P-1637

WEB BASED BUG TRACKING APPLICATION

A PROJECT REPORT
Submitted by
Muthukumar. T 71202205025
Prithvirajkumar. D 71202205030
Siby Mathew Kuntharayil 71202205046

in partial fulfillment for the award of the degree
of
BACHELOR OF TECHNOLOGY
IN
INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE
ANNA UNIVERSITY: CHENNALI 600 025

APRIL 2006

ACKNOWLEDGEMENT

‘We express our sincere thanks to our chairman Arutchelvar
Dr.N. Mahalingam , B.S¢, B.Sc., F .I .E. and correspondent
Prof. K. Arumugam, B.E., M.S., M.LE., for all their support and ray of
strengthening hope extended.

We are immensely grateful to our principal Dr.K.K. Padmanabhan,
B.Sc., M.Tech., Ph.D., for his irvlvaluable support to the come outs of this
project.

We are extremely thankful to Dr. G.Gopalsamy, Ph.D., Head of the
Department, Department of Information Technology for his valuable advice
and suggestions throughout this project.

We are indent to express our heartiest thanks to Prof. K.R.Baskaran,
BE., M.S., project coordinator who has helped us to perform the project
work extremely well.

We are indent to express our heartiest thanks to Mr. E.A.Vimal,
ML.E., project guide who rendered his valuable guidance and support to
perform our project work extremely well.

We are also thankful to all the faculty members of the department of
Information Technology, Kumaraguru College of Technology, CBE for their
valuable guidance, support and encouragement during the course of our
project work.

‘We express our humble gratitude and thanks to our parents and family
members who have supported and helped us to complete the project and our
friends, for lending us valuable tips, support and co-operation throughout

our project work.

iii

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “WEB BASED BUG TRACKING
APPLICATION” is the bonafide work of “MUTHUKUMAR.T,
PRITHVIRAJKUMAR. D, SIBY MATHEW KUNTHARAYIL” who carried

out the project work under my supervision.

SIGNATURE SIGNATURE
Prof. Dr. G.Gopalsamy Mr. E.A.Vimal M.E.,
HEAD OF THE DEPARTMENT SUPERVISOR
Information Technology Information Technology
Kumaraguru College of Technology Kumaraguru College of Technology
Coimbatore - 641 006 Coimbatore — 641 006

The candidates with University Register Numbers 71202205025,
71202205030, 71202205046 were examined by us in the project viva-voce

examination held on

DECLARATION
We
Muthukumar. T 71202205025
Prithvirajkumar.D 71202205030

Siby Mathew Kuntharayil 71202205046
hereby declare that the project entitled “WEB BASED BUG TRACKING
APPLICATION” is done by us and to the best of our knowledge a similar work
has not been submitted to the Anna University or any other institution,for the
fulfillment of the requirement of the course study.
This report is submitted on the partial fulfillment of the requirements for all
awards of the Degree of bachelor of Information Technology of Kumaraguru

College Of Technology,Coimbatore.

Place: Cp M RATO RE

Date: o?ﬁ DL H006

Sttt

Muthukumar. T

Project Guided by
[Mr.E.A.Vimal ,M.E.] Prithvirajkumar.D
AN -

Siby Mathew Kuntharayil

ABSTRACT

Testing process in the software firms has been playing a major role
since a long time. Efficient means of testing are adopted widely at a very
improved pace. Our project handles one of the tasks in the testing process
which is keeping record of the commonly met errors. It also serves as a tool

to communicate with the testers and the developers workgroups.

Presently, testers of the organizations are at a different stage which is
away from the solution makers. Hence there is a lacking of discussions with
the error makers and the solvers. This leads to drastic problems in the future
progression of the development process. An efficient means to handle this
challenge is the main aim of our project. This web-based business
application is a great tool for assigning and tracking issues and tasks during
software development and any other projects that involve teams of two or
more people. The system is designed specifically with the IT department in
mind, where quick access to shared data and history is a requirement, both
from a internal organizational perspective, as well as to fulfill the needs of

the customers.

Bug track is a Web-based bug tracking, defect tracking, issue

tracking, used in a distributed team environment to track software bugs,

TABLE OF CONTENTS
CHAPTER NO. TITLE PAGE
ABSTRACT v
LIST OF TABLES ix
LIST OF FIGURES ix
1. INTRODUCTION 1
1.1 Existing system and its limitations 2
1.2 Proposed system and its advantages 2
2. IMPLEMENTATION DETAILS 3
2.1 Hardware Requirements 4
2.2 Software Requirements 4
3. LITERATURE SURVEY 5
3.1 Apache Tomcat Webserver 6
3.2 JDBC 10

3.3 Java Script 13

hardware. defects, test cases, or any other issues. It can also be used equally
well as a helpdesk customer support, email management system to collect
and manage customer feedbacks, incidents, requests, and issues. The
application itself can be installed virtually on any web server, whether
internal within the organization, or external, hosted by a web hosting
company. It is easy to use, but still flexible and adaptive, and can be

configured to fit to your organization's unique business process and

workflow.

vi
3.4 Ms-Access 14
3.5JSp 16
4. SOFTWARE DESIGN 23
4.1 Introduction 24
4.2 UML Diagrams 24
4.3 Input/Output Design 25
4.4 Process Design 28
4.5 Database Design 30
5. PRODUCT TESTING 32
6. FUTURE ENHANCEMENTS 35
7. CONCLUSION 37
8. APPENDIX 39
8.1 Sample Code 40
8.2 Sample Output 57
9. REFERENCES 68

viii

LIST OF TABLES

TABLE NO TABLE NAME PAGE NO
1. Project 30
2. Status 30
3. Bug Record 30
4. Priority 31
5. Employees 31

LIST OF FIGURES

FIGURE NO FIGURE NAME PAGE NO
1. Tomcat Server 7
2. Structure of Tomcat 9
3. JDBC-ODBC Connectivity 11
4. Usecase Diagram 24

1.0 Introduction
1.1 Existing system and its limitations:

The currently available testing process lacks communication between
the testers and the debuggers which is a drastic drawback in the software
development overflow. The existing applications comes with limited
functionalities. There is no reference to the bugs that are once solved and
lacks a shared resource so that the users,testers and the debuggers can have
a common perspective of the bugs that are been sorted out.It doesn’t have

mailing facility for communication between the work groups.

1.2 Proposed system and its advantages:

Our bug tracking application is deployed in a distributed environment
to record the commonly made errors in the process of software
development.All the users in different work groups can have a common
access to the bugs and provide suggestions for resolving them.Provision of
history lookup in which the solved errors are stored and can be retrieved
through queries .It uses a local domain mailing facility in which the
messages along with the bug reports can be sent to the respective users.The
system serves as a powerful communication tool between the testers and

debuggers.

1. INTRODUCTION

2. IMPLEMENTATION DETAILS

2.0 Implementation details

2.1 Hardware Requirements:

Motherboard
Cache
RAM

Hard Disk
Processor

Video System
Keyboard

2.2 Software Requirements:

Operatingsystem
IDE

Server

Client

Database

Intel 845GVSR.
32MB L1 Cache.
256MB.

40GB.

P4 (32 bit processor)

VGA or SVGA.
101 Keys enhanced.

Windows platform
NetBeans IDE 3.6
ApacheTomcat 5.0
Any web browser

Ms Access

3.0 Literature survey

3.1 Apache Tomcat Web server:

Programs need an environment in which to run within a host
computer. Sometimes the operating system is sufficient to provide the
environment, but at other times a more sophisticated container is needed.
Tomcat is a container that’s used to provide an environment for java code
running on a web server.

If you are going to be running java code on your web server (either in
the form of Servlets or java Server pages), then you will need appropriate
software for the purpose. An operating system isn’t enough as it won’t
provide your Java Runtime Environment nor your web server, nor the tools
to tie java to the web .You will need a container in which to run your
servlets and JSPs and the most commonly used container is tomcat.

‘What is Tomcat?

Tomcat is the servlet container that is used in the official Reference
Implementation for the Java Servlet and java Server Pages technologies .The
java servlet and java server pages specifications are developed by sun under
the java community process.

Tomcat is developed in an open and participatory environment and
released under the Apache Software licence. Tomcat is intended to be a
collaboration of the best-of-breed developers from around the world.

The Apache software foundation provides support for the Apache
community of open source software projects. The Apache projects are
characterized by a collaborative, consensus based development process, an

open pragmatic software license, and a desire to create high quality software

3. LITERATURE SURVEY

that leads the way in its field.

Amongst the projects that come under the “The Apache banner are the
container used for the majority of web sites world wide, Ant, (a build tool
which allows the developer excellent control of the compiling and the
bundling processes), and Jakarta.

Server
http P e
2 Connector Container (Catalina)
http
2 Connector Container (Jasper w/Catalina)
port 4454 (hitp, Coyote) 5P
; Appl
Proxy Connector
Container
Fig 3.1 (a)
7

Jakarta

The Jakarta Project creates and maintains open source solutions on the
Java platform for distribution to the public at no charge. Jakarta Products are
developed by and distributed through various sub projects. Jakarta is the
name for the Apache project which deals with the provision of open source
additions in Java. More than 20 such additions (known as sub projects) are

listed on their website, including Struts and Tomcat.

Tomcat

Tomcat is a servlet container for the Java Serviets and Java Server
Pages. It provides a Java Virtual Machine and associated elements to give a
complete Java Run time Environment, and it also provides web server
software to make that environment accessible on the Web. Configuration
and management tools are also provided, with configuration data largely
held in XML.

Its worth noting that Tomcat is much more than just an
implementation of Servlets and JSPS, it’s the official reference
implementation and the standard against which all other suppliers of
containers for Servlets and JSPs must measure their products. It means that
developers know that works under Tomcat that developers know that if they
develop code that works under Tomcat, that code should work under other
containers that conform to the standards set.

Tomcat itself has a number of elements to it such as Catalina, Coyote
and Jasper.

Each Tomcat service will have at least one (and possibly more)
connectors, and at least one (and possibly more containers) in which an

engine such as Catalina provides a service.

Server, Service, Connector, Container and Engine are all very flexibly
configurable, and the default application configuration can be overridden on
a per-application basis .The Tomcat Manager is a useful application which
runs in one of the standard Tomcat containers and is a used to control
loading, reloading and unloading of individual applications or of the engine

as a whole

3.2 JDBC (Java Data Base Connectivity):

JDBC is a SQL-level API- one that allows you to execute SQL
statements and retrieve the results, if any. This AP is a set of interfaces and

classes designed to perform actions any database.

Catalina

Catalina is the servlet Container portion of Tomcat.

Coyote

Coyote is the Web connector

Jasper

Jasper is the JSP Engine that’s used in Tomcat from version 4.1

The structure of Tomecat
Tomcat runs as a Windows service or a Linux or Unix Daemon,
awarding connections (by default) on port 8080. A single instance of Tomcat

can provide several services, though this is unusual.

Apache
HTTP Server t Jakarta
Tomcat Struts
Struts is an Apache
Project- an sibling
of
Ant and Jakarta
Catalina Coyote Jasper
Fig3.1(b)

Result Set Result Set Result Set

Statement

l Prepared | Callable

Connection

L

Driver Manager

Access Driver 1 I JDBC-ODBC Bridge l Sybase Driver

ODBC

Sybase
Database

imis

Access
Database

ODBC
Database

Fig 3.2 JDBC-ODBC connectivity

1

The JDBC API, found in the java.sql package, contains only a few
concrete classes. Much of the API is distributed as database-neutral interface
classes that specify behavior without providing any implementation. Third-
party vendors provide the actual implementations.

An individual database system is accessed via a specific JDBC driver
that implements the java.sql.Driver interface. Drivers exist for nearly all-
popular RDBMS systems, though few are available for free are free. Sun
bundles a free JDBC-ODBC bridge driver with the JDK to allow access to
standard ODBC data sources, such as a Microsoft Access Database.
However, Sun advises against using he bridge driver for anything other that
development and very limited deployment. Serviet developers in particular
should heed this warning any problem in the JDBC-ODBC Bridge driver's
native code section can crash the entire server not just your servlets.

JDBC drivers are available for most database platforms, form a number of
vendors and in number of different flavors. There are four driver categories:
Type 1: JIDBC-ODBC Bridge Driver

Type 1 use a bridge technology to connect a Jaca client to a n ODBC
database service. Sun's JDBC-ODBC bridge is the most common type 1
driver. These drivers are implemented using native code.

Type 2: Native-PI Partly-Java Drivers

Type 1 drivers wrap a thin layer of Java around database-specific
native code libraries. For Oracle databases. the active code libraries might be
based on the OCI (Oracle Call Interface) libraries, which were originaily
designed for C/C++ programmers. Because Type 2 drivers are implemented

using native code, in some cases they have better performances that their all-

Protocol(HTTP)". The computer running the web browser that makes the
request is known as the client and the computer satisfying the client’s
requests is called the Server.

The main reason for using Java Script in this project is its wide spread
use and availability. Java Script is very versatile and not just limited to use
within a web browser.

Advantages of Java Script

Java Script is having more advantage over competing scripting
languages like VB Script, which are,

1. Capable of running in any Browser

The java Script is capable of running in any browser like Netscape

navigator, Internet Explorer and others, at the other scripting language

VB Script can only be run on Internet Explorer and Perl.

2. Managing Administration Tasks

Java Script is used to automate computer administration tasks. It can

also be used for Interacting with the users and getting information

from them and validating their actions.

3.4 Ms-Access:

Access is used as back end. It allows creation of tables and queries in
an easier way and it does not place much constraint before the user.
Conversion of existing ODBC databases is also a good advantage of using
Access. Forms can also be prepared in Access and when converted into

MDE files give us a read only design of code and forms.

Java counter parts. They add an element of risk, however, because a defect
in driver's native code section can crash the entire serve.
Type3 : Net-Protocol All-Java Driver

Type 3 drivers communicate via a generic network protocol to a piece
of custom middleware. The middleware component might use any type of
driver to provide the actual database access. Web Login's Tengah product
line as an example. These drivers are all Java, which makes them useful for
applet deployment and safe for servlet deployment.
Typed: Native-Protocol All=Java Driver

Type 4 drivers are the most direct of the lot. Written entirely in Java.
Type 4 drivers understand database specific networking protocols and can
access the database directly without any additional software.

A list of currently available JDBC drivers can be found at
http:/javasun.com.products/jdbc/jdbe.drivers.html.

3.3 Java Script:

Java Script is an Interpreted language, rather then a compiled
language. The Java Script code runs inside a web page loaded into a
browser. All we need to create is a text editor like windows notepad, and a
web browser such as Netscape Navigator or internet Explorer, with which
we can view our pages. These browsers come equipped with Java Script
interpreters. Basically the job of a web browser is to hold lots of web pages
on its hard drive. Then when a browser usually on a different computer
requests a web page that is contained on that web server, the web server load
it from its own hard drive and then pass the page back to the requesting

computer via a special communication protocol called "Hyper Text Transfer

13

Access provides extensive new features to easily use the Internet and
develop a World Wide Web (WWW) application. We need a web browser,
such as Microsoft Internet Explorer, and a modem, Intranet Connection, or
other network connection to access the Internet and take advantage of these
features.

Access provides complete documentation for the tables created and
also provides the option of viewing the relationships used in creating tables.
Foreign Key can be created using the relationship window.Access also
comes with wizards under all its options i.e., under tables, Queries, reports,
etc... All these wizards help the user to help the user to work in a flexible
and interactive environment.

We can use Access to create a World Wide Web Application. For
example, we can create a corporate home page, an online magazine or
newsletter, a registration system for a trade show, or online product catalog.
to create this web application, we output objects to HIML format or use the
Publish to the Web Wizard.

We can export reports to static HTML format and you can export
datasheets and forms to static and dynamic HTML format. Access created
web page for each report page, datasheet, and form you export. Exporting
objects to HTML format is useful for creating a simple web application,
verifying the format and appearance of an object's output, or adding files to

existing web applications.

3.5 Java Server Pages (JSP):

The java 2 Enterprise edition j2ee has taken the once chaotic task of
building an internet presence and transformed it to the point where
developers can use java to efficiently create multi-user, server-side
applications. Today, the java Enterprise API’s have expanded to encompass
a number of areas: RMI AND CORBA for remote object handling ,JDBC
for database interaction ,JNDI for accessing naming and directory services,
Enterprise JavaBeans for creating reusable business components, JMS
TM(java Messaging service)for message-oriented middleware, jaxptm for
xml processing ,and jtatm (java transaction api) for performing atomic
transactions. In addition, j2ee also supporters Servlets ,an extremely popular
java substitute for cgi scripts. The combination of these technologies allows
programmers to create distributed business solutions for a variety of tasks.

In late 1999,sun Microsystems added a new element to the collection
of enterprise java tools: java server pages (JSPs).java server pages are built
on top of java Servlets and are designed to increase the efficiency in which
programmers, and even nonprogrammers, can create web content .this book
is primarily about java Server pages, covering the latest version of this
technology,jsp1.2,as well as the related jsp standard tag library (jstl) version
1.0 It also covers other j2ee technologies, such as Servlets and jdbc ,with

focus on how to combine them with jsp in the most efficient way.

What is Java Server Pages?
Java Server Pages is a technology for developing web pages that
include dynamic content .unlike a plain HTML page, which contains static

content that always remains the same, a jsp page can change its content

16

‘Why use JSP?

In the early days of the web, the common gateway interface (cgi) was
the only tool for developing dynamic web content. However, cgi is not an
efficient solution .for every request that comes in, the web server has to
create a new operating system process, load an interpreter and a script,
execute the script ,and then tear it all down again .this is very taxing for the
server and doesn’t scale well when the amount of traffic increases.
Numerous cgi alternatives and enhancements, such as fastcgi, mod perl
from apache, SAPI from Netscape, isapi from Microsoft, java Servlets from
sun Microsystems, have been created over the years .While these solutions
offer better performance and scalability, all these technologies suffer from a
common problem: they generate web pages by embedding HTML directly in
programming language code .this pushes the creation of dynamic web pages
exclusively into the realm of programmers. java Server pages ;however

changes all that.

Embedding dynamic elements in HTML pages

JSP tackles the problem from the other direction .instead of
embedding HTML in programming code; jsp lets you embed special active
elements into HTML pages. These elements look similar to HTML
elements, but behind the scenes they are actually

Componentized Java programs that the server executes when a user
requests the page. Here's a
simple JSP page that illustrates this:
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core” %>
<htm[>

<body bgcolor="white">

based on any number of variable items, including the identity of the user, the
user’s browser type, information provided by the user, and selections made
by the user. This functionality is key to web applications such as online
shopping and employee directories, as well as for personalized and
internationalized content .

A JSP page contains standard markup language elements, such as
HTML tags, just like a regular web page. However, a jsp page also contains
special jsp elements that allow the server to insert dynamic content in the
page .jsp elements can be used for a variety of purposes, such as retrieving
information from a database or registering user preferences. when a user
asks for a jsp page, the server executes the jsp elements, merge the results
with the static parts of the page, and sends the dynamically composed page
back to the browser.

JSP defines a number of standard elements that are useful for any
web application, such as accessing JavaBeans components, passing control
between pages and sharing information between requests, pages and users.
Programmers can also extend the jsp syntax by implementing application
specific elements that perform tasks such as accessing databases and
enterprise JavaBeans, sending email, and generating HTML to present
application specific data. One such set of commonly needed custom
elements is defined by a specification related to the jsp specification: the jsp
standard tag library (JSTL) specification. The combination of standard
elements and customs elements allows for the creation of powerful web

applications

<jsp:useBean id="clock" class="java.util. Date" />
<c:choose>
<c:when test="$ {clock.hours < 12}">
<h1>Good morning!</h1>
</c:when>
<c:when test="$ {clock.hours < 18}">
<h1>Good day!</h1>
</c:when>
<c:otherwise>
<h1>Good evening!</h1>
</c:otherwise>
</c:choose>
Welcome to our site, open 24 hours a day.
</body>
</html>
This page inserts a different message to the user based on the time of
day: "Good morning!" if the local time is before 12 P.M,, "Good day!" if
between 12 P.M. and 6 P.M., and "Good evening!" otherwise. When a user
asks for this page, the JSP-enabled web server executes the logic represented
by the highlighted JSP elements and creates an HTML page that is sent back
to the user's browser. For example, if the current time is 8:53 P.M., the

resulting page sent from the server to the browser looks like this:

<html>
<body bgcolor="white">
<h1>Good evening!</h1>

Welcome to our site, open 24 hours a day.

19

</body>
</html>

In addition to the HTML-like JSP elements, a JSP page can also
contain Java code embedded in so-called scripting elements. This feature has
been part of the JSP specification from the very first version, and it used to
be convenient for simple conditional logic. With the introduction of the new
JSP Standard Tag Library (JSTL), however, Java code in a page is rarely
needed. In addition, embedding too much code in a web page is no better
than using HTML elements in a server-side program, and often leads to a
web application that is hard to maintain and debug. The examples in this

book rarely use scripting elements.

Compilation

Another benefit that is important to mention is that a JSP page is
always compiled before it's processed by the server. Remember that older
technologies such as CGL/Perl require the server to load an interpreter and
the target script each time the page is requested. JSP gets around this
problem by compiling each JSP page into executable code the first time it's
requested (or on demand), and invoking the resulting code directly on all
subsequent requests. When coupled with a persistent Java virtual machine on
a JSP-enabled web server, this allows the server to handle JSP pages much

faster.

Integration with enterprise Java APIs
Finally, because Java Server Pages are built on top of the Java
Servlets API, JSP has access to all the powerful Enterprise Java APIs,

including:

20

will be around for a long time,with reasonable assurances that new versions
will be backward-compatible; with a proprietary technology, this is not
always a given. JSP is an integral part of J2EE, a complete platform for
enterprise class applications.

This means that JSP can play a part in the simplest applications to the

most complex and demanding.

«JDBC
* Remote Method Invocation (RMI) and OMG CORBA support
* JNDI (Java Naming and Directory Interface)
» Enterprise JavaBeans (EJB)
« JMS (Java Message Service)
* JTA (Java Transaction API)
* JAXP (Java API for XML Processing)
« Java Mail
Thi

@

means that you can easily integrate Java Server Pages with your

existing Java Enterprise solutions.

Advantages of JSP

JSP 1.2 combines the most important features found in the alternatives:
» JSP supports both scripting- and element-based dynamic content and
allowsProgrammers to develop custom tag libraries to satisfy
application-specific needs.
* ISP pages are compiled for efficient server processing.
* JSP pages can be used in combination with Serviets that handle the
business logic, the model supported by Java servlet template engines.
In addition, JSP has a couple of unique advantages that make it stand
out from the crowd:
> JSP is a specification, not a product. This means vendors can
compete with different implementations, leading to better
performance and quality.

It also leads to a less Obvious advantage, namely that when so many

companies have invested time and money in the technology, chances are it

4. SOFTWARE DESIGN

23

4.0 Software Design
4.1 Introduction:

A Software Design is a model of a real world system that has many
participating entities and relationships. This design is used in a number of

different ways.It acts as a basis for detailed implementation

4.2 UML Diagrams:
UML is a notation that is used for developing software blue prints.It

is an object oriented modeling technique.

USECASE DIAGRAM

- 2’<’;nc¥ude>> bugreport

<<include>>

employee

<<include>>

priorities

Fig 4.2

BUG REPORT

axress [6] hitp:focabhost: 6004 bugkrack,_pfBuoRecordjsp?
e

@
Bug TmckingTo Add Bug

® Administration

Tnsert) Cancel
T ICF]

Fig 4.3 (b)

26

4.3 Input/Output Design:

QUERY PAGE

Fie Edt View Favortes Tods Help

9 S seareh w‘ﬁe@ é7(~

icence pate reco High __|pandi

online stack ighest | durai Open
3 online stock High | pandi Closed
4 orfine group portal Highest |pandi Open
7 __|Creste buttans instead of ks online stock managsment |Highest |senthil Open
8 Etror during generation online book store Highest [senthil On hold
17| Mobile admin online book store Lowsst |Balaji Open
18 |interfage aniine group portal Highest |venkatesh__ |Open
19| Character mismatch licence plats reco Highast |venkatesh |Open
23 isi ing [licence piate reco Normal [rangar: Gpon

Fig 4.3 (a)

25

MAIL

Fio Et Vew Favertes Took Hep

S KeFwem @ 2 % - B

data interdependence error

Fig 4.3 ()

27

4.4 Process Design:

SEQUENCE DIAGRAM

B S) “"’;T'

imin !iﬂ" project | mm’_m

— ?‘?"L‘??'f‘.e S update
B
i |
add/delete update
‘ ‘ >
I J ‘ send mail ' ;" e
‘ ‘ ‘ o [
! | 1 \
| ’ } ‘r
f createfedit
L HMJT%#T’) 77777urp\tle >}\.
| | i
(=
\ f | } i
i | | send mail |
" ! >:‘ update |
\ I
{ ‘ | |
! ! i &
| | i
I
|
Fig 4.4 (a)
28
4.5 Database Design:

project_id [The key field present to identify a project bug which
becomes a foreign key field

project name \Name of the project module in which the error has happened

| manager_id Name given to the person for receiving mail

status_id The unique identifier for a status to set for the Errors

status Description of the status levels

date_resolved

|The due date for the Error to be solved

| project | Uniquely identifies a project with a n error
| bug_id Distinguishes a bug
priority_id Lists the priority for the bug
status Sets status
bug_name Name of the Error found
bug_desc Details of the Error
resolution The steps to solve the Error
assigned_by One who finds the Error
assigned_to 'The person to whom it is assigned to solve
i date_assigned . {The date on which the Error was found

30

COLLABORATION DIAGRAM

1: add/delete) 3: add/delete .
~ *-}7 7’ . E,,, ”mi;gm'ect ‘
7T N
7:sendmall ‘ \ 1
. | . |
| AN | 4 update
v ‘ U~ 2: update 1 i
|12 sendmail N v
{ AN 9 retum
N | 14: retum
i . Bupdate g updare >
} 10: createledit'. | 11UPdAte 13 ypdate
f L ' ! —> > |
Tougrerer] , mei o,
:%, f | —2 =
Fig 4.4 (b)
29

IThe identifier used to be set for the Errors found
priority_desc |Description for the priority level

priority_id

employs ifferentiates an employee whi a primary key field
employee_name Name of the person who is employed
login The unique id assigned for the person
pass The password that restricts the entry for the employees
email Email id to be identified among the employees i
security_level The permission level given to the entry of the person !
31

5. PRODUCT TESTING

32

System testing:

The system is tested against the system requirements to see if all the
requirements are met and if the system performs as per the specified

requirements . The system is tested as a whole to check for its functionality.

Validation testing:

This test is done to check for the validity of the entered input. The
input is provided for admin, employee’s user id and password. Invalid

characters and symbols are recognized and properly handled.

34

5.0 Product testing

Testing is done to detect the errors in the software .This implies not
only to the coding phase but to uncover errors introduced in all the previous

phases .The following are the types of tests that were performed.

Unit testing:

Each and every module is tested separately to check if its intended

functionality is met .Some unit testing performed are,

® Checking for proper connectivity between the client and web server

module

e Verification of the mailing ensuring correctness of the transmission

along with message and report

Integration testing:

It is the testing performed to detect errors on interconnection between
modules. Here, all the modules pertaining to the client system and server
system are combined to form the client and server applications respectively
and tested to ensure that they work in synchronization and without

interference from each other.

33
P-1637
6. FUTURE ENHANCEMENTS
35

6.0 Future Enhancements

Our project “WEB BASED BUG TRACKING APPLICATION” is
designed in such a way that future enhancements can be made in an easy
manner.The project is quite flexible and can be customized according to the
user’s requirements.

One possible enhancement to the project is adding of testing
tools.Testing tools like Rational robot,Rational test manager can be easily
embedded in our software. This aids in testing being performed in the same
software independent of others.

Another useful enhancement is the automation of mailing facility.In
this automated mailing,mail will automatically be sent to the respective user

with the reports and the message immediately after the bugs are tracked.

36

7.0 Conclusion:

The complete design and development of the system is presented in
this dissertation.The system has user friendly features and can be configured

to fit to your organization's unique business process and workflow.

The programming techniques used in the design of the system provide
a scope for further expansion and implementation of any changes,which may
occur in the future.The system has been tested with many client side
browsers and they provide satisfactory performance.

The main aim behind the development of this system is to facilitate
the IT community to keep record of the commonly met errors in the software
development process and provision of an easy and efficient mean of

communication between the tester and developer.

38

7. CONCLUSION

8. APPENDIX

39

8.0 Appendix

8.1 Sample code:

Administration.jsp

<%(@ include file="Common.jsp" %><%!

static final String sFileName = "Administration.jsp";

static final String PageBODY = "bgcolor=\"#F3F2E6\" text=\"#000000\"
link=\"#800000\" vlink=\"#000080\" alink=\"#0000FF\"";

static final String FormTABLE = "border=\"1\" cellspacing=\"0\" cellpadding=\"2\"
bordercolorlight=\"#000000\" bordercolordark=\"#FFFFFF\"";

static final String FormHeaderTD = "align=\"center\" bgeolor=\"#669999\"";

static final String FormHeaderFONT = "style=\"font-size: 12pt; color: #FFFFFF; font-
family: Arial, Tahoma, Verdana, Helvetica; font-weight: bold\"";

static final String FieldCaptionTD = "bgcolor=\"#B3B300\"";

static final String FieldCaptionFONT = "style=\"font-size: 10pt; color: #000000; font-
family: Arial, Tahoma, Verdana, Helvetica\"";

static final String DataTD = "bgcolor=\"#FOFOFO\"";

static final String DataFONT = "style=\"font-size: 10pt; color: #000000; font-family:
Arial, Tahoma, Verdana, Helvetica\"";

static final String ColumnFONT = "style=\"font-size: 10pt; color: #000000; font-family:
Arial, Tahoma, Verdana, Helvetica; font-weight: bold\"";

static final String ColumnTD = "bgeolor=\"#B3B300\"";

%><%

String cSec = checkSecurity(3, session, response, request);

if ("sendRedirect".equals(cSec)) return;

boolean bDebug = false;

String sAction = getParam(request, "FormAction");

String sForm = getParam(request, "FormName");

String sAdministrationErr = "";

String sLoginErr = "";

40

<td valign="top">
<% Administration_Show(request, response, session, out, sAdministrationErr, sForm,
sAction, conn, stat); %>
</td>
<ftr>
</table>
<table>
<tr>
<td valign="top">
<% Login_Show(request, response, session, out, sLoginErr, sForm, sAction, conn, stat);
%>
</td>
</tr>
</table>
<center> </center>
</body>
</htmi>
<%%>
<%
if (stat !=null) stat.close();
if (conn != null) conn.close();
%>
<%!
void Administration_Show (javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response, Jjavax.servlet.http.HttpSession session,
Jjavax servlet jsp.JspWriter out, String sAdministrationErr, String sForm, String sAction,
Jjava.sql.Connection conn, java.sql.Statement stat) throws java.io JOException {
try {
outprintln(" <table border=\"1\" cellspacing=\"0\" cellpadding=\"2\"
bordercolorlight=\"#000000\" bordercolordark=\"#FFFFFF\">");

42

Jjava.sql.Connection conn = null;
Jjava.sql.Statement stat = null;
String sErr = loadDriver();
conn = cn();
stat = conn.createStatement();
if (! sEmr.equals("™)) {
try {
out.printin(sErr);
}
catch (Exception €) {}
}
if (sForm.equals("Login")) {
sLoginErr = LoginAction(request, response, session, out, sAction, sForm, conn, stat);
if ("sendRedirect".equals(sLoginErr)) return;
3
Yo>
<htmb>
<head>
<title>Administration</title>
<meta name="GENERATOR" content="YesSoftware CodeCharge v.1.2.0 / JSP.ccp
build 05/21/2001"/>
<meta http-equiv="pragma" content="no-cache"/>
<meta http-equiv="expires" content="0"/>
<meta http-equiv="cache-control" content="no-cache"/>

text/html; charset=ISO-8859-1">

<meta http-equiv="Content-Type" content=
</head>

<body bgcolor="#F3F2E6" text="#000000" link="#800000" vlink="#000080"
alink="#0000FF">

<jsprinclude page="Header.jsp" flush="true"/>

<table>

<tr>

41

outprintln(" <tr>\n <td align=\"center\" bgcolor=\"#669999\"><font
style=\"font-size: 12pt; color: #FFFFFF; font-family: Arial, Tahoma, Verdana, Helvetica;

font-weight: bold\">Administration</td>\n </tr>");
out.print(" <tr>");
// Set URLs

String fldemployees = "EmployeeList.jsp";
String fldpriorities = "PriorityList.jsp";
String fldprojects = "ProjectList.jsp";
String fldstatus = "StatusList.jsp";
// Show fields
outprint("n <td bgcolor=\"#FOFOF0\"><font
style=\"font-size: 10pt; color: #000000; font-family: Arial, Tahoma, Verdana,
Helvetica\">Employees</td>\n\n ~ </tr>\n\n <te>");
out.print("n <td bgcolor=\"#FOFOFO\"><font
style=\"font-size: 10pt; color: #000000; font-family: Arial, Tahoma, Verdana,
Helvetica\">Priorities</td>\n\n ~ </tr>\n\n <tr>");
outprint("n <td bgcolor=\"#FOFOFO\"><font
style=\"font-size: 10pt; color: #000000; font-family: Arial, Tahoma, Verdana,
Helvetica\">Projects</td>\n\n ~ </r>\m\n ~ <tr>");
out.print("n <td bgcolor=\"#FOFOFO\"><font
style=\"font-size: 10pt; color: #000000; font-family: Arial, Tahoma, Verdana,
Helvetica\">Statuses</td>");
outprintin("n </r>\n </table>");
}
catch (Exception ¢) { out.println(e.toString()); }
}
String LoginAction(javax.servlet.htp. HttpServletRequest request,
Jjavax servlet.http. HttpServietResponse response, javax.servlet.http. HttpSession session,
javax.servlet jsp.JspWriter out, String sAction, String sForm, java.sql.Connection conn,
Jjava.sql.Statement stat) throws java.io.IOException {
String sLoginErr ="";

43

try {
final int iloginAction = I;
final int ilogoutAction = 2;
String transitParams = "";
String sQueryString = "";
String sPage = "";
String sSQL="";
int iAction = 0;
if (sAction.equals("login")) iAction = iloginAction;
if (sAction.equals("logout")) iAction = ilogoutAction;
switch (iAction) {
case iloginAction: {
// Login action
String sLogin = getParam(request, "Login");
String sPassword = getParam(request, "Password");
Jjava.sql.ResultSet rs = null;
ts = openrs(stat, "select employee_id, security_level from employees where login
=" +toSQL(sLogin, adText) + " and pass=" + toSQL(sPassword, adText));
if (rs.mext()) {
// Login and password passed
session.setAttribute("UserID", rs.getString(1));
session.setAttribute("UserRights", rs.getString(2));
sQueryString = getParam(request, "querystring”);
sPage = getParam(request, "ret_page");
if (! sPage.equals(request. q JRE)) && ! "".equals(sPage)) {
try {
if (stat !=null) stat.close();

if (conn !=null) conn.close();
3
catch (java.sql.SQLException ignore) {}
response.sendRedirect(sPage + "?" + sQueryString);

44

style=\"font-size: 12pt; color: #FFFFFF; font-family: Arial, Tahoma, Verdana, Helvetica;
font-weight: bold\">Login</td>\n </tr>");
if (sLoginErr.compareTo("") 1=0) {
outprintln(" <tr>\n <td colspan=\"2\" bgcolor=\"#FOFOFO\"><font
style=\"font-size: 10pt; color: #000000; font-family: Arial, Tahoma, Verdana,
Helvetica\">"+sLoginErr+"</td>\n </tr>");
}
sLoginEr="";
out.println(" <form action=\""+sFileName+"\" method=\"POST\">");
out.println(" <input type=\"hidden\" name=\"FormName\" value=\"Login\">");
if (session.getAttribute("UserID") == null || ((String)
session.getAttribute("UserID")).compareTo("™) == 0) {
// User did not login
outprintln(" <tr>\n <td bgeolor=\"#B3B300\"><font style=\"font-size: 10pt;
color: #000000; font-family: Arial, Tahoma, Verdana, Helvetica\">Login</td><td
bgcolor=\"#FOFOF0\"><input type=\"text\" name=\"Login\" maxlength=\"50\"
value=\""+toHTML(getParam(request, "Login"))+"\"></td>\n </tre>");
outprintin(" <tr>\n <td bgcolor=\"#B3B300\"><font style=\"font-size: 10pt;
color: #000000; font-family: Arial, Tahoma, Verdana,
Helvetica\">Password</td><td bgeolor=\"#FOFOF0\"><input type=\"password\"
name=\"Password\" maxlength=\"50\"></td>\n ~ </tr>");
outprint(" <tr>\n <td colspan=\"2\"><input type=\"hidden\"
name=\"FormAction\" value=\"login\"><input type=\"submit\" value=\"Login\">");
out.println("<input type=\"hidden\" name=\"ret_page\" value=\""+sPage+"\"><input
type=\"hidden\" name=\"querystring\" value=\""+sQueryString+"\"></td>\n </form>\n
<tte>";
}
else {
/1 User logged in
String sUserID = dLookUp(stat, "employees", "login", "employee_id =" +
session.getAttribute("UserID"));

46

return "sendRedirect”;
}
}
else sLoginErr = "Login or Password is incorrect.";
rs.close();
break;
}
case ilogoutAction: {
// Logout action
session.setAttribute("UserID", "");
session.setAttribute("UserRights", ");
break;
}
}
}
catch (Exception €) { out.println(e.toString()); }
return (sLoginErr);
}
void Login_Show(javax.servlet.htp. HttpServletRequest request,
Javax.servlet.http. HttpServletResponse response, javax.serviet.http.HttpSession session,
javax.servlet jsp.JspWriter out, String sLoginErr, String sForm, String sAction,
java.sql.Connection conn, java.sql.Statement stat) throws Jjava.io.IOException {
try {
String sSQL="";
String transitParams = "";
String sQueryString = getParam(request, "querystring");
String sPage = getParam(request, "ret_page");
outprintln(" <table border=\"1\" cellspacing=\"0\" cellpadding=\"2\"
bordercolorlight=\"#000000\" bordercolordark=\"#FFFFFF\" border=1>");
outprintln(" <tr>\n <td align=\"center\" bgcolor=\"#669999\" colspan=\"2\"><font

45

out.print(" <tr><td bgcolor=\"#FOFOFO\"><font style=\"font-size: 10pt; color:
#000000; font-family: Arial, Tahoma, Verdana,
Helvetica\">"+sUserID+" "+"<input type=\"hidden\"
name=\"FormAction\" value=\"logout\"/><input type=\"submit\" value=\"Logout\"/>");
out.print("<input type=\"hidden\" name=\"ret_page\" value=\""+sPage+"\"><input
type=\"hidden\" name=\"querystring\" value=\""+sQueryString+"\">");
outprintin("</td>\n </form>\n </r>");
}
out.println(" </table>");
}
caich (Exception €) { out.println(e.toString()); }
}
%>

Mail Composer
<%@page contentType="text/html"%>
<%@page pageEncoding="UTF-8"%>
<%(@page import="java.sql.¥"%>
<%@page import="javax.swing.*"%>
<%(@page import="java.util.*"%>
<%!
String uid;
%>
<%
try{
Class.forName("sun.jdbc.odbe. JdbcOdbeDriver");
System.out.println("Driver Registered in matching");
Connection
con=DriverManager.getConnection("jdbc:odbe:bugtrack”,"","");
System.out.printin("Connection Established matching");

st=con.cr);

47

stl=con.cr 0;

ResultSet rs=st1.executeQuery("select * from employees”);
uid=request.getParameter("uid");

String to=request.getParameter("T1");

String subject=request.getParameter("T2");

String body=request.getParameter("TA");

java.util.Date d=new java.util.Date();

inti=2;

if({(to==null))

while(rs.next())
{
String uname=rs.getString(3);
if(uname.equals(to))

int month=d.getDate();
int day=d.getDay();
int year=d.getYear();
int hour=d.getHours();
int sec=d.getSeconds();
int min=d.getMinutes();
year=year-100+2000;
String status= hour+":"+min+":"+sec+"::"+day+":"+month+":"+year;
String query="insert into mail
values("+uid+","+o+","+subject+","+body+", "+status+")";
int v=st.executeUpdate(query);
i=1;
}
}
if(i==2)

48

<INPUT TYPE="submit" VALUE="Send">

</FORM>

</BODY>

</HTML>

Mail Inbox
<%(@ page language="java" %>
<%(@ page contentType="text/html"%>
<%(@ page import="java.sql.*" %>
<%!
Connection con;
%>
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
| <title>New Page 1</title>
</head>
<%
String wel=request.getParameter("uid");
%>
<body bgcolor="#FFCCCC">
<p align="center">INBOX

 &ubsp;
 &ubsp; &mbsp;

50

JOptionPane.showMessageDialog(null, "INVALID USER", "INVALID USER",
JOptionPane. ERROR_MESSAGE);

}

if(i==1)

{

response.sendRedirect("Default.jsp");

}

}

}eatch(Exception ex1){System.out.println(ex1);}

%>
<HTML>
<TITLE>Easy Mail - New</TITLE>
<BODY BGCOLOR=#ffda75>
<CENTER><H2>New Mail</H2></CENTER>
<p>

<FORM ACTION="composer.jsp" METHOD="get" >
<p>To
: <INPUT
TYPE="text" NAME="T1"></p>
<pP>
Subject :
<input type="text" name="T2" size="20"><P>
Message :
<TEXTAREA NAME="TA" COLS="60" ROWS="20">
</TEXTAREA>
<P><input type=hidden name=uid value=<%= uid%>>

 &nhsp;

 &nhsp; &ubsp;

49

 WELCOME : <%= wel %></p>
<p align="center"> </p>
<form method=get action="updatedmail jsp">
<input type=hidden name=uid value=<%= wel %>>
<table border="1" width="98%" id="table1">
<tr>
<th width="140" align="center">SENDER</th>
<th width="505" align="center">SUBJECT</th>
<ftr>
<%
String user;
String add;
String subject;
String body;
try{
Class.forName("sun.jdbc.odbe.JdbcOdbeDriver”);
System.out.printin("Driver Registered");

con=DriverM: getC ion("jdbe:odbe:bugtrack”, "™, ";

System.out.println("Connection Established");

Q

st=con.cr 0

ResultSet res=st.cxecuteQuery("select * from mail");
System.out.println("RecordSet Created");

int val=1;

int counter=1;

while(res.next())

user=res.getString(1);
add=res.getString(2);
if(add.equals(wel)) {
subject=res.getString(3);
body=res.getString(4);

51

out.printin("<tr><td>"+user-+"</td><td>"+subject+"</td><td
><input type=checkbox name=c"+val+"></td></tr>");
counter++;
val++;
}
}
}eatch(Exception exp){System.out.println(exp);}
%>
</table>
<center> <p><input type="submit" value="Delete"> </p>
</center>
</form>
</body>
</htm}>

Mail Out

<%(@page contentType="text/html"%>
<%@page pageEncoding="UTF-8"%>
<%(@page import="java.sql.*"%>
<%(@page import="javax.swing.*"%>
<%@page import="java.util. *"%>
<html>

<%

String counter=request.getParameter("counter");
int counterl=Integer.parselnt(counter);
String user=request.getParameter("uid");
String sender=null;

String subject=null;

String body=null;

String datev=null;

52

<p align="left"> </p>

<p align="left"><font size="4"
color="#0000FF">SENDER &
nbsp;

<%= sender%>
</p>

<p align="left"><font size="4"
colm="#()000FF">SUBJECT

<%= subject %></p>

<p align="left">DATE OF SEND :<%= datev
Y%o></p>

<p align="left"><font size="4"
co]01="#0000FF">CONTENT

<%= body%></p>

<p align="left"> </p>

<p align="left"> </p>

</htmf>

Update Mail

<%(@ page langvage="java" %>

<%(@ page contentType="text/html"%>
<%(@ page import="java.sql.*" %>

<%

int count;

String cname=null;

String add=null;

String spl=null;

%>

<%

54

%>
<%
try{
Class.forName("sun.jdbc.odbe.JdbeOdbeDriver™);
System.out.printin("Driver Registered in matching”);
Connection

con=DriverM: getCe ion("idbc:odbe:t e,
System.out.printla("Connection Established matching");

Statement st=con.createStatement();

Q

stl=con.);
ResultSet rs=st].executeQuery("select * from mail");
int counterv=1;

while(rs.next())

{

String uname=rs.getString(2);
if(uname.equals(user))

{

if(counterv==counterl)

{

sender=rs.getString(1);
subject=rs.getString(3);
body=rs.getString(4);
datev=rs.getString(5);

}

}

}
catch(Exception ex1){System.out.printin(ex1);}
%>
<body bgcolor="#FFCCCC">
<p align="center">MESSAGE CONTENT</p>

53

String wel=request.getParameter("uid");

%>

<html>

<head>

<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>New Page I</title>

</head>

<body bgcolor="#FFCCCC">

<%

try{

Connection con=null;
Class.forName("sun.jdbe.odbe.JdbcOdbeDriver");
System.out.println("Driver Registered");

con=DriverM: getCi ion("jdbe:odbe:t k",
System.out.printin("Connection Established");

for(int i=1;i<15;i++)

{

if(request.getParameter("c"+i)!=null)

{

Q

st=con.cr 0;

Q

stl=con.cr 0;

ResultSet rs=st1.executeQuery("select * from mail where address");
System.out.printin("ResultSet Created");

int counter=0;

while(rs.next())

{

if(rs.getString(2).equals(wel))

{

counter++;

if(counter==j)

55

{

String query="delete from mail where userid=""+rs.getString(1)+" and
subject="+rs.getString(3}+"

st.executeUpdate(query);

}catch(Exception €){

System.out.printin(e);

}

%>

<p align="center">MAIL HAS BEEN DELETED
</p>

</body>

</html>

Qs - © - B B Bl Psewr grrivess @] - 5 EM-L .
§ dudress ﬁVnm:mxmw/hwnwmm.;sw
@ Adminishvofion | @ MAIL

m Tracking | easise

(e Concel

58

8.2 Sample output:

Remove ListOfVal licenca plate reco High _|pandi
2 |Reneme URL to Param online stock management | Highest | durai
3 [ShowADQ property page [oniins stock igh__[pandi
4 | Add: QDBC anline group portal Highest | pandi Open
7 |Create buttons instead of inks|aniine stock ighest | senthil Open
8 |Emor during generstion anline book store Highest [senthil On hold
17| Mobie admin online.bookstore Lowest |Balaji Open
16 |interface online group portal Highest |venkatesh — [Open I
19 _|Character mismateh licence plate reco Highest [venkatesh | Open i
23 _|Characctor misintorpreting __[licance piate reca [Nomal [rangaraj | Gpen

Fs Edt View Favorites Took Hely
Qoeck - 5~ @ @ 0P sch Fefavorres & 2
11 ioress [emifiocabon 3084 bugrack fspfhdiistration o

BUg Tmcking ®AddBug | @ Adminshotion | @ MAIL

59

i Fle ER Viw Favodtes Todks. Hep

|2 Empioyee List. . Microsoft Intervet Fxplorer

[Oma- OB A B Aot Hrown &

sciess |) hapijfocaost: o004 bucirack spEmloyortst 0

Bug Tracking | e assw

® Admiistration & MAIL

nowhare. com
Balail [balajirk@nowhers.com

temy@nowhere.com
ignesh@nowhere.com

60

Bug Tracking

|Edit{fac recoginition senthil

| Edit{licence plats reco pandi

Edit online book store durai
Edit{online group portal venkatesh
Edit| online stock management | Administrator

L IS tocntronet

3 fmployee Majotenance

- Microsoft ntet net Explorer

;HB_EQMFM-S Tooks " Help .
[0 - OB BB L s dros @

§ Acites [oo ocabost conabovack pfErvloyestin 57

Bug Tracking | ‘e Adibu | & admisroion | @ mar

&G loca rtranet

61

P-1les7

B Project Maintenance - Kicrosoft ftornet Fxplorer
|; Fle ER View Favortes Took Help o
Q- DB @ Pk ke &1 B - D E D

1 i [i acoosgen. st 7

Bug Trccking ®AddBug: [@ Administration | @ MAIL

~ AddiEdit Project
iway ficket resenvetion system _

63

Explorer
Fio ,E’, M Favories Tools Help
Qosck - O - B @) B sewch deravortss B 13+ §

m:mjej epiocabast:B054 bugtrock,ispMal o

BUg Tracking ®AddBug. | @Adminishotion | @ MAIL

Login

st
Compose : Compose a New Mal To the Engloyee

INBOX : View a New Mail

64

Flo Edt Vew Favortes Tools: Help

Quet - & RP B Lsemn hros 855 DR D

66

y Mail - Now Microsoft inf

65

Microsoft I
Fe Edt Vew Favorkes Tods Hep

Qock - 0@1’:}&‘9% Srraveres e

67

9. REFERENCES

68

9.0 References

9.1 Books:
1) ”The Complete Reference Java2” Herbert Schildt,Edition 5
2) "Java Script Bible”, Danny Goodman,Michael Moorison,Edition 5
3) "Database Programming with JDBC and Java”,George Reese

4) “Java Servlet programming”,Jason Hunter,Edition 2

9.2 Web Sites:
1. http:/fwww.java.sun.com/
2. http:/fwww.servilets.com/
3. hutp://www javascript-coder.com/
4. http:/fwww.webreference.com/

69

