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ABSTRACT

Induction motors are widely used in industries. They are exposed to variety
operating and atmospheric conditions. These conditions coupled with natural aging,
causes the incipient fault in stator and rotor. Nearly 10% of the failures occur on the
rotor. Majority of rotor related faults in the induction motors are due to broken bars
and end rings. Faults involving several broken bars yield asymmetrical operation of
induction machine. Once a bar breaks, the condition of the neighbouring bars also
deteriorates progressively due to increased stresses. To prevent such a cumulative
destructive process, the problem should be detected early. A simple technique for
rotor fault detection based on stator current spectrum analysis is developed in this
report.

In order to have intelligent fault detection, artificial neural network and fuzzy
logic are used. This scheme does not require mathematical model of the motor. Also,
in this report the fuzzy membership function is optimized using genetic algorithm.
Since this scheme detects faults at an earlier stage, the maintenance can be carried in

organized manner reducing downtime and Tepairing cost.
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they can impair motor performance, lead to motor malfunction, and cause severe

mechanical damage to the stator winding if left undetected.

Ctrers Rotor10% Bearirg
12% 40%

Stator
38%
Figure 1.1 Induction Motor Fault Statistics

These faults occur primarily due to the thermal, magnetic, mechanical,
environmental stresses that the rotor has to undergo during the routine usage. Faults

involving several broken bars cause excessive vibration, noise and sparking during

can be Vi

motor starting. The d as conti increase in rotor bar
resistance which increases from its nominal value to infinity when the bar is fully
broken. Moreover, an Induction motor with broken bars cannot operate in dangerous
environments due to sparking at the fault site. For these reasons, broken rotors should

be taken care of during the initial stage itself and further damage can be prevented.

1.2 LITERATURE SURVEY

The manufactures and users of electrical machires initially relied on simple
protections such as over-current, over-voltage, earth-fault, etc to ensure safe and

reliable operation. However, as the tasks performed by these machines grew

i ingly complex; impro were also sought in the field of fault diagnosis.
It has now become very important to diagnose faults at their very inception; as

unscheduled machine downtime can upset deadlines and cause heavy financial losses.

As pointed out by Peter Vas (1993), the major faults of electrical machines can
broadly be classified as the following:
e Stator faults resulting in the operating or shorting of one or more of a

stator phase winding,

CHAPTER 1
INTRODUCTION

The simple, robust design and construction of ac induction motors have
encouraged their successful application in industry for many years. However, these
motors are required to operate in highly corrosive and dusty environments. These
factors coupled with the natural aging process of any motor make the motor subject to
faults. These faults if undetected, contribute to the degradation and eventual failure of
the motors. As it is not economical to introduce redundant backup motors, condition
monitoring for induction motor is important for safe operation. In order to keep the
motor in good condition, techniques such as fault monitoring, detection, classification

and diagnosis have become i ingly ial. Earlier d ion of the fault

reduces repair cost and motor outage time thereby improving safety.

1.1 INDUCTION MOTOR FAULT STATISTICS

The faults that occur in the induction motor can be classified as internal faults
and external faults as pointed out by Sinan altug (1999). Different internal motor
faults are short circuit of motor leads, inter-turn short — circuits, ground faults, worn-
out/broken bearings and broken rotor bars. External motor faults are phase failure,
asymmetry of mains supply, mechanical overload, blocked rotor and under-load.
Furthermore, the wide variety of environments and conditions that the motors are

exposed to can age the motor and make it subject to faults.

Figure 1.1 shows the fault statistics of induction motor given by Ming Xu
(1998). The statistical data of failures among utility size motors indicated that 10% of
the induction motor failures were rotor related. Rotor related faults in three phase

induction motors are due to broken bars and end rings. The root of the failure is the

q q

crack that develops in the rotor bars. The crack may i its size if left

Broken bars can be a serious problem when Induction motors have to perform

hard duty cycles. Broken rotors do not initially cause an Induction motor to fail, but

e Abnormal ion of the stator windi

¢ Broken rotor bar or cracked rotor end-rings,

* Static and/or dynamic air gap irregularities,

e Bent shaft can result in a rub between the rotor and stator, causing
serious damage to stator core and windings,

¢ Shorted rotor field winding, and

e Bearing and gearbox failures.

These faults produce one or more of the symptoms as given below:
o Unbalanced air-gap voltages and line- currents,
e Increased torque pulsations,
e Decreased average torque,
® Increased losses and reduction in efficiency, and

* Excessive heating

Fabricated type rotors have more incidents of rotor bar and end ring breakage
than cast rotors. On the other hand, cast rotors are more difficult to repair once they
fail. The reasons for rotor bar and end ring breakage are several as pointed out by
Filippetti et al (1996).They can be caused by

o Thermal stresses due to thermal overload and unbalance, hot spots or
excessive losses, sparking (mainly fabricated rotors),

® Magnetic stresses caused by electromagnetic forces, unbalanced
magnetic pull, electromagnetic noise and vibration.

* Residual stresses due to manufacturing problems.

¢ Dynamic stresses arising from shaft torques, centrifugal forces and
cyclic stresses.

* Environmental stresses caused by for example contamination and
abrasion of rotor material due to chemicals or moisture,

® Mechanical stresses due to loose laminations, fatigued parts, bearing

failure etc.



Different techniques for the detection of broken bars can be summarized as
follows:

¢ Time and frequency domain analysis of induced voltages in search coils
placed intemnally around stator tooth tip and yoke.

o Time and frequency domain analysis of shaft flux or more generally
axial leakage flux which is monitored by using an external search coil
wound around the shaft of a machine.

e Harmonic analysis of motor torque and speed.

¢ Vibrational analysis

e Stator current spectrum analysis

In general, dition- itori 1 have d on sensing

specific failures modes in one of the three induction motor components: the stator, the
rotor, or the bearings. Even though the thermal and vibrational monitoring has been
utilized for decades, most of the recent research has been directed toward electrical
monitoring of the motor with emphasis on inspecting the stator current of the motor.
The stator current spectral analysis has the advantage of not requiring any extra
sensors in addition. As pointed out by Mohammed EI Hachemi Benbouzid (2003),
fault detection based on motor current relies on interpretation of the frequency
components in the current spectrum that are related to rotor asymmetries. However,
the current spectrum is influenced by many factors, including electric supply, static,
and dynamic load conditions, noise, motor geometry and fault conditions. These

conditions may lead to errors in fault condition.

With advances in digital technology, adequate data processing capability is
now available on cost-effective hardware platforms, to monitor motors for a variety of

abnormalities on a real time basis in addition to the normal motor protection function.

CHAPTER 2
DETECTION OF ROTOR ASYMMETRY IN CAGE
INDUCTION MOTORS

2.1 INTRODUCTION
Three-phase induction hines are asynct us speed

operating

below synchronous speed when motoring and above synchronous speed when

ing. They are ively less expensive to equivalent size from a few watts
to some multi mega watts. They indeed, are the workhorses of today’s industries. AC
motors are rugged and require very little maintenance.

The cage type induction motor has electrical circuits on both sides i.e., on
stator and rotor but it is singly fed machine in the sense that all external electrical
input into the stator circuit only. There is no external electrical input into the rotor

circuit. A di

g to el ic induction principle, the rotor currents are
induced by the rotating magnetic field of the stator. This is a great advantage of the
machine, that there are no brushes and commutator needed to make electrical

connections from stationary environment to the rotating member.

2.2 OPERATING PRINCIPLE

When the stator is energized from a three-phase supply, a rotating magnetic
field is created in the air gap of the motor. The rotating magnetic flux will induce
voltages in both the stator coils and the rotor coils. The electromagnetic forces
resulting from the interaction of the current in the rotor conductors and the air gap
flux will result in a torque, which will cause the rotor to rotate.

The basic cause of the creation of the induced voltage, the current and the
torque is the relative motion between the air-gap flux and the rotor conductors.
Therefore the direction of the rotation will be such that to minimize this relative
velocity. In other words, the rotor will rotate in the same direction as the rotating
magnetic field. But the rotor speed increases, the relative speed between the rotor
conductors and field becomes less and less. Therefore the induced electro motive
force (e.m.f.), the current and the resulting torque also become less. There will be no

induced e.m.f., if the rotor spins at the synchronous speed, because there will be no

1.3 OBJECTIVES

The objectives of the project report are as follows:
e To detect the rotor bar fault in three phase Induction Motor using neural
network and fuzzy logic
¢ To Optimize the fuzzy membership function using genetic algorithm
¢ Online implementation of the fuzzy logic based fault detection scheme

1.4 ORGANIZATION OF THE PROJECT REPORT

In chapter 1, the problems that occur in the induction machine, the percentage
occurrence of various failures, the different techniques used to detect the rotor fault,
objectives of the project are discussed. In chapter 2, the operating principle, causes,
field distribution, effects of rotor asymmetry in induction motor and the methodology
are discussed. In chapter 3, the hardware set up for online monitoring and offline
monitoring and the results obtained using FFT analyzer are discussed. In chapter 4,
the basics of neural network, back propagation network and the neural network based
fault diagnosis are discussed. In chapter 5, the mamdani fuzzy inference system and
fuzzy logic based fault diagnosis are discussed. In Chapter 6, the tuning of

membership function in fuzzy logic using genetic algorithm for fault detection is
discussed.

relative motion between the field and the rotor conductors. Typical rotor of an IM is

shown in Figure 2.1.

Figure 2.1 Rotor of Induction Motor

Cage rotor design and manufacturing have undergone little change. As a
result, rotor failures now account for a large percentage of total induction motor
failures. Cage rotors are basically of two types: cast and fabricated. Previously, cast
rotors were only used in small machines. However, with the advent of cast ducted
rotors; casting technology can be used even for the rotors of machines in tie range of
3000 kW. Fabricated rotors are generally found in larger or special application
machines. Cast rotors though more rugged than the fabricated type, can almost never

be repaired once faults like cracked or broken rotor bars develop in them.

2.3 CAUSES OF ROTOR ASYMMETRY AND FIELD
DISTRIBUTION

As pointed by Peter Vas (1993), in the case of die-cast rotors, asymmetries are
due to technological difficulties, or to melting of bars and end-rings. However,
failures can also result in rotors not employing die-casting. There are several main
reasons for this. Firstly, the bar is smaller than the slot which it fits and this allows
radial movement of the bar, particularly during starting, and can lead to fatigue and
eventually to the fracture of a bar. Secondly, a rotor bar may be unable to move
longitudinally in the slot it occupies, when thermal stresses are imposed upon it,
during starting of the machine. Thirdly, during the brazing process in manufacture,

non-uniform metallurgical stresses may be built into the cage assembly, and these can



also lead to failure during operation. Finally, heavy end-rings can result in large
centrifugal forces, which can cause dangerous stressing of the bars. The copper rotor
bars and end-rings of squirrel-cage motors may also break as a consequence of all
types of heavy operation conditions (e.g. cycle stresses), or due to the misuse of the
motor (e.g. excessive number of consecutive direct-on-line starting, where the large
starting currents product large mechanical and thermal stresses on the cage).

Rotor cage asymmetry results in the asymmetrical distribution of the rotor
currents, and due to this, damage of one rotor bar can cause the damage of
surrounding bars, and thus the damage can spread, leading to multiple bar fractures.
In case of a crack, which occurs in a bar (e.g. at an end-ring-to-bar joint), the cracked
bar will overheat, and this can cause the bar to break. Thus the surrounding bars will
carry higher currents and therefore they are subjected to even larger thermal and
mechanical stresses, and they can start to crack etc. Most of the current which would
have flowed in the broken bar will flow in the two bars adjacent to it. The large
thermal stresses may also damage the rotor laminations. The temperature distribution
across the rotor lamination is also changed due to the rotor asymmetry (this could be
monitored by using invasive techniques, e.g. by using thermocouples embedded
around the rotor stack).

The cracking of the bars can be present at various locations, including the slot
portion of the bars under consideration and the end-ring-to-bar joints. The possibility
of cracking in the region of the end-ring-to-bar joints is the greatest when the start-up
time of the machine is long, and when frequent starts are required.

Figure 2.2 Magnetic Field Distributions in Healthy Motor
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Figure 2.5 Electrical Equivalent of the Rotor with One Broken Bar

Figure 2.5 shows the electrical equivalent circuit of a portion of the rotor just
near the bar breakage and its assigned mesh currents. The rotor has been divided into
four layers in the axial direction.

The m.m.f produced by the stator currents and the rotor mesh currents act on
the radial axis. This m.m.fs produces fluxes that have three components in the
cylindrical di The first p is the radial component that flows

through the stator teeth, the air gap, and the rotor teeth. The second component is the
axial component that flows through the stator frame, the rotor shaft, and the axial
leakage paths. Finally, the circumferential component flow through the stator and the
rotor yokes, the stator and the rotor slot openings, and the other leakage paths.
Because of the laminated core used in the stator and in the rotor, the magnetic fluxes
produced by the inter-bar currents can only pass through the stator frame and the rotor
shaft.

2.4 EFFECTS OF ROTOR ASYMMETRY

A three-phase induction machine is assumed in the steady-state. It is assumed
that the m.m.f distribution is sinusoidal and the only asymmetry is present on the
rotor, and the stator is supplied by a symmetrical three-phase voltage system. Due to
the asymmetry in the rotor circuit, the rotor currents will produce positive and
negative-sequence rotor m.m.f;s. Since the angular frequency of the rotor currents is
sf, where f is the supply frequency and s is the slip, the angular speed of the positive-
sequence rotor m.m.f with respect to the stator is

fet sf=f(1-s) +sf=f 2.1)
and the angular speed of the negative-sequence rotor m.m.f. with respect to the stator

is - sf=f(l-s) - sf=(1-2s)f (22)

10

Figure 2.3 Magnetic Field Distributions with 5 Bars Broken
The Figure 2.2 shows the magnetic field distribution around the rotor of
induction motor with no broken bars. The field is continuous without any distortion.
The Figure 2.3 shows the field distribution under faulty condition. This varies the
magneto motive force (m.m.f) distribution and causes harmonics in the stator current
as given by Mohammed EI Hachemi Benbouzid (2000).

Figure 2.4 Typical Rotor of IM with One Broken Bar.

Figure 2.4 shows a typical skewed rotor of an induction motor with one
broken rotor bar in cylindrical coordinates. Since the stator windings, the rotor bars,
and the rotor core between the uninsulated rotor bars is considered to be the current
flow paths, the machine can be divided axially into sections as pointed by Homayoun
Meshgin — Kelk et al (2004). The field within each section is assumed to be axially

uniform.

It follows that the positive-sequence rotor currents Iy result in positive-
sequence e.m.f.s and currents in the stator winding of angular frequency f and the
negative-sequence rotor currents I, result in negative-sequence e.m.fs and negative-
sequence currents in the stator windings of angular frequency (1 — 2s)f. Since the
angular frequencies of the positive- and negative-sequence stator currents (I, Ii2)

differ by 2sf oscillations are present in the stator currents.

The steady-state electromagnetic torque T, of the machine is equal to the sum

of the positive- and negati: q torque p Te1 and Tea, and the torque

components can be immediately obtained by considering the positive ~ and negative-
sequence air-gap powers. The positive-sequence air-gap power Pg; is equal to the
positive-sequence input power minus the positive-sequence stator rotor losses, and the
negative-sequence air-gap power Py, is equal to the negative value of the negative-
sequence stator losses across the resistance R;/ (1 - 2s) . Thus the net average torque

in the steady-state can be expressed as

Te=Te+ T2 2.3)
Where

Ter=Pgi/ £=(3/ ) Re [(Ta* L) - 3af Ry 24

Teo=Pg/f=-(3/ ) [[of Re/ (1 - 25) (2.5)

In equations (2.4), (2.5), Us; is the positive-sequence stator voltage, and |I|
and |l are the moduli of the positive- and negative-sequence stator currents

respectively. The positive- and negative-sequence rotor ochmic losses are obtained as

Pi=sPy (2.6)
Po=(1-25) Py @n
The stator positive- and negative-sequence ohmic losses are

Py =3{Tf R 2.8
P = 3|Tof Rs+ Ru)/ (1 - 25) 2.9)

where Ry is the resistance of the network connected to the stator terminals of the
machine.

Due to rotor asymmetry, pulsating torques are produced in the developed
clectromagnetic torque. In the steady-state, the frequency of the torque pulsations is
2sf. This is due to the fact that the difference between the angular frequencies of the
positive- and negative-sequence stator currents is

£ (1 —2s) f=2sf (2.10)



The pulsating torques is superimposed on the average main torque .The mean
value of the pulsating torque component is zero: it does not contribute to the motor
output, but is causes undesirable noise and vibration. This pulsating torques is even
undesirable when their amplitudes are small, as resonance occurs, when the frequency
of the pulsations is equal to the natural frequency of the induction motor. If the
induction motor is controlled in a wider speed range, or during starting, pulsating
torques are of greater importance, as they also pass the natural frequencies. In contrast
to the average torque, whose amplitude is the largest around the half-speed region, at

half syncl speed, the litudes of the pulsating torque is small.

2.5 METHODOLOGY

The Figure 2.6 shows the rotor fault detection process carried in this project.
The voltage from the induction motor is measured and the Fast Fourier
Transformation (FFT) analysis is done. The output of FFT is used for fault diagnosis
using neural network and fuzzy logic.

Induction FFT Neural / Fuzzy Fault
Motor Analyzer Fault Diagnosis

Figure 2.6 Rotor Fault Detection Process

The fault detection process is carried out in two ways
1) Offline monitoring

2) Online monitoring

2.5.1 Offline Monitoring

The motor is disconnected from the supply, and the induced voltage in the
stator due to rotor flux is utilized to detect the fault. If there is any broken bar, it wilt
directly affect the induced voltages in the stator windings. The stator current spectrum
is converted in to an equivalent voltage and recorded by giving it as the input to the
microphone input terminal of the PC by means of a stereo cable. Using the FFT
analyzer the spectral values is obtained and the required side band at (1 2s)f value is

measured.

CHAPTER 3
EXPERIMENTAL SETUP FOR DATA ACQUISITION

3.1 INTRODUCTION

In case of an Induction motor, the 3-phase symmetrical stator winding fed
from a symmetrical supply with frequency f, will produce a resultant forward rotating
magnetic field at synchronous speed and if exact symmetry, exists there will be no
resultant backward rotating field. Any asymmetry of the supply or stator winding
impedances will cause a resultant backward rotating field from the stator winding.
When applying the same rotating magnetic field fundamentals to the rotor winding,
the first difference with respect to the stator, induced e.m.f and current in the rotor

winding is at slip frequency i.e. sf, and not at the supply frequency.

The rotor currents in a cage winding produce an effective 3-phase magnetic
field with the same number of poles as the stator field but rotating at slip frequency
f: = sf with respect to the rotating rotor. With a symmetrical cage winding, only a
forward rotating field exists. If rotor asymmetry occurs then there will also be a
resultant backward rotating field at slip frequency with respect to the forward rotating
rotor. As a result, the backward rotating field with respect to the rotor induces an

e.m.f. and current in the stator winding at frequency f;

f, =f(1-2s) Hz (3.1)

This is referred to as the lower slip frequency sideband due to broken rotor
bars. Therefore, there is a cyclic variation of current that causes a torque pulsation at
twice slip frequency (2sf) and a corresponding speed oscillation, which is also a
function of the drive inertia.

This speed oscillation can reduce the magnitude of the (1-2s)f sidebands but
an upper sideband current component at (1+2s)f is induced in the stator winding due

to rotor oscillation. The upper sideband is enhanced by the third time harmonic flux.

2.5.2 Online Monitoring

In running condition, the fault is detected. The stator current spectrum
is converted in to an equivalent voltage and recorded by giving it as the input to the
microphone input terminal of the PC by means of a stereo cable. Using the FFT
analyzer the spectral values is obtained and the required side band at (1 2s)f value is

measured.

Broken rotor bars therefore result in current components being induced in the stator

winding at frequencies given by:

f) 5 =f (1+25) Hz (32)

Figure 3.1 Experimental Setup for Rotor Fault Detection

Figure 3.2 Broken Bar

These are the slip frequency sidebands due to broken rotor bars. These two
frequency components show predominant variation in their amplitudes and these two

components are taken for the analysis under various broken bar conditions.



3.2 EXPERIMENTAL SETUP FOR OFFLINE MONITORING
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Figure 3.3 Experimental Setup for Offline Monitoring

The broken rotor bars can be detected by analyzing the voltage induced in the
stator windings when the supply is disconnected. The Figure 3.3 shows the
experimental setup for offline monitoring. When the source of an operating induction
machine is detached, the stator currents rapidly die down to zero. Then, the only
source to induce voltage in stator windings is the rotor currents. If there are some

broken rotor bars, they will directly affect the induced voltages in the stator windings.

In the case of a healthy machine with no broken bars, m.m.f produced by the
rotor bar current at disconnection of the stator phases is predominantly sinusoidal.

Thus, the voltage induced in the stator due to this m.m.f should not have significant

FFT to measure the amplitude of the side band harmonics. The block diagram is
shown in Figure 3.4.

3.4 COMPONENT DESCRIPTION
3.4.1 Induction Motor

The motor used for this purpose is a 3-phase squirrel cage Induction motor.
The rotor being casted type made of Aluminum moulded bars. Totally there are 28
rotor bars and the analysis is done up to 3 broken bars. The normal voltage across any
two stator terminals after supply disconnection being 7V rms and it reduces as the

speed of the rotor also reduces.

Motor Specifications
Power : 1HP
Rated Voltage : 415V
Rated Speed  : 960 rpm
Poles : 6
No load current : 12A
No of rotor bars : 28

3.4.2 Potential Divider

In order to analyze the stator current pattern, the stator current is converted to
an equivalent voltage by means of a potential divider. The circulating current in the
stator windings is 20mA. The converted voltage is given as the input to the
microphone terminal of the PC. In order to make the input voltage to compatible level
of PC’s sound card it is reduced to about 1V (peak to peak) by adjusting the potential
divider.

3.4.3 Stereo Cable
The input voltage is given to the PC’s microphone input terminal by means of
a stereo cable. Since the voltage is already stepped down to compatibie level, there is

no need of any ohmic connector to limit the voltage.

harmenic content other than the fundamental and that due to the stepped rotor current
distribution. However, with one or more rotor bars broken, the rotor mm.f wave
shape will deviate from its sinusoidal nature under healthy conditions, and these
distortions can be picked up in the induced stator voltage, even under no-load

conditions.

3.3 EXPERIMENTAL SETUP FOR ONLINE MONITORING
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Figure 3.4 Experimental Setup for Online Monitoring

In online monitoring the fault is analyzed in the running condition. The stator
line current is being monitored by converting it into an equivalent voltage by means

of a current transformer and a series resistor. Then the waveform is analyzed using

3.4.4 Current Transformer

The current transformer of transformation ratio 100:5 is used. The no load line
current of 1.2A is stepped down to 50mA and it is converted into an equivalent
voltage | by connecting a resistor in series with the secondary coil. This is used only

for the on line monitoring of fault.

3.4.5 A/D Converter
By means of the stereo cable the analog voltage is given to the sound card. It

is converted to a digital form by means of an inbuilt 16 bit A/D converter.

3.4.6 Real Time Analyzer

The stator current spectrum is converted into an equivalent voltage and
recorded in the PC by means of a stereo cable through the microphone input terminal.
The input voltage level to the PC sound card is adjusted by means of a potential
divider to the acceptable level of the sound card. It is normally 1V (peak to peak). The
waveforms are recorded for various numbers of broken bars. In order to perform FFT
analysis on the input waveform a software “real time analyzer” is used. It permits the
analog waveform to be directly recorded by the PC. It is a part of “Acoustic
Analyzing System" which mainly analyzes sound waveforms. The main advantage of
using this software is that it permits the analog waveform to be recorded directly and
it is digitized by means of inbuilt A/D converter of the PC’s sound card.

Line in

Figure 3.5 Block diagram of the sound card in PC



The Figure 3.5 shows the block diagram of the sound card of the PC along
with the control by real time analyzer. The voltage input to the microphone input
terminal is being recorded by the windows operating system, volume control mixer.
The input voltage level can be varied by means of volume control. Then the analog
voltage signal is digitized by means of an inbuilt A/D converter. Then the voltage
waveform is displayed in the oscilloscope window as like in the ordinary digital
storage oscilloscope. The time range of the input signal can be varied in the
oscilloscope. Further analysis can be performed by making use of the stored wave in
wave file format. The output of the FFT analyzer will be in one of the following
forms: spectrum, octave band or waterfall model. It will be an amplitude Vs
frequency graph. The amplitude of the various frequency components are displayed in
dB. The values can also be recorded by means of using the option data recorder
provided by the FFT analyzer. The amplitudes of the two side band components at

frequencies (1+2s)f and (1-2s)f for various broken bar conditions are measured.

The diagnosis of the faults is done using neural network and fuzzy logic.
Fuzzy logic based system is successfully implemented to classify broken rotor bar
faults by categorizing the (1+2s)f components by a set of rules.

3.5 EXPERIMENTAL RESULTS

3.5.1 Offline Monitoring

The stator voltage across the stator terminals are analyzed for various number
of broken rotor bars after supply disconnection. The voltage across the stator terminal
of healthy machine and the machine with broken bar are shown in Figures (Figure3.6
to Figure3.9).
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Figure 3.8 The Voltage across the Stator Terminal withTwo Broken Bar
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(b) The Voltage across the Stator Terminal with FFT Analyzer

Figure 3.9 The Voltage across the Stator Terminal with Three Broken Bar
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(b) The Voltage across the Stator Terminal with FFT Analyzer
Figure 3.6 The Voltage across the Stator Terminal of Healthy Machine
By comparing the stator sinusoidal voltage the difference cannot be noticed.

So FFT analysis is done in all the cases to identify the variations in the harmonic

amplitude.
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(b) The Voltage across the Stator Terminal with FFT Analyzer

Figure 3.7 The Voltage across the Stator Terminal with One Broken Bar

The output of the FFT analyzer will be an amplitude Vs frequency graph in
octave band as shown in the Figures (Figure 3.6(b) — Figure 3.9(b)). For analysis, the
two side band components of frequency (1-2s)f and (1+2s)f are considered and the
values are denoted as amplitudes Ay and A respectively and tabulated in Tables
(Table 3.1 — Table 3.4). The amplitudes of the side bands are noted in dB at a specific

speed of the rotor under various broken bar conditions. So the frequency of the stator
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current will be the same in all the cases.

Table 3.1 Harmonic Amplitudes of Healthy Machi

Time in | Speed Ay Az
sec pm dB dB
1 893 -18.82 | -22.93
2 820 1443 | -28.35
3 750 1259 | -20.55
4 677 -10.34 -36.26
5 610 -9.83 -38.44
6 546 -10.02 | -42.74
7 487 -10.85 | -44.46
8 430 | 1228 | -44.05
9 377 -14.23 | -43.89
10 327 | 677 | 4413 |

Table 3.2 Harmonic Amplitudes of Machine with One Broken Bar

Timein | Speed Aq Ay
sec pm dB dB
1 890 -21.26 -19.75
2 816 -15.88 -24.59
3 749 -12.12 -32.49
4 680 -10.51 -34.6
5 615 -9.37 -36.55
6 540 -8.91 -40.83
7 480 -9.06 -48.38
8 428 9.72 -61.01
9 376 -10.8 -57.98
10 337 -12.33 -56.54
23



Table 3.3 Harmonic Amplitudes of Machine with Two Broken Bar

Timein | Speed Ay A
sec pm dB dB
1 900 -22.29 -18.75
2 824 -16.83 -23.59
3 751 -12.78 -31.65
4 678 -11.53 -33.6
5 608 -10.34 -35.53
6 540 -9.96 -39.86
7 476 -10.03 -47.31
8 415 -10.78 -60.14
9 358 -11.12 -56.45

-
o

305 -13.45 -55.67

Table 3.4 Harmonic Amplitudes of Machine with Three Broken Bar

Table 3.5 Harmonic Amplitudes for Various Broken Bar in Offline Method

Timein | Speed Ay Az

sec m dB dB
1 908 -21.45 -19.12
2 845 -15.23 -24.76
3 750 -12.35 -30.91
4 655 -10.48 -34.15
5 595 -9.92 -36.17
6 535 -8.15 -40.25
7 478 -9.38 -48.17
8 423 -9.19 -61.28
9 371 -10.12 -57.38

-
o

322 -12.14 -56.25

Number
of A, indB AzindB
broken
bars
0 -12.59 -29.55
1 -12.12 -32.49
2 -12.78 -31.65
3 -12.35 -30.91
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Figure 3.12 The Voltage across the Stator Terminal with Two Broken Bar

(b) The Voltage across the Stator Terminal with FFT Analyzer
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The selected speed is 750 rpm and the frequency at that instant is 32 Hz. The
frequencies of the side bands as per the Equation (3.2) will be 16Hz and 48Hz and the
corresponding amplitude is shown in Table 3.5. A and A, are the amplitudes of the

side band harmonics which are taken for further diagnosis.

3.5.2 Online Monitoring

In this case any instant of stator current can be used, as the amplitude and
frequency of the stator current is always the same. The voltage across the stator
terminal of healthy machine and the machine with broken bar are shown in Figures
(Figure 3.10 - Figure 3.13).
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Figure 3.10 The Voltage across the Stator Terminal of Healthy Machine
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Figure 3.13 The Voltage across the Stator Terminal with Three Broken Bar

Table 3.6 Harmonic Amplitudes for Various Broken Bar in Online Method.

Number AyindB Agin dB
broken bars
0 -11.13 -10.55
1 -11.35 -10.77
2 -11.06 -10.46
3 -10.93 9.74

For analysis, the two side band components of frequency (1-2s)f and (1+2s)f
are considered and the values are denoted as amplitudes Aq and A, respectively and
tabulated in Table 3.6. A; and A; are used for fault diagnosis using neural network

and fuzzy logic.
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CHAPTER 4
NEURAL NETWORK BASED FAULT DIAGNOSIS

4.1 INTRODUCTION TO NEURAL NETWORK

An artificial neural network is an information processing system that has
certain performance characteristics in common with biological neural networks.
Laurene Fausett (2004) explains that the artificial neural networks have been
developed as generalization of mathematical models of human cognition or neural

biology, based on assumptions that:

* Information processing occurs at many simple elements called neurons.

o Signals are passed between neurons over connection links.

® Each cc ion link has as iated weight, which, in a typical neural net,
multiplies the signal transmitted.

* Each neuron applies an activation function (usually nonlinear) to its net input

(sum of weighted input signals) to determine it output signal.

A biological neuron has three types of components that are of particular
interest in understanding an artificial neuron: its dendrites, soma and axon. Dendrites
receive signal from other neurons. The signals are electrical impulses that are
transmitted across a synaptic gap by means of a chemical process. The soma or cell
body sums the incoming signals. When sufficient input is received, the cell fires; that
is, it transmits a signal over its axon to other cells. Figure 4.1 shows the structure of

biological neuron.

To
Axon from dendrites
another of another
neuron neuron

N Axon
Synaptic gap

Dendrite

Figure 4.1 Structure of Biological Neuron
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net input n, again a scalar, is a sum of the weighted input wp and the bias b., this sum
is the argument of the activation function f. f is an activation function, typically a
step function or a sigmoid function, that takes the argument n and produces the output
a. w and b are both adjustable parameters of the neuron.

Neuron with bias
a=f(wp+b)
Figure 4.4 Single Input Neuron with Bias

The central idea of neural networks is that such parameters can be adjusted so
that the network exhibits some desired or interesting behavior. Thus, we can train the
network to do a particular job by adjusting the weight or bias parameters, or perhaps

the network itself will adjust these parameters to achieve some desired end.

4.1.2 Activation Functions

An activation function may be linear or a non-linear function of an. A
particular activation function is chosen to satisfy some specification of a problem that
the neuron is attempting to solve. There are three most commonly used activation
function. They are

(@) Hard limit activation function
(b) Linear activation function
(©) Log-sigmoid activation function
(a) Hard limit activation function:
a
+1

a = hardlim (n)

Figure 4.5 Hard Limit Activation Function

30

An Artificial Neural Network is characterized by,
o Its pattern of connections between the neurons (called its architecture)
o Its method of determining the weights on the connections {called its training or
learning, algorithm), and
e Its activation function
The network function is determined largely by the connections between
elements. Therefore, a neural network can be trained to perform a particular function
by adjusting the values of the connections (weight) between the elements commonly
neural networks are adjusted, or trained, so that a particular input leads to a specific
target output. Figure 4.2 shows the basic operation of a neural network.
Target

Neural Network Output
Input includi i

Compare
(weights) between

I Adjust weights

Figure 4.2 Basic Operation of Neural Network

There, the network weight is adjusted based on a comparison of the output and
the target, until the network output matches the target.
4.1.1 Neuron Model

Figure 4.3 shows a neuron with a single scalar input with no bias. The scalar
input p, is transmitted through a connection that multiplies its strength by the scalar
weight w, to form the product wp, again a scalar. Here the weighted input wp is the
only argument of the activation function f, which produces the scalar output a.

n a
Neuron without bias
a=f(wp)
Figure 4.3 Single — Input Neuron without Bias

Figure 4.4 shows a neuron with a scalar input, with scalar bias. The bias is

much like a weight, except that it has a constant input of 1. The activation function
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Figure 4.5 shows the graphical representation of the hard limit activation
function. The hard limit activation function sets the output of the neuron to 0 if the
function argument is less than 0, or 1 if its argument is greater than or equal to 0.

(b)  Linear activation function:
The output of a linear activation function is equal to its input. The output (a)

versus input (p) characteristic of a single-input linear neuron is shown in Figure 4.6.

a = purelin (n)
Figure 4.6 Linear Activation Function

_

<) Log-sigmoid activation function:

a=logsig (n)

Figure 4.7 Log-Sigmoid Activation Function
Figure 4.7 shows the log-sigmoid activation function. This activation function
takes the input (which may have any value between plus and minus infinity) and
squashes the output into the range 0 to 1, according to expression
a=1/1+e™ @1
This activation function is commonly used in multilayer networks that are

trained using the back-propagation algorithm, in part because this function is
differentiable.
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4.1.3 Learning Rules

The weights and biases of the network can be modified by means of ‘learning
rule’. This procedure may also be referred to as a training algorithm. The purpose of
the learning rule is to train the network to perform some task. Neural networks can be
trained to solve problem that are difficult for conventional computers or human
beings. There are many types of neural network learning rules. They fall into three
broad categories: supervised learning, unsupervised learning and reinforcement (or

graded) learning.

(a) Supervised learning: In supervised learning, the network is provided with
inputs and the corresponding correct output. As the inputs are applied to the network,
the network outputs are compared to the targets. The learning rule is then used to
adjust the weights and biases of the network in order to move the network outputs
closer to the targets. An example for the supervised learning is the perceptron-
learning rule.

b) Reinforcement learning: This is similar to supervised learning, except that,
instead of being provided with the correct output for each network input, the algorithm
is only given a grade. The grade is a measure of the network performance over some
sequence of inputs. This type of learning is cwrently much less common than
supervised learning.

©) Unsupervised learning: In unsupervised learning, the weights and biases are
modified in response to network inputs only. There are no target outputs available.
The network learns to categorize the input patterns into a finite number of classes. An

example for unsupervised learning algorithm is Adaptive Resonance Theory.

4.2 BACK-PROPAGATION NEURAL NETWORK

In supervised learning, the first learning rule is perceptron-learning rule, in
which the learning rule is provided with a set of examples of proper network
behavior. As each input is applied to the network, the learning rule adjusts the
network parameters so that the network output will move closer to the target. The
perceptron learning rule is very simple, but it is also quite powerful. This rule will
always converge to a correct solution, if such a solution exists. The perceptron-

learning rule forms the basis for understanding the more complex networks. As with
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The BP algorithm uses the chain rule in order to compute the derivatives of the
squared error with respect to the weights and biases in the hidden layers. It is called
BP because the derivatives are computed first at the last layer of the network, and then
propagated backward through the network, using the chain rule, to compute the
derivatives in the hidden layers.

The BP training algorithm is an interactive gradient algorithm designed to
minimize the mean square error between the actual output of a feed-forward net and
the desired output. Figure 4.9 shows the flowchart of the BP training algorithm. Let
Xi, Zj, Ok be the input, hidden and output layer neuron, vo; and wy are the bias of input
and hidden layer, v and wj are the weights of the input to hidden and hidden to
output layer.

Step 1: Initialize weights and offsets: set all weights and units offsets to small

random values.

Step 2: Present input and desired output: Present a continuous valued input

vector and specify the desired outputs.

Step 3: Calculate actual outputs: For each hidden layer neuron denoted as zj,
j=1L2..p

Z5=Voy + IXivij; 7= fzij)

broadcast z; to the next layer for each output neuron 0y;

O = Wox T L2Wji; 0p) = floji)

Step 4: Adapt weights: Use the recursive algorithm starting at the output units

and working back to the first hidden layer. Adjust the weights by
wii (t+]) = wiilt) + Apwji(t)
Where Awji(t) = 78,051, Wi(t) is the weight, 7 is the learning rate and 5,,, is an error
term for unit j.
If the unit j is an output unit, then 8, can be computed by

;= (tpj- Opi) fj (nety))
If unit j is an internal hidden unit, then 5m can be computed by

Bpj - (netes) Topw Wi

Step 5: Training pattern: The weights are updated using batch training. In
batch mode, the weights and biases of the network are updated only after the entire
training set has been applied to the network. The gradients calculated at each training

example are added together to determine the change in the weights and biases.
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the perceptron rule, the Least Mean Square (LMS) algorithm is an example of
supervised training. The LMS algorithm will adjust the weights and biases to
minimize the mean square error, where the error is the difference between the target

t is i ble of impl ing

output and the network output. The percep
certain elementary functions. These limitations were overcome with improved
(multilayer) perceptron networks.

Performance learning is another important class of learning law, in which the
network parameters are adjusted to optimize the performance of the network. Back
propagation (BP) algorithm can be used to train multilayer networks. As with the
LMS learning law, BP is an approximate steepest descent algorithm, in which the
performance index is mean square error. The difference between the LMS algorithm
and back propagation is only in the way in which the derivatives are calculated. The
single-layer perceptron like networks are only able to solve linearly separable
classification problems. Multilayer perceptron, trained by BP algorithm were
developed to overcome these limitations and is currently the most widely used neural
network. In addition, multi-layer networks can be used as universal function
approximators. A two-layer network, with sigmoid-type activation functions in the
hidden layer, can approximate any practical function, with enough neurons in the
hidden layer. The Figure 4.8 shows the Architecture of BP Neural Network.

Figure 4.8 Architecture of BP Neural Network
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Step 6: [Iteration: As long as the error for the training-testing patterns
decreases, training continues. When the error begins to increase, the net is starting to

memorize the training patterns too specifically. At this point, training is terminated.

‘ Initialize weights and ‘

offsets

|
|
4

| Present input and desired output |

!

Calculate actual output of hidden
units and output units

I

Adjust weights by Wy (t+1) = wj; (t) + Awy; (t) where
Agwij; (t) = 18,0, If the unit j is an output unit, then
5= (ty - Opy) §j (nety) If unit j is an internal hidden unit,
then 8pj = f; (nety) Yook Wi

Change the training pattern
Training pattern: end

| Increment the number of iteration ‘

Iteration: Limit the number

End

Figure 4.9 Flowchart of BP Training Algorithm
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4.3 CHOICE OF PARAMETERS FOR NETWORK TRAINING

When the basic BP algorithm is applied to a practical problem the training
may take days or weeks of computer time. This has encouraged considerable research
on methods to accelerate the convergence of the algorithm. The research on faster
algorithms falls roughly into two categories; the first category involves the
development of heuristic techniques, which arises out of a study of the distinctive
performance of the standard BP algorithm. These heuristic techniques include such
ideas varying the learning rate, using momentum and rescaling variables. Another

category of research has focused on standard numerical optimization techniques.

4.3.1 Learning Rate

The speed of training the BP network is improved by changing the learning
rate during training. Increasing the learning rate on flat surfaces and then decreasing
the learning rate when slope increases can increase the process of convergence. If the
learning rate is too large, it leads to unstable learning. And if it is too small, it leads to
incredibly long training times. Hence care has to taken while deciding learning rate.
There are many different approaches for varying the learning rate. The learning rate is
varied according to the performance of the algorithm. The rules of the variable

learning rate BP algorithm are:

1. If the squared error increases by more than some set percentage §
(typically one to five percent) after weight update, then the weight update
is discarded, the leaming rate is multiplied by some factor o < p < 1, and

the momentum coefficient 7 (if it is used) is set to zero.

2. If the squared error decreases after a weight update, then the weight update
is accepted and the learning rate is multiplied by some factor 7 > 1. Ify

has been previously set to zero, it is reset to its original value.

3. If the squared error increases by less than & then the weight update is
accepted but the learning rate is unchanged. If y has been previously set to

zero, it is reset to its original value.
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Fault detection neural network consists of two layers: hidden layer and the
output layer. There are five neurons in the hidden layer for both offline and online
method. The inputs to the neural network are the amplitude Al at (1-2s)f and A2 at
(1+2s)f and the output is the number of broken bars.

4.5 SIMULATION RESULTS

4.5.1 Offline monitoring
4.5.1.1 Training

Feed forward neural networks with two layers are used. The network consists
of two input vector, five hidden neurons and one output neuron. BP algorithm is used
for training. The activation function in the first layer is log-sigmoid, and the output
layer transfer function is tan-si id. The training function used is trainlm. The data

from the healthy machine and the data during the fault are given as input to the
network. The network is trained with the data given in the Table 3.5. The targets are
specified as supervised learning is used.

mean square error 1.5

0

eror

10°°

01

10
05 1

5 2 25
Siop Trainng ] nurnber of epochs
Figure 4.11 Epoch Vs Error Characteristics
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Figure 4.11 shows the training error as the function of number of epochs for
the network having five hidden layer neuron with the momentum of 0.5 and the
number of epochs being 4.
4.5.1.2 Test Results

The test data are given to the network. The difference between the measured
and the estimated number of bars is an estimate of fault severity. Once all the datasets

are stored in the learning stage, and the network is trained, then by giving the
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4.3.2 Momentum Factor

In BP with momentum, the weight change is in a direction that is a
combination of the current gradient and the previous gradient. This is a modification
of gradient descent whose advantage arises chiefly when some training data are very
different from the majority of the data. By the use of momentum larger training rate
can be used, while maintaining the stability of the algorithm. Another feature of
momentum is that it tends to accelerate convergence when the trajectory is moving in
a consistent direction. The larger the value of 7, the more the momentum the

trajectory has. The momentum coefficient is maintained with the range [0, 1].

4.4 STRUCTURE OF BP NETWORK FOR FAULT DETECTION

An artificial neural network is composed of neurons with a deterministic
activation function. The neural network is trained by adjusting the numerical value of
the weights will contain the non-linearity of the desired mapping, so that difficulties
in the mathematical modeling can be avoided. The BP training algorithm is used to
adjust the numerical values of the weights and the internal threshold of each neuron.
The network is trained by, initially selecting small random weights and internal
threshold and then presenting all training data. Weights and thresholds are adjusted
after every training examplc‘is presented to the network, until the weight converges or
the error is reduced to acceptable value. Figure 4.10 shows the structure of BP

Network for Fault Detection.

Hidden Layer

Output Layer
Amplitude A, No of
t(1-28)f oo
at( o) Broken
Amplitude A, Bars
at (1 +2s)f

Figure 4.10 Structure of BP Network for Fault Detection

corresponding inputs to the network, the output of the network gives the value of
number of broken bars.

Table 4.1 Test Results
AII"%‘;)) AIZm(Jlgib) 10-2‘?‘%3 Actual Value | % error
1259 | -2955 0 1.53¢-009 1
1212 | 3249 1 1 o |
1278 | 3165 2 1 s0 |
1235 | 3001 3 1 66.66
Average error 29.4

The Table 4.1 gives the test results. Neural network diagnoses require large
number of data to train. From the simulation results it is inferred that the percentage

error is more.

4.5.2 Online monitoring
4.5.2.1 Training

Feed forward neural networks with two layers are used. The network consists
of two input vector, five hidden neurons and one output neuron. BP algorithm is used
for training. The activation function in the first layer is log-sigmoid, and the output
layer transfer function is tan-sigmoid. The training function used is trainim. The
network is trained with the data given in the Table 3.6.

. mean square ertor 1.25

’ !
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10 20 30 40 50 60 70 80 90 100

(=) number of opochs
Figure 4.12 Epoch Vs Error Characteristics
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Figure 4.12 shows the training error as the function of number of epochs for
the network having five hidden layer neuron with the momentum of 0.5 and the
number of epochs being 100.

4.5.2.2 Test Results

The test data are given to the network. The difference between the measured
and the estimated number of bars is an estimate of fault severity. Once all the datasets
are stored in the learning stage, and the network is trained, then by giving the
corresponding inputs to the network, the output of the network gives the value of

number of broken bars.
Table 4.2 Test Results
Input Input
Ay Ay Target | Actual Values % error

(dB) (dB) | Output

-11.13 -10.55 0 0.0915 1
1135 | -1077 1 0.80876 19.12
-11.06 | -10.46 2 0.98632 50.68
-10.93 | -9.74 3 0.99103 66.94

Average error 34.44

The Table 4.2 gives the test results. From the simulation results it is inferred
that the percentage error is more.
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impenetrable models, fuzzy logic lets you rely on the experience of people
who already understand your system.

e Fuzzy logic can be blended with conventional control techniques. Fuzzy
systems don't necessarily replace conventional control methods. In many cases
fuzzy systems augment them and simplify their implementation.

o Fuzzy logic is based on natural language. The basis for fuzzy logic is the basis
for human communication. This observation underpins many of the other

statements about fuzzy logic.

5.2 MAMDANI FUZZY LOGIC INFERENCE SYSTEM

Mamdani-type of fuzzy logic controller contains four main parts, two of
which perform transformations. The four parts are
* Fuzzifier (transformation 1)
» Knowledge base
o Inference engine( fuzzy reasoning, decision-making logic)
» Defuzzifier( transformation 2)

Knowledge base
(Rule base and
Data base)

Fuzzifier Defuzzifier
(transformation 1) (transformation 2)
Inference
(Fuzzy) | engine (Fuzzy)

-Ctmt.rolled plant :

Figure 5.1 Mamdani Fuzzy Logic Inference Systems
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CHAPTER 5
FUZZY LOGIC BASED FAULT DIAGNOSIS

5.1 INTRODUCTION

Problems in the real world quite often turn out to be complex owing to an
element of uncertainty either in the parameters which define the problem or in the
situations in which the problem occurs.

The uncertainty may arise due to partial information about the problem, or due
to information which is not fully reliable, or due to inherent imprecision in the
language with which the problem is defined, or due to receipt of information from
more than one source about the problem which is conflicting. It is in such situations

that fuzzy set theory exhibits immense potential for effective solving of the

uncertainty in the probl Fuzzi means * ’. Fuzzy set theory is an
excellent mathematical tool to handle the uncertainty arising due to vagueness.

Fuzzy logic systems are universal function approximators. In general, the goal
of the fuzzy logic system is to yield a set of outputs for given inputs in a non-linear
system, without using any mathematical model, but by using linguistic rules. It has
many advantages. They are

¢ Fuzzy logic is conceptually easy to understand. The mathematical concepts
behind fuzzy reasoning are very simple. What makes fuzzy better is the

"N Iness" of its h and not its f hing complexity.

¢ Fuzzy logic is flexible. With any given system, it's easy to massage it or layer
more functionality on top of it without starting again from scratch.

e Fuzzy logic is tolerant of imprecise data. Everything is imprecise if you look
closely enough, but more than that, most things are imprecise even on careful
inspection. Fuzzy reasoning builds this understanding into the process rather
than tacking it onto the end.

e Fuzzy logic can model nonlinear functions of arbitrary complexity. You can
create a fuzzy system to match any set of input-output data. This process is
made particularly easy by adaptive techniques like Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), which are available in the Fuzzy Logic Toolbox.

e Fuzzy logic can be built on top of the experience of experts. In direct contrast

to neural networks, which take training data and generate opaque,
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5.2.1 Fuzzifier

The fuzzifier performs measurement of the input variables (input signals, real
variables), scale mapping and fuzzification (transformation 1).thus all the monitoring
input signals are scaled and fuzzification means that the measured signals (crisp input
quantities which have numerical values) are transformed into fuzzy quantities. This
transformation is performed by using membership functions. In a conventional fuzzy
logic controller, the number of membership functions and the shapes of these are
initially determined by the user. A membership function has a value between 0 and 1,
and it indicates the degree of belongingness of a quantity to a fuzzy set. If it is
absolutely certain that the quantity belongs to the fuzzy set, then its value is 1(it is
100% certain that the quantity belongs to this set), but if it is absolutely certain that it
does not belong to this set then its value is 0. Similarly if for example the quantity

belongs to the fuzzy set to an extent of 50%, then the membership function is 0.5.

There are many types of different membership functions, piecewise linear or
continuous. Some of these are smooth membership functions, e.g. bell-shaped,
sigmoid, Gaussian etc. and others are non-smooth, e.g. triangular, trapezoidal etc. the
choice of the type of membership function used in a specific problem is not unique.
Thus it is reasonable to specify parameterized membership functions, which can be
fitted to a practical problem. If the number of elements in the universe X is very large
or if a continuum is used for X then it is useful to have a parameterized membership
function, where the parameters are adjusted according to the given problem.
Parameterized membership functions play an important role in adaptive fuzzy
systems, but are also useful for digital implementation. Due to their simple forms and
high computational efficiency, simple membership functions, which contain straight
line segments, are used extensively in various implementations. Obviously, the

triangular membership function is a special case of the trapezoidal one.

Triangular membership function depends on three parameters a, b, ¢ and can

be described as follows by considering four regions.

0 x<a
(x-a)/ (b-a) asxsb @1
uA’(x:a.b.c) = (cx) / (c-b) bsxzc )
0 X>c
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Figure 5.2 Triangul bership fi

A triangular membership function is shown in Figure 5.2 is used for both the
input and output variable and the points a, b, ¢ are also denoted. Alternatively, it is
possible to give a more compact form

u(x; a, b, ¢) =max {min [(x-a} / (b-a), (c-x) / (c-b)], 0} 4.2)

The detection of broken rotor bars fault severity is considered by utilizing
Mamdani-style fuzzy inference and using as input variables the fault components A,
and A, at frequencies (1+ 2s)f. Small, Medium, Large are the three membership
functions used for the input variable A; and A,. Zero, One, Two, Three broken bar are

the four membership functions used for the output variable number of broken bar.

5.2.2 Knowledge Base

The knowledge base consists of the data base and the linguistic control rule
base. The data base provides the information which is used to define the linguistic
control rules and the fuzzy data manipulation in the fuzzy logic controller. The rule
base specifies the control goal actions by means of a set of linguistic control rules. In
other words, the rule base contains rules such as would be provided by an expert. The
fuzzy logic controller looks at the input signals and by using the expert rules
determines the appropriate output signals (control actions). The rule base contains a
set of if-then rules. The main methods of developing a rule base are:

» Using the experience and knowledge of an expert for the application and

the control goals;

* Modeling the control action of the operator;

* Modeling the process;

e Using a self-organized fuzzy controller;

® Using artificial neural networks;
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control action from the inferred fuzzy control action by using the consequent
membership functions of the rules. There are many defuzzification techniques. They
are centre of gravity method, height method, mean of maxima method, first of maxima
method, sum of maxima. In this project height method defuzzification technique is
used as shown in Figure 5.4. In this method, the individual output membership
functions for each rule are used (e.g. if for the fuzzy AND the min operator is used,
then these are clipped membership functions) and first, the peak values (height), py, of
the (clipped) consequent membership functions of all rules that have fired are
multiplied by the ordinates of these membership functions(cy). In a second step, these
products are added and then divided by the sum of the peak values of the (clipped)

consequent membership functions. It follows that the output value is

247 L “3)
P«
P
u
P
< ¢ Output

Figure 5.4 Height Defuzzification Method

5.3 FUZZY FAULT DIAGNOSIS

5.3.1 Offline Monitoring
5.3.1.1 Simulation of Fuzzy Fault Detector (FFD)

The fuzzy inference system used is Mamdani. Triangular membership function
is used for both the input A, and A; and for the output. Three membership functions
for the input variables and four memberships function for the output variable is

selected.
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When the initial rules are obtained by using expert physical considerations,
these can be formed by considering that the three main objectives to be achieved by
the fuzzy logic controller are:

¢ Removal of any significant errors in the process output by suitable

adjustment of the control output;

e Ensuring a smooth control action near the reference value (small

oscillations in the process output are not transmitted to the control input);

® Preventing the process output exceeding user specified values;

By considering the two dimensional matrix of the input variables, each

subspace is associated with a fuzzy output situation.

5.2.3 Inference Engine

It is the kemel of a fuzzy logic controller and has the capability both of
simulating human decision-making based on fuzzy concepts and of inferring fuzzy
control actions by using fuzzy implication and fuzzy logic rules of inference as shown
in Figure 5.3. In other words, once all the monitored input variables are transformed
into their respective linguistic variables, the inference engine evaluates the set of if-
then rules and thus result is obtained which is again a linguistic value for the linguistic

variable. This linguistic result has to be then transformed into a crisp output value of

the fuzzy logic control.

s u u
1 HAY

1 By 1
B WG
0.5 05 F 05
0 o 0
X v z
input variable Output variable

Figure 5.3 Graphical interpretation of fuzzification, inference
5.2.4 Defuzzifier
The second transformation is performed by the defuzzifier which performs

scale mapping as well as defuzzification. The defuzzifier yields a non-fuzzy, crisp
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Table 5.1 Fuzzy Rules

Small | Medium | Large

Small Zero Two One
Medium | One Two Zero
Large One Three Two

The Table 5.1 gives the nine fuzzy rules used in this project for offline
condition monitoring. The simulated data suggest considering “small” to amplitude
from -13.1 dB to -12.7 dB, “medium” from -12.9 dB to -12.3 dB, “large” from -12.4
dB to -12 dB for the input variable Al; “small” to amplitude from -33.23 dB to -
31.75 dB, “medium” from -32.06 dB to -30.2 dB, “large” from -30.5 dB to -28.9 dB
for the input variable A2; “zero” to amplitude from -0.0953 to 0.782, “one” from
0.353 to 1.54,“two” from 1.08 to 2.25, “three” from 2.12 to 3.04 for the output
variable broken bar; the amplitude of the fault components increases with the number
of broken bars. The membership functions used for simulation are shown in Figures

(Figure 5.5 — Figure 5.7). The Figure 5.8 shows the surface viewer of the FFD.

mediom rge

Figure 5.5 Input Membership Functions for A;

small medum lrge !

FO T L R LA 25 B

Figure 5.6 Input Membership Functions for A,
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Figure 5.8 Surface Viewer

5.3.1.2 Simulation Results of FFD
The difference between the target and the actual is calculated for different
inputs. The results obtained are shown in Table 5.2

Table 5.2 Simulation Results

Input Input Target
AL(Db) | A2(Db) | Output | Actual Valuel % error

1259 | 2955 0 0.09 1
s12.12 | -3249 1 099 1
1278 | 3165 2 201 05
1235 | -3091 3 3 0

Average error 0.625

From the above table, it is inferred that the performance of fuzzy fault

diagnosis system is comparable with conventional method.
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Figure 5.10 Input Membership Functions for A,
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Figure 5.12 Surface Viewer

5.3.2.2 Simulation Results of FFD
The difference between the target and the actual is calculated for different

inputs. The results obtained are shown in Table 5.4
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5.3.2 Online Monitoring
5.3.2.1 Simulation of Fuzzy Fault Detector (FFD)

The fuzzy inference system used is Mamdani. Triangular membership function
is used for both the input A; and A; and for the output. Three membership functions
for the input variables and four memberships function for the output variable is

selected.

Table 5.3 Fuzzy Rules

Az
Ar

Small One One Two
Medium | Zero Two Three
Large Three Two Three

Small | Medium | Large

The Table 5.3 gives the nine fuzzy rules used in this project for online
condition monitoring. The simulated data suggest considering “small” to amplitude
from -11.5 dB to -11.3 dB, “medium” from -11.34 dB to -10.74 dB, “large” from
-10.9 dB to -10.5dB for the input variable Al; “small” to amplitude from -10.9 dB to
-10.5 dB, “medium” from -10.6 dB to -10 dB, “large” from -10.1 dB to -9.65 dB for
the input variable A2; “zero” to amplitude from -0.6 to 0.218, “one” from 0.131 to
1.62,“two” from 1.36 to 2.33, “three” from 2.08 to 3.1 for the output variable broken
bar; the amplitude of the fault components increases with the number of broken bars.
The membership functions used for simulation are shown in Figures (Figure5.9 —

Figure 5.11). The Figure 5.12 shows the surface viewer of the FFD.

small medium e

\
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Figure 5.9 Input Membership Functions for A;
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Table 5.4 Simulation Results

Input Input
Ay Az Target | Actual Values % error
(dB) (dB) | Output

-1L13 | -10.55 0 0.09 1
-11.35 | -10.77 1 1.02 2
-11.06 -10.46 2 1.98 1
-10.93 -9.74 3 3 0

Average error 1

From the above table, it is inferred that the performance of fuzzy fault

diagnosis system is comparable with conventional method.

5.4 COMPARISON OF NEURAL NETWORK AND FUZZY
BASED FAULT DIAGNOSIS SYSTEM
Neural network approach is a black box approach, where the expert
knowledge is hidden in the black box system in the form of weights and biases of the
neural network. However, in fuzzy logic based system the actions of a human expert
are clearly present in the rule base. Comparison of both the neural network and fuzzy

based fault diagnoses for both the online and offline is given in Table 5.5.

Table 5.5 Comparison of Neural Network and Fuzzy Based Fault Diagnosis

Neural Fuzzy
% Error | Network Logic
Di is | diagnosis
Off Line 29.4 0.625
On Line 34.44 1

From the above table, it is inferred that the fuzzy fault diagnosis gives reduced

error compared with neural network based diagnosis.
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CHAPTER 6
FUZZY OPTIMIZATION USING GENETIC ALGORITHM

6.1 INTRODUCTION TO GENETIC ALGORITHM

Genetic algorithm are good at taking larger, potentially huge, search spaces
and navigating them looking for optimal combinations of things and solutions which
we might not find in a life time.
Three most important aspects of using GA are:

. Definition of objective function

. Definition and impler ion of genetic rep ion

. Definition and implementation of genetic operators.

During the creation of offspring, recombination occurs (due to cross over) and
in that process genes from parents form a whole new chromosome in some way. The
new created offspring can then be mutated. Mutation means that the element of DNA
is modified. These changes are mainly caused by errors in copying genes from
parents. The fitness of an organism is measured by means of success of organism in
life.

GA’s is usually suitable for solving maximization problems. Minimization
problems are usually transformed into maximization problems by some suitable
transformation. In general, fitness function F(X) is first derived from the objective
function and used in successive genetic operations. Here error is used as the fitness
function and the objective function is to minimize the error.

A simple genetic algorithm genetic algorithm largely uses three basic

operators which are

. Reproduction
. Cross over
. Mutation.

6.1.1 Reproduction

Reproduction is wusually the first operator applied on population.
Chromosomes are selected from the population to the parents to cross over and
produce offspring. According to Darwin’s evolution theory of survival of the fittest,
the best ones should survive and create new offspring. There exist a number of

reproduction operators in GA literature but the essential idea in all or them is that the
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6.1.3 Mutation operator

After crossover, the strings are j to i Mutation of a bit

involves flipping it, changing 0 to 1 and vice versa. The bit-wise mutation is
performed bit-by-bit. If the mutation at that site is selected flipping is true, otherwise

the outcome is false. If at any bit, the outcome is true then the bit is altered, otherwise

the bit is kept unchanged.
For example, consider the following population having four eight-bit strings.
0110 1011
0011 1101
0001 0110
0111 1100

Notice that all four strings have a zero in the leftmost bit position. If the true
optimum solution requires a one in that position, then neither reproduction nor cross
over operator described above will be able to create one in that position.

0110 1011
0011 1101
0001 0110
1111 1100

6.2 MEMBERSHIP FUNCTION OPTIMIZATION
6.2.1 Tuning Membership Function

In a fuzzy logic system it is possible to obtain final (tuned) membership
functions by using genetic algorithms. For this purpose initial membership functions
for the various fuzzy variables are assumed, given some functional mapping of the
system. Parameters of the initial membership functions are then generated and coded
as bit strings that are then concatenated to make one long string to represent the whole
parameter set of the membership functions. A fitness function is then used to evaluate
the fitness value of each set of membership functions (parameters that define the
functional mapping of the system). Then the reproduction, crossover and mutation
operators are applied as to obtain the optimal population (membership functions), or
more precisely, the final tuned value of the parameter set describing the membership

functions used. The Figure 6.1 shows the input variable for the optimization.
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above average strings are picked from the current population and their multiple copies
are inserted in the mating pool in a probabilistic manner. The various methods of

selecting chromosomes for parents to cross over are:

. Roulette-wheel selection
. Boltzmann selection
. Tournament selection

. Rank selection

. Steady-state selection

Roulette-wheel selection is used in this project. The commonly used
reproduction operator is the proportionate reproductive operator where a string is
selected from the mating pool with a probability proportional to the fitness.

6.1.2 Cross over

After the reproduction phase is over, the population is enriched with better
individuals. Reproduction makes clones of good strings, but does not create new ones.
Cross over operator is applied to the mating pool with a hope that is would create a
better string. The aim of the cross over operator is to search the parameter space. In
addition, search is to be made in a way that the information stored in the present string
is maximally preserved because these parent strings are instances of good strings
selected during reproduction.

Cross over is a recombination operator, which proceeds in there steps. First,
the reproduction operator selects at random a pair of two individual strings for mating,
then a cross-site is selected at random along the string length and the position values
are swapped between two strings following the cross site. For instance, let the two
selected strings in a mating pair be A = 11111 and B = 00000. If the random selection
of a cross-site is two, then the new strings following cross over would be A*=11000
and B*=00111.This is a single-site cross over. Though these operators look very
simple, their combined action is responsible for much of GA’s power. From a
computer implementation point of view, they involve only random number of
generations, string copying, and partial string swapping. There exist many types of

cross over operations in genetic algorithm.

. Single-site Cross Over - Single site is chosen for cross over.
. Two-point Cross Over - Two-point is chosen for cross over.
. Multi-point Cross Over - Multi-point is chosen for cross over.
53
Input A, Input A,
X X5 Xg X X4 X17
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Figure 6.1 Membership Function of Input A, and A,.

1t is assumed that the system under consideration has known crisp input-output
data. After the initial population is obtained, it is possible to compute for all the crisp
inputs the corresponding crisp output data by using fuzzy rules shown in Table 5.3
together with the membership functions corresponding to the initial population. To be
more precise, the first binary string obtained randomly, contains a parameter set of the
membership functions used, and these membership function together with the input
data yield output values. But these will not necessarily equal to the crisp values in the
output data, since the initially used membership functions are not correct, and thus

output errors exist. The output errors are used to obtain a fitness value of the string.

Need for optimization
Choose design variables

Formulate constraints

Formulate objective function '
J

Set up variable bounds

Figure 6.2 Flowchart of the Optimal Design Procedure
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From the number of chromosomes generated, the best fit is selected by
choosing the lowest error in the Tables (Table 6.1 and 6.2). The fourth chromosome
gives the best result of 0.1999 percentage of error. Comparison of the fuzzy approach
using conventional method and optimization technique using genetic algorithm for
fault detection is shown in Table 6.3. From the table it is inferred that the error
percentage compared with the conventional technique is reduced in optimization

technique using genetic algorithm.
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CHAPTER 7
CONCLUSION AND FUTURE SCOPE

The rotor fault detection methods for three phase induction motor have been
implemented using neural network and fuzzy logic. The technique is based on
monitoring the stator current spectrum. In this project faults under various broken bar
condition are monitored and the results are presented. The sidebands at (1% 2s)f are
taken as the inputs for neural network and fuzzy logic fault detector, The parameter in
neural and fuzzy fault detection is compared in terms of percentage of error. From the
simulation results, it is inferred that the fuzzy logic based fault diagnosis gives the
reduced percentage error than the neural network based fault diagnosis. Hence fuzzy
logic based fault diagnosis is the effective method for fault detection. The
membership function is tuned using genetic algorithm. From the simulation results, it
is inferred that this technique gives reduced error compared with the conventional

tuning.

Further works that can be implemented in this project are,
o The fault detection scheme can be carried out using neuro-fuzzy techniques.
o This scheme can also be extended to other types of motors.

¢ Rules can be optimized using genetic algorithm.
» Neural weights can also be optimized using genetic algorithm.
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