Poibss

PR THL A DL

SESSION FIXATION AND ITS PREVENTION
IN WEB-BASED APPLICATIONS

A PROJECT REPORT

Submitted by

RANJANLP 71202205036
SIVARANJANL V.V 71202205048

in partial fulfillment for the award of the degree

of
BACHELOR OF TECHNOLOGY
N

INFORMATION TECIHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY,COIMBATORE
ANNA UNIVERSITY:CHENNAL 600 025

MAY 2000

I

PR /P AT
~ g

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “SESSION FIXATION AND ITS
PREVENTION IN WEB-BASED APPLICATIONS” is thc¢ bonafide
work of “RANJANLP, SIVARANJANLV.V” who carried out the project

work under my supervision,

/\ I~ C‘,—_-] b—k——:_-)

)\/p,wL

SIGNATURE IGNATURE

Dr.G.Gopalsamy Mr.K.Ramasubramanian

HEAD OF THE DEPARTMENT SUPERVISOR

Information Technology Lecturer

Kumaraguru College of Technology Information Technology
Commbatore-641 006 Kumaraguru College of Technology

Combatore-641 0006

1he candidates with Loiversity Register Nos. /1202205036, 71202205048 were

examined by us in the project viva-voce examination held on 20 V- A4 O

N oy o
A A / (/ el

l{ 'L{/\
INTERNAL EXAMINER B \ F'ERN. H EXNAMINER

ACKNOWLEDGEMENT

With all humility and submissiveness we surrender myself at the ‘Divine Feet” of God
and submit our foremost gratitude for having gracctully blessed us with knewledge, skill and
enthusiasm.

We express our sincere thanks to Dr.KLArumugam, B.E (Hons), M.S.(11.S.A), MIEK.,,
Correspondent, Kumaraguru College of Technology and the management, for providing us an
opportunity to undertake this project work.

We express my sincere gratitude to Dr. KiK. Padmanabhan, cstcemed Principal,
Kumaraguru College of Technology, Coimbatore, for permitting us to undergo a project work.

We express sincere thanks to Dr.G.Gopalsamy, Ph.D., tlcad of the Department.
Department of Information Technology [or the imiense support he has provided us
throughout our project.

We deep gratitude and thanks are duc in no small measure to our project coordinator
Prof.K.R.Baskaran, B.E, M.S | Department of Information Technology, for his constant
support. encouragement and vivacious guidance.

We would like to express our heartfelt thanks o our guide, Mr.K.Ramasubramanian,
MLCA, MLE., Lecturer. Departmient of [nformation Technology. tor his everlasting counsehnyg
and untiring help throughout our project.

We thank our beloved parents, friends who have been a pillar of support in all our
endeavors. and the department weaching and non teaching stalf for their support i completing

the project.

il

DECLARATION

We,

Ranjant.P 71202205036

Sivaranjani. V.V 71202205048

Declare that thc project cntitted “SESSION FIXATION AND ITS
PREVENTION IN WEB-BASED APPLICATIONS”, submitted i partial
fulfillment to Anna University as the project work of Bachelor of Technology
(Information Technology) Degrec, is a record of original work done by us under
the supervision and guidance of Mr.K. Ramasubramanian, Lecturer, Department of

Information Technology, Kumaragure College of Technology. Coimbatore.

Place: Coimbatore
Date: 2F - 2 00 L

))
’1)(\ '}L}x. \-/ j

[Ranjani.P]

s [V
P (-‘.\--'I' :

[Stlvaranjani.\"’.\"]

Project Guided by
/}/A\‘CW ______________ s Jea ot

[Mr. K. Ramasubramanian, M.C. A M|

|.ccturer.

ABSTRACT

The project cntitled “PREVENTION OF SESSION FIXATION IN
WEB-BASED APPLICATIONS” deals with implenientation of various kinds of
sccurity in scssion management, The main objective is to provide sccurity to web
users.

The basic 1dea behind session management 1s that the scerver generates a
session identificr at some carly point in uscr intcraction, sends this identificr to the
user’s browser and make sure that the same identificr will be sent back by the
browscr along with cach subsequent request without any mtruder’s mvasion.

The scssion identifiers become identification tokens for the users, and
servers can use them to maintain session data, creating a session-hke experience to
the users. A web application authenticates a uscr without first invalidating the
existing session, thereby continuing to usc the session already associated with the
uscr. An attacker is able to force a known session identifier on a user so that, once
the user authenticates, the attacker has access to the authenticated session.

The web application generates & unique session identifier to the user only if
he is successfully authenticated. This identifier 1s bound to the browser’s network
address and SSI. certificate for every transaction. This enhances sceurity for every
request and response.

Session destruction takes place on both server and browser cither by

logeing out or tmeout. Thus the user 1s able to have sccure access across the web,

TABLE OF CONTENTS

CHAPTER NO. TITLE

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

1. INTRODUCTION
1.1 Thec cxisting system and its limitations

1.2 The proposcd system and its advantages

2. SYSTEM REQUIREMENTS ANALYSIS
2.1 Project Deflinttion
2.2 Project plan
2.3 Sotftware Requirements Specification
2.3.1 Purpose
2.3.2 Scope
2.3.3 Definttions
2.3.4 Abbrevations
2.3.5 Gieneral Deseription

2.3.0 Specific Requirements

L SYSTEM STUDY
2.1 Tomeal Scrver
3101 Introduction to tonical server

202 Installation of Tomeat Server

Vi

PAGE NO.

viil

ix

O

O

)

-1

S

9.

3..1.3 Deployment
3.2 Java Server Pages
DESIGN DOCUMENTS
4.1 Introduction
4,2 Databasc Design
4.2 Process Design

PRODUCT TESTING
5.1 Unit Testing

5.2 Validation Testing
5.3 Output Testing

5.4 Integration Testing

5.5 System Testing

FUTURE ENHANCEMENT

CONCLUSION
APPENDIX
8.1 Sample Code

8.2 Sereenshots

REFERENCES

15
17
19
19
19
20

23

23

24

24

24

25

26

LIST OF FIGURES

Figure No. Name Page No.
1. Tomcat Class Loaders 10

2. Three Steps of Session Fixation 20

Vil

LIST OF TABLES

Table No. Name Page No.

. User Dctatls Table 19

. SID

SSIL

URL

ISP

HTTP

. [P

. JDK

LIST OF ABBREVATIONS

- Segsion Identifier

sccure Socket Layer

Uniform Resource Locator

Java Server Pages
- Hyper Text Transfer Protocol
- Internet Protocol

- Java Development Kit

1. INTRODUCTION

HTTP(Hyper Text Transfer Protocol) is a statcless protocol, which mceans
that it provides no integrated way for a web server to maintain states throvghout
user’s subsequent requests. To overcome this problem, web applications
implement various kinds of scssion management. Very often, scssion identificrs
are not only identification tokens, but also authenticators. This means that upon
login, uscrs arc authenticated based on their credentials (uscrname/password,
digital certificates) and issucd scssion identifiers that will effectively serve as
temporary static passwords for accessing their scssions. Web session security 1s

basically focused on preventing vartous lypes of attacks against scssion identifiers,

1.1 EXISTING SYSTEM AND ITS LIMITATIONS

Almost all of today’s statcful web-based applications usc session
identifiers to associate a group ol onhne actions to a specific user. This has
security impheations because many state mechanisms that uses session identifiers
also serve as authorization and authentication mechanisms-purposcs for which
they were not well designed. Session identifiers are usually long alphanumeric
strings transmitted between chient and server cither within cookics or directly
within URLs{Uniform Resource Locator).Once a user has logged on mto an
apphcation the session 1D7s can server as stored authentication mechanisms so that
the user does not have to retype a password after cach elick within the website.

Session identificrs are stored 1 a cookic held by the browser. Somctimes
the cookics that store Scssion adentifiers are set o expive immediately upon
closing the browser: these are typieally called “session cookies™. Session

identificrs are not only identilication tokens. but also authenticators. Once logged

on, users are authenticated based on their credentials and issued session identificrs
that will cffectively serve as temporary static passwords for accessing their
Sessions.
LIMITATIONS OF THL EXISTING SYSTEM
1. There were implementation limits on the size and number of cookies that
can be stored.
2. Most web sites made use of weak authentication schemes. This was due to
lack of central infrastructure and weak uniform security schemes
3. There were many weaknesses 10 using scssion 11)7s

» Weak algorithm

* Short length

» No form of account lock-out

* Transmitted i the clear

* [ndefinite expiration

» [Insccure retrieval

1.2 PROPOSED SYSTEM AND ITS ADVANTAGES

The proposed system is based on generating session 1D’s to users only after
they arc successfully authenticated. To prevent attacks, we propose forceful
prevention of logging into chosen scssion. Some methods to prevent session
fixation is
» Bmding the session ID 1o the browser’s network address.

» Binding the session 1D to the user’'s SSL client certificate.

Scssion destruction by logging out or timeout.

Lscr logs out thereby destroying current as well as previous scssions.

» Providing Absolute scssion timeout that prevents attackers from

nmanmtaining a trap scssion,

ADVANTAGES:

The weaknesses with session 1D’s are solved by sampling session 1d’s,
considering the weaknesses while design, transmitting the id over SSI. connection.
Web applications 1gnores any session 11 provided by the user’s browser at login
and always generate a new session to which the user will log i if successlully

authenticated.

-

2. SYSTEM REQUIREMENTS ANALYSIS

The purpose of system requircments anaiysis is to obtain a detailed
and thorough understanding of the business nced The requirements are clearly
defined and reviewed.
2.1 PROJECT DEFINITION

The project “Prevention of Scssion Fixation” aims in enhancing sceure
transactions in wcb-based applications. The unique feature of this project is
providing session 11)’s to users such that intruders cannot attack it. Our system

cnsures secure transactions.

2.2 PROJECT PLAN

The requirement phase deals with the secquence of activities in producing the
Software Requirement Specification {SRS) document. 1t must be ensured that all
the requirements of the software are elicited and analyzed. In other words the need
of the system is identified.

In the problem analysis phase, the current system is analyzed by study of the
cxisting materials, and the changes to be made m the proposed system are decided
upon. A clear understanding of the needs of the system must be framed that leads
1o actual specification.

After the analysis phase. the design phase commencees in which the various
mocules and functionalitics are identificd. The complete system flow of control
and data are wdentified and depicted i the form of diagrams. Designing anns at
how to satisty the needs of the system. The different modules of the system and
the mteraction between these modules to produce the deswred functionality arc
identified. During detailed destgn. the internal logic of each module and their
algorithmic design is specitied. The major and important decisions are made in

this phase.

Coding is the process of translating the design into code. The code developed must
be casy to understand. Well-written code can reduce testing and maintenance
effort.

In the testing phase, cach modulc is tested thoroughly and finally integrated
modules arc tested together to ensure the correct working of the entirc application.
Testing is also done to cnsurc this application satisfied the specified requirements

and set eriteria.

'WORK © DURATION

Feasibility Analysis
Abstract Preparation One week

Requircments Gathering

Study on existing web apphications
Two weeks
Study on Tomcat web scrver

S

6. Coding Designing a login form and
- One week

i generating a random session [D.

7. Coding- Fixing the user’s session with the ! One week

gencrated D
L.

' 8. Studying the various scssion fixation

possibilitics Two weeks

- 9. Analyzing the avoidance measurcs

L 10, Implementing ihe counter measures - One week
|
I'1. Generation of Report "~ One week

. S

12, Implementation of the system

Two weeks

13, Testing of the system One week

2.3 SOFTWARE REQUIREMENTS SPECIFICATION
2.3.1 PURPOSE

The purpose of this document is to specify the requirements of thc projcct
“Prevention of Scssion Fixation”. It describes the interfaces for the system. The
document also bridges the communication gap between the browser and the web

server.

2.3.2 SCOPE

SRS forms the basics for agreement between the client and the supplier and what
the software product will do. It also provides a reference for the validation of the

final project.

Any changes madce to the SRS in the future will have to go through formal change
approval process. The project gives a way for sccured transactions by using
enhanced security techniques. This is achicved by binding the I address (o the
session 1D transmitted so that the data reaches only the authenticated user. Also
destroying the sessions would disable the use of thosc session s created during
the transaction. The main objective 1s sceure transaction. So the dala o be

transmitted is hidden in such a way that a mtruder cannot obtain the hidden data.

2.3 3 DEFINITIONS
USER
A person who logs into the web to access his requirements.
ATTACKER

A person who is a legitimate user of the system and mtrudes mto other user’s

PaYCs.

!

2.3.4 ABBREVIATIONS

. SID - Scssion Identifier

2. SSL - Secure Socket Layer

3. URL - Uniform Resource Locator

4. JSP - Java Server Pages

5 111T1P - IHyper Text Transfer Protocol
6. 1P - Internet Protocol

7. JDK - Java Development Kit

2.3.5 GENERAL DESCRIPTION

2.3.5.1 PRODUCT OVERVIEW

This project is to prevent malicious users from gaining illegal access to the
various web pages through sessions. The system provides security {or transactions
between the user and the server. It gencrates scssion ID's only if the uscr is
successfully authenticated thereby ignoring any session 1D provided by the user’s

browscer at login,

2.3.52 USER CHARACTERISTICS
1The system will be used mamly m the arcas where sceurity 18 highly needed.

Itis used to ransmit secure information through internct.

2.3.5.3 GENERAIL CONSTRAINTS
The application has been programmed to run in the windows platform but
can be migrated to other platforms if the need ariscs. The server however s a

multi-platform application.

2.3.6 SPECIFIC REQUIREMENTS

2.3.0.1 INPUTS AND OUTPUITS
The mputs to the system are the login details of any user. In the case of a
bank system the account number of the user is also an input. The output of the
system 1s the responsc to the particular request of the user. It could be the next

page of the particular website being accessed by the user.

2.3.6.2 FUNCTIONAL REQUIREMENTS
» The system should be able to authenticate the users by comparing
the login details with that in the databasce.

* The user must be able to proceed without any problem.

2.3.6.3 HARDWARE REQUIREMENTS

Processor ! PENTIUM IV
RAM : 128 MB
Hard Disk Capacity 20GH

2.3.04 SOFTWARE REQUIREMENTS

Opcrating Svstem S WINDOWS 2000.XP.98
lLanguage o Javal ISP

Package c IDKTS

server C Apache Tomeat

2.3.6.5 PERFORMANCE CONSTRAINTS

The system must executc correctly as long as it gets the correct input

fromt the uscr and the database formats are intact as defined for the system.

2.3.6.6 SOFTWARE CONSTRAINTS

The application runs on Windows platform. The server requires Java Web
services developer pack and jdk1.5 to be installed and running in the server systen.

The system should not be hosting any other web server application,

3. SYSTEM STUDY
3.1 TOMCAT SERVER:
3.1.1 AN INTRODUCTION TO TOMCAT SERVER

Tomecat scrver implements the Java Server Pages 1.2 and Servlet
2.3 spegifications and includes many features that arc uscful in the deployment of
web modules. Tomcat is written in JAVA thus 1t needs a java compiler, Therefore.
the first step in installation is to download and install a JDK. Tomcat works with
JDK1.2. The next steps vary, depending on the operating system on which Tomeat
is installed. When Tomeat 5 is starled, 1t creates a set of class loaders that arc
organized into the following parent-child relationships, where the parent class

loader is above the child class loader.

BOOTSTRAP

o

SYSTEM

¥

COMMON

l CATALINA [SITARLED l
L ¥ .
- |
[Web Appxl ‘ 1 Web Apps. ..

Free T Tomeat Class Toaders

1)

A standard installation of Tomcat makes all of the tfollowing APIs available for

use by web applications (by placing them in "common/tib" or "shared/lib"):
*antjar (Apache Ant)

* cominons-collections. jar (Commons Collections 2.1)

* commons-dbep.jar (Commons DBCP 1.1)

* commons-cljar (Commons Expression Language 1.0)

* commens-logging-api.jar (Commons Logging APT 1.0.3)

* commons-pool.jar (Commeons Pool 1.1)

* jasper-compiler.jar (Jasper 2 Compiler)

jasper-runtime.jar (Jasper 2 Runtine)

* jmxjar (Sun JMX RI 1.2)

sp-apt.jar (JSP 1.2 API)

commons-cljar (JSP 2.0 Expression Language)

Fnaming-common.jar (JNDI Context implementation)

* naming-tactory.jar {JINDI object lactories tor J2EE LNC support)

* nammg-resources.jar (JNDI DirContext unplementations)
*serviet-aptgar (Serviet 2.3 APD

You can make additional APIs available 1o all of vour web applications by
putting unpacked classes mto a "classes” directory (not created by default).

ot by placing them 1o JAR files in the "lib" directory.

J.1.2 INSTALLATION OF TOMCAT SERVER

Installing Tomcat on Windows can be donc casily using the Windows
installer. Its interface and functionality is similar to other wizard based installers,

with only a few ttems of interest.

. [nstallation as a service: Tomcat will be installed as a Windows
NT/2k/XP service no matter what setting is selected. Using the checkbox on the
component page scts the scrvice as "auto” startup, so that Tomeat is automatically
started when Windows starts. For optimal security, the service should be run as a
scparate user, with reduced permissions (see the Windows Services administration
tool and its documentation).

. Java loeation: The installer will usc the registry or the JAVA_ HOME
cnvironment variable to determine the base path of a J2SE 5 JRE.

. Tray icon: When Tomcat is run as a service, there will not be any tray icon
present when ‘Tomeat is runmng. Note that when choosing to run Tomeceat at the
end of installation, the tray icon will be used cven if Tomcat was installed as a

5eTVICE.

The mstaller will ercate shorteuts allowing starting and configuring Tomeat. Ttis

important to note that the Tomeat administration web application can only be used

when Tomeat is running,

I order o configiie JDK logging you should have JDK 147 Tomcat 4.1 can be

run on JDK 1.4 usmg a compatibility package.

The default implementation of java.utilLlogging provided in the JDK is too limited
to be uselul. A limitation of JDK Logging appears 1o be the inability to have per-
web application logging, as the configuration 15 per-Va As aresudt. Tomeat will.
m the default contiguration. replace the default LogManager implementation with

a container friendly tmplementation called UL whieh addiresses these

shortcomings. Tt supports the same configuration mechanisms as the standard JDK
java.util.logging, using cither a programmatic approach, or properties files. The
main difference is that per-classloader propertics files can be set (which cnables
rasy redeployment friendly webapp configuration), and the propertics files support
slightly extended constructs which allows more freedom for defining handlers and

assigning them to loggers.
Logging can be configured at the following laycrs;

In the JDXK's logging.propertics file. Check your JAVA HOME environment
setting to scc which JDK Tomcat is using. The file will be mn
SJIAVA. HOME/jre/lib. Alternately, it can also usc a global configuration file
located clsewhere by using the system property java.util.loggmg.config file, or
programmatic configuration using java.utillogging.config.class. In each
classloader vsing a logging. properties file. This means that it 1s possible to have a
configuration for the Tomecat core, as well as separate configurations for cach

webapps which will have the same lifecycle as the webapps.

Tomcat includes a web application (installed by dcfault on context path ‘manager)

that supports the following functions:

e Deploy a new web application, on a specified context path. from the

uploaded contents ot a WAR file.

- Deploy a new web application, on a specified context path, from the server

file system.

e List the currently deploved web applications, as well as the sessions that arc

currently active for those web apps.

- Reload an cxisting web application, to reflect changes in the contents ot

WEB-INI elasses or WEB-INTIib,

- Iist the OS and IV M property values.

» List the available global JNDI resources, for use in deployment tools that

arc preparing <Resourcc Link> elements nested in a <Context> deployment

description.

» List the available sccurity roles defined in the user database.

» Start a stopped application (thus making it available again).

e Stop an existing application (so that it becomes unavailable), but do not

undeploy it

»> Undeploy a deployed web application and delete its document base

directory (unless it was deployed from file system),

Most commands accept onc or more of the following query parameters:

Path - The context path (including the leading slash) of the web application
you are dealing with. To sclect the ROOT web application, specify "". NOTE - It
is not possible to perform administrative commands on the Manager application
itself.

War - URL of a web appheation archive (WAR) file, pathname of a divectory

which contams the web application. or a Context configuration ".xml" file, You

can usc URLs in any of the following lormats:

file:/absolute/path/to/a/directory - The absolute path of a dircetory that contains
the unpacked version of a web application. This directory wilt be attached to the
context path you spectfy without any changes.

file:/absolute/path/to/a/webapp.war - The absolute path of a web application
archive {WAR} (ile. This is valid enly for the ‘deploy command, and is the only

acceptable format to that conmnand.

jar:file:/absolute/path/te/a/warfile.war!/ - The URL to a local web application
archive (WAR) file. You can use any syntax that is vahd for the

JarURLConncction ¢lass for reference to an entire JAR file.

file:/absolute/path/to/a/context.xml - The absolute path of a web application
Context configuration ".xml" filc which contains the Context configuration

clement.
Directory - 'The directory name for the web application context in the Host's
application base directory.

webapp.war - The name of a web application war file located in the Host's

application basc directory.

J A3 DEPLOYMENT

Deployment is the term used for the process of installing a web application
(cither a 3rd party WAR or your own custom web application) into the Lomeat
server. Web application deployment may be accomplished in a number of ways

within the Tonmcal server.

» Statically; the web application is setup before Tomeat 18 started
e Dynamically: in conjunction with the Tomeat Manager web application or

manipulating already deployed web applications

The Tomeat Manager 1s a tool that allows URJ.-bascd web application
deployment features. There 1s also a tool called the Chient Deployer. which s a
command shell bascd script that interacts with the Tomeat Manager but provides
addinonal functionality such as compiling and validating web applications as well

as packaging web application mto web application reseurce (\WAR) files.

314 INSTALLATION FOR DEPLOYMENT

‘There is no installation required for static deployment of wcb applications as this
is provided out of the box by Tomcat. Nor is any installation required for
deployment functions with the Tomcat Manager, although some configuration is
required as detailed in the Tomcat Manager manual. An installation is however

required if you wish to use the Tomcat Client Deployer (TCD).

The TCD 1s not packaged with the Tomcat core distribution, and must therctore be

downloaded scparately from the Downloads arca. The download 1s usually labeled

Jakarta-tomceat- x-deployer.

TCD has prerequisites of Apache Ant 1.6.2+ and a Java mstallation. Your
environment should define an ANT _HOME environment value pointing to the
root of your Ant installation. and a JAVA TIOME valuc pointing to your Java
mstallation. Additionally, you should ensure Ant's ant command, and the Java
javac comptler command run from the command shell that your operating system

provides.
" Download the TCD distribution

" The TCD package need not be extracted into any existing

Tomcat installation: 1t can be extracted to any location.

16y

3.2 JAVA SERVER PAGES

Java Scrver Pages (JSP) technology provides an easy way to create dynamic web
pages and simplify the task of building web applications that work with a wide varicty
of web servers, application servers, browsers and deveclopment tools.

Java Server Pagcs technology allows web developers and designers to easily
develop and maintain dynamic web pages that Ieverage existing business systems [8].
As part of the Java technology family, JSP enables rapid development of web-based
applications that arc platform-indcpendent. JSP separates user mterfacces from content
generation, enabling designers to change the overall page layout without altering the
underlying dynamic content.

In its basic form, a JSP page 1s simply an HTML web page that contains additional
bits of code that execute application logic to generate dynamic content. This
application logic may involve JavaBeans, JDBC objects, Enterprise Java Beans (LJB),
and Remote Mcthod Invocation (RMI) objects, all of which can be casily accessed
from a JSP page.

For example, a ISP page may contain HTMIL code that displays static text and
graphics. as well as a method call to a JDBC object that accesses a database; when the
page 1s displayed in a user's browser. 10 will contam both the static HTML content and
dynamic informaton retricved from the database,

At first glance. a JSI page looks stilar 1o an HITML {or XML) page--both
contain text encapsulated by tags. which are defined between <angle bracketss. While
FITMI. tags are processed by a user's web browser to display the page, JSP lags are
used by the web server o generate dynanuie content. These ISP tags can detine
individual operations. such as making a method call to a Java Bean, or can include
blocks of standard Java code (known as script fets) that are executed when the page 1s

accessed.

Advantages of JSP

Even if you're already content writing servlets for web applications, there are plent
Y Y g pp Y

advantages to using JSP:

. JSP pages casily combine static templates, including HTML or XMI.
fragments, with code that gencrates dynamic content.

. JSP pages arc compiled dynamically into servicets when requested, so page
authors can easily make updates to presentation code. JSP pages can also be
precompiled if desired.

. JSP tags for invoking JavaBeans components manage these components
completely, shiclding the page author from the complexity of application logic.

. Developers can offer customized JSP tag librarics that page author’s access
usig an XMI -like syntax.

. Web authors can change and edit the fixed template portions of pages without
alfecting the application logic. Similarly. developers can make logic changes at the

component level without editing the individual pages that use the logic.

4. DESIGN DOCUMENTS
4.1 INTRODUCTION

A softwarc design is representation of the system of the real world in a
format that can be easily understood by both the devclopers and the users. The
diagrams drawn in softwarc design help casy communication between the developers
of the various modules of the system and with the uscrs of the system.

In the object oriented paradigm which we have adopted to develop our system, it is
casy to make such communication using a standard notation known as UMI., (Unified
Modcling Language). It is an industry-standard language (or speci{ying, visualizing,
constructing, and documenting the artifacts of softwarc systems standardized by the
Object Management Group. UML sninplifies the complex process of software design
by using “blueprints” for softwarc construction. Widespread adoption of UMIL 15 one
of the forces contributing to developer demand for tools that can represent more

mtentional problem-related information.

4.2 DATABASE DESIGN
The databasc consists of the user details table.

4.2.1 USER DETAILS

Field Name Field '_I.'}'[).c" Field Length

10

Field Description }
i
User assigned kt,\ word :

|
Uscrname Text | 50 i Indicates the name of the user
I I
I |
| |
I
|

Password - Text

1o

4.2 PROCESS DESIGN

Generally, session {ixation attack is a three-step process:

1. Session setup: First, the attacker cither scts up a so-called “trap session” on
the target server and obtains that session’s 1D, or sclects a - usually arbitrary
— Session D to be usced in the attack. In some cases, the established trap
session needs to be maintained (kept alive) by repeatedly sending requests
Reterencing it to avoid idle session timeout.

2. Session fixation: Next, the attacker needs to mtroduce her scssion 11 to the
user’s browser, thereby fixing his scssion.

3. Session entrance: Finally, the attacker has to wait until the user logs in to
the target scrver using the previously {ixed session 1D and then enter the

User’s session.

@ Session setup)-‘\

\ | AN
B Lt FET RS £28 Lo
1ial Session maintenance :
e - g ————— - i
' * S

Y ' el

@ Session fixation)4
@ Session entrance)

Fig 2. Three steps of session fixation

STEP 1:
SESSION SETUP

20

The uscr logs on with a username and password. These details are verified
and 1f valid, a session ID is generated for the particular user. The generated ID is
remembered for the remaining sesstons. This session will need to be kept alive atlcast
until the user logs into 1t. Restarting the web scrver can destroy all active sessions,

requiring the user to login again.

STEP 2:
SESSION FIXATION
SESSION ID IN A HYPERILINK

The attacker needs to trick the user mto logging in to the target web server
through a lock-alike hyperlink that i reality probably comes from another web
server, This method is at least as impractical and detection-prone and 1s mcluded here
only [or the sake of completeness. In the best casce, the attacker could exploit a cross-
sitc scripting vulnerability on the target web server in order to construct a hyperlink
(coming from the target server) containing a chosen session ID. However, the attacker
managing to trick the user into logging i through a malicicus hyperlink could just as
well direct the uscr’s credentials to his own web server, which is generally a greater
threat than that of fixing his session.
STEP 3:
SESSION ENTRANCE

After the user has logged in to the trap session and before he has logyed
oul. the attacker can enter the trap session and assume the user's identity. In many
systems. the attacker will be able to usce the session without the user noticing anything
suspect. In case the user docsn’t log out of the systen. the attacker has an opportunity
to keep the session alive - and thereby the access to the user’s identity - for a long

L.

21

STEP 4:

SESSION AVOIDANCE

There is one common denominator to all session fixation attacks and scenarios: the
user logs in (o a session with an attacker-chosen ID, instcad of having been issued a
newly generated session 1D by the server. Web applications must ignore any session
ID provided by the user’s browser at login and must always generate a new session to
which the user will log in if successfully authenticated. This means that an attacker
who isn't a legitimate user of the system will not be able to get a vahd session ID and
will therefore be unable to perform a session fixation attack.

5.3. Restricting the session ID usage

Most methods for mitigating the threat of stolen session [Ds are also applicable to

session fixation. Some of them arce listed betow:.

. Binding the session 1D to the browser's network address (as seen by the
server)
. Binding the session 1D to the user’s SST. client certificate - very important and

often overlooked 1ssue in highly critical applications: cach server-side seript must [irst
check whether the proposed session was actually cstablished using the supplicd
certiticate.

¢ Session destruction. cither due to logging out or timcout, must take place on
the server (deleting session), not just on the browser (deleting the session cookic).

o The user must have an option to log out thereby destroving not just his
current session, but also any previous scssions that may sull exast (in order to

prevent the attacker from vsing an old session the user forgot to log out rom).

o Absolute scsston timeonts prevent attackers from both maintaiing a trap

session as well as maintaiming an already entered user’s session for a tong period time

6. PRODUCT TESTING

The system testing deals with the process of testing the system as a whole. This is
done after the integration process. The entire system is tested by traversing each
module from top to bottom. The verification and validation process arc being carried
out, The errors that occur at the testing phasc are eliminated and a well functioning

system 1s developed.

6.1 UNIT TESTING

Tt focuscs verification cffort on the smallest unit of software design, the module. It
is also known as module testing. The modules are tested scparately. The testing is
carried out usually during programming stage itsell.

Lach and every module is tested separately to check il its intended funectionality is

met,

6.2 VALIDATION TESTING

Validation s a process of finding out if the product being built is right.
1.c. whatever the software product is being developed, and it should do what the user
expects 1t to do. The software product should functionally do what it is supposed to. it
should satisty all the functional requirciients set by the user. Validation 15 done
durimg or at the end of the development process in order o determine whether the
product satisfies specified requirements.

After the validation test has been conducted. one of the two pessible conditions

CNISLS:

¢ The functions and the performance characteristics confirm to the specification and
are accepted.

o Deviation from the specification is uncovered and the deficiency list is created.

6.3 OUTPUT TESTING

After performing the validation testing, the next step is the output testing of the
proposed system since no system is useful if it does not produce the required output n
the specific format. The outputs generated and displayed by the system under

consideration arc tested by the users about the formats required by them.

6.4 INTEGRATION TESTING

Here, the tested modules arc combined into sub-systems, which are then
tested. ‘L'his is done to test if the modules can be integrated properly, emphasizing on
interface between modules, The software was subjected to mtegration testing and the

different modules were linked together and executed.

6.5 SYSTEM TESTING

The system is tested against the software requirements specification to sce if all
the requircments are met and 1 the system performs as per the client’s expectations.
The system is tested as a whole to cheek for its functionality. Non functional
requirements like performance considerations and platform support are checked as a

wholc,

24

7. FUTURE ENHANCEMENT

As this project is completcly done in JSP, it provides greater flexibility and
reusability. Any kind of change can be made to the project without any major change
in the underlying functionality. The classes are delined clearly with the necessary
access parameters so that they can be modificd casily and any additional classes can
be added mn case of any additional [unctionality required in the future,

The system can be meodified so that it is compatible with the future versions of the
server or the programiming language .Morc sccure features can be included based on

the needs of various web applications.

’s

7. CONCLUSION

To provide designers and implementers with a clear framework, we have given
a description of the limitations, requirements, and security models specific to Web
client authentication. Web sites have such a large range of requirements that no onc
authentication scheme can meet them all. Thus the developed system provides the

necessary security required for transactions over the web.

APPENDIX -1

Sample Code

1.Main.jsp

<%(@page import="java.i0.*"%>

<% page import-"tava. *" %>

<html=

<head=>

<meta http-cquiv="Content-Language" content="en-us">
<meta hitp-equiv--"Content-Type” content- "text/html: charset=windows-1252">
<title>SESSION FIXATION</title>

</ head>

<body bgcolor—"black">

on

<p align="center"=<font size="5
color "orange"r<marqueex<l [12PREVENTION OF SESSION FIXATION
= marquec® < H D fon i

=p align="center">= ip=

<p align "center'F ips

=p align="center"= r=bz<font sizc "8" color "blue™==a

hrel "ndex jsp™=SESSTION FINATION=Taz-font=<hx<p-

String ssHD - (Stringirequest.getaAttribuie(" javax.servieliequestssl session”):

Svstem.out.prmtdn{ssiiD:

Yo

<p align—"center">SESSION

AVOIDANCE</p>
</body=>

</html>

2.Index.jsp

<Weepage content Iype="text'htm]" %>
<Yo(page pagebncoding--"UTEF-8" %=
<Yfrpage import="java.sql.*"%>
<Soepage 1mport-"javax.crypto. *" %z
<%fpage Import="java.util.*" %>

<%Grpage import=" java.security.*" %>

<%l page import "java.math. ¥ %>

=%
RequestDispatcher dis request.getRequestDispatcher{"intruder jsp”):
Conncetion con—null;
ResultSet s null:
Object objS=session. get Atrributef"username”):
Object obj6 session.getAtiibute("password”)
Object obj7—scssion.getAtibute("sessionid™):
0
<html
<title=Prevennon of Session ixation Attack= ttles

“hody becolor -"black” =

<h>

<p align—"center"=Prevention of Session Fixation
Atlack</p>

<form action—"1index.jsp" name="{orm" methodpost=>

<div align="middl¢">

<fieldset style- "width:350px:height:250px"=>

<legend><ont size="5" color="orange">Logm<legend=>

<tablc align ="middle" cellpadding="5" cellspacing="5">

<td=Intruder name-</b=>=/td>

<td><input type="text" name="uname" size="20">»<td>

T
<tdz<b=Intruder Password-/br< font=</1d>
<td=<input type Mpassword” name="pass" size="20"=<itd=
<
<IriE
ERIVEs T
 :&enbsp. :
<t align="middle” colspan="1"=<mput type -"submnt” values"bknter =< d
<1d alien-"middle"=<linput type="button” value"cancel" == 1
Al
< tabler
<Ufieldset
= iy

)
T

Y

try
{
Class.forName("sun, jdbe.odbe. JdbcOdbeDriver");
Systenrout.println{"Driver Registered”);
con=DriverManager.getConnection("jdbc:odbe:db1","","™):
Statement stmt — con.crcateStatement (ResultSet. TYPE SCROLIL._ SENSITIVLE
ResultSet CONCUR_UPDATABLE);
rs=stmt.exccuteQuery("sclect * from login');
String uname—request. getParameter("unaime");
String password=request. getParameter("pass");
while(rs.next())
{
H{rs.getString(1).cquals(uname)—=truce)
1
iH{rs. getString(2). cquals(password}==true)
!
String scssionid scssion.getld({):
Object obj=(Object)sessionid,;
session.sctAttribute{ "uscrname” request.getParameter("uname”));
session.setAtribute("password".request.getParameter("pass”)):
sesstonsctatribute "sessionid", obj);
dis=request.getRequestDhispatcher(Mintruder.sp”):

dis. forward{request.aresponsc).

H{Mob)3- - null))

]

{

sesston.setAttribute("uscrname”,0bj3);

! session.sctAttribute("password”,0bjo);
scssion.setAttribute("scssiomid”,obi7);
dis—rcquest. getRequestDispatcher("user.)sp"):
dis. forward(request.response);

1
!

catch(Exception ex){}

%=
</forn

<ihitml=

J.ntruder.jsp

i

<Y page content Type "textzhtm]™ %4

%% page pagelncoding "UTT-8"0%

RequestDispatcher dis request.getRequestDispatcher{"user. jsp™):

htmlz

<hcad><title=JSP Page</titlc></hcad>

<body bgcolor="bluc>

<%

try

{

String hi=request.getParameter("hi"});

String uname—null;

String sessionidl;

String pass=null;

Object oby=session.getAtlribute("uscrname”):
Object obj | session.getAttribute("password"):
Object obj2=session.getAttribute("sessiontd");

if{obj——null)

responsc.sendRedirect("index jsp™):

uname: obj.toString():
pass—ob) FloStringi):

sesstond 1 -ob 2 toStrmgl):

out.println("<htmi><body><h2><center>intruder Pagc </center>

</h2=<br=

"}),

out.println("<form method=post action=intrudcr.jsp><input type-hidden namc—ht
valuc—2><center><input typc—subniit

value—sendsessionid></center></form=</body=></himl=");
}

1{{{hi==null})

{

sesston.setAttribute(Muscername”,obj);
scssion.sctAttribute("password” obj1);
sesston.setAttribute("scssionid” ,obj2)

dis-request. getRequestDispatcher("userjsp™);

dis. forward{rcquestaresponse);

catch{Tixception exp)
i

System.out.prmtn{exp):

< oty

-7 hitmle

T
]

4.Account.jsp

<Yl@page contentType="text/htm]" %>

<l page pagekEncoding -"UTFEF-8"%>

<%

RequestDispatcher dis request.getRequestDispatcher(" Account.jsp™);
0
0

String accountid=request.getParameter(" 1 1");
System.out.printin(“the value of"+accountid):
it{{accountid——nutl)}

I
t

session.setAtribute("account " request. getParameter(" ' 1:
dis request getRequestDispatcher("detailjsp™):

dis. forward(requestresponsc):

<html=
<headz=<utle=ISP Pagest utle=< head:

<hody hgcolor "black "=

<p align="center"><HI>WELCOME TO WORLD
BANK ACCOUNT</HI>

<form method—"post" action="Account.jsp"=>

<f--webbot bot="SaveResults” U-File="fpweb:///_private/form_results.csv" S-

Format "TEXT1/CSV" S-Label-I1elds—"" TRUE" -->
<p align="center"> </p>

<p align—"center"> <H2>ENTLR T11} BANK
ACCOUNT=/12 : : :
 :

<input type-"text" name="T1" size "20"=></tont=<p=>

<p align "center= <ip=

<p align "center"><input type~"submit” value="Submit" namc="BI1"></p=

<form=>

<p align="center"» =ip=

<p align="center"> r : < pe

<-body

< html

A.User.jsp

[ETP
L

“Muia page condentype text iml ™

<Yfewpage pageEncoding="UTF-8"%>
<html>

<hecad=<title>)JSP Page</utle></hcad>
<body>

<%

ty

{

String uname=null;

String sessionid null;

String pass=null;

Object oby--session.getAttnbute("username'™y;
Object obj 1 —session. getAttribute("password™);
Object obj2—scssion. getAttribute("sessiomd"):
Systenm.out.printIn{"check 1);

uname- -obj.toStrimg()

sessionid obj2.toString():

pass=obj l.toString():
System.out.printn”check™):

String sessionid - -session. getld():
Systentout.pratngsessionid 1)

Svstentout.printin{sessionid).

H{sessionid [==null)

response.sendRedirect("index.jsp");

—

else
out.println("Account.jsp?id--"sessionid - "<a>");
out.printin("password " - pass+"</body></him]=>");

out.println(sessionid};

P

cateh(Exception L) {4

(.P /6 T

“body=

<htmls

6. Detail.jsp

LA

<Dafu page content Type="text hunl"%

“Dafa page pagebncoding"UTE-8"

e

>

<% page session”rue” o

<Y%(@page import—"java.10.¥" %>

<%o!

Object oby;

l)/U‘;,

<%

String account—null,

RequestDispatcher dis request.getRequestlispatcher("info jsp");
Yo

<html>

<head™>

<meta http-cquiv="Content-Language” content="cn-us">

<meta http-equiv- "Content-"Type™ content="text/html; charset—windows-1252">
<title>WELCOME TO YOUR ACCOUNT=/utle>

<head=

<bady bgcolor="black">

obj session.getAtnbute("account”):
session.setdaxinactivelnterval{ 10):

Svstenvout.printin{"the owput1s” obj.toSwing()):

AR

if(oby.toString()——null)
{

System.out.println("check");

response.sendRedirect{"indcx1 jsp");

!
i

clse

{
account=obj.toString();
]

L

\

!

catch(Exception exp)

System.out.println(exp):

response.sendRedirect("mdex1sp"):

p-'.._._& Ile]J P

<p= i<p

=p=<font size-"8" color "red"=WEECOME TO YOUR ACCOUNT &absp:
 . : <% - account Yo

o LIRS

=p align"center"= bzfont size 3" color Mwhite™ el hret Magsp

BATANC a fone

R

<p align="center">

WITHDRAW</{ont>

<p ahgn="center">

DEPOSIT=/a=
</tont></p>
</body=

<‘html=

7. AvoidIndex.jsp

/Or ,/ [" - l l“l’{/’ e
fepage contentlype texthtml]" %>

<%frpage pagecEncoding="UTF-8"%:>

<Yl page tmport="java.sql.*" %>
page] !

«u(]

<frpage import--"javax.cryplo,
U page import "java.nul #%
<%0 page mport=" java.seeurity, <0

f”{]

<% page nuport ="java malh,
RequestDispatcher dis request. getRequestDispatcher(" Avoidintruder. jsp™).
Connection con—null;

ResultSet s nuli:

Object obys- sesston.getArbute "username™):

Object obj6=session.getAttribute("password");
Object abj7=session.getAttribute{"sessionid");

Yo

<html>

<title>Prevention of Scssion Fixation Attack</titles
<body bgcolor="¢#ffffec" >

<Th=
<p style-"font-size: 17" align="ccnter">Prevention of Session Fixation

Attack</p>

<form action="index1 jsp" name="form" method—post>
<div align—"right"=

<fieldset style "width:220px:height: 1 75px "=
<legend=login</legend:=

“table align ="right" cellpadding="2" ccllspacing -"2"=
S

<td =1 sernamoes it

StdE<put type"ext” name="uname" sizes" 18 e (d e
< e

eI

td = Password= s

-+

<td><input type—"password" name="pass" sizc="20"></td>

<t/ <tr>

<td align="right" colspan--"1"><input typc="submit" valuc"kEnter"></td>
<td align—"right"><input type="button" value- "'cancel">=</td=>

<t

</lable>

~/ficldset>

Class. forName("sun.jdbe.odbe JdbeOdbe Driver"):
System.out.println{"Driver Registered"):
con DriverdManager.getConnection{"jdbe:odbe:db1™."™ ")

Statement stml - con.createStatement {ResultSet. TYPL SCROLL SENSETIVIE,
ResultSet. CONCUR UPDATABLE:):

rsosimbexecuteQuery(Mseleet ® from login"):

String uname: request.getParameter{ "unamce”):

String password-"request.getParameter("pass");
while(rs.next())
{

H{rs.getString(1).cquals(uname)—truc}

I
1

1f(rs. getString(2).equals{password)J==true)

v

1

String sessiontd=session.getld();

Object obj—(Objcct)sessionid;
session.setAttribute("username” yequest. getParameter("uname")):
session.setAtiribute("password"” request.gctParamcter("pass')):
scssion.sctAttribute("sessionid",ob));

dis request getRequestDispatcher(" intruder! gsp”):

dis.forward(requesLresponse):

i{1(obj3==null))

sesston.setAunbute("username . obyS)y

session.setAtmbute " password”.ob6):

scssion.setAttribute("sessionid",obj7);
dis=request.getRequestDispatcher(" Avoiduser.jsp");

dis.forward(rcquest,response);

pup—

et

catch{Exception ex){}

<{forny=

<‘html=

8. AvoidIntruder.jsp
<%t page content Type"text hrm P04
=%t page pageloncodimg="UTH-8"%>

Hell(}s

<00 page import Mavaio.*

Ol page import avaan] T g

-+

RequestDispatcher dis:-request.getRequestDispatcher("user1.jsp")

Yo

<html>

<hcad><title>JSP Page</title></head>

<body bLgeolor="bluc'">

<%

try

{

String hi=request. getParameter("hi");

String uname—null;

String sessionid 1 :

String pass=null;

Object obj=session.getAttribute{ "username");
Objectobyl -session.getAttribute("password"):
Objeet obj2- session.getAtnbule("sessionid"):

U{ob)==null)

responsc. sendRedireet{"mdex1.sp"):

¥

uname=obj.toString();
pass=obj l.toString();
sessionid 1=obj2.toString();

out.println{"<html><bedy><h2><ccnter>miruders Pagc

<feenter><h2><brz<br=<h>");

out.printin{"<form method=post action:-intruder1 jsp><input type~hidden name=hi

value—2><center><tinput type=submit value—sendsessionid=>
</center=<form><body=</html="):

L
1

if(H(hi==null))

{

session.sctAttribute("uscrname” . obj):
session.sctAttribute("password”.objl);
session.sctAtinbute{ "sessiomd".obj 2}
Random r=new Random{ 1000):

it a--rnextlnt(1000);

InctAddress adr=IctAddress.getl ocallTost():
String str=obj2 toSting(k:

stresstre=" " adr
diss-request. getRequest ispatcher("mt.jsp”):

dis forward(requestaresponscy

16

catch{Exception exp)

System.out.printin(cxp);

Qo=
</body>

<{html=

9.Avoidaccount,jsp

<Yufcpage content] ype~"text'himl" %>
<% page pagebneoding="UTF-8"%>
U4 page import="javax.swing. " %
<%l page nmpor(="java.utl #" %=

<%
Random r—new Random(1000):

int val=ranextnt{ 1000):

mt val -0

RequestDispatcher dis—request. getRequestDispatcher(" Accountl.jsp”);
S

<%

String accountid=rcquest.getParameter("1d");

String accountid l--request.getParameter(" T'1");

System.out.println("the id1 is "+accountid):

System.out.printin(*the 1d2 1s "+accountidl);

H{accountid I '=null}{

if(!(ip.equals("192.168.1.23")))

{
System.out.println("check"):
System.out.println{“"check 1™);

responsc.sendRediveet{"detail 1. jspTaccount™" accountid).

t
I

¥
i

H{("accoumtid null))

J
i

SYSICNLOUE PIIMEI] ™ e oo s
Systentout.prmtIng”Scssion Fixation Avoided"”):
S}.-'Slc|‘n‘()u|ﬂp|'jlu]“(e e et e s et e ittt et e ee et e e }‘

JOptionPanc.showMessageDialog(null, "Session Fixation Avoided™. "Sesston

Fixation Avoided", JOptionPane. ERROR_MESSAGE);
H

System.out.println{"thc id3 is "+ accountid 1);

0/

<html>

<hcad=<title=]JSP Page</title></head>>

<body bgeolor "#IFCCCC">

<p align="center">WELCOME TO WORLD
BANK ACCOUNT<%-- <Jsp:useBean 1d” "beanlnstanceName" scope="session”
class="beanPackage. BeanClassNamce" /> --%>

<{fon=>

<form method="get" action-"Accountl jsp"=

i

<!--webbot bot="SaveResults” U-Iile "fpweb:/7 private/form_results.esv” S-

Format="TLEXT/CSV" S-Label-Fields="TRUE" --=
< align: "eenter'= ip

=p align="center" = r<font color="#0000FEF" LN TER THE BANK

ACCOUNT : i : : : : r : :
 : : :

<input type="text" name- "1 size=" 20" fontsn pis

=g ahgn"center" = ip=

“p alien center=<mput type Usubmit” value "Submit” name "B 1" pr

< forimes

19

<p align="center"> </p>

<p align="center"><input type="submit" value—="Submit" name="B1"></p=
</form>

<p align="center"> </p>

<p align=—"center'> </p>

</body=

<html=

10. Logout.jsp

<%%f page content Type—"texvhtml" %>
<%(e page pageEncoding="UTF-8"%>
<24

response.setHeader("Cache-Control™,"no-store™):

it (sesston - null)

sossion.invahdatefy:

response.sendRediveet("mdex 1 jsp™:

APPENDIX -2

Screen Shots:

INDEX

1 ez e WEA N e T ool m

Ly ines Cres ie=ni W A M Tewmratiycer

Prevention of Session Fixation Attack

L.ogin

Intruder name

Intruder
Password

ERT [T

>

LINK

R Cher e abest S e e R w3 e
L

Cogtorws Lirks Fras Hocoa O Wi Mk Fealre Py

CLICK HHERE TO CIIECK OUT THE NEW FEATURE OF YOL R BANK
FOCSSF7U4DTHCIM28EA0D1416D67134

GAMES

ASTROLOGY

E-CARDS

FREE GIFTS

5)

ACCOUNT

WELCOME TO WORLD BANK
ACCOUNT

EATER THE BANK ACCOUNT

LINK BOUND WITH SSL ID AND IP ADDRESS:

e ‘*'l\ bz Hcalesl SE L e 20 v Do L

L Dwdawslres | Farhceesd L e e YMinda Frnire it er

CLICK HERE 10 LOGIN INTO YOUR BANK ACCOUNT
F1E370EETOED3IBO14361 CROI644415516:487/90.0.0.207

GAMES
ASTROLOGY
E-CARDS
FREE GIFTS

9. REFERENCES:

[1] FETF, »RFC2616: Hypertext Transfer Protocol -- H'I'I'P/ 1. 1«
http:/Awww . detforg/rfe/rfe2616.txt

[2] IETF, »RFC2109: HTTP State Management Mechanisme

http:/iwww.ietforg/rfe/rfc2 109.xt

[3] The Open Web Application Security Project, »Cross Site Scripting«

http: /A www owasp.org/asac/input_validation/css.shtml

[4] The Open Web Application Sccurity Project, »Session Hijacking«

http:/Awwiwv owasp.org/asac/auth-session/hijack. shtml

[5] David Lndler. »Brute-Force Exploitation of Web Application Scssion 1Ds«

http:ionline sccurityfocus.com/data/library/Session s, pdf

R

