes made by the
remote system. Transferring the update rectangles to the viewers does this.
Transfer of the entire frame buffer takes place pixel by pixel. In cases where
there is only a small change in the frame buffer then a rectangle can be
constructed around this updated area and only this portion can be
broadcasted. A sequence of these rectangles makes 3 frame buffer update.
An update represents a change from one valid frame buffer state to another.
So in many ways it is similar to a frame of 2 video. But usually it is a small

area of the frame buffer that will be affected by a given update.

because transmission of bulk volume of data may lead to error and increase
the cost of the cable. Since jt is a networking environment, the data has to be
encrypted or encoded for safety purpose to prevent eavesdropper from

taping the information. Similarly decompression and decryption should be

done on the receiver side.

(FIG 4) SHARED MODE CONNECTION IN COLLAB SERVER-

CLIENT
VNC VNC VNC VNC VNC VNC
viewerl viewer-N viewerl Viewer-N viewerl Viewer-N
VNC Remote VNC Remote VNC Remote
system- 1 System-2 System-M
T1 T2 ™
Collghor TV
T1 T2 TL
Collaborated Collaborated Collaborated
viewer-1 viewer-2 viewer-L

SYSTEM
SPECIFICATION

SYSTEM SPECIFICATIONS:

3.1 HARDWARE CONFIGURATION:

® Monitors : 800 x 600 minimum resolution at 256 colors minimum

® Memory : Approximately 256MB of on board memory

® I/O: Mouse and a Standard 101- key board

* Processor Speed : Atleast 166 MHZ, processor

Processor Used : Pentium-4

3.2 SOFTWARE CONFIGURATION:

e Language : JDK 1.4 or Above

® Operating System : Windows 98, NT, XP, 2000

¢ Tools: NetBeans 3.6 or above

e TCP/IP architecture

® Protocol : Remote Frame Buffer Protocol

* Algorithm implemented by the protocol: DES

* Encoding technique: Raw encoding

3.3 DOMAIN REQUIREMENTS FOR THE PROJECT:

* Windows Operating System Fundamentals

e TCP/IP Architecture

* Telnet, Rlogin Protocol Services for comparative study

* Remote Frame Buffer Protocol

* Data Encryption Standard Algorithm for Cryptography

* Multi-Threading Concepts

3.4 FLOW CHART
(FIG 5)VNC VIEWER-REMOTE SYSTEM

Start remote system

v

Set port no,
password, N=0

I

Set update option
handling

v

Connection request

from viewer?
O ==

Get password
connection mode

Notify user abt

5 Authentic
conn. failure

ation

Disconnect
other viewers

Exclusive
mode

:

No

N=N+1 =]

v

Transfer of rem sys’s
framebuffer content to
viewer

Render remote
system’s desktop

Connect.
Request

Update
request?

Yes

1 Rem

sys

Disconn
request?

Viewer

Source
of
updation

Notify user abt Transfer of event
disconnection source to rem sys

Rem sys process
the event

—

Any diff btn
cont. of FBs?

¢ Yes

I Transfer updated content of —]

frame buffer to N-1 viewers

]

(FIG 6) Collab server-viewer connection establishment and updation

Start VNC
remote sys

v

Start collab
server

I

Conn. Request from collab
S€rver to remote sys

Send
eITor msg

Authent
icated?

Connection established

%

Start collab viewer

v

Choose remote system)

Yes

and establish session

—v—

Conn req
from collab
viewer

Conn req from
VNC viewer?

Authent
icated?

End error
msg

Updatio
n?

Perform
updation

Transfer framebuffer
contents

Broadcast to
| all viewers

3.5 DATA FLOW DIAGRAMS:

(FIG 7)CONNECTION ESTABLISHMENT:

[] Login name Authentic
Info from ation by Socket no. !‘
1 «,: remote
IP Address viewer S
Vs
Password
Protocol
Port no. Protocol version of
: Protocol negotiation remote sys
» version of
—» viewer
] Frame
size
Shared . ‘
access —— Negoti Frame :
| Initializatio -ation details of ﬁlxel t
, n message remote sys orma
Non-shared ¥
access Encodin
g
Pixel Content of Compres scheme
resolution, framebuffer -S1on
pattern etc. of remote sys
Implementatio
n of RFB
Decoding

Decompression

Writing data into
viewers frame buffer

(Remote

(FIG 8) COLLABORATED VIEWER AND COLLABORATED
SERVER

server

> VNC rem sys
name
Width
Display of
:;I:VCercollab conn info
Len,
—> gth connection
Password Collab
server
r’ Collab server Collab Listonioa t
name olla istening to
viewer VNC rem sys
server
—»! Port No connection
Selection >
of rem sys
Collab
viewer Display of
selected systems
desktop
Collab

PROJECT
IMPLEMENTATION

PROJECT IMPLEMENTATION:

4.1 PROCESS MODULES

Modularity is the key feature of any system for provision of effective
testing and debugging. This helps in acquiring control over system
development and modification. Our project comprises of totally 4 modules.

They are:

e RFB Remote System

e Connection establishment

Collaborated-server

Collaborated-viewer

4.2 MODULE DESCRIPTION:

RFB Remote System:

windows 3.1/95/NT and Macintosh.
The remote end point where the user sits (that is the display plus the

keyboard and/or pointer is called the RFB viewer. The end point where

changes to the frame buffer originate (that is windowing system and the

Témote system updates the frame buffer.

Connection Establishment:

This module is where the viewer connects with the VNC- remote system.

More than one user €an connect to the VNC- Témote system. It takes care of

updation of viewer side frame buffer with respect to new frame buffer

updates and event handling. It also maintains a clipboard text.

Collaborated- Server:

The collaborated server reduces the overhead of the VNC- remote system by
maintaining session for each viewer. The process of connecting to
collaborated-server and the process of authentication are carried out in this
module. This module is one where the connection with VNC- remote system
is established. After the connection is established the remaining protocol
initialization is performed, the encoding scheme is send from options frame
to VNC- remote system. The details about the remote system such as
identification, session password, mcport no, port no; width and height of the
screen are stored. The connection to required remote system is established

after reading the user name.

This module comprises of registering various collaboratedviewersessions
with Collaborated-Server, writing all VNC-Server Desktop Names to the
Collaborated-Viewers, handling CollaboratedViewerRequest for a particular
VNC- remote system, attaching a ServiceHandle between a VNC remote
system ServiceThread and CollaboratedViewerServiceThread (many-many
(or)l-many (or) many-1 (or) 1-1), sending the VNC remote system
FrameBufferUpdates to the respective CollaboratedViewerSessions and
Handling ConnectionCloseRequests initiated from

CollaboratedViewerSessions.

Collaborated- Viewer:

The collaborated viewer reads the information about the remote system. The
process of initializing the components takes places in this module and the
validity of remote system details are tested. After giving the update requests
the viewer receives the update information from the remote system. Then the
updation information is made known to user by printing the status of
updation on the screen in this module. Any error in receiving the update
information is indicated to the user. This module takes care of
CollaboratedViewerRegistrationRequest to CollaboratedServer, initiating
CollaboratedSessionRequest for a particular VNC- remote system which is
handled indirectly through CollaboratedServer, adding an another
CollaboratedSessionRequest for another VNC- remote system which will be
again handled indirectly through CollaboratedServer while other initiated
session is still in ServiceMode (1 CollaboratedViewer — many VNC remote
system (only One CollabServer)), Handling VNC remote system
FrameBufferUpdates sent by VNC remote system ServiceThread through
CollaboratedServer, Updating InternalFrames for every
CollaboratedServiceThread which has been served by CollaboratedServer,

Handling ConnectionCloseRequest and terminating respective Internal

Frames.

4.3 MODULE IMPLEMENTATION:

> RFB Protocol
RFB (“remote framebuffer”) is a simple protocol for remote access to
graphical user interfaces. Because it works at the framebuffer level it is
applicable to all windowing systems and applications, including X11,
Windows 3.1/95/NT and Macintosh. The remote endpoint where the user
sits (i.e. the display plus keyboard and/or pointer) is called the RFB viewer.
The endpoint where changes to the framebuffer originate (i.e. the windowing

system and applications) is known as the RFB remote system.

RFB Remote System

Viewer

RFB PROTOCQX

(FIG 9) RFB PROTOCOL

The emphasis in the design of the RFB protocol is to make very few
requirements of the viewer. In this way, viewers can run on the widest range
of hardware, and the task of implementing a viewer is made as simple as
possible. The protocol also makes the viewer stateless. If a viewer
disconnects from a given remote system and subsequently reconnects to that
same, the state of the user interface is preserved. Furthermore, a different
viewer endpoint can be used to connect to the same REB remote system. At
the new endpoint, the user will see exactly the same graphical user interface
as at the original endpoint. In effect, the interface to the user’s applications
becomes completely mobile. Wherever suitable network connectivity exists,
the user can access their own personal applications, and the state of these
applications is preserved between accesses from different locations. This
provides the user with a familiar, uniform view of the computing

infrastructure wherever they go.

Display Protocol

The display side of the protocol is based around a single graphics primitive:
“put a rectangle of pixel data at a given X,y position”. At first glance
thismight seem an inefficient way of drawing many user interface
components. However, allowing various different encodings for the pixel
data gives us a large degree of flexibility in how to trade off various
parameters such as network bandwidth, viewer drawing speed and server
processing speed. A sequence of these rectangles makes a framebuffer
update (or simply update). An update represents a change from one valid

framebuffer state to another, so in some ways is similar to a frame of video.

workload put on the remote System. Since al] the viewers are connected only
to this Collaborated Server the actual RFR Remote System need not keep
track of the status of the n number of viewers. As g result of this the Speed of

remote system ig increased.

process. Resource bundles contain locale-specific objects. When your

pbrogram needs 3 locale-speciﬁc resource, 2 String for €xample, your

e YWed

that can:

> Be easily localized, or translated, into different languages

> Handle multiple locales at once

locale-specific object in the bundle. The Java 2 platform provides two
subclasses of ResourceBundle, ListResourceBundle and

PropertyResourceBundle, that provide 5 fairly simple way to Create

entered into this file in a particular format. By viewing this file We€ can see

allowed to connect to any one of these remote Systems. It does so by using

number 2345, The VNC remote System details from the

collaboratedproperties are stored in the vector.

The Vector class implements a growable array of objects. Like an array, it
contains components that can be accessed using an integer index. However,
the size of a Vector can grow or shrink as needed to accommodate adding
and removing items after the Vector has been created. Each vector tries to
optimize storage management by maintaining a capacity and a capacity
Increment. The capacity is always at least as large as the vector size; it is
usually larger because as components are added to the vector, the vector's
storage increases in chunks the size of capacity Increment. An application
can increase the capacity of a vector before inserting a large number of

components; this reduces the amount of incremental reallocation.

The function of the Collaborated server is to connect the viewers to the VNC
remote system without decreasing its performance and speed. On
establishing connection, a thread for collaboratedviewer is started. The other
modules are Remote system Info, CollaboratedConnector,
CollaboratedViewerServiceThread .

Remote System Info:

This is a very simple module and its function is to supply the Collaborated
server with the actual values from the CollaboratedProperties.
RemoteSystemInfo is g small class that consists of three types of
constructors. In the first one the framebuffer width and height, port and
Imcport are set as constants. In the second one only the port and mcport are

set whereas in the third one all the values can be altered by the users. Hence

the function of this module is to return the current values to the Collaborated
server from the CollaboratedProperties. The password length is restricted to

have their maximum number of characters as &.

Collabconnector-:

The function of this module is to connect to the VNC Remote system and
authenticate the user and do the protocol initialization. This module is called
by the Collaborated Server for each of the existing VNC Remote system.
The connection and authentication is done the way described below.
Firstly the protocol version of the VNC remote System 1is read and
printed.
Then the version message of the client is written.
The authentication scheme is then found out and depending on that
various actions are performed.
1. If there is no authentication scheme used then the appropriate
message is printed.
2. If authentication is used then the encryption process takes place by
using the password given by the user as a key. The length of this
password is restricted to 8 characters.
The result of authentication is then read and one of the following takes
place.
a. If VncAuthOK is returned then the Authentication was
successful.
b. If VNcAuthFailed is returned then the Authentication failed.
c. If VncAuthTooMany is returned then it indicates that there

were too many tries during the process of authentication.

Hashtable class implements a hashtable, which maps keys to values. Any
non-null object can be used as a key or as a value. To successfully store and
retrieve objects from a hashtable, the objects used as keys must implement

the hashCode method and the equals method.

The protocol initialization is basically done in the RFB protocol. The rest of
it such as printing corresponding messages, setting of encoding schemes is
done here. The Desktop name and size are printed and the width and height
of the frame buffer are set appropriately. The raw encoding is implemented
here because it is the most effective encoding technique. Any error that takes
place in the protocol initialization or connection and Authentication are

displayed so that the user knows what exactly had caused the error.

Collabviewerservicethread:

This module is called for every viewer that has a valid connection with the
remote system. This initializes the format string that contains information
about the host frame buffer width & height etc. once the initialization is
done a procedure called checkViewerList is called. Here it is checked that
the remote system required by the viewer is a valid one and the viewer is not
already connected to that same remote system. If this condition is satisfied
then a message specifying that the viewer is added to the required remote
system is displayed. This function is done in a procedure called
addViewerToConnector. The concept of multithreading is implemented here
to satisfy all the viewers simultaneously.

Information as to which viewer the processing is done is specified so as to
avoid confusion in a multiuser environment. This module basically makes

use of Input/Output streams to get the information regarding the user name

and the server name. After fetching then it checks if the user is requested for
the right remote system and then services the viewer if it chooses the right
remote system. This module makes use of the CollaboratedProperties to
check if the viewer is connected to a valid user.

A sample of information contained in CollaboratedProperites is shown
below:

1 .remotesystem=tcms

1.port=5900

1.w1dth=800

1.height=600

1.password=at

1.mcport=9999

The CollabServer plays an important role in this module and the program
flow 1is appropriately transferred to the other sub-modules. The
CollaboratedProperties serves as a source of information about the remote
systems, if any remote systems have to be added, entries for that system are

made in this CollaboratedProperties before executing.
» COLLABORATED VIEWER:

A thread is a thread of execution in a program. The Java Virtual Machine
allows an application to have multiple threads of execution running
concurrently. Every thread has a priority. Threads with higher priority are
executed in preference to threads with lower priority. Each thread may or
may not also be marked as a daemon. When code running in some thread

creates a new Thread object, the new thread has its priority initially set equal

to the priority of the Creating thread, and is a daemon thread if and only if

the creating thread is 3 daemon.

When a Java Virtual Machine starts up, there is usually a single non-daemon
thread (which typically calls the method named main of some designated
class). The Java Virtual Machine continues to execute threads until either of

the following occurs:

> The exit method of class Runtime has been called and the security

manager has permitted the exit operation to take place.

> All threads that are not daemon threads have died, either by returning
from the call to the rup method or by throwing an exception that
propagate beyond the run method.

connection is formed and the thread is started, thus multiple viewers are
possible. A socket is an endpoint for communication between two machines.
The VNC remote Systems which are registered with CollaboratedServer
through CollaboratedProperties are obtained in an array list. The user is
provided with an option to choose the RFB Témote sytem from this list and

1s allowed to establish a connection with the same,

If the remote System is not found then an CITor message is printed in the
console. When the interna] frame closing operation is performed the

connection is disconnected and disposed. The viewer checks if current host

remote system he requires. If the remote system is not present in the list then
error message is given. Once all the required information about the remote
system is obtained as stream of data, the X, Y coordinates as well as width
and height are read. Then the whole pixel array is read. From the canvas the
pixel are obtained and validated. Then the control is given to collaborated
canvas where the painting operation is performed. Any error during the
reading of input data is informed to the user. There are two sub modules that
come under this. They are CollabDesktop and CollabInitDialog. Each one of

this performs a specific function.

Collabdesktop:

This is the start-up screen as soon as the user runs the viewer. The GUI for
this constitutes a frame titled Collaborated Server and a Menubar. The
option present in the menubar is AddServer. The CollabDesktop gets the
information regarding tge user name and the Collaborated server name from
CollabnitDialog. Hence the control is passed on the next module
CollabInitDialog. After getting the correct user name and remote system
name it starts a thread for that particular viewer. The viewer then gets
connected to the VNC remote system and can view the desktop. Before we

run the CollabDesktop a proper connection should be set between the

Collaborated server and the VNC remote system.

Collabinitdialog:

The function of this module is to get the user name and the Collaborated

server’s name from the user. A GUI is designed for this purpose. The user is

expected to know the Collaborated server. This GUI consists of a frame
titled CollabInitDialog, three labels and two textfields namely userfield and
serverfield. Further it contains two buttons OK and CANCEL. It is this
module that authenticates the user. If the userfield or serverfield is let blank
then appropriate messages are displayed asking the user to enter the names.
Once it finds that valid username and remote system name is entered it
delivers them to CollabDesktop. The CollabDesktop then displays these

names for our information.

> UPDATION:

Updation comprises of four classes. This is connected with the process of
redrawing or repainting, where the contents of frame buffer are changed.
The viewer requests the remote system to send the updated data through the
RFB protocol and the remote system sends the updated information through
the same, then the updated information should be reflected on the desktop of
the remote system. For this purpose we consider that repainting or redrawing

the image can effect the updation. The four classes used for this purpose are:

a) Animatedmemoryimagesource
b) Collabcanvas
c) CollabReader

The functions of each class are given in the next page.

Animatedmemoryimagesource:

This class first reads the width, height, color model used and the pixel array.

There is one image producer which in our case is the remote system and one

image consumer, the user or the viewer. The interfaces image producer and

image consumer are used.

Each image contains an ImageProducer which is used to reconstruct the
image whenever it is needed, for example, when a new size of the Image is
scaled, or when the width or height of the Image is being requested. When a
consumer is added to an image producer, the producer delivers all of the data
about the image using the method calls defined in this interface. Then the
dimensions, color model, pixels are all set in this class so that the consumer
and producer have compatible properties. The ColorModel abstract class
encapsulates the methods for translating a pixel value to color components
(for example, red, green, and blue) and an alpha component. In order to
render an image to the screen, a printer, or another image, pixel values must
be converted to color and alpha components. As arguments to or return
values from methods of this class, pixels are represented as 32-bit ints or as
arrays of primitive types. The number, order, and interpretation of color
components for a ColorModel is specified by its ColorSpace. A ColorModel
used with pixel data that does not include alpha information treats all pixels
as opaque, which is an alpha value of 1.0. This ColorModel class supports
two representations of pixel values. A pixel value can be a single 32-bit int
or an array of primitive types.

There is provision to add and remove consumer which in this context is the
viewer. Once the verification of the consumer is over the image is sent. Any
error in sending the frame is checked using the SINGLERAMEDONE.
While setting the pixels the X, y coordinates, color model, height and width
are also sent. It is also indicated the order in which pixels are sent the

random pixels order is used. This is set by using setclips method. Thus the

Animatedmemoryimagesource identifies the source and destination of image

and also the order in which pixels are sent.
Collab Canvas:

A Canvas component represents a blank rectangular area of the screen onto
which the application can draw or from which the application can trap mput
events from the user. An application must subclass the Canvas class in order
to get useful functionality such as Creating a custom component. The paint
method must be overridden in order to perform custom graphics on the
canvas.

In this class the color model is set and the viewer is identified. The 1mage
with the specified width and height is obtained from graphics. The preferred
size and minimum size are obtained in this class. Using drawImage method
the picture is painted in the current viewer. The picture is obtained after
referring to Animatedmemoryimagesource for pixel array. Then using the
new pixels obtained the desktop is updated. The x, y coordinates, width and
height are used to find the exact position where the update has to take place.
The method setClip is used for this purpose. By using setClip the
coordinates of update rectangle are set. Thus only these coordinates have to
be repainted. If there is no such method then error message is provided. In
case of an exception when clip cannot be found create is used to create the
clip rectangle and then the clipRect method is used o set the dimension of
the rectangle to the size of the updated portion. The drawImage method is

used for the purpose of drawing the new pixel in the viewer.

4.4 MODULE FEATURES
VNC - viewers:

Writing an VNC viewer is a simple task since it requires only a reliable
transport (usually TCP/IP), and a way of displaying pixels (either directly

writing to the framebuffer, or going through a windowing system).

VNC - remote system:

Writing a VNC remote system is slightly harder than writing a viewer for a
number of reasons. The protocol is designed to make the viewer as simple as

possible. So it is usually up to the remote system to perform any necessary

translation.
Remote System Features:

Properties: This will cause the properties dialog to be displayed, allowing

the user to change various remote system parameters.

Add new viewer: This allows outgoing connections to be made from the
remote system to any “listening” viewer. The name of the target viewer
machine can be entered in the dialog. Connections created this way are rated

as shared.

Kill all viewers: This will disconnect all currently connected viewers from

the remote system.

About remote system: this will display information about remote system.
Close: Shutdown the remote system.

Moving the mouse over the icon should cause the IP addresses of the local
machine to be displayed, if they can be discovered at that time. You can

connect to the remote system from another machine using a viewer.
Remote system Properties:

The following options are expected from the properties dialog.

Incoming connections:

Accept socket conmections: The remote system normally accepts direct
socket-based connections from the viewer program. Clearing this tick-box
disables direct connection to remote system, so that only the CORBA

interface used by our internal version may be used to start a connection.

Display number: This allows the user to specify the display number which

the remote system will use. There is normally no need to change this from

the default of zero.

Auto: This tick box indicates to remote system whether it should use the
display number specified in the Display Number box, or whether it should
use the first display number not already in use on the remote system

machine.

Disable remote keyboard & pointer: Any new Incoming connections will

be able to view the screen but not send any input.

able to use your sessions.

Update Handling:

Note that clicking in a window will generally cause it to be updated. So if
you have certain applications which don’t update very well, you can use
this! The default update handling setting should be the right ones for most
people, and in general you will slow things down by changing them, so don’t

do this unless you have applications which cause problems.

Poll full screen:
Some applications are incompatible with the methods currently used in

remote system to trap screen updates. For this reason, it is sometimes usefy]

Poll foreground window:
Polling only the currently selected window for changes is less CPU Intensive

than full-screen polling and often gives similar results.

Poll console windows only:
When this option is set, the only windows which will be ever be polled are
Command Prompts. This works well in conjunction with Poll Window

Under Cursor, to use polling only when the Cursor is over a console window.

Poll on event received only:

When this option is set, the screen will only be polled for updates when a
mouse or keyboard event is received from the remote viewer. This is
provided for low bandwidth networks, where it may be useful to control how
often the screen is polled and changes sent. The user’s settings are saved into
the user-specific section of the registry when rémote system quits, meaning

that they will be used next time you run server.
VIEWER FEATURES:

Disconnect: This option when set, causes the viewer to be disconnected

from the server.

Option: In this, there will be option for selecting the type of encoding, to

reverse the mouse button, to indicate sharable desktop mode.

Clipboard: When remote System selects a portion of text and copies that
text will be displayed the clipboard to make the client aware of what server

has copied.

Send CTR+ALT+DEL.: This is used to unlock the workstation when
Windows NT or 2000 is used.

Running remote system as a Service:

VNC- remote System can now be made to fun as a service process under
both Windows NT and Windows 95/98, by following the instructions

outlined below. This allows you to unlock a locked workstation.

Collaborated Server and Viewer:

In the sharable desktop mode, if many viewers are connected to a remote
System which seldom initiates updation, then it has to keep track of all the
viewers that are connected to it. For every viewer it has to compare the
status for update and has to send the desktop in case of remote system
initiated updation. This will reduce the speed of remote system and it will be
able to respond properly. If a viewer wants to connect to more than one
remote system, it has to run many instance of viewer program. To avoid the

above complexity, we are going for collaborated server and viewer concept.

The collaborated-server functions as an intermediate between the VNC-
remote system and collaborated-viewer. It maintains the connection with

each collaborated-viewer and also with the VNC- remote system.

Collaborated-viewer can only view the desktop of VNC- remote system and
it cannot perform any updation in the VNC- remote system desktop, since it

does not maintain any information about the collaborated-viewer.

As collaborated-server gets connected to the VNC- remote System in an
exclusive mode, the VNC viewers that have been connected to the VNC-
remote system will be disconnected. But a VNC-viewer can connect in a
sharable mode to the VNC- remote system after the connection
establishment of collaborated-server with the VNC- remote system. Now the
VNC-viewer can control the Remote Desktop and the collaborated-viewers
connected to the VNC- remote System through collaborated S€rver can view
them. Thus the workload of the VNC- remote system is taken up partially by

the collaborated-server.

4.5 TESTING

Software Testing is the process of testing the software in 2 controlled
manner to ensure it behaves the way it is expected to behave. Software
testing is thus a critical element of software quality assurance. Testing
requires that the developer discards preconceived notions of the correctness
of the software thus developed and overcome the conflict of interest that

occurs when errors are revealed.

Functional Test:

These specify operating condition, input value and €xpected results.

S.N | Test case Object Major | Output
Input

1 Checking for | Remote Sys24 | “added to Sys24 is a
remote System name Sys24” remote
system’s name “Sending full System name
in desktop” registered
Collaborated with the
Server’s collaborated
Remote system. i
system list Sys25 | “Error sending | Sys25 is not a

to sys25” registered
remote
System.

1 denotes that
authentication
1s not
required.
2 insist that
authentication

1S required.

2 Checking for Authentication | 1
Authentication Scheme
schemes number

ch 0
authentication
needed.”

Verification of
password
followed by
return of
authenticatin

result.

Password Authentication | 0 Authentication | 0 denotes

Verification. | result succeeded correct
password
entry

1 Authentication | 1 denotes
failed wrong

password.

2 Authentication | 2 denotes too
failed-Too many trials of
many Tries. wrong

password.

3 Unknown Invalid value
VNC entry.
authentication
result.

Validation of | Value entered | Null | Enter the user | Prompts the
Username In username name user to enter
Textbox entry. | textbox. the name.

Sam | Textbox value

entered.

(TABLE 1) OPERATING CONDITION DURING TEST ANALYSIS

4.6 OUTPUT:

(FIG 10)RUNNING VNC REMOTE SYSTEM

(FIG 11)SETTING VNC REMOTE SYSTEM PROPERTIES

(FIG 12)RUNNING COLLABORATED SERVER

(FIG 13)RUNNING COLLOBORATED VIEWER:

(FIG 149)CONNECTING TO THE COLLOBORATED SERVER

v
[~
g

=

=]
=
=
£L

"

(FIG 15)CHOOSING A VNC REMOTE SYSTEM:

(FIG.16)COLLOBORATED VIEWER VIEWING VNC REMOTE
SYSTEM DESKTOP:

(FIG.17)UPDATION INF ORMATION OF VNC REMOTE SYSTEM
IN COLLOBORATED SERVER:

PROJECT
FEATURES

PROJECT FEATURES
5.1 ADVANTAGES:

® No state is stored at the viewer. The proposed solution is simple.

o Itis truly platform-independent. The simplicity of the protocol makes
it easy to port to new platforms. This is truly a "thin-viewer" protocol:
it has been designed to make very few requirements of the viewer. In
this way, viewers can run on the widest range of hardware, and the

task of implementing a viewer is made as simple as possible.

* Collaborated Server will reduce the overhead of VNC remote system
by handling updates and sending updates to various viewers

connected to VNC remote systems.

* CollaboratedServer 18 handling All
CollaboratedViewerSessionsHandling, Sending Updated Rectangles

to all, so a single process is distributed across two machines, thus

there is an increase in speed.

® No Separate Authentication for every Collaborated Viewer Session
initiated against RFBRemote system other than Registering with
Collaborated Server (since only one session is maintained with RFB
remote system from Collaborated Server irrespective of number of

Collaborated Viewers).

5.3 LIMITATIONS:

* Video conferencing on a slow bandwidth network is not achieved,
since normal data transmission rate is 58/128 KBPS but as per our
solution initial screen update itself required (as per raw encoding)

approx 480 KB(800 X 600 resolution).

* Enabling RFBViewer Session also through the Collaborated Server

thus no direct connections are required even from RFBViewer.

5.4 APPLICATIONS:

* Supports video broadcasting applications at suitable network
bandwidth.

e Location and ManPower Tranparency is achieved through easy

mobile computing without requiring the user to carry any device

whatsoever.

* Allows a desktop to be viewed from several places simultaneously,

thus supporting application sharing in the style of computer supported

co-operative work.

* If network bandwidth is high, video conferencing is also possible.

CONCLUSION

CONCLUSION:

The system was found to perform within the expected parameters
satisfactorily. It managed to successfully overcome some of the drawbacks
of the existing systems, while still remaining wholly self-contained.

The system was found to be suitably robust under test as well as in working
conditions. All instances of technical glitches were debugged and rectified to
a large extent. The system, thus, managed to meet all the requirements stated

and even add a few extra features, while still maintaining its integrity.

FUTURE
ENHANCEMENTS

FUTURE ENHANCEMENTS:

* Enabling Video conferencing on a slow bandwidth network.

* Enabling RFBViewer Session through Collaborated Server.

APPENDICES

APPENDICES

APPENDIX 1:

SAMPLE CODE:

Collab client:

Import java.awt.*;

import java.io.*;

import java.util. *;

import java.net.*;

import javax.swing.*;

import javax.swing.event.*;
import java.awt.*;

public class CollabClient extends
Runnable,InternalFrameListener {
public CollabCanvas canvas;
public byte[] pixels;

Socket s;

Thread thread;

BufferedReader br;

PrintWriter pw;

ServerDetails sd;

String userName,server;

JInternalFrame

public CollabClient(String server,String userName){

super(server,false,true,false, false);

implements

this.server = server;
this.userName = userName;

)
public void start() {

try{

s = new Socket(server,2345);
System.out.println(s);

thread = new Thread(this);
thread.start();
jcatch(IOException ioe){

System.out.println("Error: "+oe);

}

}
public void stop() throws IOException {

thread = null;
s.close();

}

public void initComponents(){
try{

show();

canvas = new CollabCanvas(this);
getContentPane().add(canvas);
canvas.setGraphicsRefs();
canvas.setPixels(pixels);
validate();

}catch(IOException ioe){

System.out.println("Error: "+ioe);

}
}
public void update(){
}
public void internalFrameA ctivated(InternalFrameEvent e){}
public void internalFrameClosed(InternalFrameEvent e){}
public void internalFrameClosing(InternalFrameEvent e) {
try{
this.stop();
this.dispose();
}catch(IOException ioe){
system.out.println("Error closing socket "+ioe);
1)
public void internalFrameDeactivated(InternalFrameEvent e) {}
public void internalFrameDeiconified(InternalFrameEvent e) {}
public void internalFramelconified(InternalFrameEvent e) {}
public void internalFrameOpened(InternalFrameEvent e {}
private class ServerDetails {
String host;
int display,width,height;
public boolean equals(Object 0){
1f(!(sd instanceof ServerDetails))return false;
ServerDetails sd= (ServerDetails) o;
if(!this.host.equals(sd.host)) return false;
return true;

}
public String toString(){

return host;

}

}

public void run() {

try{

br = new BufferedReader(new InputStreamReader(s. getInputStream()));

pw = new PrintWriter(new
OutputStreamWriter(s. getOutputStream()),true);

pw.println(userName);

String srvsAvail = br.readLine();

System.out.printIn(srvsAvail);

Vector servers =new Vector();

StringTokenizer stTok = new StringTokenizer(srvsAvail,":")

while(stTok.hasMoreElements()) {

ServerDetails sd = new ServerDetails();

sd.host = (String) stTok.nextElement();

b

sd.display = Integer.parselnt((String) stTok.nextElement());
sd.width = Integer.parselnt((String) stTok.nextElement());
sd.height = Integer.parseInt((String) stTok nextElement());
servers.addElement(sd);

}

Object[] objArr = new Object[servers.size()];
for(inti= 0;i<servers.size();i++){
objArr[i] = ((ServerDetails)servers.elementAt(i)).host;

}

String serverhost = (String)JOptionPane.showInputDialog(null,

"Choose a

vne server", "Input", JOptionPane. INF ORMATION_MES SAGE,

null,objArr, null);

Enumeration enum = servers.elements();
while(enum.hasMoreElements()) {

ServerDetails sdtemp = (ServerDetails)enum.nextElement();
String actualhost = sdtemp.host;

1f(actualhost.equals(serverhost))N

sd = sdtemp;
break;

}

}

if(sd == null){
System.out.printIn("Server not found:"+serverhost);
return;

}

setTitle(sd.host);

setSize(sd.width+1 0,sd.height+30);

pixels = new byte[sd.width*sd.height];
System.out.println("Sending to server "+sd.host);
pw.println(sd.host);

initComponents();

DatalnputStream dis = new DatalnputStream(s. getlnputStream());
System.out.println(dis.readLine());

int x=0,y=0,w=0,h=0;

while(thread != null){

String rectInfo = dis.readLine();

//System.out.println("updating canvas "+rectInfo+".");
stTok = new SuingTokenizer(rectInfo,":");

X = Integer.parseInt((String)stTok.nextElement());

y= Integer.parseInt((String)stTok.nextElement());
w= Integer.parselnt((String)stTok.nextElement());
h= Integer.parselnt((String)stTok.nextElement());
//dis.readF ully(pixels,O,pixels.length);

for (intj =y; j < (y + h); j++) {

dis.readFully(pixels, j * sd.width + X, W);

}

System.out.println("updating canvas at coordinates
"+X+":ll+y+":"+w+":"+h);
canvas.updateCanvas(x,y,w,h);

}
}catch(IOException 10€){

System.out.println("Error opening / reading I/O streams to "+5);
return,;

IS8

collab desktop:

import javax.swing. *;
import javax.swing.event. *,
import java.awt.*;

import java.util. *;

public class CollabDesktop extends JFrame{

JDesktopPane jdp;

CollabClient cc;

JMenuBar mainMenu;

JMenu fileMenu,addMenu;

String user,server;

public CollabDesktop(){

jdp=newJ DesktopPane();
getContentPane().add(jdp);
this.setTitle("Collaborator Desktop™);
this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mainMenu = new JMenuBar();

addMenu = new JMenu("Add Server");
mainMenu.add(addMenu);
this.setJMenuBar(mainMenu);
addMenu.addMenuListener(new MenuListener() {
public void menuCanceled(MenuEvent ¢) {}
public void menuDeselected(MenuEvent e) {

}

public void menuSelected(MenuEvent e) {

if(e.getSource() != addMenu) return;
getParams();

}

1)

Dimension deskdim = Toolkit. getDefaultToolkit(). getScreenSize();
this.setSize(deskdim.width,deskdim.height);

//this.setExtendedState(JF rame. MAXIMIZED BOTH),
this.setVisible(true);

getParams();

}

public void getParams() {
CollabInitDialog cid =new CollabInitDialog(this,true);
this.server = cid. getCollabServer();
this.user = cid. getUserName() + new Date().getTime();

>

cid.dispose();

if(user != null && server != null){
startNewCanvas();

}
}

public void startNewCanvas() {

CC =new CollabClient(server,user);

cc.start();

Jdp.add(cc);

}

public static void main(String args[]){
new CollabDesktop(); } }

collab server:

import java.util. *;
import java.net.*;
import java.io.*;

public class CollabServer {

public Vector servers;
public ServerSocket ss;
public static void main(String args[{
new CollabServer();

}
public CollabServer(){

servers = new Vector();

readParameters();

try{

ss = new ServerSocket(2345);

Enumeration enum = servers.elements();
while(enum.hasMoreElements()) {
new CollabConnector(((ServerInfo)enum.nextElement()));
}

Socket s = null;
while((s = ss.accept()) !=null)

{
new CollabClientSerViceThread(this,s).start();
}

}catch(IOException ioe){
System.out.println("Error opening server socket");
}

}

public void readParameters() {
ResourceBundle properties = null;
try

{

properties = ResourceBundle. getBundle("collab");

}

catch(MissingResourceException X)
{
System.err.println("Can't load 'collab.properties'.");
return;
}
String key=null, host=null, password=null ;
int display, width, height, port, mcport;
// Create RFB hosts and web servers
for(Enumeration e = properties.getKeys(); e.hasMoreElements();)
{
key = (String) e.nextElement();
if(key.endsWith(".server"))

{

display = Integer.parselnt(key.substring(0, key.indexOf(")));

host = properties. getString(key);

width = Integer.parselnt(properties. getString(display + ".width"));
height = Integer.parselnt(properties. getString(display + ".height"));
port = Integer.parselnt(properties.getString(display + ".port"));
password = properties. getString(display + ".password");

meport = Integer.parselnt(properties.getString(display + ".mcport"));

servers.addElement(new

ServerInfo(display,host,password,Width,height,port,mcport));
System.out.println("Adding server:"-+host);

b

Remote Systeminfo:

public class ServerInfo {

int display,width,height;

int port,mcport;

String host,password,;

byte[] pixels;

CollabConnector cc;

public ServerInfo(int display,String host, String password) {

this(display,host,password,800,600,5900,9999);

}

public ServerInfo(int display,String host,String password,int width,int
height){

this(display,host,password,width,height,5900,9999);

}

public ServerInfo(int display,String host,String password, int width,int
height,int

port ,int mcport){

this.display = display;

this.host = host;

this.password = password;

this.width = width;

this.height = height;

this.port = port;

this.mcport = mcport;
}
}

collab client server connection:

import java.net.*;

import java.io.*;

import java.util. *;

public class CollabClientServiceThread extends Thread {
CollabServer cs;

Socket s;

BufferedReader br;

PrintWriter pw;

Serverlnfo si;

public CollabClientServiceThread(CollabServer cs,Socket s){

this.cs =cs;

this.s = s;
}
public void run(){

System.out.println("Processing "+s);

InetAddress addr= s.getInetAddress();

String name,reqServer;

try{

br = new BufferedReader(new InputStreamReader(s. getInputStream()));

pw = new PrintWriter(new OutputStreamWriter(s. getOutputStream()),true);

name = br.readLine();

}catch(IOException ioe){
System.out.printIn("Error opening / reading I/O streams to "+addr);
return;

}

try{

pw.println(formatServerInfo());

reqServer = br.readLine();
System.out.println("request server "+reqServer);
if(checkClientList(name,reqServer)){
pw.println("Added to "+reqServer);
pw.println("0:0:"+si.width+":"+si.height);
pw.flush();

BufferedOutputStream
bos=newBufferedOutputStream(s. getOutputStream());
//s.getOutputStream(). write(si.cc.cr.pixels);
bos.write(si.cc.cr.pixels);
addClientTOCollabConnector(name,reqServer);
System.out.println("Sending full desktop: "+s);
telse

pw.println("Error adding to "+reqServer);

}

}catch(IOException ioe){
System.out.println("Error:"+ioe);

return;

33

public String formatServerInfo(){

Enumeration enum = cs.servers.elements();

String formatString="";

while(enum.hasMoreElements()){

Serverlnfo si = (ServerInfo)enum.nextElement();

formatString = formatString+ ((formatString length()>0)?":":"") +si.host;
formatString = formatString + ":"+ si.display;

formatString = formatString + ":"+ si.width;

formatString = formatString + ":"+ si.height;

}

return formatString;

¥

public boolean checkClientList(String userName,String ccServer){
Enumeration enum = cs.servers.elements();
while(enum.hasMoreElements()) {

ServerInfo sitemp = (ServerInfo) enum.nextElement();

if(sitemp.host.equals(ccServer)){

si = sitemp;
break;

}

}

if(si == null){

System.out.println("Server list does not contain "+ccServer);
return false;

}

if{ si.cc.users.containsKey(userName) H

System.out.println(si.host+ "already has user named"+userName);

return false;

}

return true;

}
public boolean addClientToCollabConnector(String userName,String

ccServer){
if(s1 == null) return false;
si.cc.users.put(userName,s);

System.out.println("Adding "+userName+" to "+si.host);
return true;

}
}

APPENDIX 2:
USER MANUAL
RUNNING THE VNC Remote System

The following steps are included in establishing a connection between a
VNC-remote system and a VNC-viewer. The VNC-remote system is started
by setting the port number, password, connection type and updation
handling option which listens for connection request in the specified socket.

® The VNC-viewer sends the IP address, Port Number and Password

to the remote system.

® The VNC-remote system checks the Password sent by viewer.

® Then there will be a negotiation between the VNC-viewer and
VNC-remote system regarding Protocol version, Frame buffer size,

Pixel format and encoding schemes used.

®* Then VNC-viewer sends the initialization message to remote

system regarding the connection mode either shared or exclusive.

Finally the remote system sends the desktop to VNC-viewer and now
viewer views the remote desktop. Either the remote system or the viewer
is also allowed to update the server’s desktop. When the remote system

initiates the updation, it will read the frame buffer content of its display

and sends that to viewer. The viewer paints the desktop according to the

information received.
RUNNING THE COLLABORATED SERVER
e Install the Collaborated Server software in the local directory

* Right click the properties and specify the number of remote systems
to be connected ,Port no (uses a default number of 5900),width and
height of the screen to be captured and the password specified in

WinVNC Remote system.Save the changes made in the property

Screen.

* Right click the RunCode option and edit the path.Set the path in
accordance with the location where the software is installed in the

local directory.

* Thus the Collaborated Server starts its execution by displaying the
protocol version, updating the pixel rectangle, the x,y co-ordinate and

also the length and width of the updated screen.

The CollabProperties plays an important role in the connection process.
Resource bundles contain locale-specific objects. When your program needs
a locale-specific resource, a String for example, your program can load it
from the resource bundle that is appropriate for the current user's locale. In

this way, you can write program code that is largely independent of the

user's locale isolating most, if not all, of the locale-specific information in

resource bundles. This allows you to write programs that can:

* Be easily localized, or translated, into different languages

* Handle multiple locales at once

* Be easily modified later to support even more locales

A sample of information contained in CollabProperties is shown below:
1. Server=tcms

1. Port=5900

1. width=800

1. height=600

1. password=at

1. mcport=9999

REMOTE SYSTEM SIDE UPDATION
* The remote system triggers an event.

® Then the remote system processes the event and updates its

desktop.

* Remote system compares the updated desktop with the current

desktop of viewer, which is stored by the remote system for each

viewer.

Then remote system generates updated rectangle, by specifying its

X, y portion, height and width.

The remote system perform compression, encryption and transmit

1t to viewer.

Finally the viewer decompresses and decrypts the information and

renders it on the screen

REFERENCES

REFERENCES:
BIBLIOGRAPHY:

1) Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and
Andy Hopper, “Virtual Network Computing”, Vol.2, Jan-Feb1998

2) Patrick Naughton, Herbert Schildt, “Java 2 The Complete Reference”,
Third edition, Tata McGraw- Hill publication Company Limited.

3) Glenn L. Vanderburg et al., “Tricks of Java Programming Gurus”,

First edition, Sam’s .NET Publishing Company Limited.

4) Matthew T. Nelson, “Java Foundation Classes”, Third edition, Sun
Microsystems, 1980.

WEBSITES REFERRED

1. WWW.Uk.Research.Co.In.

2. WWW.Google.Com

3. WWW.howstuffworks.com

