P- ibys

IMAGE SEGMENTATION FOR MRI BRAIN TUMOR

A PROJECT REPORT
Submitted by
V.DIVYA 71202205012
SOUMYA VENUGOPALA MENON 71202205049
J.VITHYA 71202205057

in partial fulfillment for the award of the degree
of
BACHELOR OF TECHNOLOGY
IN
INFORMATION TECHNOLOGY

BONAFIDE

KUMARAGURU COLLEGE OF TECHNOLOGY

ANNA UNIVERSITY: CHENNAI 600 025

APRIL 2006

ANNA UNIVERSITY: CHENNAI 600 025
BONAFIDE CERTIFICATE
Certified that this project report “IMAGE SEGMENTATION FOR MRI
BRAIN TUMOR?” is the bonafide work of “Ms. V.DIVYA, Ms.

SOUMYA VENUGOPALA MENON and Ms. J.VITHYA” who carried

out the project work under my supervision.

o) W“M’ﬁ ?mmw
SIGNATURE SIGNA'

Dr.G.Gopalsamy Mr.K.Ramasubramaniam
HEAD OF THE DEPARTMENT SUPERVISOR

Lecturer
Dept of Information Technology, Dept of Information Technology,
Kumaraguru College of Technology, Kumaraguru College of Technology,
Coimbatore — 641006. Coimbatore — 641006.

71202205049, 71202205057 were examined in the project viva-voce
examination held on .. 47.. 04,2906,

These candidates with University Register Nos. 71202205012, DECLARATION

K/K\/C\Aw (¢l
INTERNAL EXAMINER E}éré’ﬂ@@%mﬁﬁ “w

DECLARATION

We,
V.DIVYA 71202205012
SOUMYA VENUGOPALA MENON 71202205049
JLVITHYA 71202205057

Declare that the project entitled “IMAGE SEGMENTATION FOR MRI
BRAIN TUMOR?”, submitted in partial fulfillment to Anna University as the
project work of Bachelor of Technology (Information Technology) Degree, is a
record of original work done by us under the supervision and the guidance of
Mr.K Ramasubramaniam, M.E., Lecturer, Department of Information
Technology, Kumaraguru College of Technology, Coimbatore.

Place: Coimbatore
Date: 2% 64 -2606

Vi
[V.DIVYA]
)

[SOUMYA VENUGOPALA MENON 1

[J.VITHY.

Project Guided by

[My.K.Ramasubramanians, M.E.,]

ACKNOWLEDGEMENT

With all humility and sincerity, we express our gratitude to all those who
have helped us in the completion of this project.

We use this opportunity to thank Dr.K.K.Padmanabhan B.Sec. (Engg).,
M.Tech., Ph.D., Principal, Kumaraguru College of Technology, Coimbatore, for
his kind patronage.

We express our sincere gratitude to Dr.G.Gopalsamy, Ph.D., Professor
and Head of the Department of Information Technology, for the immense support
he has provided us throughout our project.

We extend our sincere thanks to our Project Coordinator
Prof.K.R.Baskaran, B.E., M.S., Assistant Professor, Department of Information
Technology, for his constant support and encouragement.

We are grateful and immensely indebted to our project guide
Mr.K.Ramasubramaniam, M.E., a benevolent and technically proficient
personality, for his able guidance and motivation, in situations, when our project
was in rough waters.

We are proud indeed to thank and be grateful to our Class Advisor,
Ms.N.Suganthi, M.E., an agile and dynamic person for her concern and
motivation through the years.

We are very much grateful to all staff members of Information Technology
Department for their kind support during the course of our project.

Words can but in a meager way, our thanks to all lab assistants, who have
put in a lot of efforts in order to give us the right kind of tools and other important
facilities. We also thank our parents for the backing we got from them during the
course of completion of the project. Last but not the least we wish to express our
humble thanks to our fellow classmates who made our lives on campus a

cherishable experience which would be indelible in our minds for years from now.

ACKNOWLEDGEMENT

-

ABSTRACT

ABSTRACT

This project describes a framework for automatic brain tumor
segmentation from Magnetic Resonance (MR) images. The task of detecting
the position of a tumor is the starting point for a medical treatment, the
conformal radiotherapy, in which the tumor cells are irradiated and killed
with a very high precision, avoiding, in the meanwhile, damage to the
neighboring healthy tissues. Whereas many other tumor segmentation
methods especially the manual brain tumor segmentation, the current gold
standard, rely on the intensity enhancement produced by the gadolinium
contrast agent in any one of the sequence image, the method proposed here
does not require contrast enhanced image channels. The only required input
for the segmentation procedure is the MR image channel, but it can make
use of any additional non-enhanced image channels for improved tissue
segmentation.

The segmentation framework is composed of three stages. First, we
acquire and process the pixel data of the input image. We then make use of
the basic arithmetic formulae to derive the results required for the following
stages. In the second stage, we cluster the image based on the pixel data. We
adopt KMeans clustering algorithm to perform this clustering operation.
Finally, we apply geometric and spatial constraints to reconstruct the fumor

and display segment tumor cluster with accurate boundary.

TABLE OF CONTENTS
CHAPTER TITLE PAGE
NO. NO.
ABSTRACT ii
LIST OF FIGURES v
1. INTRODUCTION 1
1.1. THE EXISTING SYSTEM 2
1.2. THE PROPOSED SYSTEM 3
2. SYSTEM REQUIREMENT ANALYSIS 5
2.1. PROJECT DEFINITION 5
2.2. PROJECT PLAN 5
2.3. SOFTWARE REQUIREMENT 8
SPECIFICATION
2.3.1. PURPOSE 8
2.3.2. SCOPE 8
2.4. GENERAL DESCRIPTION 8
2.4.1. PRODUCT OVERVIEW 8
2.4.2. GENERAL ASSUMPTIONS 8
2.5. DEVELOPMENT AND OPERATING 9
SYSTEM
2.5.1. SOFTWARE CONSTRAINTS 9
2.5.2. HARDWARE CONSTRAINTS 9
2.6. PERFORMANCE CONSTRAINTS 9

i

Eal e A

SYSTEM STUDY
3.1. IMAGE SEGMENTATION
3.1.1. IMAGE SEGMENTATION MEHODS
3.2. KMEANS CLUSTERING
3.3. MAGNETIC RESONANCE IMAGING
3.3.1. THE MAGNETS
3.3.2. UNDERSTANDING THE
TECHNOLOGY:ATOMS
3.3.3. UNDERSTANDING THE
TECHNOLOGY:RF
3.3.4. ADVANTAGES
3.4. BRAIN TUMORS
3.5.JAVA
3.5.1. JAVA FEATURES
3.5.2. JAVA ENVIRONMENT
3.5.3. JAVA PACKAGES
DESIGN DOCUMENTS
4.1. INPUT DESIGN
4.2. PROCESS DESIGN
4.3. OUTPUT DESIGN
PRODUCT TESTING
FUTURE ENHANCEMENTS
CONCLUSION
APPENDIX
8.1. SAMPLE CODE
8.2. SAMPLE OUTPUT
REFERENCES

TABLE OF CONTENTS

LIST OF FIGURES

S.NO. FIG.NO. NAME OF THE FIGURE PAGE.NO.
1 331 A Sample MR Image of Brain with Tumor 14
2 3321 A Hydrogen atom spins about a Magnetic field 16
3 3322 Flowofatoms 17
4 3341 Axial, Coronal and Sagitall slices 19
5 421 Flowchart representing KMeans clustering 31

N algorithm
6 8.2.1 Input image loaded 51
7 822 Cluster image 1 51
8 823 Cluster image 2 51
9 8.2.4 Cluster image 3 52

10 825 Cluster image 4 52
11 826 Cluster image 5 52
12 827 Cluster image 6 52
13 8238 Cluster image 7 53
14 829 Cluster image 8 53
15 8.2.10 Cluster image 9 53
16 8.2.11 Cluster image 10 53
17 8.2.12 Reconstructed tumor image 54

v
1. INTRODUCTION

Segmentation of medical imagery is a challenging task due to the
complexity of the images, as well as to the absence of models of the anatomy that
fully capture the possible deformations in each structure. Brain tissues are
particularly complex structures, and its segmentation is an important step for
derivation of computerized anatomical atlases, as well as pre- and intra-operative
guidance for therapeutic intervention.

Brain tumors are difficult to segment because they have a wide range of
appearance and effect on surrounding structures. Following are some of the

general characteristics of brain tumors:

® vary greatly in size and position,

® vary greatly in the way they show up in MRI,

* may have overlapping intensities with normal tissue,

* may be space occupying (new tissue that moves normal structure) or
infiltrating (changing properties of gxisting tissue),

¢ may enhance fully, partially, or not at all, with contrast agent, and

* may be accompanied by surrounding edema (swelling).

Image segmentation is one of the primary steps in image analysis for object
identification. Segmentation partitions an image into distinct regions that are
meant to correlate strongly with objects or features of interest in the image.

MRI segmentation has been proposed for a number of clinical

investigations of varying complexity.

INTRODUCTION

1.1. THE EXISTING SYSTEM

Presently manual segmentation is the common method followed for the
process of segmenting brain tumors. Manual segmentation of brain tumors from
magnetic resonance images is a challenging and time-consuming task.

The task of manually segmenting brain tumors from magnetic resonance
imaging (MRI) is generally time-consuming and difficult. In most settings, the
task is performed by marking the tumor regions slice-by-slice, which limits the
human rater’s view and generates jaggy images.

Manual segmentation is also typically performed largely based on a single
image with intensity enhancement provided by an injected contrast agent. As a
result, the segmented images are less than optimal.

Manual brain tumor segmentation, the current gold standard, is a time-
consuming and tedious process that involves identifying image regions in 3-D

volumes that deviate from the unexpected intensities.

DISADVANTAGES

¢ Greatly time-consuming and difficult
® Limits the human rater’s view

* Generates jaggy images

* Involves more of user guidance

¢ The segmented images are less than optimal

1.2. THE PROPOSED SYSTEM

Automatic brain tumor segmentation from Magnetic Resonance (MR)
images is a challenging task that offers exposure to various disciplines covering
pathology, MRI physics, radiologist’s perception, and image analysis based on
intensity and shape.

Previous work (Manual Segmentation) on brain tumor segmentation
typically uses the enhancement provided by the gadolinium contrast agent in the
T1 channel (one of the sequence in MR Images) or blobby shaped tumors with
uniform intensity. Even though the intensity enhancement can aid the
segmentation process, we show that it is not always necessary to obtain good
results. In fact, the use of a contrast agent can be problematic. Typically, tumors
are only partially enhanced and some early developing tumors are not enhanced at
all. Blood vessels also generally appear enhanced by the contrast agent. These
inconsistencies create an ambiguity in the image interpretation, which makes the
Tl-enhanced image channel a less than ideal feature for tumor segmentation.

Our method combines the model of the normal tissues and the geometric
and spatial model of tumor. It relies only on the information provided in any of the
sequence image channels. Tumor is treated as intensity abnormalities or outliers.
After identifying the abnormalities, a clustering technique is applied to the

intensity features before utilizing geometric and spatial constraints.

SYSTEM REQUIREMENTS
ANALYSIS

The method proposed here for the automatic segmentation of brain tumor
processes the input image in three stages as follows:
1. Basic Image Processing
» Acquiring and processing pixel data
2. Cluster Separation
» Based on a Pixel-based classification method, KMeans
clustering
3. Reconstruction of Tumor
> Retaining only the segmented tumor cluster and eliminating
other clusters
This approach with the inclusion of the above three steps is found to be

efficient than the previous approaches.

ADVANTAGES
The advantages of our approach are as follows:
» Reduces the load on the human raters
¢ Generates segmentations that take the information within the entire
3D multiparameter images
® Automatic and user guidance not required
e Structural and intensity characteristics are well-known up to a
natural biological variability

* Optimal and improved efficiency

2. SYSTEM REQUIREMENT ANALYSIS

System study is an activity that encompasses most of the tasks that we have
collectively called computer system engineering. System study is conducted with
the following:

e Identify the needs

* Evaluate the system concept for feasibility

® Perform economic and technical analysis

e Allocate functions to hardware, software ,people and other system
elements

¢ Create a system definition that forms a foundation for all subsequent

engineering works

2.1. PROJECT DEFINITION

Our project proposes a method that automatically segments brain tumor,
has a significant advantage that structural and intensity characteristics are well
known up to a natural biological variability or the presence of pathology. The

segmentation process is performed based on the clustering algorithm.

2.2. PROJECT PLAN

In the analysis phase, we learned about the various technologies and
identified the one most suitable for the project implementation. From this study,
the most suitable language selected is Java. Differentiation of modules, user
interface design and other crucial aspects were identified and designed as

necessary. Other ambiguities which may exist are identified and taken care of.

After the analysis phase, the design phase commences in which the various
modules and functionalities are identified. The complete system flow of control
and data are also identified.

Next the implementation phase is taken care of in which the design is
translated into code. Each module is coded separately and finally integrated to
form the entire system. Care is taken to make the code easily understandable by
future users.

In the testing phase each module is tested thoroughly and finally the
integrated modules are tested together to ensure the correct working of the entire
system. Testing is also done to ensure that the product satisfies the specified

requirements and set criteria.

2.3. SOFTWARE REQUIREMENTS SPECIFICATION
2.3.1. PURPOSE

The purpose of this document is to specify the requirements of our project
“Image Segmentation for MRI Brain Tumor”. It describes the interfaces for the

system. The document also provides a detailed explanation for image processing.

2.3.2. SCOPE

SRS forms the basis of agreement between the client and the supplier and
what the software product will do. It also provides a reference for the validation of
the final project.

Any changes made to the SRS in the future will have to go through formal

change approval process.

2.4. GENERAL DESCRIPTION
2.4.1. PRODUCT OVERVIEW

This project aims to provide high-quality segmentation of brain tumors from
MR images. It makes use of the KMeans clustering algorithm to partition the
image into clusters with varying values. Based on the results obtained from

clustering the tumor is segmented with accurate boundary.

2.4.2. GENERAL ASSUMPTIONS
e The number of clusters to initialize the KMeans clustering
algorithm is taken as ten.
o The initial set of centroids formed based on the range calculated
from the image.

* The optimum threshold limit set for the tumor intensity.

WORK DURATION
o Feasibility Analysis
e Abstract Preparation
* Requirements Gathering One week

Selecting sample website

¢ Study and analysis of the concepts of Image Processing,

MRI and Brain tumor Three weeks
® Study about Java components Two weeks
o Creating a module for loading of the image One week

Acquiring and processing pixel data

Study about KMeans Clustering algorithm Two weeks

Implementing the clustering algorithm on the image for | Two weeks

segmentation
® Reconstructing the tumor from the segmented image Three weeks
¢ Integrating the modules and finally testing One week

2.5. DEVELOPMENT AND OPERATING ENVIRONMENT
2.5.1. SOFTWARE CONSTRAINTS

Operating System : Windows XP

Language : Java

IDE : NetBeans IDE 3.6

2.5.2. HARDWARE CONSTRAINTS

Processor : Intel Pentium IV
RAM 1256 MB
Hard disk :10GB

2.6. PERFORMANCE CONSTRAINTS

The system should run smoothly as long as a valid input image is given.

The system should consider and process each pixel to provide maximum accuracy.

SYSTEM STUDY

3.1.1. IMAGE SEGMENTATION METHODS

e Edge-based methods, in which the edge information is used to
determine boundaries of objects. The boundaries are then analyzed and
modified, if needed, to form closed regions belonging to the objects in
the image.

= Edge Detection
* Boundary Tracking

* Hough Transform

® Pixel-based direct classification methods, in which heuristics or
estimation methods derived from the histogram statistics of the image
are used to form closed regions belonging to the objects in the image.
= Optimal Global Thresholding
= Pixel Classification Through Clustering
¢ K Means Clustering
® FUZZY C Mean Clustering
¢ Adaptive FCM Algorithm

* Region-based methods, in which pixels are analyzed directly for a
region growing process based on a pre-defined similarity criterion to
form closed regions belonging to the objects in the image.

® Region Growing

= Region Splitting

3. SYSTEM STUDY
3.1. IMAGE SEGMENTATION

Segmentation is generally the first stage in any attempt to analyze or
interpret an image automatically. Segmentation partitions an image into distinct
regions that are meant to correlate strongly with objects or features of interest in
the image. Segmentation can also be regarded as a process of grouping together
pixels that have similar attributes. For Segmentation to be useful, the regions or
groups of pixels that are generated should be meaningful.

Segmentation bridges the gap between low-level image processing, which

concerns itself with the manipulation of pixel grey level or color to correct defects

h

or

certain chi istics of the image, and high-level processing, which
involves the manipulation and analysis of groups of pixels that represent particular
features of interest. Some kind of segmentation technique will be found in any
application involving the detection, recognition and measurement of objects in
images. Examples of such applications include:

o Industrial inspection

* Optical Character Recognition (OCR)

o Tracking of objects in a sequence of images

¢ Classification of terrains visible in satellite images

e Detection and measurement of bone, tissue, etc., in medical images

Segmentation techniques can be classified as either contextual or non-

contextual. Non-contextual techniques ignore the relationships that exist between
features in an image; pixels are simply grouped together on the basis of some
global attribute, such as grey level. Contextual techniques, on the other hand,
additionally exploit the relationships between image features. Thus, a contextual
technique might group together pixels that have similar grey levels and are close

to one another.

3.2. KMEANS CLUSTERING

K-means (MacQuenn, 1976) is one of the simplest unsupervised learning
algorithms that solve the well known clustering problem. The procedure follows a
simple and easy way to classify a given data set through a certain number of
clusters (assume k clusters) fixed a priori. The main idea is to define k centroids,
one for each cluster. These centroids should be placed in a cunning way because
of different location causes different result. So, the better choice is to place them
as much as possible far away from each other. The next step is to take each point
belonging to a given data set and associate it to the nearest centroid. When no
point is pending, the first step is completed and an early groupage is done. At this
point we need to re-calculate k new centroids as barycenters of the clusters
resulting from the previous step. After we have these k new centroids, a new
binding has to be done between the same data set points and the nearest new
centroid. A loop has been generated. As a result of this loop we may notice that
the k centroids change their location step by step until no more changes are done.
In other words centroids do not move any more.
Finally, this algorithm aims at minimizing an objective function, in this case a

squared error function. The objective function

g Rkl

91 _

<l . . Ul
where Ix‘ 4 Iz1s a chosen distance measure between a data point ** and the

cluster centre tﬁ', is an indicator of the distance of the n data points from their

respective cluster centers.

The algorithm is composed of the following steps:

Place K points into the space represented by the objects that are

being clustered. These points represent initial group centroids.

Assign each object to the group that has the closest centroid.

o When all objects have been assigned, lculate the positions of the

K centroids.
® Repeat Steps 2 and 3 until the centroids no longer move. This
produces a separation of the objects into groups from which the

metric to be minimized can be calculated.

The main advantages of this algorithm are its simplicity and speed which
allows it to run on large datasets. Its disadvantage is that it does not yield the same
result with each run, since the resulting clusters depend on the initial random
assignments. It maximizes inter-cluster (or minimizes intra-cluster) variance, but

does not ensure that the result has a global minimum of variance.

3.3. MAGNETIC RESONANCE IMAGING (MRI)

Magneyic Resonance Imaging is based on the measurement of magnetic
RadioFrequency(RF) signals from hydrogen molecules.
o The contrast differences in MR signals are based primarily on the amount
of hydrogen present in different tissues.
In an MRI machine, the basic design used in most is a giant cube. The cube
in a typical system might be 7 feet tall by 7 feet wide by 10 feet long (2 m by 2 m
by 3 m), although new models are rapidly shrinking. There is a horizontal tube
running through the magnet from front to back. This tube is known as the bore of

the magnet.

magnet above about the 0.3-tesla level would be prohibitively
expensive.

e A permanent magnet is just that -~ permanent. Its magnetic field is
always there and always on full strength, so it costs nothing to maintain
the field. The major drawback is that these magnets are extremely
heavy: They weigh many, many tons at the 0.4-tesla level. A stronger
field would require a magnet so heavy it would be difficult to construct.
Permanent magnets are getting smaller, but are still limited to low field
strengths.

« Superconducting magnets are by far the most commonly used. A
Superconducting Magnet is somewhat similar to a resistive magnet --
coils or windings of wire through which a current of electricity is passed
create the magnetic field. The important difference is that the wire is
continually bathed in liquid helium at 452.4 degrees below zero.
Superconductive systems are still very expensive, but they can easily
generate 0.5-tesla to 2.0-tesla fields, allowing for much higher-quality

imaging.
3.3.2. UNDERSTANDING THE TECHNOLOGY: ATOMS

The human body is made up of untold billions of atoms, the fundamental
building blocks of all matter. The nucleus of an atom spins, or precesses, on an
axis. There are many different types of atoms in the body, but for the purposes of
MR, we are only concerned with the hydrogen atom. It is an ideal atom for MRI
because its nucleus has a single proton and a large magnetic moment. The large
magnetic moment means that, when placed in a magnetic field, the hydrogen atom

has a strong tendency to line up with the direction of the magnetic field.

In conjunction with radio wave pulses of energy, the MRI scanner can pick
out a very small point inside the patient's body and ask it, essentially, "What type
of tissue are you?" The point might be a cube that is half a millimeter on each side.
The MRI system goes through the patient's body point by point, building up a 2-D
or 3-D map of tissue types. It then integrates all of this information together to

create 2-D images or 3-D models.

Fig.3.3.1. A sample MR Image of Brain with Tumor

By changing exam parameters, the MRI system can cause tissues in the
body to take on different appearances. This is very helpful to the radiologist (who

reads the MRI) in determining if something seen is normal or not.
3.3.1. THE MAGNETS

The biggest and most important component in an MRI system is the
magnet. The magnet in an MRI system is rated using a unit of measure known as
a tesla. Metal objects can become dangerous projectiles if they are taken into the

scan room. There are three basic types of magnets used in MRI systems:

* Resistive magnets consist of many windings or coils of wire wrapped
around a cylinder or bore through which an electric current is passed.

This causes a magnetic field to be generated. To operate this type of

Maln Magnetic Field
A

K

Fig 3.3.2.1. A hydrogen atom spins about a magnetic field.

Inside the bore of the scanner, the magnetic field runs straight down the
center of the tube in which we place the patient. This means that if a patient is
lying on his or her back in the scanner, the hydrogen protons in his or her body
will line up in the direction of either the feet or the head. The vast majority of
these protons will cancel each other out -- that is, for each one lined up toward
the feet, one toward the head will cancel it out. Only a couple of protons out of
every million are not canceled out. This doesn't sound like much, but the sheer
number of hydrogen atoms in the body gives us what we need to create wonderful

images.

Main Magnetic Fieid
A

208
%S
99 3

All of the hydrogen protons will align with the magnetic field in one
direction or the other. The vast majority cancels each other out, but,
as shown here, in any sample there is one or two "extra" protons.

Fig 3.3.2.2. Flow of Atoms

3.3.3. UNDERSTANDING THE TECHNOLOGY: RF

The MRI machine applies an RF (radio frequency) pulse that is specific
only to hydrogen. The system directs the pulse toward the area of the body we
want to examine. The pulse causes the protons in that area to absorb the energy
required to make them spin, or precess, in a different direction. This is the
"resonance"” part of MRI. The RF pulse forces them (only the one or two extra
unmatched protons per million) to spin at a particular frequency, in a particular
direction. The specific frequency of resonance is called the Larmour frequency
and is calculated based on the particular tissue being imaged and the strength of

the main magnetic field.

These RF pulses are usually applied through a coil. MRI machines come
with many different coils designed for different parts of the body: knees,

shoulders, wrists, heads, necks and so on. These coils usually conform to the

Fig33.4.1. Axial, coronal and sagitall slices

3.4. BRAIN TUMORS

Brain tumors are masses created by the growth of abnormal cells or
uncontrolled proliferation of cells in the brain. Any abnormal growth within the
skull creates a special problem because it is in a confined space and will press on
normal brain tissue and will therefore interfere with the functions of the body

controlled by the affected parts.

The causes of brain tumor are not known. About 5% of primary brain
tumors are associated with hereditary disorders, including Li-Fraumeni cancer
family syndrome, p53 defects, tuberous sclerosis, von Recklinghausen's disease
(neurofibromatosis), von Hippel Landau disease, familial polyposis (Turcot's

syndrome), and Osler-Weber-Rendu syndrome.

contour of the body part being imaged, or at least reside very close to it during the
exam. At approximately the same time, the three gradient magnets jump into the

act.

When the RF pulse is turned off, the hydrogen protons begin to slowly
(relatively speaking) return to their natural alignment within the magnetic field
and release their excess stored energy. When they do this, they give off a signal
that the coil now picks up and sends to the computer system. What the system
receives is mathematical data that is converted, through the use of a Fourier
transform, into a picture that we can put on film. That is the "imaging" part of
MRI.

3.3.4. ADVANTAGES
MRI is ideal for:

« Diagnosing multiple sclerosis (MS)

« Diagnosing tumors of the pituitary gland and brain

« Diagnosing infections in the brain, spine or joints

« Visualizing torn ligaments in the wrist, knee and ankle

« Evaluating bone tumors, cysts and bulging or herniated discs in

the spine
These are but a few of the many of reasons to perform an MRI scan.

Another major advantage of MRI is its ability to image in any plane. CT is
limited to one plane, the axial plane. An MRI system can create axial images as
well as images in the sagitall plane (slicing the bread side-to-side lengthwise) and
coronally (think of the layers of a layer cake) or any degree in between, without

the patient ever moving.

Brain tumors produce a variety of symptoms ranging from headache to
stroke. They are great mimics of other neurologic disorders. Symptoms occur if
the tumor directly damages the nerves in the brain or central nervous system or if
its growth imposes pressure on the brain. Some gliomas develop gradually and

symptoms may be subtle for a long time, making an early diagnosis difficult.

Brain tumor is treated surgically. As a result of recent progress in the
methods of brain surgery, many cases of brain tumor can now be operated on
successfully. Some may be completely excised (removed). Tumors that are deep,
or that infiltrate brain tissue, may be debulked (removal of much of the mass of the
tumor to reduce its size). Surgery may reduce intracranial pressure and relieve
symptoms in cases when the tumor cannot be removed. Radiation therapy may be

advised for tumors that are sensitive to this treatment.

20

3.5.JAVA

Java is a general-purpose, object-oriented programming language
developed by Sun Microsystems of USA in 1991. Java was designed for the
development of software for consumer electronic devices like TVs, VCRs, toasters
and such other electronic machines. This goal had a strong impact on the
development team to make the language simple, portable and highly reliable. The
Java team which included Patrick Naughton discovered that the existing languages
like C and C++ had limitations in terms of both reliability and portability.
However, they modelled their new language Java on C and C++ but removed a
number of features of C and C++ that were considered as sources of problems and

thus made Java a really simple, reliable, portable, and powerful language.
3.5.1. JAVA FEATURES

Although the fundamental forces that necessitated the invention of Java are
portability and security, other factors also played an important role in molding the

final form of the language. The key considerations are:

o Simple

e Secure

s Portable

* Object-oriented

* Robust

¢ Multithreaded

e Architecture-neutral
e Interpreted

o High Performance
e Distributed

* Dynamic

21

ROBUST

The multiplatformed environment of the Web places extraordinary
demands on a program, because the program must execute reliably in a variety of
systems. Thus, the ability to create robust programs was given a high priority in
the design of Java. To better understand how Java is robust, consider two of the
main reasons for program failure: memory management mistakes and mishandled

exceptional conditions.

MULTITHREADED

Java was designed to meet the real-world requirement of creating
interactive, networked programs. To accomplish this, Java supports multithreaded
programming, which allows us to write programs that do many things
simultaneously. The Java run-time system comes with an elegant yet sophisticated
solution for multiprocess synchronization that enables us to construct smoothly

running interactive systems.

ARCHITECTURE-NEUTRAL

A central issue for the Java designers was that of code longevity and
portability. Operating system upgrades, processor upgrades, and changes in core
system resources can all combine to make a program malfunction. The Java
designers made several hard decisions in the Java language and the Java Virtual
Machine in an attempt to alter this situation. Their goal was “write once; run

anywhere, any time, forever.” To a great extent, this goal was accomplished.

INTERPRETED AND HIGH PERFORMANCE
Java enables the creation of cross-platform programs by compiling into an
intermediate representation called Java bytecode. This code can be interpreted on

any system that provides a Java Virtual Machine.

23

SIMPLE

Java was designed to be easy for the professional programmer to learn and
use effectively. Java inherits the C/C++ syntax and many of the object-oriented
features of C++. Also, some of the more confusing concepts from C++ are either
left out of Java or implemented in a cleaner, more approachable manner. Beyond
its similarities with C/C++, Java has another attribute that makes it easy to learn: it
makes an effort not to have surprising features. In Java, there are a small number

of clearly defined ways to accomplish a given task.

SECURITY

Java provides a “firewall” between a networked application and our
computer. When we use a Java-compatible Web browser, we can safely download
Java applets without fear of viral infection or malicious intent. Java achieves this
protection by confining a Java
program to the Java execution environment and not allowing it access to other

parts of the computer.

PORTABILITY

For programs to be dynamically downloaded to all the various types of
platforms connected to the Internet, some means of generating portable executable
code is needed. This mechanism helps ensure security and also helps create

portability.

OBJECT-ORIENTED

Although influenced by its predecessors, Java was not designed to be
source-code compatible with any other language. The object model in Java is
simple and easy to extend, while simple types, such as integers, are kept as high-
performance nonobjects.

22

DISTRIBUTED

Java is designed for the distributed environment of the Internet, because it
handles TCP/IP protocols. In fact, accessing a resource using a URL is not much
different from accessing a file. The original version of Java (Oak) included
features for intra-address-space messaging. This allowed objects on two different
computers to execute procedures remotely. Java revived these interfaces in a
package called Remote Method Invocation (RMI). This feature brings an

unparalleled level of abstraction to client/server programming.

DYNAMIC

Java programs carry with them substantial amounts of run-time type
information that is used to verify and resolve accesses to objects at run time. This
makes it possible to dynamically link code in a safe and expedient manner. This is
crucial to the robustness of the applet environment, in which small fragments of

bytecode may be dynamically updated on a running system.

3.5.2. JAVA ENVIRONMENT

Java environment includes a large number of development tools and
hundreds of classes and methods. The development tools are part of the system
known as Java Development Kit (JDK) and the classes and methods are part of the
Java Standard Library (JSL), also known as the Application Programming
Interface (API).

JAVA DEVELOPMENT KIT
The Java Development Kit comes with a collection of tools that are used
for developing and running Java programs. They include:
* appletviewer (for viewing Java appiets)

* javac (Java compiler)

24

java (Java interpreter)

javap (Java disassembler)
javah (for C header files)

javadoc (for creating HTML documents)

jdb (Java debugger)

APPLICATION PROGRAMMING INTERFACE
The Java Standard Library (or API) includes hundreds of classes and
methods grouped into several functional packages. Most commonly used packages

are:

e Language Support Package: A collection of classes and methods required
for implementing basic features of Java.

¢ Utilities Package: A collection of classes to provide utility functions such
as date and time functions.

o Input/Output Package: A collection of classes required for input/output
manipulation.

e Networking Package: A collection of classes for communicating with
other computers via Internet.

* AWT Package: The Abstract Window Tool Kit package contains classes
that implements platform-independent graphical user interface.

e Applet Package: This includes a set of classes that allows us to create Java

applets.

java.lang
Provides classes that are fundamental to the design of the Java

programming language.
java.math

Provides classes for performing arbitrary-precision integer arithmetic

(BiglInteger) and arbitrary-precision decimal arithmetic (BigDecimal).

27

3.5.3. JAVA PACKAGES

javax.swing
Provides a set of "lightweight" (all-Java language) components that, to the

maximum degree possible, work the same on all platforms.

java.io
Provides for system input and output through data streams, serialization and

the file system.

java.awt.Mediatracker
Provides for the programmers to load multiple images synchronously by

checking the status of an arbitrary number of images in parallel.

java.awt.image

Provides classes for creating and modifying images.

java.awt
Contains all of the classes for creating user interfaces and for painting

graphics and images.
java.util
Contains the collections framework, legacy collection classes, event model,

date and time facilities, internationalization, and miscellaneous utility classes (a

string tokenizer, a random-number generator, and a bit array).

26

DESIGN DOCUMENTS

4. DESIGN DOCUMENTS
4.1. INPUT DESIGN

The input image is a grey-scale Magnetic Resonance Image (MRI) of a
brain. The image can be of any sequence and channel. This segmentation method
proposed here accepts both enhanced and non-enhanced image channel of the MR
image of a brain.

4.2. PROCESS DESIGN

Automatic brain tumor segmentation from MR images is a difficult task
that involves various disciplines covering pathology, MRI physics, radiologist’s
perception, and image analysis based on intensity and shape. There are many
issues and challenges associated with brain tumor segmentation. Brain tumors may
be of any size, may have a variety of shapes, may appear at any location, and may
appear in different image intensities.

As mentioned earlier, the segmentation framework is composed of three
stages:

* Basic image processing
o Cluster separation
* Reconstruction of tumor

First, we acquire and process the pixel data from the input image to
calculate the data required for the following processes. These are calculated using
the basic arithmetic formulae.

The second stage is cluster separation. Clustering is a data mining
technique that separates your data into groups whose members belong together.
Each object is assigned to the group it is most similar to. Clustering does not
require a prior knowledge of the groups that are formed and the members who
must belong to it. We have adopted KMeans clustering algorithm to perform the
clustering.

28

Stable clusters are formed when new iterations or repetitions of the K-
Means clustering algorithm does not create new clusters as the cluster center or
Arithmetic Mean of each cluster formed is the same as the old cluster center.
There are different techniques for determining when a stable cluster is formed or

when the k-means clustering algorithm procedure is completed.

There are many methods for finding a satisfactory set of centroids given a
set of data. The simplest is to pick an initial set of centroid randomly (assuming
we know how many clusters we want) and to assign each point to its closest
centroid. After each assignment, we need to update the assigned centroid by
adding in the coordinates of the new point (a simple calculation). Assigning all
points to a set of successively updated centroids constitutes one iteration of the k-
means algorithm.

Each new iteration consists of a re-assignment of all points, until no point
can be moved to a centroid closer than the one for the cluster it is already a
member of. Every time a point is re-assigned, its old centroid must be down dated

and its new centroid must be updated.

30

KMEANS CLUSTERING
The K-Means algorithm partitions a dataset into clusters as follows:

e It accepts the number of clusters to group data into, and the dataset to
cluster as input values.

e It then creates the first K initial clusters (K= number of
clusters needed) from the dataset by choosing K rows of data randomly
from the dataset.

e The K-Means algorithm calculates the Arithmetic Mean of each cluster
formed in the dataset. The Arithmetic Mean of a cluster is the mean of
all the individual records in the cluster.

* Next, K-Means assigns each record in the dataset to only one of the
initial clusters. Each record is assigned to the nearest cluster (the
cluster which it is most similar to) using a measure of distance or
similarity like the Euclidean Distance Measure or Manhattan/City-
Block Distance Measure.

e K-Means re-assigns each record in the dataset to the most similar cluster
and re-calculates the arithmetic mean of all the clusters in the dataset.
The arithmetic mean of a cluster is the arithmetic mean of all the records
in that cluster. This new arithmetic mean becomes the center of this
new cluster (centroid). Following the same procedure, new cluster
centers are formed for all the existing clusters.

e K-Means re-assigns each record in the dataset to only one of the new
clusters formed. A record or data point is assigned to the nearest
cluster (the cluster which it is most similar to) using a measure of
distance or similarity like the Euclidean Distance Measure or

Manhattan/City-Block Dist: Measure

e The preceding steps are repeated until stable clusters are formed and

the K-Means clustering procedure is completed.

29

This process can be briefly explained with the help of the following flow
diagram:

Fig.4.2.1. Flowchart representing KMeans clustering algorithm

Finally, we apply geometric and spatial constraints to reconstruct the tumor

and display segment tumor cluster with accurate boundary.

4.3. OUTPUT DESIGN

The output is a high-quality segmented image of the tumor which is present

in the input MR image with a precise delineation of tumor boundaries.

31

PRODUCT TESTING

EVENT TESTING
Each item present in the menu will be tested to check whether the
appropriate actions are triggered. This in a way helps in checking the functionality

of menu items.

INTEGRATION TESTING

This is done to check whether the modules present in the developing system
are interconnected as per the requirements. This sort of checking helps in
analyzing the behavior of the program when subjected to perform certain
functions.

DISPLAY TESTING

In fact this test is the effective test to be carried out. The display procedures
are tested since the data displayed is of much importance. The consistency of the
display and the attractiveness of the display were also tested.

A testing is an examination with the intent of finding the errors.
Concentration was more on errors than resting on the glory of apparently perfect
outputs. In the case of Image Segmentation, two types of test were mainly
conducted namely

e Unit Testing
o Integrity testing

UNIT TESTING
In unit testing each individual program is tested and would be checked
whether it satisfies with the required output. As an illustration in the project:
e Verification for loading of grayscale image
¢ Checking for pixel processing

o Testing for updated centroid values

33

5. PRODUCT TESTING
Testing is a vital process to the success of any system. The system as a
whole will be tested for the following

e Consi y with the application

¢ Displaying the resultant image

¢ Integrity of the modules

¢ Referential integrity test

System testing makes a logical assumption that if all the parts of the system
are correct, the system will be successfully achieved. The objective of testing is to
discover errors. To fulfill these objectives, a series of test is planned to execute.
Software testing can be looked upon as one among many processes. This is the last
opportunity to correct any possible flaws in the developed system. Software
testing includes selection test data that have more probability of finding errors.

Systems are the stage of implementation that is aimed at ensuring that the
system works accurately and efficiently before live operation commences. In
principle, system proving is an on-going activity throughout the project.

The first step in system testing is to develop a plan that tests all the aspects
of the system. Completeness, correctness, reliability and maintainability of the
software are to be tested for the best quality assurance that the system meets the
specification and the requirements for its intended users and performance. System
testing is most useful practical process of executing a program with explicit
intention of finding errors that make the program fail. The following phases are

developed for the purpose of testing the system.

MODULE TESTING
Each individual program module will test for any possible errors. They will
be tested for specification i.e., to see whether they work as per what the program

shoutd do and how it should perform under various conditions.

32

* Display of the reconstructed image

The individual programs are then combined to form modules.

INTEGRITY TESTING

It is the testing performed to detect errors in the interconnections between
the modules. Integrity Testing will be performed on each of the modules and again
the validity will be checked. After all the modules are brought under single
module, integrity testing is performed and the result should yield success.

SYSTEM TESTING
The system is tested against the system requirements to see if all the
requirements are met and to ensure that the system performs as per the specified

requirements. The system is tested as a whole to check for its functionality.

VALIDATION TESTING
This test is done to check for the validity of the entered input. The input
provided by the user is the grayscale image file. All other images are ignored and

further processing is not done.

34

FUTURE ENHANCEMENTS

CONCLUSION

6. FUTURE ENHANCEMENTS

The segmentation method presented in detects abnormal regions in the
brain based on the image intensities. Other properties can also be used for this
process. This can include geometric properties such as curvature or brain
asymmetry. Although the contrast enhanced image channel leads to ambiguous
information, there are cases where it leads to more straightforward identification
of brain tumors, assuming that enhanced blood vessels and noise can be properly
identified. Robust estimation schemes other than the MCD may be necessary for
these extensions.

An issue that goes together with the issue of knowing the deformation
induced by tumor is the problem of determining the possible shapes of brain
tumors. The shape model for tumor enforced using region competition snake
constrains the segmented tumor to have rather smooth shapes. The notion of
spatial coherence for brain tumors need to be properly enforced in order to
segment wider varieties of brain tumors. This is a difficult issue because tumors

can appear in many different sizes and shapes.

Our method can integrate the detection of edema in addition to tumor as a
combined approach, although knowledge of the extent of edema is critical for

planning and treatment.

7. CONCLUSION

Our method presents a new approach for automatic segmentation of tumors
from non-enhancing multichannel MRI. Most methods so far have been applicable
only to enhancing, homogeneous tumors. Furthermore, they require user-guidance
in training a supervised classifier or to obtain a rough outline of the region of
interest. Here, we show that segmentation and outlier detection can be a promising
new concept for detecting abnormalities in the brain.

The comparison between the new method and manual segmentations
obtained from medical experts demonstrate comparable quality and significant
reduction of operator time. Our algorithm may fail in cases where the intensity
value distribution of the tumor is highly inhomogeneous and shows large spectral
overlap with spatially close brain tissue. In such a case the initial tumor estimate
may impose an incorrect spatial constraint on the classification process that may
not be resolved in subsequent iterations. However, this can easily be corrected by

extending the manual interaction.

In overall, the result is an efficient, automatic segmentation method that
defines tumor and the algorithm produces results of comparable accuracy to those

of the manual segmentation in shorter time.

36

APPENDIX

}
s

jPanell.setLayout(new java.awt.GridBagLayout());

jPanell setBackground(new java.awt.Color(153, 255, 255));
jButtonl.setBackground(new java.awt.Color(102, 204, 255));
jButton].setFont{new java.awt.Font("MS Sans Serif", 1, 11));
jButton].setForeground(new java.awt.Color(0, 51, 51));
jButton] setText("Browse");

jButtonl.setBorder(new

javax.swing.border.BevelBorder(javax.swing border.BevelBorder. RAISED));

jButton].setMargin(new java.awt.Insets(12, 24, 12, 24));
jButton1.setPreferredSize(new java.awt.Dimension(75, 17));
JjButton].addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.cvent. ActionEvent evt) {
jButton? ActionPerformed(evt);

}
s

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridwidth = java.awt.GridBagConstraints. REMAINDER;
gridBagConstraints.gridheight = 3;

gridBagConstraints.insets = new java.awt.Insets(11, 13, 12, 11);
jPanell.add(jButtonl, gridBagConstraints);

jLabel2.setBorder(new javax.swing.border.EtchedBorder(java.awt.Color.lightGray,

java.awt.Color.gray));

jLabel2.setPreferredSize(new java.awt. Dimension(255, 255));
gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridheight = 6;

gridBagConstraints.ipadx = 32;

gridBagConstraints.ipady = 49;

gridBagConstraints.anchor = java.awt.GridBagConstraints. SOUTH;
gridBagConstraints.insets = new java.awt.Insets(0, 1, 0, 1);
jPanell.add(jLabel2, gridBagConstraints);
getContentPane().add(jPanell, java.awt.BorderLayout. WEST);
jPanel2.setLayout(new java.awt.BorderLayout());
jPanel2.setBackground(new java.awt.Color(153, 255, 255));
jLabel1.setBackground(new java.awt.Color(0, 153, 255));
jLabell.setFont(new java.awt.Font("Times New Roman", 1, 14));
jLabell.setForeground(new java.awt.Color(51, 51, 0));
jLabell.setHorizontal Alignment(javax.swing. SwingConstants. CENTER);
jLabell.setText("Brain Tumour Segmentation");
jLabell.setBorder(new javax.swing.border.MatteBorder(null));
jPanel2.add(jLabell, java.awt.BorderLayout. CENTER);
getContentPane().add(jPanel2, java.awt. BorderLayout. NORTH);
jPanel3.setLayout(new java.awt.GridBagLayout());

38

8. APPENDIX

8.1. SAMPLE CODE

//fmage Segmentation for MRI Brain Tumor

import javax.swing.*;

import java.io.*;

import java.awt.MediaTracker.*;
import java.awt.image.*;

import java.awt.*;

import javax.imageio.*;

import java.util.*;

import java.lang. Math.*;

public class brain extends javax.swing.JFrame

Image bi;

int NoOfCluster=10;
double e=0.1;

static Imagelcon im2;

public brain()

initComponents();

private void initComponents()

java.awt.GridBagConstraints gridBagConstraints;
jPanell = new javax.swing.JPanel();

jButtonl = new javax.swing.JButton();

jLabel2 = new javax.swing.JLabel();

jPanel2 = new javax.swing.JPanel();

jLabell = new javax.swing.JLabel();

jPanel3 = new javax.swing.JPanel();

jButton2 = new javax.swing.JButton();

jButtond4 = new javax.swing.JButton();

jButton3 = new javax.swing.JButton();

setResizable(false);
addWindowListener(new java.awt.event. WindowAdapter() {
public void windowClosing(java.awt.event. WindowEvent evt) {
exitForm(evt);

jPanel3.setBackground(new java.awt.Color(153, 255, 255));
jButton2.setBackground(new java.awt.Color(51, 204, 255));
jButton2.setFont(new java.awt.Font("MS Sans Serif”, 1, 11));
jButton2.setText("Segmentation”);
jButton2.setBorder(new
javax.swing.border.BevelBorder(javax.swing. border. BevelBorder.RAISED));
jButton2.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
jButton2ActionPerformed(evt);

}

b3

gridBagConstraints = new java.awt.GridBagConstraints();
gridBagConstraints.gridwidth = java.awt.GridBagConstraints. REMAINDER;
gridBagConstraints.insets = new java.awt.Insets(9, 2, 8, 2);
jPanel3.add(jButton2, gridBagConstraints);
jButtond.setBackground(new java.awt.Color(51, 204, 255));
jButton4.setFont(new java.awt.Font("MS Sans Serif", 1, 11));
jButton4.setText("Reconstruction”);
jButtond.setBorder(new
javax.swing.border.BevelBorder(javax.swing.border.BevelBorder.RAISED));

jButtond.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

jButton4ActionPerformed(evt);

}

B

gridBagConstraints = new java.awt.GridBagConstraints();

gridBagConstraints.gridwidth = java.awt.GridBagConstraints. REMAINDER;

gridBagConstraints.insets = new java.awt.Insets(7, 0, 7, 0);

jPanel3.add(jButtond, gridBagConstraints);

jButton3.setText("Exit");

jButton3.setBorder(new
javax.swing.border.BevelBorder(javax.swing.border.BevelBorder.RAISED));

jButton3.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {

jButton3ActionPerformed(evt);

s

jPanel3.add(jButton3, new java.awt.GridBagConstraints());
getContentPane().add(jPanel3, java.awt.BorderLayout. CENTER);
Jjava.awt.Dimension screenSize =
java.awt.Toolkit.getDefaultToolkit().getScreenSize();
setBounds((screenSize.width-500)/2, (screenSize.height-400)/2, 500, 400);

39

private void jButton3ActionPerformed(java.awt.event.ActionEvent evt)

System.exit(0);

private void jButtond4ActionPerformed(java.awt.event.ActionEvent evt)

jLabel2.setlcon(im2);

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt)

int height=bi.getHeight(null);
int width=bi.getWidth(null);

System.out.printin{"Image: width="+width+" height="+height);

int rgb[J=new int[width*height];

int index=0;

int pixel[][J=new int[height][width];

double inputpix[}[J=new double[height][width];
double resultpix[][J=new double[height]{width];
int outpix[J[J=new intfheight][width];

double outpix1[][J=new double[height]{width];
int pix[]{][J=new int[height][width][4];
BufferedImage bl=new

Bufferedlmage(width,height, BufferedImage. TYPE_BYTE_GRAY);

Graphics2D gt=b1.createGraphics();
gt.drawImage(bi,null,null);
b1.getRGB(0,0,width, height,rgh,0, width);
for(int i=0;i<height;i++)

for(int j=0;j<widthzj++)

pixel[i]fj]=rgb[index];
index++;
}
}
pix=convertToThreeDim(rgb,width,beight);
System.out.println("Image intensity values :");
for(int i=0;i<height;i++)

for(int j=0;j<widthzj++)
{
inputpix[i][j]=((double)pix[i][j1[11)/255;

System.out.printin(inputpix[iJ[j +"\t"+i+"t"+j);
try

40

double[] dist=new double[10];
double[] temp=new double[10];
for(int i=0;i<NoOfCluster;i++)

dist[i]=centroid[i][0];

zvhi le(max1(dist)>threshold)
for(int i=0;i<NoOfCluster;i++)
: templi]=centroid[i][0};

double diff J=new double[10];

double tempr=0.0,tempr1=0.0,tempr2=0.0;
/finitial clustering

for(int i=0;i<height;i++)

{
for(int j=0;j<width;j++)
for(int k=0;k<NoOfCluster;k-++)

difffk]=Math.abs(inputpix[i][j]-centroid[k][0]);
if(inputpix[i][j]!=0.0)
temprl=inputpix[i][j];
tempr2=centroid[k][0];
tempr=diff[k];

int minval=minval(diff);
outpix[i][j]=minval;
3

}
//mew centroid
doublef{] sum=new double[NoOfCluster];
int[] count=new int[NoOfCluster];
for(int i=0;i<height;i++)

for(int j=0;j<width;j++)
for(int k=0;k<NoOfCluster;k++)
{ if(outpix[i][j]==k)
{ sum([k]=sum[k]+outpix1[i][j];
count[k]=count[k]+1;

}
}

42

{
Thread.sleep(1);

catch(Exception ¢)
{3

double mean=mean(inputpix);
System.out.println("mean : "+mean);
double threshold=mean*e;
System.out.printin("threshold : "+threshold);
double minpix=min(inputpix);
System.out.println("minpix : "+minpix);
double maxpix=max(inputpix);
System.out.println("maxpix : "+maxpix);
double range=maxpix-minpix;
System.out.println("range : "+range);
double step=range/NoOfCluster;
System.out.printIn{"step : "+step);
double interval=step/10;
System.out.println("interval : "+interval);
doublef][] centroid=new double[NoOfCluster][1];
System.out.println("Initial centroids : ");
for(int i=0;i<NoOfCluster;i++)

centroid[i][0]=interval;

interval=interval+0.11;

System.out.println(centroid[i][0]);

try

{

Thread.sleep(500);

}
catch(Exception e)

t}“or(int i=0;i<heightsi++)
(for(int j=0:j<width;j+)

, outpix 1[i][j]=inputpix[i][j];
httoop=1;

41

}
}
// update centroid
System.out.printIn("Updated centroids :);
for(int k=0;k<NoOfCluster;k++)

centroid[k][0] =sum[k]/count[k];
try

{
Thread.sleep(200);

catch(Exception €)

{3

System.out.println(" "+centroid[k][0]);
}
for(int i=0;i<NoOfCluster;i++)
{

dist[i]=0;
/Mmew distance
System.out.println("New distances : ");
for(int ii=0;ii<NoOfCluster;ii++)

dist[ii]=temp[ii}-centroid[ii}[0];
try

{

Thread.sleep(200);
catch(Exception €)
{3

System.out.printIn(dist[ii]);

}
for(int i=0;i<height;i++)
for(int j=0;j<width;j++)
resultpix[i][jJ=(double)centroid[(outpix[i][j1)][0];
}
}
double[][][] result=new double[10][height][width];
for(int k=0;k<10;k++)

for(int i=0;i<height;i++)

for(int j=0;j<width;j++)
result[K]{i][j]=0;
}

}
}

for(int i=0;i<10;i++)
for(int i1=0;i1<height;il++)
for(int j1=0;j1<width;j1++)
i{f(outpix[i 1G1}==i)

result[i][i1][j1]=centroid[i][0];
System.out.println(" "+ result[i][il][j1]);
}
}
}

}

double[] centval=new double[10];
centval[0]=0.0;

centval[1]=0.1;

centval{2]=0.2;

centval{3]=0.3;

centval[4]=0.4;

centval[5]=0.5;

centval[6]=0.6;

centval[7]=0.7;

centval[8]=0.8;

centval[9]=0.9;

int indx=0;

int[}[] resultmat=new int[10][height*width];
int{] resultmatl=new int[height*width];

for(int i=0;i<10;i++)
for(int 11=0;il<height;il++)
! for(int j1=0;j 1 <width;j1++)
i{f(result[i] fi1][j1]>centval[i])

resultmat[i][indx]=1*255;
indx++;

44

{
int element = row * imgCols + col;
aRow/[col] = oneDPix{element];

for(int col = O;col < imgCols;col++)

//Alpha data
data[row][col][0] = (aRow]col] >> 24)
& OxFF;
//Red data
data[row][col][1] = (aRow][col] >> 16)
& OxFF;
//Green data
data[row}{col][2] = (aRow{col] >> 8)
& OxFF;
//Blue data
data[row][col]{3] = (aRow[col])
& OxFF;
}

return data;
}
private void jButton1 ActionPerformed(java.awt.event. ActionEvent evt)
jf=new JFileChooser();
File f1=null;
int s= jf.showOpenDialog(this);
if(s=jf. APPROVE_OPTION)
f1=jf.getSelectedFile();
try
File file=new File(fl.getAbsolutePath());
bi=ImagelO.read(file);
Imagelcon im=new Imagelcon(bi);

jLabel2.setlcon(im);

}
catch(Exception €) {}

private void exitForm(java.awt.event. WindowEvent evt)

System.exit(0);

46

}

else
resultmat[i][indx J=(int)resulti][il][j1]*255;
indx++;

}
}
}
indx=0;
}

for(int i=0;i<10;i++)
for(int j=0;j<resultmat][i].length;j++)

resultmat[i][j}=((255<<24) & 0xFF000000)|((resultmat[i][j]<<16) &
0x00FF0000)|(([i][j]<< 8))|(resultmat(i][j] & 0x000000FF);

}

Bufferedimage b2=new
BufferedImage(width height, Bufferedimage. TYPE_BYTE_GRAY);

b2.5etRGB(0,0,width,height, resultmat{i], 0, width);

Imagelcon im=new Imagelcon(b2);

imload=new imageloader();

imload.load(im);

imload.show();

}
for(int j=0;j<resultmat[9].length;j++)

resultmat[9][j]=((255<<24) & 0xFF000000)|((resultmat[9][j}<<16) &
0x00FF0000)|((resultmat[9][j]<< 8)){([9][5] & 0x000000FF);
}

BufferedImage b3=new
BufferedImage(width,height, Bufferedlmage. TYPE_BYTE_GRAY);
b3.5etRGB(0,0,width,height,resultmat[9], 0, width);
im2=new Imagelcon(b3);
}

intf][][] convertToThreeDim(
int[] oneDPix,int imgCols,int imgRows)

int[][][] data =new int[imgRows][imgCols][4];
for(int row = O;row < imgRows;row-++)

int[] aRow = new int{imgCols];
for(int col = 0; col < imgCols;col++)

45

}
Ppublic static void main(String args[})

new brain().show();

public double mean(double[][] image)
{
int height=image.length;
int width=image[1].length;
double sum=0,count=0;
for(int i=0;i<height;i++)
for(int j=0j<width;j++)
{
sum=sum-+imagefi]fj];
count++;

}

return (sum/count);

}

public double min(double[][] image)

{
double temp=0.0;
for(int i=0;i<image.length;i++)

for(int j=0;j<image[i].length;j++)
if(temp==0)
{ temp=imagel[i][j;
else if(temp>imageli][j])
temp=image[i][j];

}
}
return temp;

}

public double max(double[][] image)
{

47

double temp=0;
for(int i=0;i<image.length;i++)

for(int j=0;j<image[i].length;j++)
if(temp==0)
{
temp=image[i][j];
else if(temp<imagefi][j])
temp=image[i]{j];
}
3
return temp;
}
private double max1(double[] dist)

double temp=0;
for(int i=0;i<dist.length;i++)

{
if(i==0)
{
temp=dist[i];
else if(temp<dist[i])
temp=dist{i];
}
}
return temp;
}
private double minl(double[] dist)
{
double temp=0;
for(int i=0;i<dist.length;i++)
{
if(i==0)
{
temp=dist[i];

else if(temp>dist[i})
{

48

public jmageloader()
{

initComponents();
}
private void initComponents()
{
jLabell = new javax.swing.JLabel();
getContentPane().setLayout(null);
addWindowListener(new java.awt.event. WindowAdapter() {
public void windowClosing(java.awt.event. WindowEvent evt) {
exitForm(evt);

getContentPane().add(jLabell);
jLabell.setBounds(40, 30, 250, 270);
java.awt.Dimension screenSize =
Jjava.awt.Toolkit. getDefaultToolkit(). getScreenSize();
setBounds((screenSize.width-353)/2, (screenSize.height-360)/2, 353, 360);
}
private void exitForm(java.awt.event. WindowEvent evt)
this.dispose();

public static void main(String args[])

new imageloader().show();
}

public void load(Imagelcon im)

jLabell.setlcon(im);

)

private javax.swing.JLabel jLabel1;

50

temp=dist[i];
}
}

return temp;
}

public int minval(double([] value)

double temp=0.0;
int index=0;
for(int i=0;i<value.length;i++)

{
if(i==0)

temp=value[i];
index=i;

}
else if(temp>value[i])

temp=value[i];
index=i;
}
}
return index;

}

private javax.swing.JFileChooser jf;
imageloader imload;

private javax.swing.JButton jButton1;
private javax.swing.JButton jButton2;
private javax.swing.JButton jButton3;
private javax.swing.JButton jButtond;
private javax.swing.JLabel jLabel1;
private javax.swing.JLabel jLabel2;
private javax.swing.JPanel jPanell;
private javax.swing.JPanel jPanel2;
private javax.swing.JPanel jPanel3;

}
IMAGE LOADER

import java.awt.*;
import javax.swing.*;

public class imageloader extends javax.swing.JFrame

49

8.2. SAMPLE OUTPUT

Fig.8.2.1. Input image loaded

Fig.8.2.2. Cluster image 1 Fig.8.2.3. Cluster image 2

Fig.8.2.4. Cluster image 3 Fig.8.2.5. Cluster image 4

Fig.8.2.6. Cluster image 5 Fig.8.2.7. Cluster image 6

S
R
=2

Fig.8.2.12. Reconstructed tumor image

54

Fig.8.2.8. Cluster image 7 Fig.8.2.9. Cluster image 8

Fig.8.2.10. Cluster image 9 Fig.8.2.11. Cluster image 10

53

REFERENCES

9. James Theiler and Galen Gisler, "A contiguity-enhanced k-means
clustering algorithm for unsupervised multispectral image segmentation”,
9- REFERENCES Proc SPIE 3159, 1997.
1. Nick Efford, “ Digital Image Processing — A Practical Inroduction Using

Java”, Pearson Education Limited,2000.

2. Brummer, M.E,, Eisner, R.L., “Automatic Detection of Brain Contours in
MRI Data Sets,” IEEE Transactions on Medical Imaging, 1993.

3. Clatk, M.C,, Hall, L.O., Goldof, D.B., Clarke, L.P., Velthuizen, R.P.,
Silbiger, M.S., “MRI segmentation using fuzzy clustering techniques”,
IEEE Engineering in Medicine and Biology, November 1994.

4. Moon, N., Bullitt, E., Van Leemput, K., Gerig, G.: Automatic brain and
tumor segmentation. In Dohi, T., Kikinis, R., eds.. Medical Image
Computing and Computer-Assisted Intervention MICCAI 2002.

5. Clarke LP, Velthuizen RP, Camacho J, et al., “MRI segmentation: methods
and applications”, Magnetic Resonance Imaging 1995

o

. Helmuth Spath, “Cluster Analysis Algorithms for Data Reduction and
Classification of Object,” Halsted Press, 1980.

7. Anil K. Jain and Richard C. Dubes. “Algorithms for Clustering
Data”Prentice Hall, 1988.

8. Dan Pelleg and Andrew Moore, “Accelerating exact k-means algorithms

with geometric reasoning”, Carnegie Mellon University, Pittsburgh, PA.

55 56

