e
I'““““‘WW-I A DISTRIBUTED APPROACH

FOR MINING ASSOCIATION RULES IN PARALLEL
ON PC CLUSTERS

p-1610

A PROJECT REPORT

Submitted by

D.NITHIYA PRIYA 71202104025
T.SIVA PRIYA 71202104040

in partial fulfillment for the award of the degree

of
BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY,COIMBATORE

ANNA UNIVERSITY : CHENNAI 600 025

MAY 2006

BONAFIDE CERTIFICATE

Certified that this project report “A DISTRIBUTED AFFROACH FOR
MINING ASSOCIATION RULES 1IN PARALLEL ON PC
CLUSTERS” 1s the bonafide work of “D.NITHIYA PRIYA
(71202104025), T.SIVAPRIYA (71202104040)” who carried out the

project work under my supervision.

SIGNATURE SIGNATURE

Dr. S. Thangasamy Mr. A. MuthuKumar
HEAD OF THE DEPARTMENT SUPERVISOR
Department of Department of
Computer Science and Engineering, Computer Applications,
Kumaraguru College of Technology, Kumaraguru College of Technology,
Chinnavedampatti P.O., Chinnavedampatti P.O.,
Coimbatore-641006. Coimbatore-641006.

Submitted for the Viva-voce Examination held on J{'g,;’ia;
X.W N
Int

ernal Examiner External Examiner

We hereby declare that the project entitled “A Distributed Approach for
Mining Association Rules in Paralle] on PC Clusters” is a record of original
work done by us and to the best of our knowledge; a similar work has not
been submitted to Anna University or any Institutions, for fulfillment of the

requirement of the course study.

The report is submitted in partial fulfillment of the requirements for the
award of the Degree of Bachelor of Engineering in Computer Science and

Engineering of Anna University, Chennai.

Place: Coimbatore

Date: 21-04-2005

NilEp

(D.Nithiya Priya)

mﬁiya)

We express our hearty gratitude to our beloved correspondent,
Professor Dr.K. Arumugam, B.E (Hons), M.S. (U.S.A), M.1.E , for giving

us this great opportunity to pursue this course.

We thank, Dr.K.K.Padmanabhan, B.Sc (Engg), M.Tech, Ph.D,
Principal, Kumaraguru College of Technology, Coimbatore, for being a
constant source of inspiration and providing us with the necessary facilities

to work on this project.

We would like to make a special acknowledgement and thanks to
Dr. S.Thangasamy, Ph.D, Professor and Head Of Department of Computer
Science and Engineering, for his support and encouragement throughout the

project.

We tender our special thanks to Ms Devaki B.E, M.S, Project
Co-Ordinator, Department of Computer Science and Engineering for her

valuable suggestions.

We express our deep sense of gratitude and gratefulness to our guide

Mr. A Muthukumar, MCA, M.Phil, Ph.D, Assistant Professor, Departmrnt

of Computer Applications, for his supervision, tremendous patience, active

involvement and guidance.

iv

valuable suggestions and advice.

We would like convey our honest thanks to all the members of staff of
the Department for their unlimited enthusiasm and experience from which

we have greatly benefited.

We express our profound gratitude to our parents and friends for their

moral support.

Above all we thank the CREATOR of this beautiful Planet for his

grace throughout our endeavors.

PC clusters have become popular in parallel processing. They do not
involve specialized inter processor networks, so the latency of data
communications is rather long. And for PC clusters, load balancing among
the nodes (clients) becomes a more critical issue in attempts to yield high

performance.

Data mining normally involves processing large voluminous data.
Doing all the mining processes in a single system consumes a lot of CPU
time. Hence in order to reduce the computation time, we distribute the data
to other systems. These are the client systems. We also have a server which

co-ordinates the activities between the clients.

When more clients are involved, using them efficiently is of primary
importance. In our project the idle time of the clients during processing is
kept minimal by considering the CPU utilization on every node. We also

implement the Apriori algorithm for mining association rules.

vi

CHAPTER NUMBER

fa—

O e -1 v b B W N

10

TITLE

Acknowledgement
Abstract
List of figures
List Of Symbols,
Abbreviations And
Nomenclature
Introduction
System Analysis
System Architecture
System Design
Implementation
Performance Analysis
Future Scope
Conclusion
Appendix
9.1 Sample Code
9.2 Screen Shots

References

vii

PAGE
NO

v

Vil

viil

10
12
19
20
24
25

26
53

56

FIGURE NUMBER
1.1
2.1
2.2
3.1
4.1

4.2
4.3

4.4

4.5

6.1

6.2

6.3

FIGURE NAME
Knowledge And Discovery
Single System
Proposed System
System Architecture
Use Case Diagram- Server
Side
Apriori Implementation
Use Case Diagram- Client
Side
Use Case Diagram- Agent
Interaction Diagram
Distributed System Vs Single
System
Impact Of File Size On
Performance
Distribution Based On CPU
Usage Vs Static Distribution

vili

PAGE NO
3
9
9
10
13

15
16

17

18

20

21

22

CPU — Central Processing Unit.

I/0O - Input/Output.

PC — Personal Computer.

KDD - Knowledge Discovery in Databases.
DM — Data Mining

DDM — Distributed Data Mining.

INTRODUCTION

S BAELRE B BJAN T A

INTRODUCTION

This chapter gives an introduction to the data mining process, distributed data
mining and software intelligent agents and its uses in different fields. In addition,
this chapter clearly specifies the objective of this project work and gives brief and

clear description about the statement of the problem.

1.1. DATAMINING
With the advent of computers and means for mass digital storage, we started
collecting and storing all sorts of data, counting on the power of computers to help
sort through this amalgam of information. Confronted with huge collections of
data, we have now created new needs to help us make better managerial choices.
These needs are automatic summarization of data, extraction of the “essence” of

information stored, and the discovery of patterns in raw data.

DEFINITION:

Data Mining, also popularly known as Knowledge Discovery in Databases
(KDD), refers to the nontrivial extraction of implicit, previously unknown and

potentially useful information from data in databases

1.1.1.What kinds of information are we collecting?

We have been collecting a myriad of data, from simple numerical
measurements and text documents, to more complex information such as spatial
data, multimedia channels, and hypertext documents. Here is a non-exclusive
list{3] of a variety of information collected in digital form in databases and in flat

files.
¢ Business transactions
¢ Scientific data
s Medical and personal data
e Surveillance video and pictures
¢ Satellite sensing Games
¢ Digital media _
e CAD and Software engineering data
o Virtual Worlds
¢ Text reports and memos (e-mail messages)

¢ The World Wide Web repositories
1.1.2. Knowledge Discovery

The Knowledge Discovery in Databases[3] process comprises of a few steps

leading from raw data collections to some form of new knowledge[4].

Databases

Figure 1.1 Knowledge Discovery Process

The iterative process consists of the following steps:

¢ Data cleaning: also known as data cleansing, it is a phase in which noise
data and irrelevant data are removed from the collection.

¢ Data integration: at this stage, multiple data sources, often heterogeneous,
may be combined in a common source.

* Data selection: at this step, the data relevant to the analysis is decided on
and retrieved from the data collection.

e Data transformation: also known as data consolidation, it is a phase in
which the selected data is transformed into forms appropriate for the mining
procedure.

¢ Data mining: it is the crucial step in which clever techniques are applied to
extract patterns potentially useful.

* Pattern evaluation: in this step, strictly interesting patterns representing

knowledge are identified based on given measures.

visualization techniques to help users understand and interpret the data
mining results.

It is common to combine some of these steps together.

1.1.3.What kind of Data can be mined?

Data mining is not specific to one type of media or data. Data mining should be
applicable to any kind of information repository. However, algorithms and
approaches may differ when applied to different types of data[4]. Data mining is
being put into use and studied for databases, including relational databases, object-
relational databases and object-oriented databases, data warehouses, transactional
databases, unstructured and semi structured repositories such as the World Wide
Web, advanced databases such as spatial databases, multimedia databases, time-

series databases and textual databases.

1.1.4.What can be discovered?
The kinds of patterns that can be discovered depend upon the data mining tasks
employed. By and large, there are two types of data mining tasks: descriptive data
mining tasks that describe the general properties of the existing data, and
predictive data mining tasks that attempt to do predictions based on inference on
available data. The data mining functionalities and the variety of knowledge they
discover are briefly presented in thz; following list:
® Characterization: Data characterization[5]is a summarization of general
features of objects in a target class, and produces what is called characteristic

rules. The data relevant to a user-specified class are normally retrieved by a

* Discrimination: Data discrimination produces what are called discriminate
rules and is basically the comparison of the general features of objects between
two classes referred to as the target class and the contrasting class

* Association analysis: Association analysis[4] is the discovery of what are
commonly called association rules. It studies the frequency of items occurring
together in transactional databases, and based on a threshold called support,
identifies the frequent item sets. Another threshold, confidence, which is the
conditional probability than an item appears in a transaction when another item
appears, is used to pinpoint association rules.

* Classification: Classification analysis[14] is the organization of data in given
classes. Classification approaches normally use a training set where all objects
are already associated with known class labels. The classification algorithm
learns from the training set and builds a model. The model is used to classify
new objects

* Prediction: Prediction has attracted considerable attention given the potential
implications of successful forecasting in a business context. There are two
major types of predictions: one can either try to predict some unavailable data
values or pending trends, or predict a class label for some data. The latter is tied
to classification. Once a classification model is built based on a training set, the
class label of an object can be foreseen based on the attribute values of the
object and the attribute values of the classes. Prediction is however more often
referred to the forecast of missing numerical values, or increase/ decrease trends
in time related data. The major idea is to use a large number of past values to

consider probable future values.

unknown and it is up to the clustering algorithm to discover acceptable classes.
Clustering is also called unsupervised classification, because the classification
1s not dictated by given class labels. There are many clustering approaches all
based on the principle of maximizing the similarity between objects in a same
class (intra-class similarity) and minimizing the similarity between objects of
different classes (inter-class similarity).

Outlier analysis: Outliers are data elements that cannot be grouped in a given
class or cluster. Also known as exceptions or surprises, they are often very
important to identify. While outliers can be considered noise and discarded in
some applications, they can reveal important knowledge in other domains, and
thus can be very significant and their analysis valuable.

Evolution and deviation analysis: Evolution and deviation analysis[3] pertain
to the study of time related data that changes in time. Evolution analysis models
evolutionary trends in data, which consent to characterizing, comparing,
classifying or clustering of time related data. Deviation analysis, on the other
hand, considers differences between measured values and expected values, and
attempts to find the cause of the deviations from the anticipated values. It is
common that users do not have a clear idea of the kind of patterns they can
discover or need to discover from the data at hand. It is therefore important to
have a versatile and inclusive data mining system that allows the discovery of
different kinds of knowledge and at different levels of abstraction. This also

makes interactivity an important attribute of a data mining system.

location. Recently, distributed data mining systems have exploited wide area, high
performance networks to mine large amounts of distributed scientific and health
care data.

Distributed Data mining is expected to perform partial analysis of data at
individual sites and then to send the outcome as partial results to other sites where
it is sometimes required to be aggregated to the global result. The important issues

to be considered while performing distributed data mining includes,

v" Nature of data sets
The data sets to be used for processing will be massive and it is
necessary to perform required transformation before these data sets are mined in
distributed environment. These data sets are inherently distributed both

geographically and physically.

v" Networks
The distributed data mining process is capable of working under limited

bandwidth and with the limited computing resources at nodes

v" Privacy and security
Sensitive data can be handled effectively and extra measures should
be taken to secure the data. Also, we should keep in mind that our goals should be

shared and not the entire data under distributed data mining environment.

The main objective of this project work is to implement the distributed data
mining approach for mining data with the maximum resource utilization of the

existing CPU idle time.
1.4. PROBLEM STATEMENT :

Data mining usually involves large voluminous of data. Accomplishing the
task in a single machine generally consumes large amount of time. In order to
minimize the utilization time we distribute the data to other systems (client
systems) and get the work done. When the data are distributed to various systems
for processing, it is necessary to use the resources of these systems efficiently.
Here, maximal utilization of idle time of these systems is in question. Henceforth,
it is essential to identify some techniques to maximize the usage of these

computers and to reduce the idle time.

This distributed data mining activities will help in forecasting the business

trends and analyzing the customer’s behavior in any shop or market.

SYSTEM ANALYSIS

Ay A b A EBIJLTEA 4 Bl 14 ASEAd A b BT

EXISTING SYSTEM

A Single System

Figure 2.1 Single System

e All data are processed on a single machine.

» More time consumption.

¢ Decrease in speed.

PROPOSED SYSTEM

SERVER

v

'

{ CLIENT 1] L CLIENT 2] [CLIENT 3

Figure 2.2. Proposed system
¢ The task is shared between three systems.
e Decrease in time consumption.

¢ Increase in processing speed.

SYSTEM ARCHITECTURE

e

o T T T TR TR N e R R] N A, R BRCE)

The proposed system consists of two logical components.

v" Client - There may be in N-number of clients connected in intranet.
Here the client receives data sets and mining operation to be
performed as parameters from the server agent. Local agent running in
the client machine takes care performing specified operation and
storing the final results. In the beginning, the client side agent sends
resource utilization information to the server machine. client agent

along with the mining operation to be performed.

r

DATASET N
A ®
CLIENT 1 \J
®
CLIENT 2L_A DATASET 2
= ¢
CLIENT3| A [¢ | \ | DATASET 1
¢ 3
® SERVER AGENT
/ e
® —*_DATA DISTILLERS
ceNey_a | | — D
lient-Side Agent INTRANET /{ ——
.

S~/

Figure 3.1. System Architecture

10

having following responsibilities
v" Monitoring the load on the connected client machines
v Distributing the data sets based on this load information from the
client agent along with the mining operation to be performed.
v’ Integrating the collected results from the various clients, for global

result.

11

SYSTEM DESIGN

%

The system 1s considered as a set of components with clearly defined behavior.
The focus is on the identification of the modules and how the modules should be

interconnected .The list of modules in the system are as follows.

4.1 SERVER SIDE MODULES:
e File split
e Main module

e File merge

4.1.1 FILE SPLIT
Based on the CPU usage calculate the load that can be sent to clients.The input file
is split into 3 & written in 3 separate files .These files are then sent to clients.
Clients begin the appropriate operation.
clients[i] = [line count/total] *[1/ cpuload[i] |
where total = sum of (1/cpuload[i}])
Files used :

Cpuload.txt = gives the CPU usage of each client.

4.1.2 MAIN MODULE

The cpu usage received from the clients are written to a file (cpuload.txt).
After getting the choice from the user, the appropriate itemset is invoked on the
client and files are created according to the choice (Any one the itemsets).

The output files are received from the clients and merging is done.

12

output files. Create a common file which will hold the merged output. Do merging
accordingly.

4.1.4 USE CASE DIAGRAM

Based on the calculated CPU idle time, the Server splits the data among the
‘workstations. Finally, accepts the processed results from the clients and display

them in the required format. The figure best illustrates the identified
responsibilities of the server.

Split the input file

Receive the output
files and merge them

Do computation and
display the result.

Figured.1 USE CASE Diagram — Server Side

e Sending CPU usage to the server (This is done by the agent).
¢ Implementation of Apriori algorithm.

» Sending results to the server.
4.2.1 SENDING CPU USAGE TO THE USER

By calling the method getCPUUsage() of syslnfo object, the CPU usage is
obtained .

This utilization information is sent to the server.

4.2.2 IMPLEMENTATION OF APRIORI ALGORITHM
The implementation of Apriori algorithm [2] basically consists of the following
steps
a. Join Step: CK is generated by joining Lk-1with itself
b. Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a
frequent k-itemset
PSEUDO CODE
Ck: Candidate itemset of size k
Lk : frequent itemset of size k
L1 = {frequent items};
for (k=1; Lk '=Z; k++) do begin
Ck+1 = candidates generated from Lk;

for each transaction ¢ in database do

14

end

return \Jk Lk;

Data base D 1-candidates Frea 1-itemsets 2-candidates
TD | kers ltemset | Sup temset | Sup temset
10 |a e, d a 2 a 2 ab
20 |bce | ScanD——p 3 || ® 3 > ac
30 a,b.c e - 4 3 [5 3 ae
40 [(b. e i Crans o ey e 3 [
Min_sup=2 & 3 2:
3-candidates Freq Z-itemsets Cauntin
ScanD temset Iltemset | Sup Iltemset | Su
| Bce - ac Z BT ;
be 2 |] 3¢ 2 Scan D
Freg 3-itemsets be 3 : =
termset | Sup ce 2 gz 5
bece 2
ce z2

Figure 4.2 Aproiri Algorithm

GENERATION OF CANDIDATE SET
Suppose the items in Lk-1 are listed in an order
Step 1: self-joining Lk-1
insert into Ck
select p.item1, p.item2, ..., p.itemk-1, q.itemk-1 from Lk-1 p, Lk-1q
where p.itemi=q.iteml], ..., p.itemk-2=q.itemk-2,
p.itemk-1 < q.itemk-1
Step 2: pruning
forall itemsets ¢ in Ck do
forall (k-1)-subsets s of ¢ do
if (s is not in Lk-1) then delete ¢ from Ck

15

4.2.3 SENDING RESULTS TO THE SERVER

After the computation of the itemset, the results are sent to the client for merging,.

4.2.4 USE CASE DIAGRAM

The basic responsibilities of clients include accepting the data sets, perform
association rule mining and send the processed results to the server using agents.
Apriori algorithm is used for performing the association rule mining. The figure

reveals the responsibilities of the clients.

ACCEPT DATASET

PERFORM ASSOCIATION
RULE MINING

' SEND PROCESSED
RESULTS

Figure 4.3 USE CASE Diagram — Client Side

The primary responsibility of the agent is to obtain the CPU usage time of clients

and send this information to the server. The figure portrays these responsibilities

clearly

Obtain CPU usage of
the client

Send CPU usage
information to server

Figure 4.4 USE CASE Diagram — Agent

17

server requests the CPU usage time from the client. On this request, the agent on
the client side obtains the CPU usage information and sends it to the client. Based
on this information the server splits the input file and sends it to the clients. The
client does the required operation and returns the processed data to the server.
CLIENT SERVER AGENT
Request Client status

L A

Request CPU idle time

F 3

Respond Client CPU usage

)
-

Split data sets

F 3

Processed results

FIGURE 4.5. Interaction Diagram for the proposed system

18

IMPLEMENTATION

This chapter elucidates the software and hardware requirements

of this project, experimental results and sample screen shots.

5.1. CHOICE OF HARDWARE AND SOFTWARE
5.1.1 SOFTWARE:

This project is implemented in JDK 1.4 version. The Apriori
algorithm and the intelligent agent program that monitors the CPU usage
time in the identified workstations and all the server side modules is
implemented using JDK 1.4. This project requires JDK 1.4 to be installed in

all the systems.

5.1.2 HARDWARE:
This project does not impose any special hardware requirements.

Thus, the hardware requirements for this project work is very limited to have
the following configuration

*» PROCESSOR: PIV

% CLOCK: 2.8 GHZ

s CACHE MEMORY: 512 KB

% 256 MB RAM, 40 GB HARD DISK

19

PERFORMANCE ANALYSIS

\

6.1 DISTRIBUTED SYSTEM VS SINGLE SYSTEM

We do the mining process with input file of various sizes. First the size of the
input is kept as 250KB. 3 ITEM SET is run for this input file on a single
system. The time taken for producing the final output is noted. The same input
file is used and 3ITEM SET is run on a distributed system with three clients.
The time taken for producing the final output is noted. Then the size of the
input file is changed to 500 KB and then 750 KB and finally 1000 KB and the

above process is repeated.

Distributed System(N=3) Vs Single
System

200 §

= 1000 g
@ 800 3 -

@ § —— Distributed

S 600 | _ System

s 400 8 ~&- Single system
S .

E

=

o
Er_

250 500 750 1000
Size of input file(KB)

Figure 6.1. Distributed System Vs Single System

It can be easily concluded that the distributed system yields better
performance than single system. The performance also greatly depends on the
size of the input used. We can see that the performance difference between the

systems is high when the size of the input is 500 KB and 750 KB.

20

Impact of file size on performance

(9}

o

)
i

§ 500

£ 400 B Computation

c Time

2 300 C
N H Communication
o 200 time

E

-

.. R
250 KB 1000KB

File Size

Figure 6.2 Impact of File Size On Performance

When the size of the input file is very small or large then the difference is

not highly pronounced. If the input size is small the communication overhead

will be longer than the computation time.

On the other hand if the size of the input file is too large it inadvertently

affects the performance due to cache memory limitations. Here, computation

time will be longer than the communication overhead.

21

Now we conduct experiments to analyze the performance by statically
distributing the file and distributing the file based on CPU usage.

We distribute to each client 125KB of the input file at a time. (No. of clients
=3). So after first distribution to all the clients, the size of input file that is
remaining is 625KB. The clients process their share of data and return the
results to the server. Again we distribute 125KB to all the clients and the above
process is repeated. This is done till end of the input file is reached and the time
taken for the entire process is calculated.

Secondly we distribute the input file based on the CPU usage to the clients.
The clients process the data and return the results. The time taken for this is also

noted. From the obtained data we plot the following graph.

Dist. based on CPU usage Vs Static
Distribution

1200
1000 2
800 3§

400
200

Time taken(secs)
[=)]
8

Dist.based on CPU Static Dist.(125 KB)
usage

1}

Figure 6.3 Distribution based on CPU Usage Vs Static Distribution
From the graph it can be clearly concluded that distribution based on CPU

usage yields better performance than static distribution.

22

L. Distributed system gives better performance than single system.

II. When input file size is neither very large nor very small optimal performance
is obtained.

[II. Distribution based on CPU usage gives comparatively better performance

than static distribution.

23

FUTURE SCOPE

BB 2E A RJANW T T

—_——— e
FUTURE SCOPE

7.1 FUTURE SCOPE

< This project can be extended to N number of workstations to
perform distributed data mining activities and to achieve efficient overall
performance. |

¢ This project used association rule mining technique. This can
be extended to use other data mining techniques like Cluster Analysis,

Classification Analysis and Neural networks etc.,
** The intelligent agent designed for monitoring CPU time can be
extended to move assigned data sets from one machine to other automaticalily,

when the CPU usage time exceeds the threshold value.

% This project can be extended to other types of data such as

scientific data, satellite data etc., as per the requirement.

24

CONCLUSION

CHAPTER - 8
=—_—————— e
CONCLUSION

8.1. CONCLUSION

The data mining activity for mining association rules on PC clusters is done
by distributing the load among three clients. This project also achieves the
objective of effective utilization of computing resources in efficient manner.

Furthermore this project forecasts and analyses the behaviour of customers.

25

APPENDICES

side and the two main modules of the server side.

Server side:
FILE SPLIT;

public class FileSplit
1
FileSplit()
{
try
{
String inputline,outputline;
int count=0;
double tot=0.0,t0t1=0.0,lineCount=0.0;
String line;
int ¢=0;
String s="Inputl.txt", data;
String cpaddr[] = new String[5];
int inc=1;
double cpload[] = new double[5];
double cploadl[] = new double[5);
double trans[] = new double[5];
int cl=3;

File f= new File(s);

StringTokenizer stoken;

BufferedReader bbr = new BufferedReader(new
FileReader("cpuload.txt"));

BufferedReader d = new BufferedReader(new FileReader(s));

BufferedReader d1 = new BufferedReader(new FileReader(s));

while (d1.readLine()!=null)

{
lineCount++;
h
while((data = bbr.readLine()) !=null)
{

26

1

cpaddr[inc] = stoken.nextToken();
cploadl[inc] =

Double.parseDouble(stoken.nextToken());
inc++;

;
}

for(int j=1; j<=cl; j++)
tot = tot+(1/cploadl[j]);

for(int j=1; j<=cl; j++)
trans[j] = (lineCount/tot)*(1/cpload1[j]);
trans[1}=trans[1]/2;
trans[cl]=trans[cl]+trans[1];

for(int i=1;i<=cl;i++)
{
File f1=new File("file"+(i)+".txt");
FileOutputStream fout=new FileOutputStream(f1);
PrintStream ps=new PrintStream(fout);

while((line=d.readLine(})!=null)
{

ps.printin(line);
ct++;
if(c>trans[i])
{
ps.close();
c=0;
break;

27

Y
h
}

MERGING ONE ITEM SET

public class merge one

{

merge one(int cll,double rd th)

{
System.out.println("Entering merge one");
try
{
DecimalFormat dfd = new DecimalFormat("0.00");
int count[]=new int[8000];
double TH_value[] = new double[8000];
double dd=3300.00;
String data,datal;
StringTokenizer st,stl;
BufferedReader br;

int k=0,1=0,cl;

double ratio =0.0;

FileWriter fw = new FileWriter("one out.txt");
FileWriter final_one = new FileWriter("final_one.txt");

for(int i=0;1<8000;i++)
count[i]=0;
System.out.print("Reading files...");
for(int g=1;g<=cll;g++)
{
br=new BufferedReader(new
FileReader("one_out"+g+".txt"));
while((data=br.readLine())!=null)
{
st=new StringTokenizer(data," ");
while(st.hasMoreTokens())
!

28

{
k=Integer.parselnt(stl.nextToken());

I=Integer.parselnt(st1.nextToken());
count[k]=count[k]+1;
}
}
}
}

System.out.println("File closed. Producing output...");
for(int i=1;1<8000;i++)
{
if(count[i}!=0)
TH_value[i] = (double) {count[i] / dd)*100.0;
}

for(int d=0;d<8000;d++)
{
if(TH_value[d]>=rd_th)
fw.write(""+d+"\r\n");
b
tw.close();
for(int d=1;d<8000;d++)
{
if(TH_valuel[d]>=rd_th)
{
final_one.write(""+d+"\t("+dfd.format(TH_value[d])}+"%
.)“+"\r\I1");
}
1
final_one.close();
}
catch{Exception ¢)
{
}
System.out.print("Process completed.”);

}

29

FINAL CLASS
public class Final

{

public static void main(String arg[])

{
Thread t=Thread.currentThread();

double supp, conf;

try

{
server2 ss2 = new server2();
Thread.sleep(10000);
FileWriter z=new FileWriter("one outl.txt");
FileWriter z1=new FileWriter("one_out2.txt");
FileWriter zZ2=new FileWriter("one out3.txt");
long startTime;

long endTime;

double time;
int choice, cl=1;
ServerSocket se2 = new ServerSocket(91);
ServerSocket se21 = new ServerSocket(92);
ServerSocket se22 = new ServerSocket(93);
do

{
Socket plug,plugl plug?;

System.out.println("\n\nl-> One ItemSet\n2-> Two ItemSet\n3->
Three ItemSet\n4-> Four ItemSet\n5-> Five ItemSet\n6-> Exit ");

System.out.print("\nEnter the Choice:");

BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));

choice = Integer.parselnt(br.readLine());

30

4 = S A A

piug2= se22.accept();

PrintWriter PW=new PrintWriter(plug.getOutputStream(),true);
PrintWriter PW1=new PrintWriter(plugl.getOutputStream(),true);
PrintWriter PW2=new PrintWriter(plug2.getOutputStream(),true);

PW println(choice);
PW1.println(choice);
PW2.println(choice);

startTime = System.currentTimeMillis()-10000;
switch (choice)
{
case 1:
System.out.print("Enter the minimum support threshold
value :");
BufferedReader brl = new BufferedReader(new
InputStreamReader(System.in));
supp= Double.parseDouble(br].readLine());

server obl I=new
server(choice,"filel.txt","file2.txt","file3 ixt","one_outl.txt","one_out2.txt","one o
ut3.txt™);

Thread.sleep(10000);

merge_one oblIm=new merge_one(cl,supp);

Thread.sleep(10000);

break;

case 2:

System.out.print("Enter the minimum support threshold
value :");

BufferedReader br2 = new BufferedReader(new
InputStreamReader(System.in));

supp= Double.parseDouble(br2.readLine());

System.out.print("Enter the confidence threshold value
);

conf= Double.parseDouble(br2.readLine());

31

S T AT e e ey mmem e m e 4 e mema Ak o matmemm et oy A R A) WAL WA R e Rl WAL A

ut3.txt");
Thread.sleep(10000);

merge_one ob21m=new merge one(cl,supp);
Thread.sleep(10000);

server ob22=new
server(choice,"one_out.txt","one_out.txt","one_out.txt","two_outl.txt","two_out2.t
xt","two_out3.txt");

Thread.sleep(10000);

merge_two ob22m=new merge two(supp,conf);

Thread.sleep(10000);

break;

case 3:

System.out.print("Enter the minimum support threshold
value :");

BufferedReader br3 = new BufferedReader(new
InputStreamReader(System.in));

supp= Double.parseDouble(br3.readLine());

System.out.print("Enter the confidence threshold value
)

conf= Double.parseDouble(br3.readLine());

server ob3 1=new
server(choice,"filel.txt","file2.txt","file3.txt","one_outl.txt","one_out2.tx ","one o
ut3.txt");

Thread.sleep(10000);

merge_one ob31m=new merge_one(cl,supp);

Thread.sleep(10000);

server ob32=new

server(choice,"one_out.txt","one out.txt" , one_out.txt","two_outl.txt","two_out2.t
xt","two_out3.txt");

Thread.sleep(10000);
merge_two ob32m=new merge_two(supp,conf);

32

el VAR WA ARy VTS AR by BT A W RARe AL o BT AW R AR 2 MW R R Y WA T

2.txt" "three out3.txt");
Thread.sleep(10000);
merge_three ob33m=new merge_three(supp,conf);
Thread.sleep(10000);
break;

case 4:
System.out.print("Enter the minimum support threshold

value :");

BufferedReader br4 = new BufferedReader{new
InputStreamReader(System.in));

supp= Double.parseDouble(br4.readLine());
System.out.print("Enter the confidence threshold value

)
conf= Double.parseDouble(br4.readLine());

server ob41=new
server(choice,"filel.txt","file2.txt","file3.txt","one_outl.txt","one_out2.txt","one o
ut3.txt");

Thread.sleep(10000);

merge_one ob4lm=new merge one(cl,supp);

Thread.sleep(10000);

server ob42=new
server(choice,"one_out.txt”,"one_out.txt","one_out.txt","two_outl.txt","two_out2.t
xt","two_out3.txt");

Thread.sleep(10000);

merge_two ob42m=new merge_two(supp,conf);

Thread.sleep(10000);

server ob43=new
server(choice,"two_out.txt","two_out.txt","two_out.txt","three_outl.txt","three_out
2.txt","three out3.txt");

Thread.sleep(10000);

merge_three ob43m=new merge_three(supp,conf);

Thread.sleep(10000);

33

server(choice,"three_out.txt","three_out.txt","three_out.txt","four _outl.txt","four
out2.txt","four out3.txt");
Thread.sleep(10000);
merge_four ob44m=new merge four(supp,conf);
Thread.sleep(10000);
break;

case 5:

System.out.print("Enter the minimum support threshold
value :");

BufferedReader br5 = new BufferedReader(new
InputStreamReader(System.in));

supp= Double.parseDouble(br5.readLine());

System.out.print("Enter the confidence threshold value
")

conf= Double.parseDouble(br5.readLine());

server ob5 1=new
server(choice,"filel.txt","file2.txt","file3.txt","one_outl.txt", "one_out2.txt","one o
ut3.txt");

Thread.sleep(10000);

merge_one ob51m=new merge_one(cl,supp);

Thread.sleep(10000);

server ob52=new
server(choice,"one_out.txt","one_out.txt","one_out.txt","two _outl.txt","two_out2.t
xt","two_out3.txt");
Thread.sleep(10000);
merge_two ob52m=new merge_two(supp,conf);
Thread.sleep(10000);

server ob53=new
server(choice,"two_out.txt","two_out.txt","two_out.txt","three _outl.txt","three out
2.txt","three_out3.txt");

Thread.sleep(10000);

merge_three ob53m=new merge_three(supp,conf);

34

server ob54=new
server{choice,"three_out.txt","three out.txt","three_out.txt","four outl.txt" "four
out2.txt","four out3.txt");,
Thread.sleep(10000);
merge_four ob54m=new merge four(supp,conf);
Thread.sleep(10000);

server ob55=new _
server(choice,"four_out.txt","four_out.txt","four out.txt","five_outl.txt","five out
2.txt" "five out3.txt"),

Thread.sleep(10000);

merge_five ob65m=new merge_five(supp,conf);

Thread.sleep(10000);

break;

case 6:
System.exit(0);
break;

}
endTime = System.currentTimeMillis()-(choice*20000);

time = (endTime - startTime) / 1000.0;
System.out.println("Run time for "+choice+"-ItemSet :
"Hime+"seconds");

plug.close();
plugl.close();
plug2.close();
ywhile(choice!=6);
}
catch(Exception e)
{3
3
}

public class server

35

e R s

Serverl sl=new Serverl("localhost",81,infilel,outfilel);
Serverl s2=new Serverl("localhost",83,infile2,outfile2);
Serverl s3=new Serverl("localhost",85,infile3,outfile3);

SS ssl=new SS(ch);

class Serverl implements Runnable
{

Thread t;

InetAddress ip;

int port;

String filename,outfilename;

Server1(String ipaddr,int portaddr,String fnname, String outfnname)
{
try
{

filename=fhname;

outfilename = outfnname;

ip=InetAddress.getByName(ipaddr);
h

catch(Exception ¢)

{
}

System.out.printin("Server starting”);
port=portaddr;

t=new Thread(this);

t.start();

}

public void run()

{

System.out.println(e);

36

LIV AL oD LI YY WDV DO Ay AR

File fpl;
if(port==81)
{
fpl = new File(filename);
}
else if(port==83)
{
fp1 = new File(filename};
}
else if(port==85)
{
fpl = new File(filename);
}
else
{
fpl = new File("temp.txt");
}

FileInputStream fins = new FilelnputStream(fp1);
int bsize = 1024000;
byte[] bdata = new byte[bsize];
DataOutputStream o = new DataOutputStream(sock.getOutputStream(});
long fsize = fpl.length();
int n=0;
while (fsize>0)
{
n = fins.read(bdata,0,bsize); // read 1mb from file
o.write(bdata,0,n); // write it to the socket
fsize-=n;
}
o.close();
System.out.println("File Sent"); sock.close();

}

catch(Exception ¢)

{

System.out.printin(e);

;

37

AL P ALV e AL AT T TR TR Y
System.out.println("Server Waiting...\n");
Socket socket = server2.accept();
if(port==81)
System.out.printin{ "Response from Clientl received. ");
else if(port==83)
System.out.println("Response from Client2 received. ");
else if(port==285)
System.out.println("Response from Client3 received. ");

else
System.out.println(" ");
File p;
if(port==81)
{
fp = new File(outfilename);
)
else if(port=—==383)
{
fp = new File(outfilename);
h
else if{(port==385)
{
fp = new File(outfilename);
i
else
{
fp = new File("e:\\temp.txt");
}

FileOutputStream fout = new FileOutputStream(fp);

DatalnputStream i = new DatalnputStream(socket.getInputStreamy());

int n=0;

long totalbytes = 0;

int bsize = 1024000;

byte[] bdata = new byte[bsize];
System.out.println("Receiving file..");
while ((n = i.read(bdata,0,bsize)) > 0)

Wikt ¥ bwon T AL,

}

fout.close();server2.close();

}

catch(Exception ioex)

{

System.out.printIn("Error occurred while trying to service request.");
System.out.println("Server stopped.");

ioex.printStackTrace();

System.exit(0);
}
System.out.println("Files Received. File Closed");
}
}
class SS
{
SS(int ch)
{
try
{
if(ch>=2)

{ FileWriter FW1 = new FileWriter("two_temp.txt",false);
BufferedReader br = new BufferedReader(new
FileReader("two_outl.txt"));
BufferedReader brl = new BufferedReader(new
FileReader("two_out2.txt"));
BufferedReader br2 = new BufferedReader(new
FileReader("two out3.txt"});
StringTokenizer stD;
String Ddata;
while ((Ddata =br.readLine())!=null}
{
stD = new StringTokenizer(Ddata," ");
while(stD.hasMoreTokens())

{

while (Ddata =br1.readLine())!=null)

{
stD = new StringTokenizer(Ddata," ");
while(stD.hasMoreTokens())
{
FW1.write(stD.nextToken()+"\r\n");
}
; .
while ((Ddata =br2.readLine())!=null)
{
stD = new StringTokenizer(Ddata,” ");
while(stD.hasMoreTokens())
{
FW1.write(stD.nextToken()+"\r\n");
h
}
FW1.close();
}
if{ch>=3)
{

BufferedReader br = new BufferedReader(new
FileReader("three_outl.txt"));

BufferedReader brl = new BufferedReader(new
FileReader("three_out2.txt"));

BufferedReader br2 = new BufferedReader(new
FileReader("three out3.txt"));

StringTokenizer stD;

FileWriter ffw = new FileWriter("three_temp.txt",false);

String Ddata;

while ((Ddata =br.readLine())!=null)

{

stD = new StringTokenizer(Ddata,"” ");
while(stD.hasMoreTokens())

{
ffw.write(stD.nextToken()+"\r\n");

40

while ((Ddata =brl.readLine())!=null)

{
stD = new StringTokenizer(Ddata," ");
while(stD.hasMoreTokens())
{
ffw.write(stD.nextToken()+"\r\n");
)
}
while ((Ddata =br2.readLine())!=null)
{
stD = new StringTokenizer(Ddata,”" "),
while(stD.hasMoreTokens(}))
{
ffw.write(stD.nextToken()+"\r\n");
}
}
ffw.close();
}
if{ch>=4)
{

BufferedReader br = new BufferedReader(new
FileReader("four outl.txt"));

BufferedReader brl = new BufferedReader(new
FileReader("four_out2.txt"));

BufferedReader br2 = new BufferedReader(new
FileReader("four out3.txt"));

StringTokenizer stD;

FileWriter ffw = new FileWriter("four_temp.txt",false);
String Ddata;

while ((Ddata =br.readLine())!=null)
{

41

oA AT A AT A A A AR A S S

ffw.write(stD.nextToken()+"\r\n");

}
}
while ((Ddata =brl.readLine(})!=null)
{
stD) = new StringTokenizer(Ddata,” ");
while(stD.hasMoreTokens())
{
ffw.write(stD.nextToken()+"\r\n");
}
}
while ((Ddata =br2.readLine())!=nuil)
{
stD = new StringTokenizer(Ddata,” ");
while(stD.hasMoreTokens())
{
ffw.write(stD.nextToken()+"\r\n");
}
}
ffw.close();
}
if(ch==5)
{

BufferedReader br = new BufferedReader(new
FileReader("four_outl.txt"));

BufferedReader brl = new BufferedReader(new
FileReader("four_out2.txt"));

BufferedReader br2 = new BufferedReader(new
FileReader("four_out3.txt"));

StringTokenizer stD;

42

WS LAddld,

while ((Ddata =br.readLine())!=null)

{
stD = new StringTokemzer(Ddata," ");

while(stD.hasMoreTokens())
{

}

ftw.write(stD.nextToken()+"\r\n");
h

while ((Ddata =brl.readLine())!=null)
{

stD = new StringTokenizer(Ddata," ");
while(stD.hasMoreTokens())

{
ffw.write(stD.nextToken()+™\r\n");

}

while ((Ddata =br2.readLine())!=null)
{

stD = new StringTokenizer(Ddata," "),
while(stD.hasMoreTokens())

{
}

ffw.write(stD.nextToken()+"r\n");

}
ffw.close();

}

class server?2

{
public server2() throws UnknownHostException

{

try
{
Serverll sl=new Serverl1("localhost",1021);
Serverll s2=new Serverl 1("localhost",1022);
Serverl1 s3=new Serverl 1("localhost",1023);
}
catch(Exception e)
{}
}
}
class Serverl 1 implements Runnable
{
Thread t;
InetAddress ip;
int port;

String strl;
Serverl 1(String ipaddr,int portaddr)

{
try{

ip=InetAddress.getByName(ipaddr);
}

catch(Exception e){
System.out.println(e);

}

port=portaddr;
t=new Thread(this);

44

]

public void run()

{
try
{
Socket sock = new Socket(ip, port);
BufferedReader br1=new BufferedReader(new
InputStreamReader(sock.getInputStream()));
String strl=brl.readLine();
FileWriter fw = new FileWriter("cpuload.txt" true);
System.out.println("Client :"+strl);
fw.write(""+str1+"\r\n");

fw.close();
}
catch(Exception ee)
{
}

FileSplit fsp = new FileSplit();

45

DELINEIFRINA Y LU LU OIVINY LG

class Clientcpu

{

public Clientcpu() throws Exception

{
try {
String arg;
ServerSocket ser2 = new ServerSocket(1022);
Socket plug;
plug= ser2.accept();
PrintWriter PW=new PrintWriter(plug.getOutputStream(),true);
System.out.print("Sending CPU load to server...");
sysInfo cpuusage=new sysInfo();
arg=String.valueOf(cpuusage.getCPUUsage());
PW println(""+plug.getLocal Address()+":"+Integer.parselnt(arg));
Thread.sleep(20000);
}

catch(IOException ioex)

{

System.out.println("Error occurred while trying to service request.");
System.out.println("Server stopped.™);

ioex.printStackTrace();

System.exit(0);

}
}
}

NETWORKING ONE ITEM SET
class Oneltemset_networking

{

Oneltemset_networking(String sernam)

{
try
{

46

B o e e B N B b R R L R AR T L A VS

System.out.println{ "Response from server received.");

try

{
File fp = new File("filel.txt");

FileOutputStream fout = new FileOutputStream(fp);

DatalnputStream 1 = new DatalnputStream(socket.getInputStream());

int n=0;

long totalbytes = 0;

int bsize = 1024000;

byte[] bdata = new byte[bsize];
System.out.println("Reading file...");

while {((n = i.read(bdata,0,bsize)) > 0)

{

fout.write(bdata,0,n); // write it to the socket's stream
totalbytes +=n;

}

System.out.println("File Read Completed. ");
fout.close();

System.out.printIn("File Closed”);

h

catch(IOException ioex)

{

System.out.printIn("Error occurred while trying to service request.");

System.out.printin("Server stopped.");
ioex.printStackTrace();
System.exit(0);
}
server2.close();socket.close();
try
{
oneitemset ob=new oneitemset();
Socket sock = new Socket(sernam, 84);
File fp1 = new File("one.txt");
FileInputStream fins = new FilelnputStream(fp1);

47

AALA UL U LISLL Al W WYY ARl P AR R AR W R D T

long fsize = fpl.length();
int n=0;
while (fsize>0)
{
n = fins.read(bdata,0,bsize); // read 1mb from file
o.write(bdata,0,n); // write it to the socket
fsize-=n;
]
o.close();sock.close();
System.out.println("Process completed.File Sent.");

}

catch(Exception ¢)

{
}

System.out.printin(e);

}

catch(Exception ece)

{

System.out.println("Error " +ece);
}
}
}

ONE ITEM SET
class oneitemset

{

oneitemset()

try
{

int count[]=new int[8000];
double TH_value[]=new double[8000];

String file,data,source;

48

et g VRS R AR

NS

B

A AL ALAW L sl 5

BufferedReader LINE;
LINE=new BufferedReader(new FileReader(file));

System.out.println("Producing C1...");
FileWriter fwr = new FileWriter("one.txt",false);
for(int c=0;c<8000;c++)
{
count[c]=0;
TH_value[c]=0.0;
}
boolean flag;
while((data=LINE.readLine()) !=null)

{

sub++;

flag=false;
st = new StringTokenizer(data,"");
while(st.hasMoreTokens())

{

datal=Integer.parselnt(st.nextToken());
if (data2==datal)
{
}

else

{
count[datal J=count[datal]+]1;
data2=datal;

}

}

for(int d=0;d<8000;d++)

{
if (count[d]!=0)

49

}
b
fwr.close();
}
catch(Exception e)
{
}
}
}
FINAL CLIENT:

class final client

{
public static void main(String args[])
{
try
{
Clientcpu cepu = new Clientepu();
do
{

String sernam="localhost";
Socket sock = new Socket(sernam,92);
BufferedReader brl=new BufferedReader(new
InputStreamReader(sock.getInputStream()));
String str1=br1.readLine();
int ch = Integer.parselnt(strl);
System.out.println("received"+ch);
switch(ch)
{
case 1:
Oneltemset_networking onel = new
Oneltemset networking(sernam);
System.out.println("Client waiting...");

50

Tt Rl b Vg st &

Oneltemset networking one2 = new
Oneltemset networking(sernam);

Twoltemset networking two2 = new
Twoltemset networking(sernam);

System.out.println("Client waiting...");

break;

case 3:
Oneltemset networking one3 = new
Oneltemset networking(sernam);
Twoltemset_networking two3 = new
Twoltemset networking(sernam);
Threeltemset networking three3 = new
Threeltemset_networking(sernam);
System.out.println("Client waiting...");
break;
case 4:
Oneltemset_networking one4 = new
Oneltemset_networking(sernam);
Twoltemset networking two4 = new
Twoltemset networking(sernam);
Threeltemset_networking threed = new
Threeltemset_networking(sernam);
Fourltemset_networking four4 = new
Fourltemset networking(sernam);
System.out.println("Client waiting...");
break;
case 5:
Oneltemset _networking one5 = new
Oneltemset_networking(sernam);
Twoltemset networking two5 = new
Twoltemset_networking(sernam);
Threeltemset _networking three5 = new
Threeltemset _networking(sernam);
Fourltemset_networking four5 =new
Fourltemset networking(sernam);

51

g e e

break;

case 6:
System.exit(0);
break;

}

sock.close();

}while(true);
}
catch(Exception e)
d

System.out.printin("error : "+e);
}
}

52

EEEY, e AAAS

LAY A LI RITRE RS WIS ANV AT AR AT

SERVER SIDE

53

» CAWINDOWS\system32\emd. exe

55

REFERENCES

10.1.REFERENCES

[1]

(2]

[3]

[4]

[5]

[7]

[8]

(9]

Agent Working Group. Agent Technology Green Paper. OMG Document
ec/99-12-02.Version 0.9. 24 December 1999.
R. Agrawal, T. Imielinski, A. Swamy, “Mining association rules between
sets of items in large databases”. ACM SIGMOD Conf. 1993
Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.,.and Verkamo, 1. 1996.
Fast Discovery of Association Rules. In ddvances in Knowledge Discovery
and Data Mining, 37 ed., 307-328, AAAI Press
Agrawal, R., and Psaila, G. 1995. Active Data Mining. In Proceedings of the
First International Conference on Knowledge Discovery and Data Mining
(KDD-95), 3-8. AAAI Press
Apte, C., and Hong, S. J. 1996. Predicting Equity Returns from Securities
Data with Minimal Rule Generation. In Advances in Knowledge Discovery
and Data Mining,2™ ed. , 514-560. AAAI Press

Chan P, Fan W, Prodromidis A, and Stolfo s, “Distributed data mining in
credit card fraud detection,”, IEEE Intelligent Systems, 14(6):67-74, 1999.
Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, Michael] Y.

Zhu ,Purdue University.”,Tools for privacy preserving Data mining.” In
proceedings of the ACM SIGKDD Explorations, v.4 n.2, p.28-34, December
2002

Kargupta H,IILkar Hamzoaglu, Brian Stafford., Scalable, “Distributed data
mining using an agent based architecture.” In the proceedings of KDD 97,
Kargupta, H, Park, Hershberger, Johnson ,E., “Collective Data mining: A

New perspective toward Distributed Data mining” . In: Advances in

56

[10] Langley, P., and Simon, H. A. 1995. Applications of Machine Leaming and
Rule Induction. Communications of the ACM 38:55-64.

[11] Matthias Klusch, Stefano Lodi and Gianulco Moro.,” Agent based Distributed
Data mining: The KDEC Scheme.” (2003), http://citeseer.ist.psu.edu , 2004,

[12] Parthasarathy S, “Towards Network-Aware Data Mining”, 15th International
Parallel and Distributed Processing Symposium (IPDPS'01) Workshops. /EEE
Computer Society, p. 30157b

[13] Rakesh Agrawal and Ramakrishnan Srikant., “Privacy-preserving data
mining”. In Proceedings of the 1997 ACM SIGMOD Conference on
Management of Data, Dallas, TX, May 14-19 2000. ACM.

[14] Salvatore Stolfo, Andreas L. Prodromidis, Shelley Tselepis, Wenke Lee, Dave
W. Fan, et al. “JAM: Java Agents for Meta-Learning over Distributed
Databases.” In International Conference on Knowledge Discovery and Data
Mining -1997(KDD-97)

[15] M. Shaw , D. Garlan. Software architecture: perspectives on an emerging

discipline, 3™ edition, Prentice Hall, New J ersey, 1996.

[16] http://portal.acm.org/, 2004.

[17] www.cs.bme.hu/~bodon/en/apriori , 2004

[18]) www.csc.liv.ac.uk/~frans/ KDD ,2004

[19] www.agentland.com , 2005

[20] www.dcs.elf.stuba.sk/emg/kdd.htm, 2004

[21] www.kdnuggets.com, 2005

57

