1
i HOERESS FROUGRARTHLEDGE

IMPLEMENTATION OF EFFICIENT LOAD BALANCIN G
USING PROXY SERVERS AND RANDOMIZED

ALGORITHM
A PROJECT REPORT
Submitted By
KANNAMAL.A. 71202104016
PRABHA PRIYA DHARSINILA. 71202104029
SRIHARILD. 71202104063

in partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
in

COMPUTER SCIENCE OF ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY,
COIMBATORE

ANNA UNIVERSITY: CHENNAI 600025

APRIL 2006

BONAFIDE CERTIFICATE

ANNA UNIVERSITY: CHENNAI 600025
- BONAFIDE CERTIFICATE

Certified that this project report “IMPLEMENTATION OF EFFICIENT LOAD
BALAN CING USING PROXY SERVERS AND RANDOMIZED ALGORITHM” is
the bonafide work of “A.KANNAMAL(71202104016), A.PRABHA
PRIYADHARSINI (71202104029), D.SRIHARI(71202104063)”,who carried out the

project work under my supervision.

SIGNATURE () ﬂ ‘ » SIGNATURE

Dr.S.Thangasamy Ms.P.Devaki
DEAN OF THE DEPARTMENT SUPERVISOR,

Assistant Professor
Department of Computer Department of Computer
Science and Engg, Science and Engg,
Kumaraguru College Of Kumaraguru College of
Technology, Technology,
Chinnavedampatti P.O., ChinnavedampattiP.O..
Coimbatore-641006 Coimbatore-641006

/

Submitted for the Viva-voce Examination held on .8 06 -

£ dovau g

Internal Examiner External Examiner

EVALUATION CERTIFICATE

ANNA UNIVERSITY: CHENNAI 600 025
EVALUATION CERTIFICATE
College : KUMARAGURU COLLEGE OF TECHN OLOGY

Branch : COMPUTER SCIENCE AND ENGINEERING
Semester : EIGHT(08)

[SNo Name of the Student Title of the Project | Name of Supervisor
1. .| KANNAMAL.A - Implementation Of Efficient - Mrs.P.Devaki, ‘
2. PRABHA Load Balancing Using Proxy ' Asst Professor "
; PRIYADHARSINI. A | Servers and Randomized !
3. SRIHARI.D . Algorithm J

The report of the project work submitted by the above students in partial
fulfillment for the award of BACHELOR OF EN GINEERING degree in
COMPUTER SCIENCE AND ENGINEERING of ANNA UNIVERSITY
were evaluated and confirmed to be the report of the work done by the above

students and then evaluated.

INTERNAL EXAMINER EXTERNAL EXAMINER

i1

iii

DECLARATION

DECLARATION

We hereby declare that the project entitled “IMPLEMENTATION OF
EFFICIENT LOAD BALANCING USING PROXY SERVERS AND
RANDOMIZED ALGORITHM ”, is a record of original work done by us and
to the best of our knowledge, a similar work has not been submitted to Anna
university or any other institution, for fulfillment of the requirement of the course

-study.

This report is submitted in partial fulfillment of the requirements for the award of
-the Degree of Bachelor of Computer Science and Engineering of Anna

University, Chennai.

Place: Coimbatore 4}:—:—\% ﬂ
(KANNAMAL.A)
Date:

A . [L\AM\NAAR(%&@/Z

(PRABHA PRIYAD SINI A)

& LA

(SRIHARI.D)

v

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

We would like to thank our principal, Dr.K.K.Padmanabhan, B.Sc(Engg),
M.Tech., Ph.D., for the facilities provided to carry out this project.

We are very much indebted to Dr.S. Thangasamy, B.E. (Hons), and Ph.D.,
Dean of the Department of Computer Science And Engineering, for his support

towards us and for his gracious permission to undertake this project.

We deem it a pleasure and privilege to feel indebted to our guide
Mrs. P. Devaki, M.S. Assistant Professor, who is always a constant source of
inspiration and encouragement that helped us in the successful completion of the

project.
We would like to thank all the staff members of Computer Science department
and all those who have directly or indirectly assisted us in successfully

completing this project.

We extend our special thanks to our family and friends for all their support and

help rendered to us.

Vi

ABSTRACT

Vil

ABSTRACT

The enormous popularity of the World Wide Web in recent years has caused a
tremendous increase in network traffic due to HTTP requests. Since the majority
of web documents are static, caching them at various network points provides a
natural way of reducing traffic. Hence we develop a proxy server using JAVA

which caches the web pages and provide faster responses to the clients.

A key component of a cache is its replacement policy, which is a decision rule for
evicting a page currently in the cache to make room for a new page. Here we
propose a randomized algorithm for approximating any existing web cache

replacement scheme.

Viil

1X

CONTENTS

TABLE OF CONTENTS

CHAPTER NO TITLE PAGE NO

EVALUTATION CERTIFICATE i

DECLARATION iv

ACKNOWLEDGEMENT i

ABSTRACT viii
1. \ INTRODUCTION

1.1 OVERVIEW 2

12 EXISTING SYSTEM AND LIMITATIONS - 2

1.3 PROPOSED SYSTEM AND ADVANTAGES 3

2. SYSTEM DESIGN
2.1 OVERVIEW OF MODULES 5

3. FEATURES 11
4. PROGRAMMING ENVIRONMENT

4.1 SOFTWARE REQUIREMENTS 13

42 HARDWARE REQUIREMENTS 13
5. DETAILED DESIGN

5.1 USING A URL TO CONNECT 16

5.2 CLIENT REQUEST AND SERVER
RESPONSE 17

6. ADVANTAGES 20

10.

11.

APPLICATIONS

FUTURE ENHANCEMENTS
CONCLUSION
REFERENCES
APPENDICES

11.1 SAMPLE CODES

112 SCREEN SHOTS

Xi

22

24

26

28

30

47

INTRODUCTION

1. INTRODUCTION
1.1IOVERVIEW

Our project provides an intelligent environment containing a number of
ready-made options like cache, log file, error checking, connection pooling,
etc. These ready-made tools may be any of the GUI components that are
available in the Java AWT package. By using this utility, Administrator can

control and maintain the whole network.

1.2 EXISTING SYSTEM AND ITS LIMITATIONS

- The existing system uses processor‘cache to cache the web pages in the
proxy server. Also the eviction policy used for this system is LRU (Least
Recently Used) whose utility function assigns to each page a value which is
the time since the page’s last use. It worked well only for processor cache.
The drawback in using processor cache is that there can be only few
selected number of users, limited number of the web page access, if exceeds
the slow retrieval timing. Also the processor cache needs multiple copies to
provide responses to multiple clients.

Besides these, the major limitations of the existing policy (LRU) are as

follows,

* Requires data structure to be implemented.
* Data structure requires a priority queue to be implemented.

* Data structure needs to be constantly updated even when there is no
eviction

1.3 PROPOSED SYSTEM AND ITS ADVANTAGES

We use web cache to cache the web pages which has several advantages. A

web cache is one which resides between the web server and the client and

watches requests for web pages. The eviction policy we propose here is

“Randomized Algorithm” which do not need any data structure to support

the eviction decisions. The utility function of this algorithm takes into

account not only the recency of use of a web document, but also its size, cost

of fetching, and frequency of use which is expected to perform significantly

better.

The advantages of this proposed system are: |

The usage of web cache reduces latency, traffic and also the load on
web servers.

The system helps to access internet from many systems using a single
internet connection.

Caching helps in reducing the bandwidth demands on a local
network’s connection to the Internet.

Avoid the need for data structures

Since JAVA is a platform independent language, the system can run
in any platform

Speed and security are also the additional features of JAVA

SYSTEM DESIGN

2. SYSTEM DESIGN

The system here opens the connection between the proxy server and various
clients and provides quick responses to the clients. The focus is on the
identification of the modules and how the modules should be interconnected.
2.1 OVERVIEW OF THE MODULES

The project is broadly viewed as composure of five modules:

Frame
Designing

Proxy
Designing

Algorithm
Implementation

Web cache
Management

Test and
Implementation

1. Frame Designing
In frame designing, we design a form that contains various menus
available for the administrator of proxy server to perform various

actions. The various menus available are

o Admin

This menu helps the administrator of proxy server to switch on the server
(start server), switch off the server (stop server), empty the cache in
proxy server (clear cache), empty the images present in the cache of
proxy server (clear images). |

. View

View menu helps fhe administrator of proxy server to view various
requests from the client and also the responses provided by them. The
files present in the cache of proxy server can also be viewed including
the images.

o Set up(The proxy settings)

The configuration of the proxy server is set up and stored here. There are

two tabs available namely networking and logging. Under networking,

we can store the port number of the proxy server, etc. Under logging, the

storage place of access log and error log files can be specified.

* Help and About (Help topics / About the proxy)

The details about the version of the proxy and the help topics are given.

2. Proxy Designing

The internal coding of the working of the proxy is carried out here.

Here we assume that initially the cache of proxy server is empty. Also

the TCP/IP connection between the proxy server and the clients is

established.

The process is

Initially, whén there is a request for a web page from the client, the
proky server first connects to the World Wide Web. Then the
reqliested page is downloaded from the web and client is
responded. Also a copy of that web- page is stored in the local
cache of proxy server. |
Then the next request from the client is processed. We check
whether the requested web page is present in the local cache. If
present, the web page is checked for its updation and the updated
web page is responded to the client and also the page in local cache
is updated.

If the web page requested by the client is not present in the local
cache of the proxy server, then the page is downloaded from the
web world. Thus the client’s request is responded and a copy of
that web page is put in proxy’s local cache if there is enough space
in it.

If there is no enough space in the local cache, then the proxy server
uses the randomized algorithm to evict a web page and create a

room for the new page.

e The algorithm works as follows,

O

O

O

pick N documents at random from cache
evict the least useful document

retain the next M least useful document
pick N-M documents at random from cache
append to the M previously retained

evict the least useful document of N samples

retain the M next least useful documents

e The sample algorithm is,

If (eviction)

{

if(first_iteration)

{

sample(N);
evict least useful;
keep least useful(M);

}

else

{
sample(N-M);
evict least useful;
keep least useful(M);

}

3. Algorithm Implementation
Here we implement the above said algorithm to perform the eviction
function,

4. Web Cache Management

successfully with the clients and jt could be implemented for more

number of clients as mentioned before.

10

FEATURES

3. FEATURES OF THE PROJECT

Helps for the fast accessing of the internet by many systems using
a single internet connection.

Caching helps in reducing the bandwidth demands on a local
network’s connection to the Internet. The single internet
connection and same bandwidth is shared between all the clients
where this proxy is shared. |

Though there is a single internet connection for as many as 2000
system approx. The speed of downloéding or uploading from the
client from/ to the web world will be same for all the client
Systems.

Load balancing is a special feature. Since the web page is cached
in the local memory, the responses for number of requests are
provided from the local cache. Hence the load is balanced and the
server will not be down.

We could setup the limit for the clients in terms of the web pages
and the timing. (ie) For the web pages we could assign a specific
number of pages like 3000 pages could only be used in the given
span of 2 hours that is set for the clients.

Another feature is that without disturbing the privacy of the client
we could interfere in their request and we could have control over
them even with out the firewall protection.

The access of the specified web page of the client would even be

denied from this server if the site is not suitable in the group.

11

PROGRAMMING ENVIRONMENT

12

4. PROGRAMMING ENVIRONMENT

The hardware and software configurations that were used to develop this
system are mentioned below.

4.1 SOFTWARE REQUIREMENTS

The software required for this project is the JAVA programm_ing language
(dk1.4) installéd in the system.

4.2 HARDWARE REQUIREMENTS

The minimum requirements for the project:

CPU Type : Pentium II

Cache Memory : 512K
Co-Processor : Installed.
CPU Clock : 300 MHz
Hard Disk : 4.3 GB
RAM Memory : 64 MB
Operating System ; Windows 9x

Monitor : 14” Samtron color monitor

13

14

DETAILED DESIGN

5. DETAILED DESIGN

Java makes it easy to connect to other computers, using classes from

Java.net package. We first write client programs that connect to the
server, which is a program that performs a task useful to its clients,
and then write our own servers. A web server provides files such as

web pages, java applets, and images.

To write client programs, we first use java classes that enable us to

hide the details of the interaction between client and server. We then
try classes that let us customize the connection, and present classes
that give us full control of the communication, but require us then to

know the details of the request and response commands.

The simplest clients connect to a server using a URL object, or for
more flexibility, a URLConnection talks to a server using a specific
protocol. We introduce HTTP, the Hypertext Transfer Protocol used
to connect to a web server. Understanding HTTP allows us to
customize a connection using URLConnection methods, and to write
our own simple web client and web server using socket and
ServerSocket objects. This will enable us to develop and use our own

protocols for clients and servers to communicate.

3.1 USING A URL TO CONNECT

Computers use protocols to communicate. A client sends requests
using the commands by the protocol in the order specified in the
protocol, and the server responds similarly. The URL class
encapsulates several popular protocols, handling their details thereby
making it easier for java programmers to make network connections

to display a page, retrieve a file, or get mail for example.

5.2 CLIENT REQUEST AND SERVER RESPONSE

- An HTTP client sends a request to the server in which the first line
has the form

Method used [déntiﬁer Jor the resource Protocol version

A sample client request will be of the form

Get /~artg/TryURL.java HTTP/1.0
User-Agent: Javal.3.0

Host: www.cecs.csulb.edu:80

Accept: text/html, image/gif, image/jpeg, *; qg=.2,*/*;q=.2

Connection: keep-alive

16

The description of the fields in the request are
FIELD DESCRIPTION

Indicates that Java 1.3.0 is running our client.

User-agent
Host Identifies the server.
Accept Specifies the type of files that the client is prepared to
accept. Each type has a preference associated with it given
by fhe value of q(for “quality”). This value fanges from a
low of 0 to the default of 1. The three types text/html,

‘ image/gif, and image/jpeg have the highest preference (the

| - default of q=1 is not shown). If the server cannot send these
;; types, then the client will accept any type, d4noted by *,
" any subtype of any type, denoted by */*. These later |
, generic types have preferences of q=2.

Connection Spec1ﬁes the types of connection. Here keep-alive

expresses the client’s wish to keep the connection alive for

l multiple requests.

An HTTP server responds to a responds to a request with a status line
followed by various response headers. The status line has the form

HTTP version Status Code Reason

17

A sample HTTP server response is of the form

Status line: HTTP/ 1.0 200 Document follows
Response headers:
Date: Mon,O7Dec 1998 21:12:05 GMT
Server: NCSA/1.4.2
- Content-type: text/plain
Last-modified: Wed, 11 feb 1998 19:19:01 GMT
'Content-length: 439

The description of the fields in the response is,

FIELD DESCRIPTION]

|

Date Gives the day and Greenwich Mean Time |
Server Names the web server used

Content-type
Content-length

Describes the content. (Here text/plain for a Java program)

Number of bytes in the file

18

19

ADVANTAGES

6. ADVANTAGES
The main advantages of the project are as follows
¢ Saves memory
Here system memory is considerably saved as the already
existing as already viewed pages are stored in a separate
directory. On re-viewing of the same page by another client
will consume the same memory where the data is stored first

(ie) same text frame and images
® Saves processing power

The processing supremacy over the client request is reduced
as if the same page is viewed again by any the client, the
page is displayed from the local area where it Is stored

locally.

® Reduces network traffic
The passage control of the web pages to/ from the clients
are stored in the separate directory so as said above the
traffic is reduced if the often repeated web pages are
requested by the clients as the request is responded with the

help the directory data retrieval.
* Reduces Latency time

Latency time (System’s processing time) is reduced by

usage of the local storage directory.

20

21

APPLICATIONS

7. APPLICATIONS

The various applications for this proxy are
v" Large networks

v Load Balancing
The large networks means a server with a proxy server with chents as
many as 2000-4000. This developed proxy is capable of havmg control

over the chents specified.

The load balancing is the corresponding effect of having specified

number of web-pages to be viewed at the given period of time.

22

23

FUTURE ENHANCEMENTS

8. FUTURE ENHANCEMENTS

In this project we developed a single proxy server for the whole LAN. We
can have one more proxy server that will start providing responses once the
running proxy server fails.

Now we have developed a proxy server that acts as client only for web
server. We can make it work as a sub-proxy for the proxy server that is

already working.

24

25

CONCLUSION

9. CONCLUSION

We have developed a PROXY SERVER, which runs with mentioned
features, which inherently helps speeder browsing of web pages with use of

randomized algorithms.

under any platform and with any number of clients too.

26

——

27

RETERENCES

10.REFERENCES

Balaji Prabhakar and Konstantinos Psounis,“Efficient Randomized
Web-Cache Replacement Schemes Using Samples From Past Eviction
Time”, IEEE/ACM transactions on networking, vol, 10 no.4, August
2002
Balaji Prabhakar, D.Engler and Konstantinos Psounis
“A Randomized Cache Replacement Scheme Approximating URL” in
proc.34™ Annu,c onf International Sciences and Systems, Princeton,
NJ, March 2000 |
Art Gittleman, Internet Programming with JAVA2 Platform, 3 ed,
Tata Mcgraw-Hill, 2000 |
Patrick Naughton and Herbert Schildt, J4VA2- The Complete
Reference, 3" Edition , Tata Mcgraw- Hill, 1999

wWwWWw.google.com

WWW.ieee.org

28

29

APPENDICES

11.APPENDICES
11.1 SAMPLE CODES
PROXY SERVER CREATION

import java.lang *;

import java.net.*;

import java.io.*;

import java.util.*;

/** ProxyServer

>lf</ |

public class ProxyServer implements Runnable {

String server ip =null; // ip this server binds to, (JDK 1.1

only)
int server port =80; // port this server listens on
int max_connections = §; // maximum connection allowed
private Thread myThread:; // thread for this object
private ServerSocket ss; // server socket

private boolean server running = false;
private boolean server exit = false;

Object console;

30

final static String localhost ="127.0.0.1":

final static boolean debug_mode = false; // for debugging

- ProxyServer(Object p, String ip, int port) {
console =p;
server_ip =ip;
server_port = port;
myThread = new Thfead(this);

myThread.setDaemon(true);

myThread.staft();
}
[** constructor
*/

ProxyServer(Object p, int port) {
this(p, localhost, port);
}
/* test if the server is running
*/
public boolean isServerRunning() {
return server_running;

}

/* start server
*/
public synchronized boolean startServer() {
if(server_running) return true; // check if server is running
already

try { if(server ip ==null)

31

ss = new ServerSocket(server port, max_connections);
else
ss = new ServerSocket(server_port, max_connections,
InetAddress.getByName(server ip));

ss.setSoTimeout(1000); // set timeout to 1 second

}
catch(IOException e) {
ss=null;
if(debug_mode) System.out.printin("Error: Can't set up sefver
socket on " + server ip + ":" + server_port + "\n" + e);
“return false;
} .

System.out.printIn("Server Started on " + server_ip + ", port: "+
server_port);

server_running = true;

return true;
}
/** stop server
*/

public synchronized boolean stopServer() {

server_running = false;

try {

ss.close();

}
catch(IOException e) {

if(debug_mode) System.out.printIn("Can't close server

socket");

32

}

ss = null;

if(debug_mode) System.out.println("Server socket closed.");

return true;

/** set server_exit flag
*/
public void servérExit() {
server_exit = true;
}
/* run
*/
public void run() {
while(!server exit) {
if(server_running) {
try {
Socket s = ss.accept();
new ProxyConnection(console, this, s);

((Serverlnterface) console).updateHTTPCounter();

}
catch(IOException e) { }

}

else {

try{ myThread.sleep(500); } catch (InterruptedException e)
{1

} // end of if(server_running)

33

} // end of while(true)
} // end of void run()
+ // end of ProxyServer

PROXY CONNECTION
import java.net.*;
import java.io.*;

import java.util.*;

/** ProxyConnection handles connection from client and opens a
new connection to the remote server
:k/ '
ProxyConnection(Object ¢, Object p, Sockets) {

console = ¢;
parent = p;
sock ¢ =s;

setPriority(NORM_PRIORITY + 1);
httpconfig = ((ServerInterface)console). getHTTPConfiguration();
cachepool = ((ServerInterface)console).getProxyCachePool();
using cache = cachepool.isCacheEnabled();
_RECV_TIMEOUT =

Integer.parselnt(httpconfig. getProperty("network.receive _timeout")) *

1000;

proxy_addr = (String) httpconﬁg.getProperty("network.proxy.ip");

if(proxy_addr != null) proxy_addr = proxy addr.trim();

34

try { proxy port = Integer.parselnt((String)
httpconfig. getProperty("network.proxy.port"));
}
catch(NumberFormatException ne) {
proxy_port L 0;
}
String showcontent str = (String)
_httpconﬁg.getProperty("netWork.showcontent");
If(showcontent_str .!= null) show content =
_showcontent_str.equéls("true_") ? true : false;
if(proxy addr '=null && 'proxy_addr.equals("") && proxy port >=
0) using _proxy = true;
try {
sock_c.setSoTimeoutLRECV_TIMEOUT); // set socket time out
start();
}
catch(SocketException se) {
System.out.println(se);
}
catch(OutOfMemoryError oe) {
Runtime r = Runtime.getRuntime();
System.out.printIn("Out of Memory!\nFree memory is: "+
r.freeMemory());
System.out.println("Total memory is: "+ r.totalMemory());
System.gc();
try { Thread.sleep(5000L); } catch(InterruptedException ie) {

}

private boolean closeSock(Socket s) {
try { s.close(); } catch(IOException err) { return false; }

return true;

/* run
*/
public void run() {
StringBuffer sb = new StriﬁgBuffer();
boolean keep alive = true; |
boolean read_finish = false;
String buf ="";
String key, value;
URL url = nuli;
InputStream in_c = null; // input from client socket
InputStream in_s = null; // input from server socket
OutputStream out_c = null; // output to client socket
OutputStream out_s = null; // output to server socket
try {
in_c =sock_c.getlnputStream();
out_c = sock_c.getOutputStream();
} catch (IOException ie) {

36

((ServerInterface) console).logError(tracer.getSource(),
ie.toString());
closeSock(sock c);

return;

/* Read Client Request From Socket InputStream in ¢
*/
byte onebyte[] = new byte[1];
boolean EOH = false; // flag End Of Header
try { | |
while(!EOH) {
if(in_c.read(onebyte) <= 0) {

EOH = true;
continue;

}

else

sb.append(new String(onebyte, "8859 1M));
if(sb.toString().endsWith(CRLF2) ||
sb.toString().endsWith(_LF2)) {
EOH = true;

}
} catch (IOException ie) {

((ServerInterface) console).logError(tracer. getSource(),

ie.toString());

37

closeSock(sock c);
return,;
}
¢_header = new HTTPRequestHeader(sb.toString());
String server_adpt =""; // address and port
String server_addr ="";
Stﬁng doc ="/";
int server port = 80;
int loc=0;
if(c_header.URI == null || 'c_header. URLstartsWith("http://")) {
CIOS&;SOCk(SbCk_C);
retufn;
b

((ServerInterface)
console).logAccessLLOG_LEVEL_NORMAL, tracer.getSource(),
¢_header.getPrimeHeader());
((ServerlInterface)
console).logAccessLLOG_LEVEL_MINIMAL, tracer.getSource(),
sb.toString());
if{((loc = ¢_header.URLindexOf("/", 8)) <= 0) ¢
server_adpt = c_header.URLsubstring(7);

}

else {
server_adpt = c_header.URILsubstring(7, loc);
doc = ¢_header.URLsubstring(loc);

}
if((loc = server_adpt.indexOf(":")) <= 0) {

38

server_addr = server_adpt;
server_port = 80;
}
else {
server_addr = server_adpt.substring(0, loc);

server_port = Integer.parseInt(server_adpt.substring(loc+1));

}

[x* Checkl if request is in cache(for GET only)
ok |
if(using_cache && ¢_header Method.equals("GET")) {
pc = cachepool.getCache(c_header.URI);
if(pc — null) {
// Not in Cache
}
else {
// get header and content from cache
// then send it back to client
byte header[] = pc.getHeader();
byte content[] = pc.getContent();
try {
out_c.write(header); /, 0, header.length);
//System.out.printin("Using Cache " + ¢_header.URI);
//System.out.printIn("Header:["+ new String(header)+"] "
+ content.length);
if(content != null) {

out_c.write(content); //, 0, content.length);

39

} out_c.flush();
}

catch(IOException e) { System.out.println(e.toString()); }

closeSock(sock c); // close connection to client

return,;
;
}
/* Open a socket connection to remote server
%/ '

byte resp[] = new byte[2048];
int content len = 0;
int total len =0;
int len=0;
content_len = ¢_header.getContentLength(); // get content length
from client request
EOH = false; // flag End Of Header
try {
if(using_proxy) { // connect to another proxy server if using
proxy
sock s = new Socket(proxy addr, proxy port);
sock_s.setSoTimeoutLRECV_TIMEOUT); // set socket
time out
in_s = sock_s.getInputStream();
out_s = sock_s.getOutputStream();

}

else { // connect directly to remote web server

40

// open a socket to connect to server

sock_s =new Socket(server_addr, server port);

sock_s.setSoTimeout(RECV_TIMEOUT); // set socket
time out

// System.out.println("connected to : " + server addr+" , "

b

+ server port);

in_s =sock_s.getInputStream();

out_s = sock s. getOuiputStream();

// create the rﬁessage to send to server

sb =new Strithuffer();

sb.append(c_header.Method).append("
").append(doc).append("
").append(c_héader.Version).append(_CRLF);

Hashtable ht = c_header.getHeaderFields();

for (Enumeration enu = ht.keys(); enu.hasMoreElerhents() ;)

{

key = (String) enu.nextElement();
value = (String) ht.get(key);
if(key.equalsIgnoreCase("Proxy—Connection")) continue;
// bypass the proxy connection row
sb.append(key).append(":
").append(value).append(_ CRLF);
}
sb.append(CRLF);
}
// System.out.println("sending : \n" + sb.toString());

// write header message to server

41

out_s.write(sb.toString().getBytes(), 0, sb.toString().length());
out_s.flush();
// write content body to server if there is any
if(content len > 0) {
while(content_len > total len) {
if((len = in_c.read(resp)) <= 0) break;

total len += len;

// determine if need to show content
if(show_content) { ‘

o if(byte-ArTayOperatbr.isPrintable(resp, len)) {
| ((ServerInterface) console).showClientRequest(new |

String(resp, 0, len)); |
3

}
out_s.write(resp, 0, len);

out_s.flush();

}
sb = new StringBuffer();

/**

Read Server Response Header
sk /
while('EOH) {
if(in_s.read(onebyte) < 0) {
EOH = true;

continue;

42

oS s

} else
sb.append(new String(onebyte, "8859 1"));
if(sb.toString().endsWith(_CRLF2) ||
sb.toString().endsWith(_LF2)) {
EOH = true;

}

// send server response header

out_c.write(sb.téString().getBytes(), 0, sb.toString().length());

out c.flush();

// read server response body |

s_header = new HTTPResponseHeader(sb.toString());

// logging

((Serverlnterface)
console).logAccess(LOG_LEVEL NORMAL, tracer.getSource(),
s_header.getPrimeHeader());

((ServerInterface)
console).logAccess(_LOG_LEVEL_MINIMAL, tracer.getSource(),
sb.toString());

content len = 0;

total len =0;
len = 0;
/* Read Server Response Content
*/

content_len =s_header.getContentLength();
byte resp_content[] = null;

if(content_len > 0) {

43

im e

resp_content = new byte[content len];

int last _byte = 0;

while(content len > total len) {
if((len = in_s.read(resp)) <= 0) break;
if(using_cache || show_content) {

byteArrayQperator.copy(respﬁcontent, total len, resp, len);

}
total len += len;
out_c.write(resp, 0, len);

out_c.flush(); |

}

else { //if content length is ﬁot set
StringBuffer resp sb = neW StringBuffer();
Whilé((len = in_s.read(resp)) >=0) {
out_c.write(resp, 0, len);
out_c.flush();

if(using_cache || show_content) { // save content if using

cache
resp_sb.append(new String(resp, 0, len, "8859 2"));

}

if(using_cache || show content) resp content =
resp_sb.toString().getBytes("8859 2");
}

// determine if need to show content

if(show_content) {

44

if(byteArrayOperator.isPrintable(resp_content)) {

((ServerInterface) console).showServerResponse(new

String(resp_content));

Iy

/* Add Content to Cache
*/
if(using_cache && ¢_header.Method.equals("GET")) {
// add url, header, conterit to cachepool

cachepool.setCéche(c_header.URI, s_header.toString(),

resp _content);

}
§
catch(SocketException se) {

((ServerInterface) console).logError("Error: SocketExcéption,
", ¢_header.URI);

((Serverlnterface) console).logError(tracer.getSource(),

se.toString());

System.out.printin(c_header.URI + " " + se);
}
catch(IOException ie) {

((Serverlnterface) console).logError("Error: IOException, ",
¢_header.URI);

((Serverlnterface) console).logError(tracer.getSource(),

ie.toString());
// ie.printStackTrace();

System.out.println(c_header. URI + " " + ie);

45

} closeSock(sock c¢); // close connection to client
} // end of run()

} // end of ProxyConnection

46

11.2 SCREEN SHOTS

SAMPLE FRAME

.
g
Lo
@

w
E
4

a

I
iod
5

3

Admin View Setup Help

47

SERVER STARTED.....

flLoading ¢
Loaded
ey

[TN

. : o = ”

i

bayanihan-tux Triffian

i

; C:kmmwf}\’iym 3 Java HTTP Proxy ...
1

|

48

SET UP..

£ Java HTTP Proxy Server

Admin View Setup

Help

Number ’aéfThfézaﬂSiW» v snowen table Contefits 7

| Savei Canget 2 |

Receive TimeOut: [300

49

CLIENT REQUESTS..

[Client Reqmzéts
File

GET hitpi#us.i1 simg.comius: yimg. camiiusipimispinim_newusert GIFHTTEALG

Acoept #»

Referer. h!tp:;.finAfsz.mail.yannx:t.c‘::m,«‘;:ms‘lagin‘?.ranﬂ:baik@qh?n?bn

Accept-Language: en-us

Eiodified-Since: Fri, 15 Spr 1294 00:00:00 GMT: length=2718

User-Agent Mozillaid. 3 {ompatible; MSIE 8.0, wWindows NT £.4; Creative; NET CLR 1.0.2705)
Hest us.ityimg.com

Praxg-Connection: Keep-4live

GET nttp:;‘s’in.yimg.50mfifinispeu:ials:‘mailmant(ejanM.gif HTTRM.0

Acept

Referer: htfp:;;’in.f82.mail,;‘ahao.x:am;;m;‘lagin?rand:bafk@qh?n?bn

Accept-Language: en-us '

Progy-Connaction: Keep-ilive .

Lser-2gent Mozillafd.9 (compatible; MSIE 5.0 Windows NT 5.8, Creative; NET CLR 1.0.2705:
Host invimg.com

SET http:;fin.‘-;img.L:Qm,x‘i.»‘in,:‘am‘xjava.‘ct_,!rec_‘o}"z{]02,1'3 HTTRH.O
Accept s

Refersr: nttp::‘fin4f82.mail.yahax:s,csm;‘;‘mflogin?.rand:baSquh?n?’bH
Accepl-Language: en-us .

i-Kodified-Since: Thu, 12 Sep 2002 10:04:11 GHMT, tength=1335
User-Agent Moziflard.0 [compatible; MSIE 5.0 Windows NT 5.9; Creative, MET OLR 1.0.3705:
Hast inyimg.com

Praxg-Connection: Keep-slive

B eoxy r LW ."Egjaf«fa.... '

50

SERVER RESPONSES...
E

File

Server Responses

y=p.offsetHsight; »
while (p} {

sr=p.oftsetleft

y+=p.offaetTop;

p=p.ofisetParent;

b.

tile-behavior="urli#defaulclientCaps):
ee=thp="+hp?1:0)+/ct="+b connecticnType+¥sh= +5.height+/sw="vs width+7ch="+b.clientHeight+/cw=+b. clientidth+ =iy ey iagsv g
“IBCIipt>

shody=<ihtmi=

HTTPM.Q 200 QK

Content-Type: imagefpeg

Content-Length; 4292

Last-todified: Fri. 15 4pr 1994 00:00:00 QT

M8 .

Date: Mon, 15 Fab 2004 08:18 18 GHT

Expires: Thu, 15 &pr 204 20:00:00 GHIT

Age: 2086 -

X-Cache: HIT from cache

Connection: close

HTTPM.0 200 OK

Content-Type: image/gif

Content-Length: 1879

Last-Hodified: Fri. 15 Apr. 1984 00:00:00 OMT
XN S

Diate: Men. 16 Feb 2004 08:18:18 GMT
Expires: Thu, 15 Apr 2040 20:00:00 GMT
Age: 2091

A-Cache: HIT from cache

Connection: ciose

(‘ v
< :

tepant: . B serve..

51

P w3

VIEW- ACCESS LOG...

=]

HEWEL

B ey

bayanihan-tuy

i SR

52

Vo
L8

swilash[1]

af

Trilian

Egglava

dhwn...

Eg Access Log

Connection java: 34230
Cannection java: 191
Connection java 342
Connection jawa; 191

| Connection java:19
fConnection java: 34

Connection java3d
Cannection java: 19

HTTP:1.0 302 Koved Ter ~
GET hitp:4182.mait.yahoc
HTTP1.9 302 ttoved Ter
GET hitp:#in.f82.mail.yah
HTTP/1.0 200 OK (203.1
GET hitp:érs. websearch.
GET hitpuius ja vimg.co
HTTRM.0 200 GK (206.1
HTTP/1.0 304 Nat Modifis
GET hitpasus js1.vimag.co
HTTP/1.0 304 Not Madifis
GET hitp¥us js1.simg.co
HTTP1.0 304 tot KModifie
GET nftpiéus js1.yvimg.co
GET hitpitus js1.vimg.co
HTTPi1.0 304 Not Hodifi
HTTP/1.0 304 Mot Modifi

VIEW- WEB CACHE...

& Java HTTP Proxy Server
Admin View Setup Heip

=

whsy2yBnaz ;:é che
¢

i1

idprogicachel

1qb2slbvsdl cache

lubezusigl.cache

ipdpeshescs cache
A9awuhd7gil.cachs
pdcddyatyg.cache
ehtxwxsZlkk cache
UB8roz7 vy cachs
3Isglgjpbwe cache Lo
3hqedTvh.cache .SEB
czx2pjiudg.cache

Cache Viewer

&

_____ Select Dir L
- ViewDog %
' Save Dac i
: Remcvé ;
MIME Tyne;:.: &
apphcations-lavascript.

Q58pks1l cachs

2098 byte(s)
Cpiabgzcache ‘ o

i gimg.comiiniadwavalct_112004 3

e

