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ABSTRACT

Manufacturing industries have become the most important contributors to
prosperity. Industries must be able to adjust quickly to the enduring market
conditions and has to maximize their utilization of available resources. Scheduling
can improve on time delivery, reduce inventory cost, cut lead time and improve
the utilization of available resources. Because of the combinatorial nature of
scheduling problems, it is often hard to obtain optimal schedules especially with a
limited period of computational time. The problem discussed in this report
involves flexible flow shop scheduling.

The objective is to find a schedule which assigns jobs to the machines in
such a way that the makespah, earliness and tardiness are minimized. Minimizing
the'makespan. earliness and tardiness is important since it leads to the best use of
svstem resources. Recent trends in scheduling research are aimed towards
developing models that are more relevant to the practical situation. Genetic
algorithm is good at handling large amount of data and works well in search
space. Genetic algorithm depicts natural gene reproduction processes. Genetic
algorithm is a simple, fast and convenient too! for solving a broad class of very
hard combinatorial optimization problems.

A typical industrial problem of scheduling jobs through parallel machines
is taken up for in-depth analysis. The process times of the jobs are deterministic.
The combined objective is to minimize makespan, earliness and tardiness. Visual
Basic programming has been done for the entire Genetic Algorithm procedure
with available data and the outcome of the Genetic Algorithm technique has been
compared and analyzed graphically. It has been found that the proposed genetic

algorithm technique gives optimized results.
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CHAPTER 1
INTRODUCTION

Scheduling problems in factory shop floors of industries are very hard to
solve because of the nature of processing structure in combination with rigid
technical constraints. such as no-wait restrictions. The motivation for this study
originated due to various uncertainties like delay in product delivery, in effective
utilization of available resources. etc. faced in flow shop by improper scheduling
of jobs. In any given period, all jobs in the set of jobs have to go through a set of
operations without interruption, and the set of machines in each stage. A
complicated combination of objectives is used to determine the quality of 2

schedule. which involves minimum total makespan, earliness and tardiness.
1.1. SCOPE AND PURPOSE

This project deals with problems of scheduling a number of jobs on non-
identical machines, industries are mainly interested in delivering products to
customers in time and to utilize the available resources in an efficient form.
Thercfore makespan, earliness and tardiness parameters are introduced. The
problem is intractable and consequently develops an effective heuristic to obtain
near-optimal solutions. The problems of scheduling the jobs on paralle] and non
identical machines are considered. The goal is to find an optimal schedule, which
has a minimum combined objective function consisting of minimum makespan
and earliness and tardiness.

Genetic algorithm has been developed and computationally demonstrated
with the help of visual basic to be efficient in obtaining near optimal solutions.
Successful implementations of scheduling techniques in practice are scarce. Not
only do daily disturbances lead to a gap between theory and practice, but also the
extent to which a scheduling technique can adequately model the process on the

shop floor and the extent to which the optimization goal that are not great enough.



1.2. SEQUENCE OF THE REPORT

This report starts with a brief introduction about scheduling, then the
problem faced in the industry has been described, literature survey has been done
in detail and then a methodology of Genetic Algorithm has been proposed to solve
the identified problem. Then the procedure of Genetic algorithm has been
described briefly and the proposed Genetic Algorithm methodology has been
applied to solve the problem with the collected data from the industry. Results
after application of genetic algorithm has been compared and analyzed, finally an

optimized solution has been arrived.

1.3. LIMITATIONS OF THE PROJECT

This project also includes some limitations such as, machine break downs
which are not being considered. There 'is no provision to incorporate rush and
sudden orders in shop floor by providing parallel machines adjacent to key
operation machine in cells. Absence of labor and tool failure is not taken in to

account.
1.4 LITERATURE SURVEY

A flow shop generally consists of several different types of machines. The
machines are located together to form a functional layout. The strengths of flow
shops are higher levels of flexibility and utilization of resources. Some of the
inherent drawbacks are longer lead-times and uncontrolled delay of certain jobs. It
is also possible to remove the subjective nature of priority of jobs by assigning job
priorities. The flow shop scheduling problem may be characterized as one in
which a number of jobs, each containing one or more operations, requiring some
amounts of time are to be processed in a particular sequence of machines. The
objective 1s to find a processing order on each machine to optimize a selected
measure of performance. In reality, industrial scheduling problems are dynamic
and complex in nature. Analytical approach to flow shop problems has been

proved 1o be extremely difficult proposition even with several restrictive

(3%



assumptions. Researches and industrial practitioners have tested sequencing rules

with computer simulation in flow shops in order to determine a rule or rules best

suited to satisfy certain objectives for implementation.

TABLE 1.1.SCHEDULING STUDIES

| AUTHOR

STUDY

Leung and Young (1989).
Eck and Pinedo (1993)

Presented algorithms to minimize the
makespan subject to a determined flow

time level.

. Gonzalez and Johnson (1980)

Proposed algorithm to minimize the

“makespan subject to a bound on the

number of preemptions.

| Shmoys and Tardos (1993)

Proposed linear combination of the
makespan and a total cost function for

unrelated machine models.

I Sin (1989) Considered the problem of minimizing
! the makespan and number of
! - preemptions for a set of jobs restricted |
to due data,
Exhaustive survey of multiple and bi-

Nagar {1995}

criteria scheduling.

[Wiison J.M. (1985)

Alternative formulation of a flow shop -

! scheduling problem.

| Wolsey L.A. (1985)

- Mixed integer programming

formulations for production planning |

and scheduling problems.

| Weighted flow time bounds for

scheduling identical processors.

“Bean J. (1994)

Genetic algorithms and random keys

for sequencing and optimization.

el



1.4.1. Other Related Studics

During the last ten years, the scheduling problems have been intensively
studied. Scheduling problems with more than one machine involves resource
allocation and sequencing. rather than simply sequencing. The complexity. in
general. grows exponentially, making the problems intractable. Since efficient
exact algorithms have not been found in 50 years of researching, one is led to
suspect the increasing appearance of these problems in computer science, besides
their intractability, heuristic algorithms have been extensively developed to solve
real world problems with very good results. However, for many cases, polynomial
time approximation algorithms that guérantee near-optimal sclutions are not
known, so that it constitutes a true challenge.

Many improved algorithms have been developed for flow shop scheduling,
These are based upon local search in.a neighborhood. They take a feasible
solution as Istarting-point. and try to improve it by small iterative changes. This
iterative improvement can be achieved by means of many different processes.
Three of them are: Threshold Algorithm, Tabu Search and Genetic Algorithm.
Among these, genetic algorithm starts with a set of solution instead of with only
one.

Research into metaheuristics is quite extensive, especially for Job shop
(Vaessens, 1994) and Flow shop (Dorn, 1996). However, applications to flow
shop problems are relatively scarce. Multiple-machine scheduling are difficult
problems for local optimization techniques because neighboring solutions differ
widely in quality (Hubscher and Glover, 1994).

Kampke (1988) considered the PMS problem by introducing new local
search techniques whose neighborhood structure is based on multiple exchanges
of jobs among machines. They showed that, by means of the proposed algorithms,
near optimal solutions could be obtained when the running time is not important,
and satisfactory ones could be found rapidly. Jozefowska (1998) considered the
discrete-continuous scheduling problem where the machines are identical and the
optimization criterion is the makespan. They combined linear programming and
local search methods to solve this problem. GA is preferable, finding the largest

number of optimal solutions and showing deviation for all the problem sizes.



Several metaheuristics have been developed to deal with Flow shop
scheduling. Van de Velde (1993) presented an algorithm based on iterative local
search where the search direction is guided by surrogate multipliers. Its
performance is better than all the previously published approximation algorithms.
Later on Piersma and Van Dijk (1996) presented algorithms using local search
which are shown to be more efficient.

Glass (1944) completed the relative performance of GA, SA and TS on the
PMS problem. The performance of standard GA without incerporating some
problem-specific features or another type of heuristic is poor. The algorithm
obtained by combining the constructive algorithm by (Hariri and Fotts, 1991) with
GA has been shown to be comparable with the SA and TS that they had
developed. For these three algorithms, TS generates slightly better solutions in a
short time, and GA and SA improve as the time limit increases.

Detailed literature survey shows that extensive work on flow shop
scheduling has been carried out primarily for achieving the optimized solution.
Large amount of heuristic rules, linear programming models and algorithms have
been developed in this regard. No attempts have been made in computer based
model building and search cvaluation procedure, which is very important in this
information technology dominated world. Multi measure performance
optimization is today’s need to satisfy customers as well as the objectives of the
company. An attempt has been made in this project to develop computer based
multi machine multi objective optimization through the emerging new concept of

genetic algorithm.

LA



CHAPTER 2
SCHEDULING

2.1. INTRODUCTION

Scheduling presents when and in what sequence the work will be done. It
involves deciding as to when the work will start and in certain duration of time
how much work will be finished. Scheduling deals with orders and machines, i.e.,
it determines which order will be taken -up on which machine and in which
department by which operator. While doing so, the aim is to schedule as large
amount of work as the plant facilities can conveniently handle by maintaining a
free flow of material along the production line.

Scheduling may be called the time phase of loading. Loading means the
assignment of task or work to the facility whereas scheduling includes in addition,
the specification of time and sequence in which the order/work will be taken up.

Scheduling is a temporal assignment of the orders (manufacturing
products) to resources (machines) where a number of goals and conditions
(meeting the due dates, using only special machines) must be regarded.
Scheduling includes creating a schedule of production process (predictive
scheduling) and adopting an existing schedule because of events in the scheduling
environment (reactive scheduling). A Scheduling problem comprises of,

1. A set of orders to manufacture products that are to be scheduled, subjected
to several constraints.
. A set of products with information about process plans (routings),
operations, machines, ctc.
L. A set of resources with different capabilities (machines and personnel’s).
iv. A setof hard constraints (production requirements) that must be fulfilled.
v. A set of soft constraints (meeting due dates) that must be fulfilled but may

be relaxed.



2.2. SINGLE MACHINE SCHEDULING

Scheduling is the allocation of start and finish time to each particular
order. Therefore scheduling can bring productivity in shop floor by providing a
calendar for processing a set of jobs. It is nothing but scheduling various jobs on a
set of resources such that certain performance measures are optimized.

The single machine scheduling problem consists of n jobs with the same
single operation on each of the jobs, while the flow shop scheduling problem
consists of n jobs with m operations on each of the jobs.

The basic single machine scheduling problem is characterized by the
following conditions,
I. A set of independent, single-operation jobs is available for processing time
at zero.
ii.  Set-up time of each job is independent of its position in jobs sequénce. So,
the set-up time of each job can be included in its processing time.
iii.. ~ Job descriptors are known in advance.
iv.  One machine is continuously available and is never kept idle when work is
waiting.
v.  Each job is processed till its completion without break.
The following three basic data are necessary to describe jobs in a deterministic

single machine scheduling problem which are as follows.

2.2.1. Processing Time (t j)
It is the time required to process job j. The processing time, t; normally

includes both actual processing time and set-up time.

2.2.2. Ready Time (r j)

It is the time at which job j is available for processing. The ready time of a
job is the difference between the arrival time of that job and the time at which that
job 1s taken for processing.

2.2.3. Flow Time (F ;)
It is the amount of time job j spends in the system. Flow time is a

measure which indicates the waiting time of jobs in a system. This in turn gives



some idea about in-process inventory due to schedule. It is the difference between
the completion time (C ;) and the ready time of the job j.
F=C-r)

2.2.4. Lateness (L ;)

It is the amount of time by which the completion time of job j differs
from the due date (L .=C:~ D). Lateness is a measure which gives an idea about
conformity of the jobs in a schedule to a given set of due dates of the jobs.

Latcness can be either position lateness or negative lateness.

2.2.5. Tardiness (T ;)

Tardiness is the lateness of job j if it fails to meet its due date or zero,

otherwise
T.=max (0. Cj—dy)
=max (0,L )

2.3. PARALLEL MACHINE SCHEDULING

Scheduling problems with more than one machine involve resource
allocation and sequencing, rather than simply sequencing. The complexity, in
general, grows exponentially, making the problems intractable. In the classical
parallel machine scheduling problem (PMS), there are n jobs and m machines.
Each job need to be executed on one of the machines during a fixed processing
time. So the aim is to find the schedule that optimizes a certain performance
measure. The scheduling process involves two kinds of decisions, sequencing (the
order in which jobs are processed), and jobs machine assignment. Single machine
problems ask just to find optimal job sequencing. but in the multiple machines
casc it is necessary to find an optimal job-machine assignment as well. The
complexity usually grows exponentially with the number m of machines, making
the problem intractable. This problem, like all deterministic scheduling problems,
making the problem intractable. This problem, like all deterministic scheduling

problems, belongs to the wide class of combinational optimization problem, many



of which are known to be NP-hard, (what this means is that it is not likely that
therc are efficient optimization algorithms to solve them).

Many real life problems can be modeled as PMS ones. On production
lines, it is common to find more than one machine of each kind carrying out the
production tasks. The PMS also constitutes an important issue within the field of
computer science, due to the increments in use of share time systems, or

multiprocessor computers, which require efficient procedures for assigning tasks.

2.4. JOB SHOP SCHEDULING

In job shop scheduling, the production rate, delivery time etc are
fixed by the sale department and limited resources have to be used
effecﬁvely. In this product focused scheduling, in setting the individual
type and the production rates and personal schedules, the schedule may bé
faced with either great rigidity or reasonable flexibility and the nature of
the production system design. Scheduling a job shop is much more
complex than scheduling a flow shop for three reasons:

l. Job shop handles a large variety of product, with different flow

pattern through the work centers.

!\J

Equipment in a job shop is time shared by the various orders in
process, where in a flow shop it is used exclusively for the product

tvpe.

i

Different jobs may be governed by different priorities. This in tum
affects the orders 1 which they are selected for processing once
they are assigned to a work centre. Thus uniformity of output
produced for stock by a flow shop, however does not create such
problem. Order priorities for flow shop affect mainly their shipping
rather than processing dates.
The goals of job shop scheduling usually are,

e High percentage of orders completed on time.

e High utilization of workers and facilities.

¢ Low in process inventory

* Low overtime.



Job shop scheduling applies to intermittent operations of all
tvpes, whether in a factory, hospital, courtroom, or restaurant. For service
operations. the form “job™ is replaced by patient, customer, client or
whatever flows through the facility. The work center may be desk, office,

room, or skill specialty.
2.5. FLOW SHOP SCHEDULING

In flow shop scheduling problem, there are n jobs, each requires
processing on m different machines. The order in which the machines are
required to process a job is called process sequence of that job. The
process sequences of all the jobs are the same. But the processing times for
various jobs on a machine may differ. If an operation of that job is
assumed as zero. The flow shop scheduling problem can be characterized
as given below,

i. A set of multiple-operation jobs is available for processing at time
zero (Each job requires m operations and each operations requires a
different machines.

il.  Set-up times for the operations are sequence independent and are
included in processing times.

. Job descriptors are known in advance.

iv. 'm’ different machines are continuously available.

v.  Each individual operation of jobs is processed till its completion

without break.



CHAPTER 3
OBJECTIVES AND PROBLEM IDENTIFIFCATION

3.1. OBJECTIVES

In recent days, every industry faces tough competition in
manufacturing and selling their products. Each and every product being
better quality, the one which has competitive (low) price, wins the product.

The company chosen is involved in manufacturing work.
Scheduling is a superior problem in flow shop industry. The aim of this
project is to arrive at an alternative sequence of scheduling with an
objective to reduce the manufacturing time, there by reducing
manufacturing cost of the products.

The main objectives are
i.  Makespan minimization
ii.  Toreduce earliness
ii.  To reduce tardiness
iv.  Prompt product delivery

v. Effective utilization of resources

3.2. PROBLEM IDENTIFICATION

The company supplies industrial components to variety of
customers. it schedules jobs according to priority of jobs to be given to the
customers. but it does not follow any organized procedure for scheduling
the jobs. Due to this, the company is facing difficulties of resources etc.
particularly, when the order is more, difficultics become more intense.

Selection of a particular system depends on a number of factors.
Some of these are given below:

i.  Available infrastructure like machine capacity and number of
machines.

ii.  Volume of manufacturing like low volume or high volume.



tii.  Priority of jobs.
tv.  Time schedules like operation, waiting and delivery time.

Each system of scheduling has its merits and demerits. Hence
there is nothing like an ideal system or a best system for scheduling. What
is relevant 1s to select the most appropriate system of scheduling which
suits a particular manufacturing set up. This ability to select the most
appropriate system depends on the professi.onal and conceptual skill of

marnufacturing managers. Thus scheduling is a dynamic system,

3.3 PROBLEM DEFINATION

In this study, there are about 2 stages of machines. In each stage similar
machining operations are performed. In stage 1, the machines available are two
CNC turning center and one Conventional turning center. In stage 2, the machines
available are two Conventional VMC and one CNC VMC. 10 jobs are being
considered for scheduling. Each job varies in its dimensions, requiring change in
fixture setup and tools.

10 jobs are being processed in a sequence, according to priority of jobs to
be given to customers. While processing in those sequences, organization is facing
difficulty in delivering the products within due dates and available resources are
not properly utilized. So these 10 jobs are to be scheduled properly, so that the

objectives could be met.



STAGE 1 STAGE 2

T -
CNC TURNING . »| CNCVMC1
CENTER 1
| CNC TURNING . » | CONVVMC1
. CENTRE 2
CONV TURNING . ,| CONVVMC2
CENTRE 1

FIG.3.1. PLANT LAYOQUT

The following assumptions are usually made while dealing with sequencing
problems:
i.  Only one operation is carried out on a machine at a particular time.

il.  Each operation. once started. must be completed.

iii.  An operation must be completed before its succeeding operation can start.

iv. A job is processed as soon as possible, but only in the order specified.

v.  Processing times are independent of order of performing the operations.

vi.  The transportation time i.e., the time required to transport jobs from one

machine to another is negligible

vil.  Jobs are completely known and are ready for processing when the period

under consideration starts.



CHAPTER 4
PROBLEM SOLVING

4.1 PROBLEM SOLVING PROCEDURE

The proposed problem has been solved by following the below

mentioned figure 4.1,

Problem identification

Y
Problem Definition

h 4

Development of objectives

'

Collect ncecssary data

'

Proposed Methodology

I

[mplementation of methodology

I

Selutions

h 4

Analysis of solutions

Y
Result

FIG.4.1. PROBLEM SOLVING PROCEDURE



4.2. PROBLEM FORMULATION:

4.2.1 Earliness and Tardiness
Earliness or Tardiness of single job = Due time — completion time of that
job {min),
If Due time > Completion time = Earliness of a job
If Due time< Completion time = Tardiness of a job
Total Earliness = sum of the earliness of the jobs in the sequence.

Total Tardiness = sum of the Tardiness of the jobs in the sequence.

4.2.2 Makespan
Make Span is the total completion time of the jobs in that specified
sequence. That is the maximum time taken for the completion of production of all

jobs.

4.2.3 Combined Objective Function (COF)
C.O.F =~ W1 *(Make span of a sequence / Average Make span) +
W2*(Total Earliness of a sequence / Average Earliness) +

W3*(Total Tardiness of a sequence / Tardiness Average)

Where W1= Weightage for Make span
W2=Weightage for Total Earliness

W3=Weightage for Total Tardiness

4.3 PROPOSED METHODOLOGY:

The optimization process is done by using the algorithm called Genetic
Algorithm. Here an initial population of 30 sequences is randomly taken from the
huge population of sequences. From this initial population the best sequences are
extracted by rank selection. Thus the filtered sequences are reproduced. After
reproduction, cross over i1s done from parent sequences. After that mutation is

done to get the required child sequence.



4.4 PROCEDURE FOR APPLYING GENETIC ALGORITHM:

4.4.1 Input for Algorithm
The inputs like,
i.  No of CNC and conventional machines
ii.  Noofjobs
iii.  CNC machining time
1iv.  Conventional machining time
v.  Weightage for Make span, Earliness and tardiness.

vi.  Cross over and Murtation probability, Number of iterations etc, are given

4.4.2 Genetic Algorithm Representation

A basic GA can be represented in following steps:
Step 1: Represem-the_ problem' variable doma.in as a chromosome of a
fixed length, choose the size of a chromosome population N, the crossover

probability pe and he mutation probability pm.

Step 2: Define a fitness function tom measure the performance, or fitness
of an individual chromosome in the problem domain. The fitness function
establishes the basis for selection of chromosomes that will be mated

together during reproduction.

Step 3: Randomly generate an initial population of chromosomes of size
N X1, X2...Xn

Step 4: Calculate the fimess of each individual chromosome: f(x1),
fix2)... f (xn).

Step 3: Sclect a pair of chromosomes for mating from the current
population, parent chromosomes are selected with a probability related to
their fitness. Highly fit chromosomes have a higher probability of being

sclected for mating than less fit chromosomes.



Step 6: Create a pair of offspring chromosomes by applying genetic

operator’s crossover and mutation.
Step 7: Place the created offspring chromosomes in the new population.

Step 8: Repeat step 5 until the size of new chromosome population

becomes equal to the size of the initial population N.

Step 9: Replace the initial (parent) chromosome population with the new

(off spring) population.

Step 10: Go to step 4, and repeat the process until the termination criterion
1s satisfied.

GAs represents an iterative process. Each iteration is called a
generation. A typical number of generations for a simple GA can vary
from 50 to over 500[10].the entire set of generations is called a run. We

expect to find one or more highly fit chromosomes.



CHAPTER 5
METHODOLOGY

Many real world engineering problems are likely to be a multi model with
many local optimum points. Conventional optimization procedures may easily get
trapped in any one of the local optimum points. The only way to solve the above
problem for global optimality is to have a starting point in the global basin.
Genetic algorithm use search in descent and ascent direction by using probability
in all their operators. Since an initial random population is used, genetic
algorithms are ideally suited for problems of glbba] optimization moreover, in
case of scheduling n jobs there are n! ways of doing it, hence it is a difficult task
to arrive an optimal solution in this very large search space traditionally, so a non
traditional methodology genetic algorithm is being used to achievé the global

optimality.
5.1. GENETIC ALGORITHM

A genetic algorithm (GA) is a search technique used in computer science
to find approximate solutions to optimization and search problems. Genetic
algorithms are a particular class of evolutionary algorithms that use techniques
inspired by evolutionary biology such as inheritance, mutation, natural selection,
and recombination (or crossover).

Genetic algorithms are typically implemented as a computer simulation in
which a population of abstract representations (called chromosomes) of candidate
solutions (called individuals) to an optimization problem evolves toward better
solutions. Traditionally, solutions are represented in binary as strings of 0s and Is,
but different encodings are also possible. The evolution starts from a population of
completely random individuals and happens in generations.In each generation, the
fitness of the whole population is evaluated, multiple individuals are stochastically
selected from the current population (based on their fitness}, modified (mutated or
recombined) to form a new population, which becomes current in the next

itcration of the algorithm



5.1.1. History Of Genetic Algorithm

Genetic algorithms originated from the studies of cellular automation.
conducted by John Holland and his colleagues at the University of Michigan.
Research in GAs remained largely theoretical until the mid-1980s, when The First
International Conference on Genetic Algorithms was held at The University of
lllinois. As academic interest grew. the dramatic increase in desktop
computational power altowed for practical application of the new technigue. In
1989, The New York Times writer John Markoff wrote about Evolver, the first
commercially available desktop genetic algorithm. Custom computer applications
began to emerge in a wide variety of figlds, and these algorithms are now used by
a majority of Fortune 300 companiés to solve difficult scheduling, data fitting,
trend spotﬂng and budgeting problems, and virtually any other type of

combinatorial optimization problem.

5.1.2 Evolution

John Holland, from the University of Michigan began his work on genetic
algorithm at the beginning of the 60s. A first achievement was the publication of

Adaptation in Natural and Artificial System in 1975

Holland had a double aim:

i.  To improve the understanding of natural adaptation process,

ii.  To design artificial systems having properties similar to natural systems

The basic idea is as follow: the genetic pool of a given population potentially
contains the solution, or a better solution, to a given adaptive problem. This
solution is not "active” because the genetic combination on which it relies is split
between several subjects. Only the association of different genomes can lead to
the solution. Holland method is especially effective because he not only
considered the role of mutation (mutations improve very seldom the algorithms),
but he also utilized genctic recombination, (crossover) these recombination, the
crossover of partial solutions greatly improve the capability of the algorithm to

approach, and eventually find, the optimum.



5.1.3. Basic Concepts of GA

Genetic algorithm is good at taking larger, potentially huge, search spaces
and navigating them looking for optimal combinations of things and solutions
which we might not find in a life time. _

To use a genetic algorithm, we must represent a solution 10 our problem as
a genome {or chromosome). The genetic algorithm then creates a population of
solutions and applies genetic operators such as mutation and crossover to evolve
the solutions in order to find the best one(s). '

This presentation outlines some of the basics of genetic algorithms. The three
most important aspects of using genetic algorithms are:
1. Definition of the objective function,
ii.  Definition and implementat.ion of the genetic representation,
1. Definition and implementation of the genetic operators.

Once these three have been defined, the generic genetic algorithm should work
fairly well. Bevond that you can try many different variations to improve
performance, find multiple optima (species - if they exist). or parallelize the
algorithms.

Genetic algorithm should be used in case,

i.  aiternate solutions are too slow or overly complicated
il.  need an exploratory tool to examine new approaches,
. problem is similar to one that has already been successfully solved by
using GA
Iv.  we want to hybridize with an existing solution

v.  Benefus of GA technology meet key problem requirements.



5.1.4. Differences and Similarities between GA and Other Traditional
Methods

GA differs from conventional optimization and scarch procedure in several

procedures in several fundamental ways:

i, Genetic algorithms work with coding solution set not the solution
themselves.

ii.  Genetic algorithms search from a population of solutions, not a
single solution.

iii.  Genetic algorithms use fitness function, not derivatives or other
auxiliary knowledge

iv.  Genetic algorithms use pfobabilistic transition roles. not
deterﬁinistic rules.

Even though GAs, are different than most traditional search
algorithms, there are some similarities. In traditional search methods,
where a search direction is used to find a new point, at least two points are
either implicitly or explicitly used to define the search direction. In the
cross over operator, two points are used to create new points. Thus, cross
over operator is similar to a directional search method with an exception
that the search direction is not fixed for all points in the population and
that no effort is made to find the optimal point in any particular direction.
Since two points used in cross over operator are chosen at random, many
search directions are possible. Among them, some may lead to global
basin and some may not. The reproduction operator has an indirect effect
of filtering the good search direction and helps to guide the search. The
purposc of mutation operator is to create a point in the vicinity of the
current point. The search in the mutation operator is similar to a local
search method such as exploratory search used in Hooke-jeeves method.

i.  Population {chromosomes)

ii.  Evaluation (fitness)

iii.  Selection (mating pool)

iv.  Genetic operators



5.2 STRUCTURE OF GENETIC ALGORITHM

The genetic algorithms usual form was described by Goldberg
(1989). Genetic algorithms. differing from conventional techniques. start
with an initial set of random selution called population.

Each individual in the population is called a chromosome.
representing a solution. A chromosome is a string of symbols. It is usually,
but not necessarily, a binary bit string, The chromosome evolve through
successive iterations, called generation, the chromosome are evaluated,
using some measure of fitness.:

To create the next generation. new chromosomes called offspring
are formed either,

. Merging two chromosomes from current generation using a créss
over operator.

1. Modifying a chromosome using a mutation operator.

A new generation is formed by:

. Selecting, according to the fitness values, some of the parents
offspring and
1. Rejecting others so as to keep the population size constant.

The chromosomes having higher probability will be selected. The
chromosomes having lower probability will die out. So after many
generations, the method will converge to an optimum or suboptimum
solution.

There are two kinds of operations in genetic algorithms,

i.  Evolution operation: selection
1. Genetic operation: crossover and mutation

The genetic algorithm mimics the process of heredity of genes to
create new offspring at each generation. The evolution operation mimics
the process ol Darwinian evolution to create populations from generation

{0 generations.



5.3. BASIC TERMS OF GA

5.3.1 Chromosome

In genetic algorithms, a chromosome (also sometimes called a genome) is
a sct of parameters which define a proposed solution to the problem that the
genetic algorithm is trying to solve. The chromosome is often represenied as a
simple string; although a wide variety of other data structures are also in use as
chromosomes.

A genetic algorithm creates many chromosomes, either randomly or by
design. as an initial population. These chromosomes are each evaluated by the
fitness function, which ranks them according to how good their solution is. The
chromosomes which produced the best solutions, relatively speaking within the
population, afe allowed 1o breed. called crossover. The best chromosomes' data is

mixed, hopefully producing a better next generation.

5.3.2. Canditate Solution

[n optimization (a branch of mathematics), a candidate solution is a
member of a set of possible sofutions 10 a given problem. A candidate solution
does not have to be a likely or reasonable solution to the problem. The space of all
candidate solutions is called the feasible region or the feasible area or solution
space.

In the case of the genetic algorithm, the candidate solutions are the

individuals in the population being eveolved by the algorithm.

5.3.3. Fitness

In optimization tcchniques an objective measure is how good the solutions
it finds are, e.g. a way of building a bridge across the M4 will cost 400.000. In
genetic algorithms and genetic programming. by analogy with natural selection
this is called fitness. Fitness is used to guide the search by deciding which

individuals will be used as future points to look for better solutions



5.3.4. Fitness Function

This is a type of objective function that quantifies the optimality of a
solution (that is. a chromosome) in a genetic algorithm. So that particular
chromosome may be ranked against all the other chromosomes. Optimal
chromosomes, or at least chromosomes which are more optimai, are allowed to
breed and mix their datasets by any of several techniques, producing a new
generation that will (hopefully} be even better. |

Another way of looking at fitness functions is in terms of a fitness
landscape, which shows the fitness for each possible chromosome.

An ideal fitness function correlates closely with the algorithm's goal, and
vet may be computed quickly. Speed of execution is very important, as a typical
genetic algorithm must be iterated many, many times in order to produce a useable

result for a non-trivial problem.
5.4. CONTROL PARAMETERS

The efficiency of a GA is highly dependent on the values of the algorithm’s
control parameters. Assuming that basic features like the selection procedure are

predetermined, the control parameters available for adjustment are,

i.  The population size N,
il.  The crossover probability £, and

iif.  The mutation probability Py,

5.5. COMPONENTS OF GA

5.5.1. Population Size

Population size determines how many chromosomes are in a
given population (in one generation). [f there are too few chromosomes,
the possibility of performing crossover is reduced and only a small part of
search space is explored. On the other hand, if there are too many
chromosomes, then the whole process of GA is slowed down. Research

shows that after some limit (which depends mainly on encoding and the



probiem) it is not uscful to use very large populations because it does not

solve the problem faster than moderate sized populations.

5.5.2. Crossover Probability:

[f there is no crossover, offspring are exact copies of parents. If there is
crossover. offspring are made from parts of both parent's chromosome. If
crossover probability is 100%, then all offspring are made by crossover. If it is
0%. whole new generation is made from exact copies of chromosomes from old

population

Crossover is made in hope that new chromosomes will contain good parts
of old chromosomes and therefore the new chromosomes will be better. However,

it is good to leave some part of old populations survive to next generation.
5.5.3. Mutation Probability:

1f there is no mutation, offspring are generated immediately after crossover
(or directly copied) without any change. If mutation is performed. one or more
parts of a chromosome arc changed. If mutation probability is 100%. whole

chromosome is changed, if it is 0%, nothing is changed.

Mutation generally prevents the GA from falling into local extremes.
Mutation should not occur very often, because then GA will in fact change to

random search.

5.5.4. Encoding

There arc many ways of representing individual genes. Holland (1975) worked
mainly with string bits but we can use arrays. trees, lists or any other object.

Various methods of encoding are.

i.  Binary coding
ii.  Octal coding

ili.  Hexadecimal coding

I3
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iv.  Permutation encoding
v.  Value encoding

vi,  Tree encoding

The type of encoding used here is Permutation encoding.

5.5.4.1. Permutation Encoding

Permutation encoding can be used in ordering problems, such as traveling

salesman problem or task ordering problem.

In permutation encoding. every chromosome is a string of numbers that represent

a position in a sequence.

‘Chromosome A 153264798

:ChrOmosomeB 8567231409

TABLE .5.1. CHROMOSOMES WITH PERMUTATION ENCODING

Permutation encoding is useful for ordering problems. For some types of
crossover and mutation corrections must be made to leave the chromosome

consistent {i.e. have real sequence in it) for some problems.

5.6. GENETIC OPERATORS

A genetic operator is a process used in genetic algorithms to
maintain genetic diversity. Genetic variation is a necessity for the process
of evolution. Genetic operators used in genetic algorithms are analogous to
those which occur in the natural world: survival of the fittest, or selection;
asexual or sexual reproduction (crossover, or recombination), and

mutation



5.6.1 Reproduction
Reproduction is usually the first operator applied on population.

Chromosomes are selected from the population to be parents to cross over
and produce offspring. According to Darwin’s evolution theory of survival
of the fittest, the best ones should survive and create new offspring. That is
why reproduction operator is semetimes known as the selection operator.
These exists a number of reproduction operators in GA literature but the
essential idea in all of them is that the above average strings are picked
from the current pepulation and their multiple copies are inserted in the
mating pool in a probabilistic manner, The various methods of selecting
chromosomes for parents to cross over are:

1. Roulette-wheel selection

1. Boltzmann selection

iti.  Tournament selection

v.  Rank selection

v.  Steady-state sclection

Type of selection used is Rank selection.

5.6.1.1. Rank Selection

Rank selection ranks the population first and then every chromosome
receives fitness value determined by this ranking The worst will have the fitness 1,
the second worst 2 etc. and the best will have fitness N (number of chromosomes

in population).
5.6.2. Crossover

The chromosomes of the parent are mixed in some way during crossover,
tvpically by simply swapping a portion of the underlying data structure. This
process is repeated with different parent organisms until there are an appropriate
number of candidate solutions in the second generation poll. There exit many

types of crossover operations in genetic algorithm.



3.6.2.1. One Point Crossover

In a single-site crossover, a cross-site is sefected randomly along the length
of the mated strings and bits next to the cross-sites are exchanged. If an
appropriate site is chosen, a better can be obtained by combining good substance
of parents. Since the knowledge of the appropriate site is not known and it is not
known and it selected randomly. this random selection of cross-site may produce
enthanced children if the selected site is appropriate. If n.ot, it may severely hamper
the string quality. Anyway, because of the crossing of patent better children are
produced and that will continue in next generation also. But if good strings are not
crcated by crossover, they will not survive beyond next generation because

reproduction will not select those strings for the next mating pool.

5.6.2.2. Two-Point Crossover
In a two-point operator, two random sites are chosen and the contents

bracketed by these sites are exchanged between two mated parents.

5.6.2.3. Multi-Point Crossover

In a multi-point crossover, again there are two cases. One is even number
of cross-sites and second one is the odd number of cross-sites. In case of even
numbered cross-sites, the string is treated as a ring with no beginning or end. The
cross-sites are selected around the circle uniformly at random. Now information
between alternate pairs of sites is interchanged. If the number of cross-sites is odd,
then a different cross-point is always assumed at the string beginning. The

information between alternate pairs is exchanged.

5.6.3. Mutation

In genetic algorithms, mutation is a genetic operator used to maintain
genetic diversity from one generation of a population of chromosomes to the next.
It is analogous to biological mutation.

A classic example of 2 mutation operator involves a probability that an
arbitrary bit in a genetic sequence will be changed from its original state. A

common method of implementing the mutation operator invelves generating a



random variable for each bit in a sequence. This random variable tells whether or

not a particular bit will be modified

5.7. OPERATION OF GA

Two elements arc required for any problem before a genetic algorithm can
be used to search for a solution: First, there must be a method of representing a
solution in a manner that can be manipulated by the algorithm. Traditionally, a
“solution can be represented by a string of bits, numbers or characters. Second,
there must be some method of measuring the quality of any proposed solution,

using a fitness function.

For instance. if the problem involves fitting as many different weights as
possible into a knapsack without breaking it, a representation of a solution might
“be a string of bits, where each bit represents.a different weight, and the value of
the bit (0 or 1) represents whether or not the weight is added to the knapsack. The
fimess of the solution would be measured by determining the total weight of the
proposed solution: The higher the weight, the greater the fitness, provided that the

solution is possible
5.7.1. Initialization

Initially many individual solutions are randomly generated to form an
initial population. The population size depends on the nature of the problem, but
typically contains several hundreds or thousands of possible solutions.
Traditionally. the population is generated randomly, covering the entire range of
possible solutions (the search space). Occasionally, the solutions may be "seeded”

in areas where optima! solutions are likely to be found.
5.7.2. Selection

During cach successive epoch, a proportion of the existing population is
selected to breed a new generation. Individual solutions are selected through a
fitness-based process, where fitter solutions (as measured by a fitness function)

are typically more likely to be selected. Certain selection methoeds rate the fitness
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of each solution and preferentially select the best solutions. Other methods rate
only a random sample of the population, as this process may be very time-
consuming.

Most tunctions are stochastic and designed so that a small proportion of
less fit solutions are selected. This helps keep the diversity of the population large,
preventing premature convergence on poor solutions. Here Rank selection method
is used. There are several generic selection algorithms. ;l“here are several generic
selection algorithms. One of the common ones is the so-called rank selection,
which can be implemented as follows: The fitness function is evaluated for each
individual.

a) The population is sorted by descending fitness values
b} Accumulated fitness values are computed

¢) A random number R between 0 and [ is chosen.

5.7.3. Reproduction

The next step 1s to generate a second generation population of solutions
from those selected through genetic operators: crossover (or recombination), and

mutation.

For each new sclution to be produced, a pair of "parent” solutions is
selected for breeding from the pool sclected previously. By producing a "child”

solution using the methods of crossover and mutation.

5.7.4.Crossover

This operation is performed upon the selected chromosomes. Most genetic
algorithms will have a single tweakable probability of crossover (P.), typically
between 0.6 and 1.0, which encodes the probability that two selected organisms
will actually breed. A random number between 0 and | is generated, and if it falls
under the crossover threshold, the organisms are mated; otherwise, they are
propagated into the next generation unchanged. Crossover results in two new child

chromosomes. which are added to the second generation pool. The chromosomes



of the parents are mixed in some way during crossover. tvpically by simply
swapping a portion of the underlying data structure (although other, more complex
merging mechanisms have proved useful for certain types of problems.) This
process is repeated with different parent organisms until there are an appropriate

number of candidate solutions in the second generation pool.

5.7.5. Mutation

The next step is to mutate the newly created offspring. Typical genetic
algorithms have fixed, very small probability of mutation (Pr.) of perhaps 0.01 or
less. A random number between 0 and 1 is generated; if it falls within the Py
range, the new child organism’s chromosome is randomly mutated in some way,

“typically by simple ‘randomly altering bits in chromosome data structure. Mutation

server as important role in genetic algorithm,

i.  Replacing the genes lost from the population during the selection

process so that they can be tried in a new context.

ii.  Providing the genes that were not present in the initial population.

5.8. ADVANTAGES OF GENETIC ALGORITHM

5.8.1. Population Based Search

For optimization problem a deterministic is been generated for
the consumption based on the gradient or higher order destination of
objective function. This method is applied to a single point in search space.
This proceeds in an increasing or decreasing order of direction search. This
makes it to escape from local optima. By this it reproduces relating a god

solution and the bad solution get died and produces an optimal result.



5.8.2. Major Advantages

Genetic  algorithms  have received considerable attention
regarding thetr potential as a novel optimization technique. There are three
major advantages when applyving genetic algorithm to optimization
problems.

1. Genetic algorithms do not have much mathematical requirements
about the optimization problem. Due to their evo.lutionary nature,
genetic algorithms will search for solution without regard to the
specific inner workings of the problem. Genetic algorithms can
handle any kind of objective function and much kind of constraints
(linear or non-linear) defined on discrete, continuous, or mixed
search space.

ii. ~ The ergodicity of evolution operators makes genetic algorithms
very effective at performing global search (in probability). The
traditional approaches perform local search by a convergent
stepwise procedure, which compares the values of nearby points
and moves to the problem possesses certain convexity property that
cssentially guarantee that any local optima is a global optima.

.  Genetic algorithms provide us a great flexibility to hybridize with
domain dependent heuristic 10 make an efficient implementation

for a specitic problem.
5.9. GA APPLICATIONS

TABLE 5.2. GA APPLICATIONS

Domains Application types
Control Gas pipe line, pole balancing, missile
gvasion and pursuit,
Design Semi conductor layout, aircraft design,

kevboard configuration and
comimunication networks.

Scheduling Manufacturing, facility scheduling and
resource allocation




Robotics Trajectory planning

Machine learning Designing neural networks and
classification algorithms.

Signal processing Filter design

Game playing Poker, checker and prisoner’s dilemma

Combinatorial optimization Set covering, traveling salesman, routing,

bin packing, graph coloring and
partitioning.

5.9.1. Other Applications:

v

Automated design, including research on composite material design and
multi-objective design of automotive components for crashworthiness,
weight savings, and other characteristics.

Automated design of mechatronic systems using bond graphs and genetic
programming (NSF).

Calculation of Bound States and Loca) Density Approximations
Configuration applications, particularly physics applications of optimal
molecule configurations for particular systems like C60 (buckyballs).
Container loading optimization.

Distributed computer network topologies.

File allocation for a distributed system.

Parallelization of GAs/GPs including use of hierarchical decomposition of
problem domains and design spaces nesting of irregular shapes using
feature matching and GAs.

Game Theory Equilibrium Resolution

{_earning Robot behavior using Genetic Algorithms,

Mobile communications infrastructure optimization.

Molecular Structure Optimization {Chemistry)

Multiple population topologies and interchange methodologies.

Protein folding and protein/ligand docking.

Plant floor layout.
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Scheduling applications, including job-shop scheduling. The objective
being to schedule jobs in a sequence dependent or non-sequence dependent
setup cnvironment for a minimal total tardiness.

Solving the machine-component grouping problem required for cellular
manufacturing systems

Stock Market Prediction

Tactical asset allocation and international equity strétegies.

Traveling Salesman Problem.



CHAPTER 6
DATA COLLECTION

6.1. MACHINE DETAILS

6.1.1. Details of Stage 1

TABLE 6.1 STAGE 1 MACHINE DETAILS

No  Machine pumber | Machine type
| |
! - MCOL ACE jobber XL
! -
: ! CNC turning centre
S
P2 - MC0z2 ACE jobber XL
| ‘ CNC turning centre
|
| 3 | MC03 lathe

6.1.1.1. Opecrations Performed

»

Facing
Turning
Boring
Parting
Grooving

Threading




6.1.2. Details of Stage 2

TABLE 6.2 STAGE 2 MACHINE DETAILS

No Machine number i Machine type
! - MCO1 CNC VMC
2 MC02 VERTICAL MILLING
MACHINE
3 f MCO3 VERTICAL MILLING
MACHINE

6.1.2.1. Operations Performed

» Side milling

Arc milling
* Slot milling
* Flat milling
» Slotting

» Squarc milling



6.2. JOB DATA

Job I: Bearing collar
Application: hydraulic pump
Operation !: facing, turning, boring

Operation 2: slot milling

Job 2: Bush

Application: textile spares

Operation 1: facing, turning, grooving. parting
Operation 2: facing, boring

Vaterial: EN8 Steel

Job 3: Setting ring

Application: textiies

Operation 1: facing, turning
Opcfation 2: facing, turning, boring

Material: Cast Iron

Job 4: Connecting rod rear

Application: hydraulics

Operation1: boring, grooving

Operation2: reaming, face milling, slotting, spot milling

Material: Cast Iron

Job 5: Support

Application: hydraulics

Operationl: facing. boring

Operation2: side milling, drilling, tapping

Material: Cast Iron
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Job 6: Jockey pulley
Application: textile
Operation|: turning. boring
Operation2: arc milling

Material: Tin Sheet

Job 7: Disc
Operation]: facing, outer diameter turning, threading
Operation2: slot milling

Material: Aluminium

Job 8: Chopper plate

Application: food processing industries
Operation|: drilling, radial millin'g
Operation2: facing, outer diameter turning

Material: Stainless Steel

Job §: Radial ring

Application:

Operationl: outer diameter turning
Operation2: square milling

Material: Aluminium

Job 10: bearing support
Application:

Operationi: facing, boring
Operation2: boring, side milling
Material: EN8 Stee!



TABLE 6.3 TIME STUDIES

Time for stagel

Time for

. ; * Due ‘ (Iin mins) stage2(in mins)
o ‘ ty | (days) i T  LATHE | VMC | vMC
Bearing | 190 @ 3 03 15 02 03
1 collar
‘ 2 Bush 155 | 2 03 13 04 10
l \ |
3 . Settingring . 100 | 3 03 11 01 03
|
‘ 4 . Connecting | 215 I 03 10 23 90
i ‘rod
l !
5 | Support 185 3 03 15 12 75
|
| 6 Jockey 120 3 01 15 02 12
! ‘ puiley
7 | Dise 150 1 03 15 02 05
i
| 8 Chopper | 100 2 03 10 06 60
‘ plate ‘
g “fiadialring‘ 150 g 0l 03 02 10
10 Bearng | 275 | 2 03 02 04 | 43
| support ‘




Fig.6.1. BUSH

Fig.6.2. SETTING RING



Fig.6.3. CONNECTING ROD REAR

Fig.6.4.CHOPPER PLATE
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Fig.6.5. BEARING SUPPORT

Fig.6.6. JACKEY PULLEY



Fig.6.8. CNC VERTICAL MACHINING CENTRE



CHAPTER 7
PROPOSED GENETIC ALGORITHM CONCEPT

7.1. NUMBER OF PARAMETERS TO BE OPTIMIZED

In this problem. there are three parameters to be optimized
i.  Total Makespan
ii.  FEarliness

m.  Tardiness
7.2. INITIALIZING SAMPLE POPULATION

Sample population is being initialized according to requlirement. Size of
sample population is defined as N, where N must be an even number so that the
pairs could be made to reproduce. In this study sample population is 30.

Efficiency of GA is highly dependent on value of population size N. So

population sizc acts as a control parameter.

7.3. METHOD OF REPRESENTATION

There are so many methods of representation. But in this study each
schedule has been represented in form of integers from 1 to 10, as there are 10
Jobs considered in this problem. Moreover, using integers to represent the
schedule, it serves as an easy method for computational work.

For example. each schedule is represented as 1-2-3-4-5-6-7-8-9-10. Total

makespan, earliness and tardiness are calculated for each schedule.

7.4 DEVELOPING OBJECTIVE FUNCTION

Objective function has been developed for the proposed problem, as the
preblem involves multi- objectives. combined objective function has been

developed using the following formulae.
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C.O.F = wl*(Makespan / Average of makespan) -+ w2*(Earliness / Average

carliness) + w3*(Tardincss/ Average tardiness)

wi= Weightage factor for total makespan

w2= Weightage factor for total earliness

w3= Weightage factor for tardiness respectively

TABLE7.1. C.O.F VALUES FOR SAMPLE POPULATION

sno | Sequence(Random) Earliness Tardiﬁess Makesspan C.OF
|| 09-06-02-08-05-01-10-03-04-07 | 9810 30035 8730 0.9624
2 10-03-07-04-06-03-08-09-02-01 | 5245 22865 4835 0.6864
3 08-04-03-02-01-06-10-07-05-09 . 6875 27430 8810 0.8995
4 | 08-04-09-06-01-07-02-10-03-05 | 4065 24040 8915 07584
5 09-03-05-02-01-07-08-10-04-06 | 2745 48845 9110 0.8758
6.1 02-03-01-07-06-10-05-09-04-08 | 2160 56890 9850 0.9489
7 | 01-08-02.04-07-09-06-05-03-10 | _ 6815 24095 9870 0.9542
8 08-05-04-06-03-09-01-07-02-10 3970 35445 8255 0.7904
9 07-06-05-03-08-04-01-09-02-10 | 6145 44335 7320 0.7186
10 | 06-03-04-07-10-08-02-09-01-05 | 7385 31820 4360 0.8922
|11 | 09-01-05-06-07-03-04-10-08-02 2670 52300 9865 09368
12 05-09-10-04-03-06-07-01-02-08 | 5045 16285 9725 0.9299
13 | 01-08-04-03-02-09-07-06-05-10 3340 36455 9930 08698
14 | 05-10-07-04-06-02-03-08-09-01 | 3140 38330 9115 0 8189
15 ¢ 10-09-02-04-05-08-03-06-01-07 | 8475 32235 4195 0.741
16 | 06-03-05-04-10-08-07-01-09-02 | 8305 35455 4995 0.8104




04-09-01-08-07-10-06-05-03-02

Y : 9180 37440 9230 0.9632
18 i 05-10-09-04-06-02-01-07-08-03 3570 35573 7975 0.8478
19 l 02-06-01-07-08-09-03-10-05-04 6630 40975 6595 0.8592
20 | 05-02-09-07-03-06-08-04-10-01 - 1390 50230 8225 0.7869
21 04-02-05-08-06-09-01-03-10-07 | 6475 38465 7335 0.8866
22 ! 04-01-07-03-06-10-08-05-09-02 | 4260 41130 9603 0.9058
523 03-09-05-01-04-06-10-07-02-08 3070 30150 ?9I65 0.7057
! 24 | 07-10-05-03-09-02-04-08-01-06 | 4930 35860 79935 0.8396
25 ¢ 10-01-09-02-07-05-06-08-04-03 3820 30790 7440 0.7248
26 | 07-10-06-04-05-08-03-02-01-09 2425 40.7'40 8210 D.7495
27 | 01-08-09-06-10-05-03-04-02-07 ° 535 27930 8645 0.6948
28 | 04-06-01-03-08-05-02-07-09-10 6330 26255 4010 0.5948
29 | 04-10-07-06-09-08-01-05-02-03 @ 4735 37620 9745 0.9128
. 30 © 03-08-01-02-03-07-09-04-10-06 . 4285 38240 8675 0.848%

Additionally, a cumulative probability table has been formed. Cumulative

probability has been formed by following the below mentioned procedures,

Expected value E = minimum value + (maximum — minimum value)*(R-1) / (N-1)

In the proposed problem, Minimum value is taken as 0.4 and maximum value is

taken as 1.6.These minimum values and maximum values can be varied according

to requirement. Cumulative probability set is then calculated by using the

probability set values. Values calculated for N schedules have been tabulated in

table 7.2
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TABLE 7.2. CUMULATIVE PROBABILITY VALUES

MSino Expected value (E) | Probability set Cumulative
’7 _ ! ) (E/30) _ probabilityﬁ
. ] 0.4 0.0133 0.0133
2] 0.4413 0.0147 0.028
| 3 0.4287 0.0160 ' 0.044
4 0.5241 0.0174 0.0614
L' 5 0.5655 0.0188 0.0802
’_ 6 | 0.6068 0.0202 0.1004
7 0.6482 0.0216 0.122
8 0.6896 0.0229 0.1449
9 0.7310 0.0243 0.1692
10 0.7724 0.0257 0.1949
SR 0.8137 0.0271 0.2220
12 0.8551 0.0285 0.2505
i3 0.8965 0.0299 0.2903
14 0.9379 0.0312 03115
5 i 0.9793 0.0326 0.3441
6 1.0206 0.0340 0.3781
17 1.0620 0.0354 0.4135
18 i.1034 0.0367 0.4502
19 1.1448 0.0381 0.4883
20 1.1862 0.0393 0.5278
o2l 0.0409 0.0409 0.5687
- 22 0.0422 0.0422 0.6109
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23 0.0436 0.0436 0.6545

21 0.0450 0.0450 0.6995 |

23 0.0460 i 0.0460 0.7459 |
26 0.0478 0.0478 0.7937

27 ! 0.0491 0.0491 - 0.8428

28 ! 0.0505 0.0505 0.8933

29 0.0519 0.0519 0.9452
30 0.0533 0.0333 0.9983

7.5. OUTPUT OF REPRODUCTION

After computing cumulative probability values, each schedule is

assigned a random number from range 0.000 to 0.999, by using random

table. Rank has been selected for each schedule by comparing the random

number for each schedule with cumulative probability values. N/2 pairs

are then being selected for crossover in the order of selected rank. Random

number assigned, selected rank for N schedules has been tabulated below.

TABLE 7.3. RANK BASED SELECTION

S. Sorted Rank Probabability Cumulative | Random | Rank
no C.O.F Of Selection Probability | Number [ Selected
I 0.9632 1 0.0133 0.0133 0.218 11
2 0.9624 2 0.0147 0.023 0.112 07
3 0.9542 3 0.0160 0.044 0.711 25
; 4 0.9488 | 4 0.0174 0.0614 0.655 24
| 5 | oeses 5 | 0.0188 ___0.0802 0.419 8
’> 6 0.9299 | 6 0.0202 ‘ 0.1004 0.354 16
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0.9129

7 7 | 0.0216 0.122 0.174 10
ES 0.9058 8 ! 0.0229 0.1449 0.910 29
9 0899s| 9 0.0243 0.1692 ' 0076 5
10 08922 | 10 0.0257 0.1949 ; (.249 12
1] 0_88-66__ o 0.0271 0.2222 0.129 8
12 0.8758 : 12 0.0285 0.2505 0.439 18
13 0.8698 13 0.0298 0.2803 0.380 17
14 08592 14 0.0312 03115 0.498 20
15 0.8478 | 15 0.0326 0..3441 0.134 8
16 0.8459 16 0.0340 0.3781 0.159 9
17 | . 0.839% 17 0.0354 0.413517 0.966 6
| 18 0.8199 . 18 0.0367 0.4502 0.761 26
19 0.8104 19 0.0381 0.4883 0.8530 28
20 0.7904 20 0.0395 0.5278 0.697 24
21 0.7869 21 .0409 0.5687 0.57% 22
22 0.7584 22 0.0422 0.610% 0.636 23
| 23 0.7495 23 , 0.0436 0.6545 0.416 18
24 0.741 24 | 0.0430 0.6995 0.035 3
23 07248 25 0.0464 0.7459 0.913 29
i 26 O.?186i 26 0.0478 0.7937 0.512 20
L 27 07057 | 27 0.0491 0.8428 0.628 23
28 0.6948 28 0.0505 0.8933 ' 0752 26
29 0.6893 29 0.0519 0.9452 0.897 29
30 05864 30 | 0.0335 0.9985 0.232 12
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{n proposed problem. cross over probability (P,) is varied from

0.5 to 0.9 and cross over site is varied from  to 9, depending on the value

of cross over
generated.
Before cross over.
01-02-03-040-05-06-07-08-09-10
02-04-10-06-08-01-03-050-70-09
[f the cross over site is 5
01-02-03-04-05; -06-07-08-09-10
02-04-10-06-08j -01-05-03-07-09
After cross over.

01-02-03-04-05-10-06-08-07-09

02-04-10-06-08-01-03-05-07-09

probability and cross over site .

TABLE 7.4.CROSS OVER

new schedules are

S.no Cross | Cross
Schedule after Over  over : Schedule after
| _ reproduction site  ves/no | Cross over
i 01-08-02-04-07-09-06-05-03-10 ' 03 Yes 01-08-02-10-09-04-05-03-06-07
‘ 2 _10-09-02-04-05-08-03-06-01-07 | 10-09-02-01-08-04-07-06-05-03
!"g‘“ 08-04-09-06-01-07-02-10-03-05 I 07 NO 08-04-09-06-01-07-02-10-03-03
| 4 : 04-06-01-03-08-05-02-07-09-10 (4-06-01-03-08-05-02-07-09-10
5 | 10-01-09-02-07-05-06-08-04-03 06 Yes 10-01-09-02-07-05-06-08-04-03
6 10-01-09-02-07-05-06-08-04-03 10-01-09-02-07-05-06-08-04-03
7 08-04-03-02-01-06-10-07-05-09 02 Yes 08-04-09-06-02-05-01-10-03-07
8 ! 09-06-02-08-05-01-10-03-04-07 06-06-08-04-03-02-01-10-07-05
9 - 04-09-01-08-07-10-06-05-03-02 03 Yes 04-09-01-10-07-06-08-05-02-03
10 04-10-07-06-09-08-01-05-02-03 I 04-10-07-09-01-08-06-05-03-02
11 10-03-07-04-06-05-08-09-02-01 08 No ' 10-03-07-04-06-05-08-09-02-01
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12 10-01-09-02-07-05-06-08-04-03

10-01-09-02-07-05-06-08-04-03

! 15 04-09_:(_)1-08—07-10-06-05-03-02 ., 09 No 04-09-01-08-07-10-06-05-03-02
.i- 16 i 07-10-06-04-05-08-03-02-01-09 . 07-10-06-04-08-09-01-02-03-03

| 17 i 04-10-07-06-09-08-01-05-02-03 05 i Yes 04-10-07-06-09-01-03-08-05-02 ;‘
| ,

.. 18 04-01—07—03-06-I0-08—05-09-02 04-01-07-03-06-10-09-08-05-02
- 19 02-06-01-07-08-09-03-10-05-04 03 Yes 02-06-01-08-05-04-03-09-07-10 .-
20 i 08-05—04-06;03-09-01-0?-02-10 | 08-05-04-02-06-01-07-09-03-10
C21 06-03-05-04-10-08-07-01-09-02 02 Yes 06-03-07-10-05-09-02-04-08-01 ;
22 07-10-05-03-09-02-04-08-01 06 07-10-06-03-05-04-08-01-0%-02
23 08-04-09-06-01-07-02-10-03-03 02 Yes 08-04-06-03-05-10-07-01-09-02 |
24 06-03-05-04; 10-08-07-01-09-02 06-03-08-04-09-01 -07-02-10-05
: 23 ' 06—03-‘05-07-10—08-02-09-01—05 (2 Yes 06-03-08-04-02-01-10-07-05-09 °

| 26 08-04-03-02-01-06-10-07-03-09 | | 08-04-06-03-07-10-02-09-05
27 05-10-07-04-06-02-03-08-09-01 01 Yes 05-07-06-03-08-04-01-09-02-10
28 | 07-06-05-03-08-04-01-09-02-10 . 07-05-10-04-06-02-03-08-09-01 :
: 29 08-04-06-06-01-07-02-10-03-03 P02 Yes 08-04-06-03-07-10-02-09-01-05
130 06-03-04-07-10-08-02-09-01-05 06-03-08-04-09-01-07-02-10-05
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7.6. METHOD OF MUTATION

Mutation is a random modification of a randomly selected string.
Mutation is done with a mutation probability of 0.01 to 0.03.
For example,
In any two sequences any two positions are changed.
Before Mutation.
01-02-03-040-05-06-07-08-09-10
02-04-10-06-08-01-03-050-70-09
After Mutation.
01-05-02-040-05-06-07-08-09-10
02-04-06-10-08-01-03-050-70-09

TABLE 7.5 MUTATION

: S.no i After Crossover Mutation Site After Mutation
l 01-08-02-10-09-04-05-03-06-07 01-08-02-10-09-04-05-03-06-07
2 10-09-02-01-08-04-07-06-05-03 10-09-02-01-08-04-07-06-05-03
: 3 _08-04-09-06-01-07-02-10-03-05 08-04-09-06-01-07-02-10-03-05
4 04-06-01-03-08-05-02-07-09-10 : 04-06-01-03-08-05-02-07-09-10
5 10-01-09-02-07-05-06-08-04-03 . 02 & 03 | 10-09-01-02-07-05-06-08-04-03
L6 10-01-09-02-07-05-06-08-04-03 | 10-01-09-02-07-05-06-08-04-03
7 . 08-04-09-06-02-05-01-10-03-07 08-04-09-06-02-05-01-10-03-07
8 | 09-06-08-04-03-02-01-10-07-05 | 09-06-08-04-03-02-01-10-07-05
9 04-09-01-10-07-06-08-05-02-03 ~ . 04-09-01-10-07-06-08-05-02-03
10 04-10-07-09-01-08-06-05-03-02 i 04-10-07-09-01-08-06-05-03-02

10-03-07-04-06-05-08-09-02-0]

10-03-07-04-06-05-08-09-02-01

10-01-09-02-07-05-06-08-04-03

T 110-01-09-02-07-05-06-08-04-03




04-09-01-08-07-10-06-05-03-02

04-09-01-08-07-10-06-05-03-02

|

14 | 07-10-06-04-05-08-03-02-01-09 07-10-06-04-05-08-03-02-01-09

15 | 08-04-09-06-07-10-05-03-02-01 05 & 06 08-04-09-06-10-07-05-03-02-01

16 | 07-10-06-04-08-09-01-02-03-03 07-10-06-04-08-09-01-02-03-05

17 04-10-07-06-09-01-03-08-05-02 04-10-07-06-09-01-03-08-05-02
18 | 04-01-07-03-06-10-09-08-05-02 04-01-07-03-06-10-09-08-05-02

16 | 02-06-01-08-05-04-03-09-07-10 02-06-01-08-05-04-03-09-07-10

20 08-05-04-02-06-01-07-09-03-10 | 08-05-04-02-06-01-07-09-03-10
21| 06-03-07-10-05-09-02-04-08-01 06-03-07-10-05-09-02-04-08-01
22| 07-10-06-03-05-04-08-01-09-02 07-10-06-03-05-04-08-01-09-02

23 08-04-06-03-05-10-07-01-09-02 . 08-04-06-03-05-10-07-01-09-02

24 | 06-03-08-04-09-01-07-02-10-05 06-03-08-04-09-01-07-02-10-05
25 ‘ 06-03-08-04-02-01-10-07-05-09 | 06-03-08-04-02-01-10-07-05-09

26 ._ 08-04-06-03-07-10-02-09-05 | 08-04-06-03-07-10-02-09-05
27| 05-07-06-03-08-04-01-09-02-10 05-07-06-03-08-04-01-09-02-10
28 _J0?-05-10-04-06—02-03-08-09-01 | 07-05-10-04-06-02-03-08-09-01
29 | 08-04-06-03-07-10-02-09-01-0 08-04-06-03-07-10-02-09-01-05

30 [ 06-03-08-04-09-01-07-02-10-05 02 & 08 06-02-08-04-09-01-07-03-10-05

7.7. OUTPUT AFTER THE FIRST ITERATION

The best string obtained after performing 1°* generation is the

chromosome number 30, which has the minimum, C.O.F value of

0.720979. The corresponding earliness is 3245, tardiness 322865 and

makespan is 4835. This completes one generation of the GA and the best
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value is stored. All the strings available at the end of the first iteration will

be treated as parents for the 2 iteration. This procedure is repeated for the

number of iterations as given by the user.

TABLE 7.6. OUTPUT AFTER THE FIRST GENERATION

! S.n0 | Schedule after crossover and | Earliness Tardiness Makespa C.o.f —|
_ mutation n B
| 1 i 01-08-02-10-09-04-05-03-06-07 | 6813 24095 9870 | 1.12641 |
2 : 10-09-02-01-08-04-07-06-05-03 ' 8475 32235 4195 0.89432 |
' 3 08-04-09-06-01-07-02-10-03-05 | 4065 | 24040 | 8915 | 0.94227 |
4 04-06-01-03-08-05-02-07-09-10 6350 26255 4010 L 0.74239 |
5 10-09-01-02-07-05-06-08-04-03 | 3305 32360 7485 0.88346
! ) 10-01-09-02-07-05-06-08-04-G3 | 3820 307590 7440 | 0.88749 |
i 08-04-09-06-02-05-01-10-03-07 | 6875 27430 | 8810 1.08588 _'
' ’ | 09-06-08-04-03-02-01-10-07-05 | 9810 30035 | 8730 1.23064 -
i 04-09-01-10-07-06-08-05-02-03 !. 5180 37440 9230 | 1.29189 |
" 04-10-07-09-01-08-06-05-03-02 | 4735 37620 9743 | 1.12980 _
' 10-03-07-04-06-05-08-09-02-01 1 5245 22865 4835 0.72097
3 10-01-09-02-07-05-06-08-04-03 | 3820 30790 . 7440 0.88749 |
N 04-09-01-08-07-10-06-05-03-02 | 9180 37440 9230 1.29189 |
¢ 07-10-06-04-05-08-03-02-01-09 2425 40470 8210 1 0.9497% |
3 08-04-09-06-10-07-05-03-02-01 | 3740 26225 9800 1.00200 |
3 07-10-06-04-08-09-01-02-03-05 | 2425 40740 8210 0.95186 |
X 04-10-07-06-09-01-03-08-05-02 | 4725 37620 1 9745 1.12936 |
i 04-01-07-03-06-10-09-08-05-02 * 4260 41130 9605  1.12657 |
i 02-06-01-08-05-04-03-09-07-10 | 6630 40975 I| 6595 1.03518 |
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20| 08-05-04-02-06-01-07-09-03-10_| 3970 35445 8255 0.98264 |
|21 | 06-03-07-10-05-09-02-04-08-01 | 8305 | 35445 4995 0.96325
|&_22 | 07-10-06-03-05-04-08-01-09-02 }4930 35860 7995 1.01148
5 | 08-04-06-03-05-10-07-01-09-02 | 4065 24840 8915 09484 |
l24 | 06-03-08-04-09-01-07-02-10-05 issos 35455 4995 0.96335 _I
‘. 25 | 06-03-08-04-02-01-10-07-05-09 | 7385 31820 4360 0.85356 |
|2_6 | 08-04-06-03-07-10-02-09-03 !6875 27230 $810 108435
|27 | 05-07-06-03-08-04-01-09-02-10 3140 38330 | 9115 [ 1.02375
}23 !oios-10-04-06-02-03-08-09-01 ‘6145 44335 7320 108645 |
29 | 08-04_-06-03-0?-10~02-09-01-05 !4065 24040 8915 0.94227 |
(30| 06-02-08-04-09-01-07-03-10-05 | 6275 25100 5560 ,0.33073J

7.8. ALGORITHM:

Step 1: Start the program.

Step 2: Get the input values of Crossover rate, Mutation rate, Number of
iterations, Weightages for Makespan, Earliness. Tardiness.

Step 3: Input the values like quantity, time of operation in each stage for
each job.

Step 4: A sequence is generated at random and for that sequence the jobs
are assigned taking into consideration the number of machines in each
stage and the order in which they are present as follows,

a) Assign the jobs as per schedule to the machines.

b) If all the machines are occupicd with jobs the next job can
be assigned to a machine only when any one of the
machine becomes idle after completion of previous
operation.

¢) Jobs should be assigned to machines in second stage as

soon as they complete their operation in stage 1.
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Step 4: Calculate the values of maximum makespan, earliness, tadiness for
each sequence for all thirty sequences .

Step 5: Calculate the value of C.O.F

Step 6: Rank all the thirty sequences in the decending order of C.O.F
values .

Step 7: Sequences with higher C.O.F values are removed by comparing
them with cumulative probability values and those sequences are remou;ed
and better sequences are replace the removed ones.

Step 8: A random crossover site is selected and sequence pairs are
arranged in the order of the other sequence in the pair after the crossover
éite_

Step 9: Two random numbers are generated for each sequence and the
corresponding strings are swapped.This completes iteration. .
Step 10: These thirty sequences are taken as input and all these above
operations arc repeated for these sequences forming a loop until the
number of iterations preferred is over. Best C.O.F values of iteration are

taken and plotted on a graph

7.9. VB PROGRAM

Dim j As String

Dim JobEd As Integer, ed As Boolean

"Dim seql, seq2 As String

Dim mutAr(1 To 30) As Integer, mutArNo(I To 30) As Integer
Dim mA(1 To 30) As String

Dim CoP{! To 30) As Integer

Dim ar() As Long ' for mutation sorting

Dim mak(0 To 4) As Boolean ' for checking in case the minitues are same
Dim TotMakeSpan As Long, GMKSp

Dim COPRank{30) As Integer

Dim IterationNo As Integer

Dim EndProcess As Boolean

Dim schl() As Integer
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Dim chrtStatic As Integer
Dim chartAr{1000) As Double

Dim aa As Integer

Dim rndar() As Integer 'December 7 correction

Private Sub CalculateCOF()

Dim item1(1 To 30) As Double, item2(! To 30) As Double, item3(1 To 30) As
- Double

Dim MakeSpanTotal As Long. EarlinessTotal As Long, TardinessTotal As Long

Dim COFValue As Double

~ Static counter As [nteger
counter = counter + 1
If counter > 30 I’I‘hen counter = |
MakeSpanTotal = CLng(MakeSpanTotal) +
CLng(IstMakespan.Listltems{counter).Subltems(2))
EarlinessTotal = CLng(EarlinessTotal) +
Cl.ng(lstMakespan.Listltems(counter).Subltems(3))
TardinessTotal = CLng(EarlinessTotal) +

CLng(IstMakespan.Listltems(counter).Subltems(4})

If Iteration™No = | Then
AverageMakeSpan = MakeSpanTotal / 30
AverageEarliness = EarlinessTotal / 30
AverageTardiness = TardinessTotal / 30
End If

Dim tmpl As Long. tmp2 As Long, tmp3 As Long

tmp! = CLng(lstMakespan.Listltems{counter).Subltems(2))
tmp2 = CLng(IstMakespan.Listltems(counter).Subltems(3))

tmp3 = CLng(IstMakespan.Listltems(counter).Subltems(4))
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iteml{counter) = CDbl(var]l * (tmp]l / AverageMakeSpan))
item2(counter) = CDbl(var2 * (tmp2 / AverageEarliness))
item3({counter) = CDbl{var3 * (tmp3 / AverageTardiness))
COFValue = itemli(counter) + item2(counter) + item3(counter)

IstMakespan.Listitems{counter).Subltems{3) = Format(COF Value, "0.00000000")

End Sub
Private Sub CalculateMakeSpanStage1()

ClearStage land2ListBoxes
Stagel

Allotl

Stage2

Aflot2

SortList
EarlincssTardiness
CalculateCOF

RankCOF

End Sub

Private Sub RankCOF{}
Static counter As Integer
counter = counter |
If counter > 30 Then counter = 1
listCOFRank.Addliem  Format(lstMakespan.ListItems{counter).Subltems(5).
"0.00000000™) ' for sorting and ranking

It counter = 30 Then

Dim rnk As Integer, 1 As Integer, g As Integer

rmk =1

L
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Fori=30To I Step -1
Forq=30To 1 Step -1
[f listCOFRank.List(i - 1) = IstMakespan.Listiterns(q).Subltems(5) Then
[stMakespan.Listltems(q).Subltemsi6) = Format(rnk, "00")
rnk = rnk + 1
Exit For
End If
Next g

Nexti

CheckBlanks

Reproduction

CrossOverl

CrossOver2

Swap

WriteToFiIé
EndIf

End Sub

Private Sub CheckBlanks()
Dim i As Integer
fori=1To 30
[f Trim({lstMakespan.ListItems(i).Subltems(6)) = "" Then
tmp = IstMakespan.Listltems(i).Subltems(3)

pos =i
Fork=1To30
If IstMakespan.Listltems(k).Subltems(5) = tmp And

[stMakespan.Listitems(k).Subltems{6) <> "" Then
{stMakespan.ListItems({pos).Subltems(6) =
Val(IstMakespan.Listltems(k).Subltems{6)) + |
Exit For
End If



Nextk
End If

Next i
End Sub

Private Sub Reproduction()
Dim X As Integer, Y As Integer

Dim . m As Listltem, i As Integer

Fori=1To 30

Randomize
Set m = ]JstReproduction.Listltems.Add(, , Format(i, "00"))
m.Subltems(1)="" ' '
m.Subltems(2) = Format{CumProb(i - 1). "0.0000")
m.Subltems(3) = Format{{Rnd()) + 0.0001, "0.0000")

m.Subltemsg(4) ="

Next i
For X=1To 30
For¥ =1To 30

It Val{lstMakespan.Listltems(Y).Subltems(6)) = X Then
IstReproduction.Listltems{X}.Subltems(1)} =
IstMakespan.Listltems(Y).Subltems(1)
Exit For
End If
NextY
Next X

Dim pos As Integer, counter As Integer
Dim tmp As Double, tmp2 As Double
For X =1To 30
ForY = 1 To 30
[T CDbi(IstReproduction.Listitems{Y).Subltems(3) >= 0.9985) Then
IstReproduction.Listitems(Y).Subltems(3) = 0.9983

O}



If CDbl(IstReproduction.Listltems(Y).Subltems(2))
CDbl{lstReproduction.Listltems(X).Subltems(3)) Then
counter = counter + 1

If counter =1 Then

mp = CDbl(IstReproduction.Listltems(Y).Subltems(2))
CDbl(IstReproduction.Listltems(X).Sublterns(3))
pos = Y
End It

If counter > 1 Then
tmp2 = CDbl{IstReproduction.Listltems{Y}.Subltems(2))
CDbl{IstReproduction.Listltems({X).Subltems(3)) |
[ftmp2 <tmp Then

tmp = tmp2
pos=Y
End If
End If
End If
Next Y

If pos > 0 Then
IstReproduction.Listltems(X).Subltems(4)
IstReproduction.Listltems(pos).Subltems(1)
"IstReproduction.Listltems(x}.Subltems(4) = pos'
tmp =0
tmp2 = 0
pos =0
counter = (
End if
Next X

End Sub
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Private Sub CrossOverl(}
Randomize
Dim m As Listitem, i As Integer

istCrossQver. Listltems.Clear

Fori=1To 30
mutAr{i) =10
mutArNo(i) =0
mA(n =""

CoP(i)=0

Nexti

Fori=1To 30
Randomize
Set m = IstCrossOver.Listltems.Add(, , Format(i, "00"))
m.Subltems(1) = IstReproduction.Listltems(i).Subltems(4) ' Random

sequence

ifi Mod 2=1Then
m.Subltems(3) = Format(Int((Rnd() * ¢) + 1}, "C0")
m.Subltems(2) = [1f(m.Subliems(3) <= CORATE, "Yes", "No")

End If

mA(i) = m.Subltems(1)
CoP(i) = Val{m.Subltems{3})

If m.Subltems(2) = "Yes" Then
mutAr(i) = i
List11.Addltem m.Subltems(2)
List12.AddItem mutAr(i}

counter = counter + |
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End It
If m.Subltems(2) = "No" Then mutArNo(i) = 1

Next i

End Sub

Private Sub CrossOver2()
Dim spArl{) As String ' Array for splitting
Dim spAr2() As String

ReDim t1{] To No_of Jobs) As Integer
ReDim 12(1 To No_of Jobs) As [nteger

ReDim X{1 To No_of Jobs) As Integer
ReDim Y(1 To No_of Jobs) As Integer

ReDim tmp(1 To No_of Jobs) As Integer
Dim pt As Integer, i As Integer, r As Integer

Dim s As String

List107 .Clear
[ist]08.Clear
List109.Clear
List110.Clear
Listl11.Clear
Listl12.Clear

Listi13.Clear

Fori=1ToNo_of Jobs

£1(i) =0
(=0
X()=0

Y(iy=0
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tmp(l) =0

4§ —

Next i

Fori =1 To UBound{mutAr)
[f mutAr(i}) <> Q Then
List107.Additem mA()
List107. Additern mA( = 1)
[ist108.AddItem CoP(i)

End (f

Next i

ForZ=1To List]108.ListCount

Fori=1 To No_of Jobs
ti{iy=20

£2() = 0

X(i) = 0

Y{i)=0

tmp{l) =0

R

Next i

List109.Clear
List110.Clear
List1 11.Clear

List1 12.Clear

pt = Vai(List108.List(Z - 1))

spArl = Split(List107.List(((Z - 1) * 2)). "-")
spAr2 = Split(List107.List((Z - 1) * 2) + 1)."-")
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Fori =0 To UBound{spArl)
ti{i + 1} = Val(spArl({i})
Next i

Fori=0To UBound(spAr2)
£2(i + 1) = Val(spAr2(1))

Next |

Fori=1Topt
List109.Addltem Str(Format$(t1(i))) 'first of the pair
List]11.Addltem Str{Format$(t2(i}}) 'second

Nexti

Fori=pt—1ToNo of Jobs'forthe first item in the pair
Forw =1 To No_of Jobs
I {t1(1) = 12{w)) Then
tmp{w) = tl (Ii)
Exit For '
End If
Next w

Nexti

Fori=1To No_of Jobs
If Val(tmp(i)) < 0 Then List110.AddItem Str(FormatS(tmp{(i)}}

Next i

Fort=pt—1ToNo of Jobs
Forw=1ToNo_of Jobs
If (12(i) = ti{w)) Then
X(w) =12(i)
Exit For
End [f
Next w
Nexti
Fori=1ToNo of Jobs
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I Val(X(i)) <> 0 Then List112.Addltem Str{Format$(X(i). "00"))
Nexti
R
Fori=0 To List109.ListCount - 1
s = s & Str{Format$(List109.List(i), "00"})
Next i
Fort =0 To Listl 10.ListCount - |
s =5 & Str{FormatS(List110.List(i), "00™))
Next i
ListI15.Addltem FormatS{Replace(s. " ", "-0"), "00™)
—
Fori=0To Listi11.ListCount - 1
s =25 & Str(Format$(List111.List(i). "00"))
Nexti
Fori=0 To Listl 12.ListCount - |
s = 5 & Str{FormatS(List112.List{1), "00™)})
Next |
List113.Additem FormatS(Replace(s, " ", "-0"), "00™)
g

Next Z

Fori=1To 30 Step 2
[f mutAr(i) < 0 Then
Listt14.Addltem Replace(List] 13.List{c). "-010", "-10")
List] 14 Addltem Replace(List1 [3.List{c + 1), "-010", "-10")
c—c+2
Elself mutArNo(i) < 0 Then
list] 14. Addltem IstCrossOver.Listitems{mutArNo(i)).Subltems(1)
Listl 14.Additem IstCrossOver.Listltems(mutArNo(i) ~ 1).Subltems(1)
End If
Nexti

Fori— [ To 30
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IstCrossOver. Listltems{1).Subltems{4) = [Tf(Lefi(List114.List(i - 1). 1) = "-".
Mid$(List! 14.List(i - 1), 2). List1 14.List(i - 1))

Nexti

End Sub

Private Sub Swap()
Dim i As Integer
Dim swapl As String, swap2 As String

Dim splitar() As String

Randomize _

rl = Int{Rnd{} * 9) ~ |
2 = Int{Rnd{() * 9} + 11
r3 = Int(Rnd() * 9) + ﬁl
List1 14.Clear '

Fori=1To30

Listl 14.List{i- 1) = istCrossOver.Listltems(i).Subltems(4)

Next i

Fori =10 To Listl 14.ListCount - |
[fi=rl Ori=r20ri=r3Then
spiitar = Split{List{14.List(3). "-")
Randomize

r= Int(Rnd() * No_of Jobs - 1)

{r<=0Thenr=1:1fr>=8Thenr=28

swapl = sphitar(r)

swap2 = splitar(r + 1)

For k = 0 To UBound(splitar)
[{k=r-1Then
splitar(r) = swapZ2

splitar(r + 1) = swapl

1



End If
s = s ~ FormatS{splitar(k). "00") - "-"
Next k
istiSwap.Addltem s
Else
IstSwap.Addltem [stCrossOver.Listltems(i + 1).Subltems(1)
End If

Next i

Dim lw As Listltem
Dim Ift As String
IstMutation.Listltems.Clear
Fori=1To30
Set lw = IstMutation.Listltems.Add{, , Format(i, "00")}
Iw.Subltems(1) = IstCrossOver.Listltems(i}.Subltemns(4)

[f LeftS(lstSwap.List(i - 1). 1) ="-" Then

[fl = MidS$(IstSwap.List(i - 1), 2)

Else

[ft = IstSwap.List(i - [)

End If

If RightS(Ift, 1) = "-" Then

[ft = MidS$(Ift. 1, Len(Ift) - 1)

Else

{ft = 1ft

End If

Iw.Subltems(2) = Ifi
Next i
IstMutation.Listltemis(r! + 1).[oreColor = vbRed
fstMutation.Listltems(r2 + 1).ForeColor = vbRed

IstMutation.Listitems(r3 + 1}.ForeColor = vbRed

FEnd Sub
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FIGURE 7.1 INPUT FORM OF THE VB PROGRAM
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CHAPTER -8

RESULT ANALYSIS AND VALIDATION

8.1 RESULT ANALYSIS
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Results obtained after the Genetic Algorithm concept to the proposed
problem has been compared by varying the various operators such as cross over
rate. mutation rate. number of generations, weightages for makespan, earliness
and tardiness.

Percentage change in C.OF. =
({Maximum valu.e —~ Minimum value) /Maximum value)* 100
trom the graph of the minimum C.O.F. Vs Number of generations, various

results obtained are tabulated below.

TABLE 8.1. ANALYSIS OF RESULTS

Sn | Cross Mutation ' Maximu - Minimum - Percent
0 over rate .mCOF | COF age
Rate COF
i1 0.6 0.01 0.6805 | 0.7034 [ 28.26
T 0.02 09919 [ 0.7212 27.29
) 0.7 0.01 0.9940 ' 0.7010 20 .48
. 0.02 09903 | 0.7156 27.74
3 .08 i 0.0] 0.9630 ! 0.6864 28.72
0.02 709353 | 0.7016 3498
4 09 - 0.01 0.9848 | 0.7022 28.70
] [0.02 0.9809 [ 0.6903 29.62
i L

From the tabulated rcsults, it is clear that for cross over rate of 0.8,
mutation rate of 0.01 and for 100 generations, minimum C.O.F value of 0.6864 is
obtained having a 28.72% decrease in C.O.F value. So 0.6864 is the best C.OF
value and correspondingly the best schedule is,

09-01-07-04-06-03-08-10-02-05

Corresponding makespan value is = 4685 minutes
Corresponding carliness value is = 4980 minutes
Corresponding tardiness value is = 21340 minutes



The proposed methodology results in a C.O.F value of 0.6864 as compared
to the maximum C.O.F value of 0.9948 for a crossover probability of 0.8 and
mutation probability of 0.01.The percentage decrease of the C.O.F is 31%.

As per our analysis the preferred probability for crossover is 0.8 and
probability for mutation is 0.01, which yield better results when compared with
other values of probability. From the graph of C.O.F Vs number of iterations, after
100 ierations, the following results are observed,

o The C.O.F value keeps on varving and fmally starts converging towards

the stcady state value.

» The graph indicates that the difference between the average C.O.F values

and miﬁimum C.O.F is greatly reducing till 100 iterations and beyond that.

Therefore, it is clear that the nearest optimal solution has been reached

within 100 iterations.
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8.2. VALIDATION

The manufacturing industries are using traditional scheduling methods for
scheduling the orders which are prone to be very less efficient when compared to
newly emerged scheduling techniques using genetic algorithm, fuzzy logic, neural
nctworks, tabu search, ant-colony algorithm etc, We took a study in the industry
and found out that by using their traditional scheduling techniques for a certain
number of jobs. their respective quantity, due date and time taken by the jobs in
stagel and in stage2. the schedule that was used by them was ,

09-06-02-08-035-01-10-03-04-07 |

At the end of the study we tabulated the completion time of each job in the
sequence. For the due date given and the completion time of each job we

calculated the values as follows,

Corresponding makespan value is = 8730 minutes
Corresponding earliness value is = 9810 minutes
Corresponding tardiness value is = 30035 minutes

For the same number ofjbbs, quantity, due date, time taken in stagel and
stage2, and for a crossover and mutation probability of 0.8 and 0.01 respectively,
the best sequence and its values obtained by running the program giving the
above details of the jobs as input is ,

09-01-07-04-06-03-08-10-02-05
By implementing this sequence for production of the jobs in the industry

we arrived at the following results.

Corresponding makespan value is = 4685 minutes
Corresponding earliness value is = 4980 minutes
Corresponding tardiness value is = 21340 minutes.

This clearly shows that, the best sequence selected by running the VB
program when used for scheduling jobs in the industry, the earliness, tardiness and
makespan values are greatly reduced. This proves that by implementing this
scheduling technique the industry can finish all its orders within the due date and

also ensure that all its machines are used more efficiently.
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CHAPTER 9
CONCLUSION AND SCOPE FOR FUTURE WORK

9.1. CONCLUSION

By using genetic algorithm an optimized solution has been obtained for the
proposed problem. A software package has been developed for optimization of
flexible flow shop scheduling by using the genetic algorithm approach. Also other
enhancements have been made in the program which makes it possible 0 assign
weightages for makespan. earliness. and tardiness as per requirement. Also any
number of iterations can be retrieved for better results. But the solution extracted
in this process is only approximate nearer solution to the required accuracy.

As the industry 1s scheduling the jobs randomly according to priority of jobs
to be given 1o the customer, industry is facing problem of delay in delivery, and
many uncertainties. So by following the proposed methodology an optimized
sotution is being achieved and industry could achieve the following objectives,

» Effective utilization of available resources.

+ Total makespan is reduced.

+ Total earliness is reduced.

+ Total tardiness is reduced.

+ Manufactured products could been delivercd on due date.



9.2. SCOPE FOR FUTURE WORK

Manufacturing system considered in the above analysis can be expanded by
adding more number of machines in different stages. Results obtained could be
further optimized applying Fuzzy logic, Neural network and Hybrid genetic
algorithm concepts. Also the following emerging new concepts Could be used to
solve the similar kind of problem,

1. Simulated annealing

2. Tabu search

3. Antcolony algorithm

In future the fol'lowing adversaries could be considered

~ Any number of jobs can be scheduled for scheduling orders involving
many jobs.

~ Simulation can be done according to the shop floor capacities.

» Machine break downs can be considered and be incorporated in the
program.

~ Provision to incorporate rush and sudden orders in shop floor by assigning

a priority value for the jobs to be delivered quickly.
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