HOGHESSTHOUER 1NOWIENGE

DIGITAL IMAGE WATERMARKING
WITH HARDWARE KEY

A PROJECT REPORT
Submitted by
N. ARUN KUMAR (71202104003)

K.ML.DILIP (71202104059)
A.RAMAKRISHNAN (71202104061)

In partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
In

COMPUTER SCIENCE & ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE-641006

ANNA UNIVERSITY: CHENNAI 600 025

MAY 2006

ANNAUNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “Digital Image Watermarking with Hardware
Key” is the bonfire work of “Arunkumar.N, Dilip.K.M, Ramakrishnan.A” who

carried out the project work under my supervision.

L—/3 /
SIGNATURE

Dr. 5. THANGASAMY
HEAD OF THE DEPARTMENT

Computer Science & Engineering
Kumaraguru College of Technology
Chinnavedampatti (p-0)
Coimbatore-64 1006

T e . .i\-h—u* - .
LAY U N NP o N s
S 7 s

SIGNATURE
D.CHANDRAKALA
SUPERVISOR

ASSISTANT PROFESSOR
Computer Science & Engineering
Kumaraguru College of Technology
Chinnavedampatti {p-0)
Coimbatore - 641006

Submitted for viva-voce examination held on R Y

A Al gt

Internal Examiner

External Examiner

DECLARATION

We here by declare that the project entitled “Digital image Watermarking
with Hardware Key”, is a record of original work done by us and to the best of
our knowledge, a similar work has not been submitted tc Anna University or
any other institution for fulfillment of the requirement of the course study

This report is submitted in partial fulfillment of the requirements for the
award of the degree of bachelor of computer science and engineering of Anna

University, Chennai

™

L P N
—_—

T
L =i '
LA /\‘Eﬁ‘"\'

Place: Coimbatore (N.Arun Kumar) |
Date: Re-06 - 2ccs LA
T

(K.M.Dilip)

—
I 3
I

7 ¥ _fj?"
M—’f!‘v’ g

(A.Ramakrishnan)

it

ACKNOWLEDGEMENT

I would like to express my heartfelt thanks to Dr.K.K.Padmanaban,
Principal of Kumaraguru College of Technology, Coimbatore, for having
permitted me to do this project.

I thank Dr. S.Thangasamy, Department of Computer Science and
Engineering, for providing me an opportunity to take up the project and for his
continuous encouragement.

I express my sincere my gratitude to Mrs. P. Devaki, Project Coordinator,
for her valuable suggestions and valuable guidance throughcut project.

I am indebted to thank Mrs. D.Chandrakala, Assistant professor, Computer
science & Engineering Department for her valuable guidance given throughout
this project.

I'wish to convey my sincere thanks to my beloved Parents who gave me the
moral support in making this project a grand success.

Last but not the least, I express my gratitude to all my friends who brought in
the novel concept of “Knowledge Sharing” without which it would not have been

possible for me to have learnt more in this pace.

111

ABSTRACT

A watermark i3 a secondary image which is overlaid on the primary image,
and provides a means of protecting the image.

The Objective of the project is to avoid the hacking of the company picture
and provide security to the picture. Java and Visual Basic aze the languages usec

to develop this project.

The Major Modules of the Project are
1. Hardware Module
2. Software Module

This project helps to protect the pictures by using the company Logo. This
Project gives Security to Pictures and the Hardware Key gives Security to the
Software. The watermarked image created by this Software cannot be removed,
altered or damaged. It is used to protect documehts, Pictures and emblems. The
watermarked picture gives the authority or proof of our ownership.

Trail version will have only the limited features. The picture cannot be
saved in this version. In the trial version when we watermark a picture the tex:
“demo” will be added with the watermarking picture. The full version can be
accessed by using the hardware key. The hardware key should be connected ir.
the serial port to access full version of the software and if we remove the
hardware key from the serial port we can use only the trial version of software. Ir.
the full version of this project, we can save the watermarked image can be saved

in some particular format.

A%

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO
ACKNOWLEDGEMENT 1i1
ABSTRACT v
LIST OF FIGURES v
LIST OF ABBREVATIONS vi
1. INTRODUCTION

N2

1.1 Problem Definition

[

1.2 Existing System

Lad

1.3 Proposed System
2. ANALYSIS
2.1 Scope of the System
2.2 System Environment
2.2.1 Hardware Platform
2.2.2 Software Platform
2.3 Software Profile
2.3.1 Java
2.3.2 Visual Basic !

S A T o N« N S

-

LA

2.3.3 Assembly Language
2.4 Hardware Profile
2.4.1 IC 89C51 Microcontroller 1

2.4.2 Serial Interface

o G0 =)

]

243 RS 232 23
2.4.4 Max 232 1C 23

2.4.5 Serial port 24

PROJECT DESCRIPTION
3.1Project Specification
3.2 Implementation
3.3 Logical Design
3.3.1 Data Flow Diagram
3.32LEVELO
333 LEVEL1
3.3.4 Circuit Diagram
3.3.5 Screens
3.4 System Design
3.4.1 Input design
3.4.2 Output Design
LITERATURE REVIEW
4.1 COMPONENTS
4.1.1 Visual Components
4.1.2 Non Visual Components
MERITS OF THE PROPOSED SYSTEM
CONCLUSION
APPENDIX
7.1 PIN DIAGRAMS
7.1.1 LM 7805
7.1.2 IC 89C51
7.13 MAX 232
7.2 SAMPLE CODE
7.3 SCREENS
REFERENCES

1A
O

B
(@)

L)
0w

™~
A
—

-
Lrd

Crd

P
o

I
LA

LA
wh

h
N

FIGURE NO.

3.3.1
332
2321
T7.1.1
7.1.2
1.1.3

LIST OF FIGURES

TITLE

DEFD - LEVEL 0
DFD - LEVEL 1
CIRCUIT DIAGRAM
LM 7805

IC 89C51

MAX 232

PAGE NO.

LIST OF ABBREVATIONS

COM - Component Object Modet

DFD - Data Flow Diagram

VB - Visual Basic

AC - Alternative Current

DC - Direct Current

\Y - Voltage in Volts

IC - Integrated Circuit

TTL - Transistor — Transistor Logic

RS - Recommended Standard

SIC - Standard Industrial Classification
FIFO - First in first out

CPU - Central Processing Unit

UART- Universal asynchronous receiver and transmitter
RXD - Received Data

TXD - Transmitted Data

PCON- Power control

SCON- Serial control

TMOD- Timer Mode

SBUF- Serial Buffer

AWT - Abstract Windowing Toolkit

Vi

INTRODUCTION

1. INTRODUCTION
1.1 PROBLEM DEFINITION

The development of compression technology as JPEG allowed
the wide-spread use of multimedia applications. Nowadays, digital
documents can be distributed via the World Wide Web to a large
number of people in a cost-efficient way. The increasing importance of
digital media, however, brings also new challenges as 't is now
straightforward to duplicate and even manipulate multimedia content.
There is a strong need for security services in order to keep the
distribution of digital muitimedia work both profitable for the
document owner and reliable for the customer. Digital [mage
Watermarking technology plays an important role in securing the

images. The purpose of digital watermarks is to provide copyright

protection for intellectual propertv that's in digital format. The software
protects the images from copying and redistribution. It is not possible

to remove, alter or damage the watermarked images.

1.2 EXISTING SYSTEM

The Existing system doesn’t give picture protection. It also
affects the quality of the watermarked image. The software is easily
pirated by the user. The software key of the existing system 1s also
pirated by the users. So there is less security for both the picture and
software.

The watermarked picture of the existing system is edi‘ed easily
by the users. The system embeds the secondary image over thz primary
image. The Quality of the original contents is not same when compared

to the watermarked image quality.

The RGB Colors also affected, while we create a wa-er marked
image through existing system. It could affect the quality of the
Picture. The transparency of the secondary image in the watermarked

image also affects the visibility of the primary image.

1.3 PROPOSED SYSTEM

The proposed system should provide efficient usage of the
project for the customer. The project is developed for reducing the
software piracy. Our proposed system solves the drawback of existing

system by means of security for both picture and software.

The main concern of system is to protect the image used on the
webpage in the internet from coping and redistribution .The imgea are
watermarked so that it is not possible to remove.alter or damage those

images.

There is a strong need for security services in order to keep the
distribution of digital multimedia work - both profitable for the
document owner and reliable for the customer. Digitai Image
Watermarking technology plays an important role in securing the
images. The purpose of digital watermarks is to provide copyright
protection for intellectual property that's in digital format The software

protects the images from copying and redistribution.

While comparing to the existing software in the market, this
project gives security for both the software and the picture. Hardware
Key gives Security for Software. The watermarked image created by

this Software cannot be removed, altered or damaged.

Watermarked content has the same subjective quality as thz original
contents. In trail Version, We can only see the quality of the software.
There is no saving option in the trail version. We can save the

watermarked image only in full version.

ANALYSIS
—*_ﬁ%

2. ANALYSIS

2.1 SCOPE OF SYSTEM

The system is developed by taking into consideration, the
protection of images used on the web pages in the Internet. It protects
the images from copying and redistribution. A watermark is a
secondary image which is overlaid on the primary image and provides
a means for protecting the image. It is not possible to remove, alter or
damage the watermarked images.

The system is developed in two versions, the trial and full
versions. The trial version has its own limitations like the pictures can
be saved only in the fixed formats. While in the full verston, digital
walermarked images can be stored in the desired formats,
watermarking picture or text can be placed anywhere in the image and
the images can be opened, edited and saved. The full version can be
accessed using the hardware key. Multiple picture watermarking can
be done at the same time. The hardware key prevents piracy and

thereby highly secure than the serial key.

2.2 SYSTEM ENVIRONMENT

2.2.1 HARDWARE PLATFORM

CPU : Pentium IV

RAM : 256 MB

Hard Disk : 40 GB

Floppy Drive : 1.44 MB

CD Drive : 52X

Monitor : Plug and Play

Mouse . Logitech Scroll mouse
Keyboard 1 120 Keys

IC : 89C51

IC Programmer : SUPERPRO

2.2.2 S/W PLATFORM

Operating System : Windows XP

Programming Language : Java
Microcontroller Programming Assembly Language

Interfacing : Visual Basic

Components : COM

2.3 SOFTWARE PROFILE

2.3.1JAVA
MAIN

The main method can be put in any class, and you will find a lot

of programs that just stick it in the JFrame subclass. This style doesn't

create many problems, so it isn't much of a sin if you do it this way.

However, I've chosen another common way -- put it in a sepzrate class.

Ll

Most beginners understand this more easily, and feel
uncomfortable when main creates an object of its own class.
Moving main to its own class is simple, and makes the code
easier to understand.

Separating main makes it easier to change be:ween an
application and an applet without confusion. It's possible to put
main in a JApplet subclass, but again it leads to confusion with
no special advantage.

It moves main's unchanging window organization code to its
own place, away from other code so there is less confusion.
When main is in the same class as the GUI, there is a tsmptation
to try to reference instance variables from main, whica leads to
major headaches.

For simple programs a small main looks lonely in its own class,
but as programs grow larger, main will take on more
initialization and framework responsibilities, so putting it in its
own class gets you used to a style that will be useful when your

programs get larger.

DECLARATION

Some components will be created in the instance variable
declaration area, but components that are stored in local variables will
be created in the constructor. A slight inconsistency, which may be
irrelevant. If they are all initialized in the constructor, then there's only

one place to look for initializations.

Even if a component is created in the declaraticn, it is not
uncommon to set additional attributes, which must be done in the

constructor. This splits the code for the component into two rlaces.

The 1nstance variables are typically the "most interesting”
because they are used in multiple places. If they are all initialized at
their point of declaration, it's easy to find all of these variables and

their initial values.

WINDOW LISTENER

When a window of a program is closed, you typically want to
check to see if there is any unsaved data, and if so, ask the user if they

want to save it. To do this you need to add a window listener.

Although adding a window listener is the right way to handle the
close box click in a real program, simple programs often don't have any
state that needs to be saved, so I've used the common shortcut of
terminating the program when the window is closed. The default action
of closing a window just makes it invisible, but the program continues
to run, making it hard to stop the program, so it's essential to have

either this or a listener.

INTERFACES

More important than inheritance are interfaces. Agair, it is hard
to create small, real, examples of interface usage that can be related to
real student programs at a fairly early stage. Primarily interfacing is in
the form of ActionListener, is a good model for interfaces at an early

Stage.

AWT

Java's first attempt was called the Abstract Windowing Toolkit
(AWT). which was based on the underlying native system components.
Some AWT classes, not including components, are still commonly
used, which is why you typically have to import from both java.awt

and javax.swing

LAYOUTS

Layout managers eliminate the need to compute component
placement on your own, which would be a losing propositior. since the
size required for any component depends on the platform on which it is

displayed.

BORDER LAYOUT

Border Layout is the default LayoutManager for a Window. It
provides a very flexible way of positioning components along the
cdges of the window. The following call to setLayout() changes the
LayoutManager of the current container to the default BorderLayout:
setLayout(new BorderLayout()).

Border Layout is the only layout provided that requires you to
name components when you add them to the layout; if you're using a

Border Layout, you must use add(String name, Component

component) in Java 1.0 or add(Component component, Strirg name) in
Java 1.1 (parameter order switched). (The CardLayout can use these
versions of add(), but does not require it.) The name parame:er of add()
specifies the region to which the component should be added. The five
different regions are “North”, “South”, “East”, and “West” for the
edges of the window, and “Center” for any remaining interior space.
These names are case sensitive. It is not necessary that a conatainer use
all five regions. If a region is not used, it relinquishes its space to the
regions around it. If you add() multiple objects to a single ~egion, the
layout manager only displays the last one. If you want to display
multiple objects within a region, group them within a Panel first, then
add() the Panel.

public static final String CENTER
The CENTER constant represents the “Center” string znd

indicates that a component should be added to the center region.

public static final String EAST
The EAST constant represents the “East” string and indicates

that a component should be added to the east region.

public static final String NORTH
The NORTH constant represents the “North” string and

indicates that a component should be added to the north region.
public static final String SOUTH

The SOUTH constant represents the “South” string and indicates

that a component should be added to the south region.

10

public static final String WEST
The WEST constant represents the “West” string and indicates

that a component should be added to the west region.

public BorderLayout ()

This constructor creates a Borderl.ayout using a defauit setting
of zero pixels for the horizontal and vertical gaps. The gap specifies the
space between adjacent components. With horizontal and vertical gaps
of zero, components in adjacent regions will touch each other. As
Figure 7-4 shows, each component within a BorderLayout will be

resized to fill an entire region.

public BorderLayout (int hgap, int vgap)

This version of the constructor allows you to create a
BorderLayout with a horizontal gap of hgap and vertical gan of vgap,
putting some space between the different components. The units for
gaps are pixels. It 1s possible to have negative gaps if you want

cornponents to overlap.

GRID LAYOUT

The Grid Layout layout manager is ideal for laying out objects
in rows and columns, where each cell in the layout has the same size.
Components are added to the layout from left to right, top to bottom.
Set Layout(new GridLayout(2,3)) changes the LayoutManager of the

current container to a 2 row by 3 column Grid-Layout.

11

publie GridLayout ()

This constructor creates a GridLayout initially corfigured to
have one row, an infinite number of columns, and no gaps. A gap is the
space between adjacent components in the horizontal or vertical
direction. With a gap of zero, components in adjacent cells will have

no space between them.

public GridLayout (int rows, int columns)

This constructor creates a GridLayout initially configured to be
rows columns in size. The default setting for horizontal and vertical
gaps is zero pixels. The gap is the space between adjacent components
in the horizontal and vertical directions. With a gap of zero,
components in adjacent cells will have no space between them. You
can set the number of rows or columns to zero; this means that the
layout will grow without bounds in that direction. If both rows and
columns are zero, the run-time exception Illegal Argument Exception

will be thrown.

public GridLayout (int rows, int columns, int hgap, int vgap)

This version of the constructor is called by the previcus one. It
creates a Grid-Layout with an initial configuration of rows columns,
with a horizontal gap of hgap and vertical gap of vgap. The gap is the
space between the different components in the different directions,
measured in pixels. It is possible to have negative gaps if you want
components to overlap.You can set the number of rows or columns to
zero; this means that the layout will grow without bouncs in that
direction. If both rows and columns are zero, the run-time sxception

lllegal Argument Exception will be thrown.

12

SWING

Swing did not replace everything in AWT, therefore you will
use a mixture of the two. However, never mix the compornents from
Swing and AWT. The Swing component names generally start with 'J'
(eg JButton), and the AWT components don't (eg Button). Although
mixing the two types will not produce a compile-time error, the result
may not display correctly. The Graphics, Color, Font, layout, listener,
.. classes are from AWT, so you typically need to have imports from
AWT

It supports the Java Look and Feel interface which allows the
interface to be rendered very close to a native look, although not pixel-
perfect. This is the mainstream choice.

Jirames (and subclasses of them) have a content pane, which
holds the components, which are positioned by the layout manager
when pack() is called. There are no special problems with this, so if
you are just interested in getting your program running, stcp reading
now. What follows is information that will help you understand

variations you'll see in other programs.

Every JFrame comes with a content pane which has alrsady been
created. Here are some reasons the examples create a new JPanel
instead of using the preconstructed content pane. These don't form a
strong argument against using the predefined pane, but you'll see the
source of my preference. The overall layout of a window is often
created by nesting panels. If you're going to be creating panels and
working with them, it's easier to treat them all the same rather than

making the top-level content pane a special case.

getContentPane() returns a Container object. This isn't really a

plain Container object, but is actually a JPanel, which is a subclass of

13

JComponent, which is a subclass of Container! So if we get the
predefined content pane, it turns out it's actually a JPanel, bu: we really
can't take advantage of the functionality that was added ‘o a plain
container by JComponent and JPanel. If we dowrcast it to . Panel, we
create fragile code that might break because the contract with
getContentPane() is to return a Container, and there is no guarantee
that future versions will actually continue to return a JPanel. So if you
use: the returned Container you can't take advantage of useful JPanei

features like setBorder().

Before the Swing GUI library, there was no content pane and
components were added directly to the window (the old AWT Frame
class). This seemed easy and it was annoying to rewrite code to use the
content pane. But that was long ago, and for most of Java's history
programmers have been using the content pane. For some reason, Java
5 added the ability to add directly to the JFrame again -- probably
because it's been on some list of suggestions for a really long time, and
it was trivial to implement. They defined add() methods in JErame
which simply call the corresponding add() methods for tte content
pane. It seems bizarrely out-of-touch to add this feature now,
especially since most layouts have multiple nested panels so you still

have to be comfortable with adding directly to JPanels.

There is no problem if you want to use it, but whv bother
learning a minimally useful alternative when you have to know how to
add to a JPanel. Especially when they refuse to add useful features

because they are concerned about the every growing size o~ the Java

API.

14

2.3.2 Visual Basic

Visual Basic is used for interfacing the Hardware Key with

Software. We using COM object in this project for interfacirg.

COM - Component Object Model

» Com is a specification for a way of creating components and

building applications from these Components.

» Com was developed four years ago to make applicazions more

flexible, dynamic and customizable.

> E.g. :- Microsoft’s Active x Technologies are built from COM
components
Component is nothing but converting ordinary obiects into
persistence

Objects by means of
a) Properties
b) Event
¢) Introspection
d) Customization

e) Persistence or Consistence

Functionality of Components
First, we must understand how the component works and how its
functionality differs from the application.
We can analyze it in 3 ways
1. Analyzing Application Functionality
2. Component Reusability
3. Expert Functionality

15

Analyze Application Functionality

One of the main characteristic of a component is that the business
logic is separate from the data. While creating a component it is
important to manipulate data in arbitrary collections or streams.
Component Reusability:

The component produced should be of commercial viability.
Viability means able to continue to live under altered conditions.
Expert Functionality:

While writing component we should focus on Expertise and
knowledge. If the components developed from a scratch than we

should access whether we can provide superior solution.

16

2.3.3 Assembly Langunage
Assembly language is used to program in the microcontroller.

We can see the expansion of the commands used ‘n this project

* Equ-—equate a value to a particular variable

* Org - move to a particular address that is the ori gin

* Mov — move the address or value to a particular memory
location or register

* Anl- AND logic with the value and register

¢ Orl-OR logic with the value and register

* Setb —set 1 to the variable

s Acall - call to subroutine

* Sjmp — short jump to a particular memory location

¢ Nop - No operation

* Djnz - Decrement jump to a memory location while the
variable is not zero

¢ Ret—return

* Pcon - Power control

* Scon - Serial control

¢ Tmod - Timer Mode

¢ Tri— Timerl

17

2.4 Hardware Profile

2.4.1 IC 89C51 Microcontroller

Ports 0 To 3
PO, P1, P2, and P3 are the SFR latches of Ports 0.1, 2, and 3,

respectively.

Serial Data Buffer (SBUF)

The Serial Data Buffer is actually two separate registers, a
transmit buffer and a receive buffer register. When data is moved to
SBUF, it goes to the transmit buffer, where it is held for serial
transmission. (Moving a byte to SBUF initiates the transmission.)

When data is moved from SBUF, it comes from the receive buffer.

Timer Registers
Register pairs (THO, TLO) and (TH1, TL1) are the 16-bit

Counter registers for Timer/Counters 0 and 1, respectively.

Control Registers
Special Function Registers TMOD, TCON, SCON, and PCON
contain control and status bits for the mterrupt system, the

Timer/Counters, and the serial port.

TIMER/COUNTERS

The IC89C51 has two 16-bit Timer/Counter registers: Timer 0
and Timer 1. All two can be configured to operate either as Timers or
event Counters. As a Timer, the register is incremented every machine

cycle. Thus the register counts machine cycles. Since a machine cycle

18

consists of 12 oscillator periods, the count rate is 1/12 of the oscillator
frequency. As a Counter, the register is incremented in respense to a -
to-0 transition at its corresponding external input pin, TO ard T1. The
external input is sampled during S5P2 of every machine cyclz.

When the samples show a high in one cycle and a ‘ow in the
next cycle, the count is incremented. The new count value appears in
the register during S3P1 of the cycle following the one in which the
transition was detected. Since two machine cycles (24 oscillator
periods) are required to recognize a 1-to-0 transition, the maximum
count rate is 1/24 of the oscillator frequency. There are no restrictions
on the duty cycle of the external input signal, but it should be held for
at least one full machine cycle to ensure that a given level is sampled at
least once before it changes. In addition to the Timer or Counter
functions, Timer 0 and Timer | have four operating modes: [3-bit

timer, 16-bit timer, 8-bit auto-reload, split timer.

Timer 0 and Timer 1

The Timer or Counter function is selected by control kits C/T in
the Special Function Register TMOD. These two Timer/Counters have
four operating modes, which are selected by bit pairs (M", M0) in
TMOD. Modes 0, 1, and 2 are the same for both Timer/Counters, but

Mode 3 is different. The four modes are described in the following

sections.

Mode 0:
Both Timers in Mode 0 are 8-bit Counters with a divide-by-32
prescaler. It shows the Mode 0 operation as it applies to Time: : .
In this mode, the Timer register is configured as 2 13-hit

register. As the count rolls over from all 1s to all Js, 1t sets the Timer

19

interrupt flag TF1. The counted input is enabled to the Timer when
TRI =1 and cither GATE = 0 or INT1 = 1. Setting GATE = 1 allows
the Timer to be controlied by external input INTI, to faciiitate pulse
width measurements. TR1 is a control bit in the Speciai Function
Register TCON. Gate is in TMOD.

The 13-bit register consists of all eight bits of TH1 and the lower
five bits of TL1. The upper three bits of TL1 are indeterminate and
should be ignored. Setting the run flag (TR1) does not ciecar the
registers.

Mode 0 operation is the same for Timer 0 as for Timer 1, except
that TRO, TFO and INTO replace the corresponding Timer 1 signals in
Figure 8. There are two different GATE bits, one for Timer !
(TMOD.7) and one for Timer 0 (TMOD.3).

Mode 1:

Mode 1 is the same as Mode 0, except that the Timer register is
run with all 16 bits. The clock is applied to the combined high and low
timer registers (TL1/THI). As clock pulses are received, the timer
counts up: 0000H, 0001H, 0002H, ctc. An overflow occurs on the
FFFFH-t0-0000H overflow flag. The timer continues to count. The
overflow flag is the TF1 bit in TCON that is read or written by

software.

Mode 2:

Mode 2 configures the Timer register as an 8-bit Counter (TL1) with
automatic rcload. Overflow from TLI not only sets TF1. but also
reloads TL1 with the contents of THI, which is preset by software. The
reload leaves the TH1 unchanged. Mode 2 operation is tae same for

Timer/Counter 0.

20

Mode 3:

Timer 1 in Mode 3 simply holds its count. The effect is the same as
setting TR1 = 0. Timer 0 in Mode 3 establishes TLO and THO as two
scparate counters. The logic for Mode 3 on Timer 0 is shown in Figure
11. TLO uses the Timer 0 control bits: C/T, GATE, TRC, INTO, and
TFO. THO is locked into a timer function (counting machine cycies)
and over the use of TR1 and TFl from Timer 1. Thus, THO now
controls the Timer 1 interrupt. Mode 3 is for applications requiring an
exira 8-bit timer or counter. With Timer 0 in Mode 3, the ISRIC51 can
appear to have three Timer/Counters. When Timer 0 is ir Mode 3,
Timer | can be turned on and off by switching it out of and into its
own Mode 3. In this case, Timer 1 can still be used by the serial port as

a baud rate generator or in any application not requiring an interrupt.

2.4.2 SERIAL INTERFACE

The Serial port is full duplex, which means it can transmit and
receive simultaneously. It is also receive-buffered, which means it can
begin receiving a second byte before a previously receivec byte has
been read from the receive register. (However, if the first byte still has
not been read when reception of the second byte is complete, one of
the bytes will be lost.) The serial port receive and transmit registers are
both accessed at Special Function Register SBUF. Writing to SBUF
loads the transmit register, and reading SBUF accesses a physically

separate receive register.

The serial port can operate in the following four modes:

Mode 0:;

21

Scrial data enters and exits through RXD. TXD outputs the shift clock.
Eight data bits are transmitted/received, with the LSB first. The baud

rate is fixed at 1/12 the oscillator frequency .

Mode 1:

Ten bits are transmitted (through TXD) or received (through
RXD): a start bit (0), eight data bits, and a stop bit (1). On receive, the
stop bit goes into RB8 in Special Function Register SCON. The baud

rate 1s varable .

Mode 2:

Eleven bits are transmitted (through TXD) or received {through
RXD): a start bit (0), eight data bits, a programmable ninth data bit,
and a stop bit (1). On transmit, the ninth data bit can be assigned the
value of 0 or 1. Or, for example, the parity bit can be moved into TBS.
On receive; the ninth data bit goes into RBS :n Special Function
Register SCON, while the stop bit is ignored. The baud rate is

programmable to either 1/32 or 1/64 the oscillator frequency.

Mode 3:

Eleven bits are transmitted (through TXD) or receivec (through
RXD): a start bit (0), eight data bits, a programmable ninth: data bit,
and a stop bit (1). In fact, Mode 3 is the same as Mode 2 in al respects
except the baud rate, which is variable in Mode 3. In all four modes,
transmission is initiated by any instruction tha® uses SEUF as a
destination register. Reception is initiated in Mode 0 by the condition
RI =0 and REN =1. Reception is initiated in the other modes by the
incoming start bit if REN = 1|,

22

2.4.3 RS 232

Serial RS-232 (V.24) communication works with voltages (-15V ... -
3V for high [sic]) and +3V ... +15V for low [sic]) wnich are not
compatible with normal computer logic voltages. On the cther hand,
classic TTL computer logic operates between 0V __. +5V {roughly 0V
- 0.8V for low, +2V .. +5V for high). Moderm low-power logic

operates in the range of OV ... +3.3V or even lower.

So, the maximum RS-232 signal levels are far too high for
computer logic electronics, and the negative RS-232 voltage for high
can't be grokked at all by computer logic. Therefore, to reczive serial
data from an RS-232 interface the voltage has to be reduced, and the
low and high voltage level inverted. In the other direction (sending data
from some logic over RS-232) the low logic voltage has to be "bumped

up”, and a negative voltage has to be generated, too.
244 MAX 232 1C

The MAX232 was the first IC which in one package contains the
necessary drivers (two) and receivers (also two), ‘o adapt tke RS-232
signal voltage levels to TTL logic. It became popular, because it just
needs one voltage (+5V) and generates the necessary RS-222 voltage
levels (approx. -10V and +10V) internally. This greatly simplified the
design of circuitry. Circuitry designers no longer need to dzsign and
build a power supply with three voltages (e.g. -12V, +5V, and +12V),
but could just provide one +5V power supply, e.g. with the help of a

simple 78x05 voltage converter.

The circuitry is completed by connecting five capacitors to the
IC as it follows. The MAX232 needs 1.0uF capaciiors, the MAX232A

needs 0.1uF capacitors. MAX232 clones show similar differences. [t is

23

recommended to consult the corresponding data sheet. At least 16V
capacitor types should be used. If clectrolytic capacitors are used, the

polarity has to be observed.
2.4.5 SERIAL PORT

National Semiconductor has made the UART chips which have

driven the PC's serial port ever since the emergence of IBM's first PC.

PC could receive and transmit data at speeds of up to 56 Kbit/s
and, in the days of 4.77MHz bus speeds and serial printers, was
perfectly adequate. When the IBM-AT came along a new UART was
required because of the increase in bus speed and the fact that the bus
was now 16 bits wide. All serial data transfers are handled bv the CPU
and each byte must pass through the CPU registers to get to memory or
disk. This means that access times must be fast enough to avoid read
overrun errors and transmission latency at higher bit rates. Tha speed at
which data was routinely transmitted through the serial port was

significantly less than is possible with modern modems.

The delay is the bus latency time associated with servicing the
UART interrupt request. If the CPU cannot service the UART before
the next data byte is received (by the UART from the serial port), data
will be lost, with consequent retransmissions and zn inevitable impact

on throughput.

This condition is known as overrun error. At fow bit rates the
AT system is fast enough to read each byte from the UART receiver
before the next byte is received. The higher the bit rate at “he serial
port, the higher the strain on the system to transfer each by:e from the

UART before the next is received. Higher bit rates causes the CPU ‘o

24

spend increasing amounts of time servicing the UART, thus making

the whole system run inefficiently.

The previous problems by including First In First Out (FIFO)

buffers on the receiver and transmitter, which dramatically improve
performance on modem transfer speeds of 9.6 Kbit/s or higher.
The size of the receiver FIFO ensures that as many as 16 bytes are
ready to transfer when the CPU services the UART receiver interrupt.
The receiver can request transfer at FIFO thresholds of one, ~our, eight,
16 bytes full. This allows software to modify the FIFQ threshold
according to its current task and ensures that the CPU doesn't
continually waste time switching context for only a couple of bytes of
data received.

The transmitter FIFO ensures that as many as 16 bytes can be
transferred when the CPU services the UART transmit inte-tupt. This
recluces the time lost by the CPU in context switching. However, since
a time lag in servicing an asynchronous transmitter usualy has no
penalty, CPU latency is of no concermn when transmitting, although

ultimate throughput may suffer.

25

PROJECT DESCRIPTION
—_—

26

3. PROJECT DESCRIPTION

3.1 Project Specification
The Objective of our Project is to watermark the

Secondary Image with primary image for Security Purpose.

The Major Modules of the project are
1. Hardware Module
2. Software Module

I. Hardware Module:
The Inner Modules are
1. Power Supply
2. Serial Interface

3. Micro Controller

1. Power supply consists of a Transformer (Step Down) to transform
the 230V AC to 5V AC. The Diode Bridge is used to convert AC to
DC. Capacitors are used to reduce the noise and distortior. Voltage

Regulator regulates the voltage and gives constant output voltage.

2. Serial Interface is used to convert the TTL to RS232 Logic which is

understandable by system. It interfaces the data by VB.
3. Micro Controller consists of Assembly language code which gives

the key to the software. We use 10" and 11 pin, which are used to

receive and transmit the data respectively.

27

II. Software Module
The Tnner Modules are
1. Java Editor
2. Trail Version
3. Full Version

1. We create a Java Editor by using Layouts. It consists of Buttons,

Which is used to do the Specified Operation.

2. Trail Version is a version which consists of less number of
features. We can see only the work of the project. There is
another picture which is embedded with the watermarked 1mage
called Demo Version. We can not save the picture in this

version.

3. Full Version is accessed by the hardware key. In this varsion, we
save the picture in different file format. The key send by
hardware matches with another file, gets full version of the

project. The Demo picture is not embedded in this vers on.

3.2 IMPLEMENTATION

Implementation is one of the most important task in
project development phase, in which one has to be cautious bzcause all
the efforts undertaken during the project will be very irteractive.
Implementation is the most crucial stage in achieving successful
system and giving the users confidence that the new system 1s

workable and effective. Each program is tested individually at the time

28

of development using the sample data and has verified that these
programs link together in the way specified in the program
specification. The computer system and its environment are tested to
the satisfaction of the user.

The implementation phase is less creative than system design. It
is primarily concerned with user training, and file conversion. The
system may be requiring extensive user training. The initial parameters
of the Digital Image Watermarking with Hardware Key should be
medified as a result of a programming. The system developed is
completely menu driven. Further a simple operating procedure is
provided so that the user can understand the different functions clearly
and quickly.

The implementation of the project is done through following steps
a) Installing the windows XP with user permission
b) Establish VB in windows XP. Access the Full Version by invoking
the Content of the Hardware manipulation using Components too!.

While we connecting the hardware key to the power supply and
PC then the 230V power supply is given. The step down transformer
reduces 230V AC to 5V AC. Bridge rectifier converts A" to DC.
Voltage regulator is used to regulate the voltage and gives a constant
output as 5V.Capacitors used in this circuit, reduce the noise. Then the
SV is goes to Microcontroller circuit. The Microcontrolier sends the
data to the serial Interface circuit. Serial Interface circuit needs 12V
power supply. The capacitors acts as voltage pumpers and increase the
voltage to 12V. Serial Interface circuit converts the data fron TTL to
RS 232 logic

Layouts are used to create a Java editor for the project. We use
Border and Grid Layout. We browse the primary and secondary images

to be watermarked. We separate RGB colors from each pixel of the

29

pictures. We also calculate the weight, width and height of each color
in RGB. We merge the pixel of primary and secondary image by using
a formula.

[f it is trail version, then demo will also merged with the picture.
Demo version doesn’t have saving option. If the hardware key is
connected then the project converts to fuli version. The ccde checks
whether the hardware key is connected or not. Hardware key sends a
data to system. It is interfaced by VB and stored as a text file in the
system. The code checks the key with the first line of the text file.If
both the text is equal then it converts to full version.

We add the COM component in the VB. We select the port of
serial communication in the property page of COM object. The data
come from hardware key is stored as text in the text box. A file is
created in a particular path and the key is stored in that file. If the
hardware key removed then the code will automatically the file will be
deleted.

30

3.3 Logical Design

3.3.1 Data Flow Diagram

3.3.1.1 LEVEL 0

images to

Trail
Version

Primary and

Water Marked Image |
Secondary Image '

with JDemo Version
Labei

Be merged

Primary and Images to Full Water Marked Image |

Secondary Image Version without Demo |
Be merged \/ i Version Label

31

3.3.1.2LEVEL1

Merge Demo . ;
R Picture With W_atuur Marked Image !
 —— watermarked » with Demo Version
Image Labal
If it is not a valid key
i K
Primary an Interfacing Codin
Y and Images to > Creates a Checkgs for \
Secondary > File which is avalid Key |
Hardware

If it 1s a Valid Key

Select Saving

Water Marked

Merge
r s Format and
. . ; .
cecondary save the SEENN Image without
Y Picture .
Demo Version

Image

Li_abel

j .

32

A0S

&

SERIAL

DAmF

J —

1f

(AN}
£

=T

IMTERF.

n

o

33

18
15
=]
10MF

At g oA n e i oo
= e M A
FDPPD-‘-:-.-.

RRA R LR
i (] 1]
{PEF " AER

3.2 CIRCUIT DIAGRAM

-
-~

3.

10mF

3.4 SYSTEM DESIGN

3.4.1 INPUT DESIGN

Input design is the process of converting user oriented inputs to
a computer based format. The quality of the system input determines
the quality of system output. Input design determines the format and
validation criteria for data entering to the system.

Input design is a part of the overall system design, which
requires very careful attention. If the data going into the system is
incorrect then the processing and output will magnify these errors.
Input can be categorized as internal, external, operational,
computerized and interactive. The analysis phase should consider the
impact of the inputs on the system as a whole and on the other systems.

The main objectives considered dunng input design arz:

1. Nature of input processing

2. Flexibility and thoroughness of validation rules

3. Handling of priorities within the input documen:

4. Screen design to ensurc accuracy and efficiency of input

Relationship
with files.

5. Careful design of the input also involves attention to error aandling,
Controls, batching and validation procedures.

The key created by the hardware are checked by the program
and if it is matched then it is converted to full version. Any
abnormality found in the inputs are checked and handled eftectively.
Input design features can ensure the reliability of a system and produce

results from accurate data or they can result in the production of

34

erroneous information. Messages and prompts should be weli defined

in this Input design. Labels for menus, items and fields should be clear.

3.4.2 OUTPUT DESIGN

Output generally refers to the results and information that are
generated by the system. For many end users, outputs arc the main
reason for developing the system and the basis on which they will
evaluate the usefulness of the application. Most end-users will
noticeably operate the information system or enter data through
workstation, but they will use the output from the system.

The output design determines what information should be
present. It is also determines where to display, selection of output
medium and to print the information.

Interfacing is done by using Visual basic component. Interfacing
is taken place between Hardware key and coding. If the data send by
hardware key matches with the key used in coding, then this project
works as full version. Otherwise it works as a trail version. The
Hardware key determines the output design.

COM gives an interface among the hardware key and the coding.
Visual basic determines the output design of this project. If the key
matches then the output design is full version. Otherwise it is trail

version.

35

LITERATURE REVIEW
5—%

36

4. LITERATURE REVIEW

4.1 COMPONENTS
Component models are mainly of two types
1. Visual Components

2. Non-visual components.

Both can encapsulate either technical or business knowledge. The
differences between the two are dependent on functionality. If the
component provides only a benefit to the developer then the
component is categorized as technical.

Ex: - a TCP/IP communication library.

Business components provide a benefit to the developer and end-
user by encapsulating business knowledge.

Ex: - Address formatting and credit card validation components.

4.1.1 Visual Components
> In this project, it is able to create a complete User Interface on

Layout or with in a Windows application.

4.1.2 NON VISUAL COMPONENTS
» It do not provide Pre-designed presentation interface to the user.

> In this, Interface is not visible through property page.

37

MERITS OF THE PROPOSED SYSTEM
—_—

38

5. MERITS OF THE PROPOSED SYSTEM:

5.1 ADVANTAGES:

Perceptual transparency
Watermarked content has the same subjective quality as the
original contents.
Robustness
Nobody is able to remove, alter, or damage the
Watermarked image.
Security

Hardware key enables the security for the software.

3.2 ENHANCEMENTS:

Multiple Water Marking in a same time.

We implement the watermark in the picture as we want.
In the Trail Version, We only see the watermarked 1mage.
We cannot save it.

Only in full version, we export the file in various extensions.

39

CONCLUSION
——“__E

40

6. CONCLUSION

The project Digital Watermarking is designed and
developed for secure the picture and software. The application is
highly user friendly and the modules deal with the entire system
processing. The application is developed using Java as Prcgramming
language with Visual Basic for interfacing and assembly ianguage for
microcontroller programming.

The project Digital Image Watermarking using Hardware
key embeds copyright information such as author/owner/usage
restrictions into the original file, be it an original photograph and it is a
visible signature embedded inside an image to show authenticity or
proof of ownership. It is not possible to remove, alter or damage the
watermarked image. The purpose of digital image watermarking 1s to
provide copyright protection for the images to be used on the web
pages in the internet.

The system is very interactive so that the user can do the
operation of creating watermarked picture very easily and eftectively.
Once an image is posted on a web page, the image is unpro-ected and
can easily be copied and redistributed as an "original” if the image is
watermarked then image used will be protected. The customer secures
his pictures among the internet hackers. The code written in this
project is very clear. The system is tested with various sample data.
This package developed is tested with sample data, which provided the
satisfactory results. After the system has been implemented, the
maintenance of the system should be very easy so that the fothcoming

changes can be made easily.

41

APPENDIX
_ﬁ%

42

7. APPENDIX

a. PIN DIAGRAMS

LM 7805

i.

3
Dty

RS

1
e—

irout

ST T

I1C89C51

ii.

dunnntef moeeL,

) Wi, ¥ v 0 a4
L :- LI l- “v— 1 -—. - _ -u._ nn - __
S AARAY IR _W._ AR AN AN O
_I——I—::_I—_I——I_—I——I_—I_—I—-.:_—J—I——I—_I—_I—::—J

o
m 4..._ ey ..&_é_._ I

‘

4

w_ ey - 1 TV S T TR ﬁ ‘m .4.|m uh L &
] vy [T P PN T SR g | ..m .,.. [:.m Boord
= e e wa e g g 0 1 a._ Do
O T T L .._ 5— P _.r _.. = o

_m. ”__FT £ ore 1 ?

43

iil. MAX 232

]
t

: cl+ -11 161- vVveo

\ V+ - |- GND

A5 B |~ Tlout

1 Q2+ - - Rlin

I C2- - [- Rlout

: V- - [- Tlin

lT.’Zout -1 |- T2in

{ RZin -8 9i- RZout

\ Foem + r

IV. SERIAL CONNECTOR

9 Pin
Connector on
a DTE device

(PC
connection)

Male RS232 OISIOIORE!
DBY © @& @

Pin Ndmber o Dlrectlon of 5|g

Carrler Detect {CD) (from BCE) Incomlng s;gnal from a modem

Recelved Data {RD) Incomlng Data from a DCE
Transm:tted Data (TD) Outgoing Data to a DCE
Data Termlnal Ready (DTR) Outgomg handshaklng 3|gnal

;Slgnal Ground Common reference voitage
Data Set Ready (DSR) Incommg handshakmg signal
Request To Send (RTS) Outgomg flow control signal

Clear To Send (CTS) Incomlng flow control signal

O 0.~ O U'I-‘EADON...A

Rlng Indicator (R_I)__(from DCE)___I__r_tcommg signal from a mode

44

SAMPLE CODING:

Visual Basic:

Dim a As Long
Dim fso As New FileSystemObject, fl As File

Private Sub Form_Load()
MSComm1.PortOpen = True
End Sub

Private Sub Form_Unload(Cancel As Integer)
MSComm!.PortOpen = False
End Sub

Private Sub MSCommI_OnComm()
Textl. Text = MSComm1.Input

End Sub

Private Sub Timer! Timer()
a = Val(Textl.Text)

On Error Resume Next
Ifa=12100145 Then
Set fl = fso.CreateTextFile("c:\watermark\FileName.txt",
True)
Open "c:\watermark\FileName.txt" For Append As 1
Write #1, a
Close #1
Else
Kill "c:\watermark\FileName.txt"
End If
Textl. Text=""
End Sub

45

Assembly Language:

baudnum equ 0f3h
org 0000h
mov p3,#0ffth
mov a,#00h
anl pcon,#7fh
;set SMOD bit to 0 for Buad*32 rate
anl tmod,#30h
;alter timer T configuration only
orl tmod,#20h
: ;set timer T1 as an 8-bit autoload
mov thl ,#baudnum
;THI set for divide clock by 13d
setb trl
;T1 running at 1E6/13=76923Hz
mov scon,#40h
setb ren
11
mov a,#"1"
acall xmit
mov a #"2"
acall xmit
mov a,#'1"
acall xmit
mov a,#"0"
acall xmit
mOV a’#NOH
acall xmit

46

xmit
xmitl

return

delay
12
inl
dwait

mov a,#"1"
acall xmit

mov a,#"4"
acall xmit

mov a,#"5"
acall xmit

acall delay

sjmp 11

mov sbufa

jbc ti,return
nop
sjmp xmit|l

ret

mov r(,#01h
mov rl,#00h
mov r2,#00h
djnz r2,dwait
djnz rl,inl
djnz r0,in2
ret

47

Java Code:

import java.awt.*;

import java.awt.image.*;
import java.awt.event.*;
import java.io.*;

import java.net.*;

import java.util. Enumeration;

class Merge implements
ActionListener, WindowListener, IltemListener

{

Frame fr;

String Soption="";

String Aoption="Center";

Button BMerge,BQuit,BPBrowse,BPBrowsel ;

Label

LMerge,l Mergel ,LMerge2,LMerge3,. Emptyl,LEmpty2,LE
mpty3,Lab;

TextField TMerge, TMergel;

String Fname="";

Label LogoLab,saveText;

Label LEmp,I.Emp1 ,LEmp2,LEmp3,LEmp4;

TextField TLine,Topt;

public Merge()
{

fr = new Frame("Water Marking ");

BMerge = new Button("Merge");
BQuit = new Button("QUIT");

48

A

BPBrowse = new Button("Select"):;
BPBrowsel = new Button("Select");

TMerge = new TextF teld("",10);
TMerge! = new TextField("",10);

TLine = new TextField("",20);
Topt = new TextField("",20);

BMerge.addActionListener(this);
BQuit.addActionListener(this);

BPBrowse.addActionListener(this);
BPBrowsel -addActionListener(this);

fr.addWindowListener(this):

BMerge.setActionCommand("Merge");
BQuit.setActionCommand("QUIT");

BPBrowse.setActionCommand("PBROWS E");
BPBrowsel .setActionCommand("PBROWSE| ")

Lab = new Label("Water Marking ");
LogolLab = new Label("Logo Alignment ");
saveText = new Label("Select Save Option *);

Choice SeAlign = new Choice();
SeAlign.additem("Center")
SeAlign.addltem("Left");

SeAlign.addltem("Right");

2

SeAlign.addItemListener(this);

LMerge = new Label("Select First Image to Water
Mark : ");

LMergel = new Label("Select Second [mege to
Water Mark :™);

49

LEmp = new Label(" ");

LEmp2 = new Label(" ")
LEmp1 = new Label(" R
LEmp3 = new Label(" "
LEmp4 = new Label(" ")

Panel pn = new Panel();

fr.add("North",pn):
pn.add(LEmp3);
pn.add(Lab);
pn.add(LLEmp4);

Panel pl = new Panel();

Panel p2 = new Panel();

Panel p3 = new Panel();

Panel p4 = new Panel();
Panel p5 = new Panel();
Panel p6 = new Panel();
Panel p7 = new Panel();
Panel p8 = new Panel();
Panel p9 = new Panel();
Panel pl0 = new Panel();
Panel p11 = new Panel();
Panel p12 = new Panel();
Panel p13 = new Panel();
Panel p14 = new Panel();
Panel pl5 = new Panel();

fr.add("Center",p1);

pl.setLayout(new GridLayout(6,1));
pl.add(p2);
pl.add(p3);
pl.add(p4);
pl.add(p5);
pl.add(p8);
pl.add(p9);
pl.add(p10);
pl.add(pll);
pl.add(p12);
pl.add(pi3);

50

pl.add(p6);

p2.add(L.Merge);
p3.add(TMerge);
p3.add(BPBrowse);

p4.add(LMergel);
p5.add(TMergel);
p3.add(BPBrowsel);

pl2.add(LogoLab);
pl3.add(SeAlign);
pl3.add(LEmp4);

fr.add("South",p6);
p6.add(p7);
p7.add(LEmp3);
p7.add(BMerge);
p7.add(BQuit);
p7.add(LEmp2);

fr.add("East”,p14);
fr.add("West" p15);

fr.setResizable(false);
fr.setLocation(320,30);
fr.pack();
fr.setVisible(true);

1
)]

public void actionPerformed(ActionEvent event)

{

String txt = event.getActionCommandy()

if (txt.equals("Merge"))
{

String str = TMerge.getText();
String strl = TMergel .getText();

51

String str2 ="";

double wl = 0.5;
double w2 = 0.5;

Mergelmg icom = new Mergelmg(str, w1,
strl, wl,Aoption,str2);

§

if (txt.cquals("PBROWSE™))
{

String ofile = loadFile(fr, "BROWSE FILE TQ
Merge",".\\", n*_*u)

.
b

TMerge.setText(ofile);
]
§

if (txt.equals("PBROWSEL "))
d

String ofile = loadFile(fr, "BROWSE FILE TO
Merge",”.\\", n*'*lr)

3

TMergel .setText(ofile);
j

if (txt.equals("QUIT™))

{
fr.setVisible(false);
fr.dispose();

System.exit(0);

}

52

public String loadFile(Frame f, String title,String defDir,
String fileType)

{
FileDialog fd = new FileDialog(f);
td.setFile(fileType);

fd.setLocation(50, 50);
fd.setVisible(true);
String sFile = fd.getFile();

File fi = new File(sFile);
String s = fi.getPath();

return fd.getDirectory() +
System.getProperty("ﬁle.separator").charAt(O) + fd.getFile();

?

public static void main(String[] args)
{
Merge Open= new Merge():
5

public void windowClosing(WindowEvent) §
fr.setVisible(false);
fr.dispose();
System.exit(0);

}

public void windowClosed(WindowEvent ¢)
I
1
fr.setVisible(false);
fr.dispose();
System.exit(0);
5

public void windowDeactivated(WindowEvent) i
public void windowActivated(WindowEvent ¢) {}
public void windowDeiconified(WindowEvent ey {}
public void windowIconified(WindowEvent e) i
public void windowOpened(WindowEvent e) %

public void itemStateChanged(ItemEvent event)

{

53

Choice choice = (Choice)event.getSource();
String selection = choice.getSelectedltem();

String Aopt="";
String Sopt="":

if (selection.equals("Right™)) {

AOpt — "Right";
i

I (selection.equals("Left")) {
AOpt — "Left";
}

if (selection.equals("Center™))
Aopt = "Center";

j
Aoption = Aopt;

54

SCREENS:

* Water Marki ng

Water Marking
Select First Image to Water Mark : iC:IDOCUMEﬂI Select !
Select Second Imaoe to YWater Mark {CIDOCUME~TY Select]

Logo Aligrment ']Center -

QuUIT |

Water Marking

Select Firstirnage to Water Mark - | Selecll
Soheet Second Image o Water Mark - Select |

Logo Alignrent Center _~

Look in: |3 SUNSETS

g ‘i meos

_Lf) i 0an0s3s
My Focent 10930708
Merge | QUIT Documents Fnaagies

e :
[j} Xj1170858

- X 1440848
Detktos w5108
- ¥1710048
| rl7iese
- ¥l1710028
| 551780058
i X)17800%

MonGonk . e e e e
Places Fil e | "

Led L

Jaa Fies)

55

T Gl

Watar Marking

Select Fizet Imane to Waler Mark ; !C'\DOCUME«H Selegt

Salect Sscond image 1 Water Mark ; CADOCUME~1Y gelect

Logo Alignment

[75 =] san]

v et CUWINDO.. o WaterMan..

56

PRIMARY IMAGE:

* o VisualBasic .net

SECONARY IMAGE:

57

REFERENCES

_m

59

8. REFERENCES

1. Gary Comell, “Visual Basic 6 From the ground Up”, TATA
MCGRAW-HILL Publication (HILL Edition, 1999}

2. Dietel & Dietel,” Java 2 How to Program”, PEARSOM
Publication (Low Price Edition, 1999)

3. KennethJ.Ayala, “8051MicrocontrollerArchitect,
Programming,& Application” PENRAM Publication: (Second
edition 1997)

WEBSITES:
1. http://www.microcontrollers.com Referred Date: 9/9/2005
2. http//www.cosy.sbg.ac.at Referred Date: 5/./2006
3. http://www.research.ibm.com Referred Date: 9/9/2005
4. http://www.beyondlogic.org Referred Date: 25/1/2006
5. hitp://en.wikipedia.org Referred Date: 5/3/2006

60

