P-1%01

Estd, 1984

EFFECTIVELY FINDING RELEVANT WEB PAGE
LINKS FROM LINKAGE INFORMATION

A PROJECT REPORT

Submitted by

J.SHARAN 71203104044
S.P.SUREN 71203104052
R.VINOTH 71203104058

in partial fulfiliment for the award of the degree
of
BACHELOR OF ENGINEERING

n

COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY,
COIMBATORE

ANNA UNIVERSITY:: CHENNAI 600 025
"/’ T

APRIL 2007

ANNA UNIVERSITY: CHENNAI 600025

BONAFIDE CERTIFICATE

Certified that this project report “EFFECTIVELY FINDING RELEVANT
WEB PAGE LINKS FROM LINKAGE INFORMATION?” is the bonafide
work of “J.SHARAN (71203104044), S.P.SUREN (71203104052),

R.VINOTH (71203104058)”, who carried out the project work under my

supervision.

SIGNATURE SIGNATURE
Dr.S.Thangasamy Mrs.S.Devaki
HEAD OF THE DEPARTMENT SUPERVISOR

Assistant Professor,
Dept. of Computer Science & Engg., Dept. of Computer Science & Engg.,
Kumaraguru College of Technology, Kumaraguru College of Technology,
Coimbatore-641006. Coimbatore-641006.

Submitted for Viva Voce Examination held on 2.4 04-0%

/(9’@”’7’,({ » |
Internal EXaminer External Examiner

DECLARATION

We hereby declare that the project entitled “EFFECTIVELY FINDING
RELEVANT WEB PAGE LINKS FROM LINKAGE INFORMATION” is a

record of the original work done by us and to the best of our knowledge.

The report is submitted in partial fulfillment of the requirements for
the award for the Degree of Bachelor of Engineering in Computer Science

and Engineering of Anna University, Chennai.

Place: Coimbatore.

Date: z3.04. 0F

(S.P.Suren)

Lohad

(R.Vinoth)

ACKNOWLEDGEMENT

We would like to extend our gratitude to the Principal of our
college, Dr.Joseph.V.Thanikal for providing us the required resources to
proceed with our project.

We would like to express our sincere thanks to Dr.S.Thangasamy,
Head of the Department, Department of Computer Science and Engineering,
Kumaraguru College of Technology, for his guidelines that motivated us to
develop a good product.

We are grateful to Mrs.P.Devaki, Assistant Professor, Department
of Computer Science and Engineering, Kumaraguru College of Technology
for her encouragement and support at various levels of this project work. As
our project guide, we also thank her for her inspiration and guidance
throughout this project. We are very grateful to her for the help rendered to
us in handling various tough spots during this project.

We also express our sincere thanks to Ms.S.Rajini, Senior Lecturer,
Project Coordinator, Department of Computer Science and Engineering,
Kumaraguru College of Technology for her valuable guidance and
encouragement at every stage of this project.

Most of all, we thank our parents and friends for their blessings, help

and support without which we would not be able to do anything.

ABSTRACT

ABSTRACT

The project deals with effectively finding the relevant web page
links from linkage information using VB.Net when concerned with the
INTERNET.

The project presents two hyperlink analysis-based algorithms to
find relevant pages for a given Web page (URL). The algorithm takes
advantage of linear algebra theories to reveal deeper relationships among the
Web pages and to identify relevant pages more precisely and effectively.
The experimental results show the feasibility and effectiveness of the
algorithm. This algorithm could be used for various Web applications, such
as enhancing Web search. The ideas and techniques in this work would be
helpful to other Web-related researches.

The input is given as URL in which the source page of the
URL is analyzed which displays information about the web directory
information, domain listing, parent links, and child links. We can retrieve the
information by clicking the link and the URL displays all the relevant links

with the relevant information, which may be more than one lakh.

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTERS TITLE

ACKNOWLEDGEMENT
ABSTRACT
INTRODUCTION
2 STUDY PROPOSAL
2.1 Problem Definition
2.2 Existing System
2.3 Proposed System
3 SYSTEM PROPOSAL
3.1 Software Specifications
3.2 Hardware Specifications
3.3 System Analysis
3.3.1 Language Description
4 ALGORITHM DESCRIPTION
4.1 Singular Value Decomposition
4.2 Latent Linkage Information
5 SYSTEM DESIGN
5.1 Architectural Design
5.2 Process Design
5.2.1 Use Case Diagram
5.2.2 Sequence Diagram
5.3 Form Design
5.3.1 Components

5.4. Form Layout

PAGE NO.

0 g a9 = N R B R e e =

N S —_ = e e N
- © Y ® 3 9 o & —~ © o

10

FEASIBILITY ASSESSMENT

6.1 Technical Feasibility

6.2 Social Feasibility

6.3 Economic Feasibility
TESTING

7.1 Black Box Testing

7.2 White Box Testing

7.3 Unit Testing

7.4 Integration Testing

7.5 Validation Testing

7.6 Performance Testing
FUTURE ENHANCEMENTS
CONCLUSION
APPENDIX

10.1 Snap shots

10.2 Sample code

REFERENCES

22
22
22
22
23
23
23
24
24
24
24
25
26
28
28
31
78

INTRODUCTION

CHAPTER 1
INTRODUCTION

The World Wide Web is a rich source of information and
continues to expand in size and complexity. How to efficiently and effectively
retrieve required Web pages is becoming a great challenge. Traditional Web
page search is based on user’s query terms and Web search engines, such as
AltaVista and Google .The user issues the query terms (keywords) to a search
engine and the search engine returns a set of pages that may (hopefully) be
related to the query topics or terms. For an interesting page, if the user wants
to search the relevant pages further, he/she would prefer those relevant pages
to be in hand. Here, a relevant Web page is the one that addresses the same
topic as the original page, but is not necessarily semantically identical.
Providing relevant pages for a searched Web page would prevent users from
formulating new queries for which the search engine may return many
undesired pages. Furthermore, for a search engine, caching the relevant pages
instead for a set of searched pages would greatly speed up the Web search and
increase the search efficiency. That is why many search engines, such as
Google and AltaVista, are concerned more about building this functionality of
searching relevant pages.

There are many ways to find relevant pages. For
example, as indicated, Netscape uses Web page content analysis, usage
pattern information, as well as linkage analysis to find relevant pages. Among
the approaches of finding relevant pages, hyperlink analysis has its own

advantages.

Primarily, the hyperlink is one of the most obvious
features of the Web and can be easily extracted by parsing the Web page
codes. Most importantly, hyperlinks encode a considerable amount of latent
human judgment in most cases. In fact, with a few exceptions, the creators of
Web pages create links to other pages, usually with an idea in mind that the
linked pages are relevant to the linking pages. Therefore, a hyperlink, if it is
reasonable, reflects the human semantic judgment and this judgment is
objective and independent of the synonymy and polysemy of the words in the
pages. This latent semantics, once revealed, could be used to find deeper
relationships among the pages, as well as to find the relevant pages for a
given page. The hyperlink analysis has proven success in many Web related
areas, such as page ranking in the search engine Google Web page
community construction Web search improvement Web clustering and
visualization and relevant page finding. When hyperlink analysis is applied to
the relevant page finding, its success depends on how to solve the following

two problems:

1) How to construct a page source that is related to the given page and
2) How to establish effective algorithms to find relevant pages from the page

source.

Ideally, the page source, a page set from which the relevant pages are
selected, should have the following properties:
1. The size of the page source (the number of pages in the page source) is
relatively small.

2. The page source is rich in relevant pages.

The best relevant pages for the given page, based on
the statement, should be those that address the same topic as the original page
and are semantically relevant to the original one. For convenience, in this
work, we adapt the following concepts: If there is a hyperlink from page P to
page Q, P is called a parent of Q and Q is called a child of P; if two pages
have at least one common parent page, these two pages are called siblings.

The input is given in the text box provided which is the
page queried by the user. The web link prober then connects to the internet
and opens the source page for the input. The links in the source page are
extracted and displayed to the user in the free view compornent of the input
form. The tree view component classifies the links found in the source page
and displays according to the category of domains. It also displays the parent
nodes and child rnodes to the user with the details of the webmasters currently

online. Independent nodes are also displayed to the user.

STUDY PROPOSAL

CHAPTER 2
STUDY PROPOSAL

2.1 Problem Definition

When the user browses through a website to obtain
specific information at regular interval of time, the user does by giving text to
the search engine to which it returns the websites or pages specific to that
text. It does not analyze the source code of the web page and also limited
links can only be retrieved. Users do not get website which are used before

and the pages which get expired.

2.2 Existing System

In the existing system we have only search engines based on text
information in which HITS (Hyperlink-Induced Topic Search) algorithm is
used in order to implement the search process, which does not analyze the
source code. HITS algorithm is applied directly to this page source and the
top authority pages (e.g., 10 pages) with the highest authority weights are
considered to be the relevant pages of the given page. Here, the authority
pages are those that contain the most definitive, central, and useful
information in the context of particular topics. On the other hand, the
experiments of the above work show that the identified relevant pages are
related to the given page in a broad sense, but are not semantically relevant to
the given page in most cases. For example, given a page (URL):
http://www.honda.com, which is the home page of Honda Motor Company,
the relevant pages returned by these algorithms are those home pages of

different motor companies (e.g., Ford, Toyota, Volvo, etc.). Although these

relevant pages all address the same topic “motor company,” there are no
relevant pages referring to Honda Motor Company, Honda Motor, or anything
else about Honda and, furthermore, there exist no hyperlinks between the
most of the relevant pages and the given page (URL). This kind of relevant
pages could be considered relevant in a broad sense to the given page. In
practical Web search, however, users usually would prefer those relevant
pages that address the same topic as the given page, as well as being

semantically relevant to the given page (best relevant pages).

2.3 Proposed System

In the proposed system we find information using the URL
and we use the Singular Value Decomposition (SVD) algorithm and Latent
Linkage Information (LLI) algorithm. The system proposes an efficient hyper
link —based Algorithm to find the relevant links for a given web page
(URL).The algorithm is advantaged with linear Algebra Theories to reveal
deeper relationship among the web page to identify relevant links more
precisely and efficiently. The hyperlink analysis has proven success in many
Web related areas. It analyses the source code and provides the information
efficiently. Latent Linkage Information (LLI) algorithm, finds relevant pages
more effectively and precisely by using linear algebra theories, especially the
singular value decomposition of matrix, to reveal deeper relationships among
the pages. Experiments are conducted and it is shown that the proposed
algorithms are feasible and effective in finding relevant pages, as the relevant
pages returned by this algorithm contain those that address the same topic as
the given page, as well as those that address the same topic and are
semantically relevant to the given page. This is the ideal situation for which

we look.

Advantages

* Web page community construction.

e Web search improvement.

e Web clustering and visualization and relevant page finding.

o Web oriented researches.

» Finding the weight age of a particular web site.

¢ Finding the number of links of a particular web site.

» The specific links can be found in a particular web site.

¢ The parent and child links of a particular web site can be found.

¢ The images present in the website also can be found.

SYSTEM PROPOSAL

CHAPTER 3
SYSTEM PROPOSAL

3.1 Software Specification

Software required: Visual Studio.Net (VB.Net)
Operating system: Windows2000 or Windows XP

3.2 Hardware Specification

CPU Type : Pentium IV

Hard Disk : 40 GB

RAM Memory 512 MB

Monitor : 177 Samtron color monitor
3.3 System Analysis

The first stage of the software development is study of
the system under consideration and its requirement analysis. The system
analysis is process of gathering facts, interpreting them, diagnosing various
possible problems and using the above information to recommend
improvement to the existing system. Existing system is analyzed and
requirements are identified. Finally what proposed system was supposed to do

is determined.

3.3.1 Language Description

. NET represents an entire range of technologies and concepts
that form a platform on which you can develop applications. NET is layer that
exists beneath the programs and provides set of base services and functions.
This layer contains a set of applications and operating system called .NET
servers; a foundation set of objects called .NET framework and a set of

services and support all NET languages and CLR.

ADVANTAGES
1. Developer productivity

Developers of all backgrounds find .NET framework faster because the
code is provided in the class libraries and .NET framework handles memory
management. Hence enabling developers to read or achieve high productive

gains.

2. Improved Reliability
NET framework can monitor the health of running application, isolate
application hence application built using .NET application stay up and run

longer.

3. Increased Performance
Compilation, catching technique and server application are made faster

in order of 300-500% with NET framework.

4. Powerful granular security

Code access security technique in .NET framework is designed for
internet environment .NET frameworks collect evident about origin and
author of the application .NET frameworks compare the evidence with default

security policies and makes decision whether to run the application.

5. Ease of Deployment

NET frameworks make it easy to deploy run and manage application.

6. Mobility support
NET frameworks provide one unified programming model for

developing smart client web application for both pc and mobile device.

7. Flexible data access
.NET is designed for web-based style of data access ADO.NET data

access tree up database connection and results in greater scalability.

ALGORITHM DESCRIPTION

CHAPTER 4
ALGORITHM DESCRIPTION

4.1 SINGULAR VALUE DECOMPOSITION (SVD) :

The SVD definition of a matrix is as follows: Let A = [a;]nxn be a
real m x n matrix. Without loss of generality, we suppose m > n and the rank
of A is rank(A) = r.Then, there exist orthogonal matrices Upxn and V 4,
such that

A= U [ZIJ yvi = U,
0

where

U'U=1, V'V =1, 3= diag(c,,...,0,),0; Gis; > 0

for1< i<r—1, g;=0forj=> r+l, 2 is an m x n matrix, U" and V7 are the
transpositions of matrices U and V', respectively, 1, and I, represent m x m
and » x » identity matrices, separately. The rank of A indicates the maximal
number of independent rows or columns of A. Equation (1) is called the
singular value decomposition of matrix A. The singular values of A are
diagonal elements of (i.¢., o}, 03,0;). The columns of U are called left
singular vectors and those of V are called right singular vectors.

Since the singular values of 4 are in non increasing order, it is possible to
choose a proper parameter & such that the last r - £ singular values are much
smaller than the first £ singular values and these k singular values dominate

the decomposition.

4.2 LATENT LINKAGE INFORMATION (LLI) ALGORITHM:

We suppose the size of BS is m (e.g., the number of pages in BS is
m) and size of P, is n, the sizes of 7S and C, are p and g, respectively.
Without loss of generality, we also suppose m > n and p > g. The topological
relationships between the pages in BS and P, are expressed in a linkage
matrix 4, and the topological relationships between the pages in /S and C, are
expressed in another linkage matrix B. The linkage matrices 4 and B are

concretely constructed as follows:

A= (aij)mx m

1 when page i is a child of page j, page i €BS, pagej P,

Ay =
0 otherwise.
B =(b)pxq
1 when page i is a parent of page j, page i €FS, pagej C,,
b,’j =

0 otherwise.

These two matrices imply more beneath their simple definitions. In
fact, the ith row of matrix 4 can be viewed as the coordinate vector of
page i (page i € BS) in an n-dimensional space spanned by the # pages in P,
and the ith row of matrix B can be viewed as the coordinate vector of page i

(page i € FS) in a g-dimensional space spanned by the q pages in C,,.

Similarly, the jth column of matrix A can be viewed as the coordinate vector
of page j (pagej « P,) in an m-dimensional space spanned by the m pages in
BS. The meaning is similar for the columns in matrix B. In other words, the
topological relationships between pages are transferred, via the matrices 4
and B, to the relationships between vectors in different
multidimensional spaces.
Since A and B are real matrices, there exist SVDs of A and B:

A= U,.m menVT,,xn, B =W, X" ¢xg- As indicated above, the rows of
matrix 4 are coordinate vectors of pages of BS in an n-dimensional space.
Therefore, all the possible inner products of pages in BS can be expressed as
A4", i.e.,(AAT)g is the inner product of page i and page j in BS. Because of
the orthogonal properties of matrices U and ¥, we have 447 = (USYUZ)" .
Matrix UZ is also an m x » matrix. It is obvious from this expression that
matrix UZ is equivalent to matrix 4 and the rows of matrix UZ could be
viewed as coordinate vectors of pages in BS in another n-dimensional space.
The SVD of a matrix is not a simple linear transformation of the matrix, it
reveals statistical regulation of matrix elements to some extent. Accordingly,
the coordinate vector transformation from one space to another space via
SVD makes sense. For the. same reason, the rows of matrix VT, which is an
n x m matrix, are coordinate vectors of pages in P, in another m-dimensional
space. Similarly, for matrix B, the rows of matrix €2 are coordinate vectors
of pages in FS in another g-dimensional space and the rows of matrix XQ' are
coordinate vectors of pages in C, in another p-dimensional space.

Next, we discuss matrices 4 and B separately. For the SVD of matrix A4,

matrices U and ¥ can be denoted, respectively, as

Upxm= [ula Upy oo oy um] mxm
and
\Y% nxn [Vla V2, - -y vn] nxns
where u{i=1, .. ., m) is an m-dimensional vector
w = Uy thay oo oy Un ,)T and vi(i=1, ..., n)is an n-dimensional vector
Vi=(Viis Vi o« - s v,,,,-)T. Suppose rank(4) = r and singular values of matrix 4

are as follows:

012072 0,;>Cp=...=0,=0.
For a given threshold £(0 < £< 1), we choose a parameter & such that
(Ox- 0 4+1)/ 04> € Then, we denote U, = [y, 4z, - . -, U] mxso

Vi=[vi, v, -« o s Vi nxio Zi = diag(cy, 02, Ory,and 4, = UkaVTk.

The best approximation matrix 4; contains main linkage information
among the pages and makes it possible to filter those irrelevant pages, which
usually have fewer links to the parents of given %, and effectively find
relevant pages. In this algorithm, the relevance of a page to the given page «
is measured by the similarity between them. For measuring the page
similarity based on 4;, we choose the ith row R; of the matrix U, as the
coordinate vector of page i (page i€ BS)ina
k - dimensional subspace S:

Ri= (o1, Uineas - - 5 Uikok)s 1= 1,2, . m. (1)
For the given page u, since it is linked by every parent page, it is represented
as a coordinate vector with respect to the pages in P, : u=(g1, 22, . . . » &u)s

where g;= 1, i € [1, n]. The projection of coordinate vector « in the A-

dimensional subspace S is represented as

W= ulpZ =g, 8% -8 (2)

where g/, =2" ;1 gv0i,i=1,2,...,k

Equations (1) and (2) map the pages in BS and the given page u into the
vectors in the same k-dimensional subspace S in which it is possible to
measure the similarity (relevance degree) between a page in BS and the given
page u. We take the commonly used cosine similarity measurement for this
purpose, 1.e., for two vectors x = (xy, x2, . . ., x)and y =¥y, y2, . . .,) In a k-
dimensional space, the similarity between them is defined as

. ¥l
sim(x . y)= ———
el 2l

where x. y=2" ., xy;, lIx|l. = ¥ x. x. In this way, the similarity between a

page i in BS and the given page u is defined as

| R;. o |
BSS;=sim(R, v') = ———— L i=1,2, ..., m.
(IR [212'lf2
For the given selection threshold 8, the relevant pages in BS with respect to
the given page is the set
BSR={p;|BSS;28,p;eBS, i=1,2,...,m}.

In the same way, for the SVD of matrix B = W, ., Q,,, X" gxg» WE SUppOSe
rank(B) = t and singular values of matrix B are
Q== 20> O =...= @ =0.Fora given threshold
£(0 < £< 1)}, we choose a parameter / such that (&, — @) /@, 2 €.

Then, we denote B, = W,Q,XT 1, where
H/! = [wiJ] pbei: [xf,j] gxls le diag(w]: ah, . . ., wl)

The ith row R’; of the matrix W), is the coordinate vector of
page i (page i € FS) in a I-dimensional subspace L:
Ri=(oho, opo,, ..., 0u0), i=1,2,...,p
The projection of coordinate vector u in the /-dimensional subspace L is
represented as
u”= uXQ = (" "&")
where

n o —

g" = X o gxuy, i=1,2,...,1
Therefore, the similarity between a page 7 in FS and the given page u is
| R . u”
FSS;=sim(R/, u")y =—— ,i=1,2,...,p.
1R/ [fall2¢"]|2
For the given selection threshold §, the relevant pages in £ with respect to
the given page u is the set
ESR={p;|FSS;=8,p;e FS, i=1,2,...,p}.

Finally, the relevant pages of the given page (URL) « is a page set
RP=BSR U FSR.

The complexity or computational cost of the LLI is dominated by the
SVD computation of the linkage matrices A and B. Without loss of generality,
we suppose m = max(m, p) and n = max(n, q). Then, the complexity of the
LLI algorithm is O(m’n + 1°). If n <<m, this complexity is approximately
O(mz). Since the number of pages in the page source can be controlled by the
algorithm and this number is relatively very small compared with the number

of pages on the Web, the LLI algorithm is feasible for application.

SYSTEM DESIGN

CHAPTER 5
SYSTEM DESIGN

The system design deals with various designs involved in this

project which can be classified as:

1) Architectural Design
2)- Process Design

3) Form Design

4} Form layout

5.1 ARCHITECTURAL DESIGN

Files s
hard disk

INTERNET

5.2 PROCESS DESIGN
5.2.1 Use Case Diagram

C O C O

Store the information Categorize in
in the temp folder tree view
Admin Customer
Enter the o
web address Vahdate A ©

Internet

Dlspla y relevant
links

User

5.2.2 Sequence Diagram

Admin

<]
Validate

Store the information

temp folder

|

Internet

User

e _uuu.. _uuuu
D
N
=
3
o
S 2
> 5
3y s
|) g
S5 Q
53
—]

e

relevant web pag

links

5.3 FORM DESIGN

We are designing a form using VB.NET to retrieve information.
This is showed below. This form has root directory and parent links. In the
form design we have various buttons, which are used to implement the

process.

Start
It is used to start the process and it keeps on searching the given

URL and displays all the links.

Stop

It is used to stop the search process from which it is searching.

Restart

It is used to restart the process from anywhere of the procedure.

Favorites
It is used to store the links, which are used by the user often. It

displays links, radio station guide msn.com etc.

History
This is used to show the previous links, which are used by the users.

It displays the searched information.

Exit

It is used to exit the application.

3.3.1. COMPONENTS

Tree view

We use tree view to display a hierarchy of nodes. Each node is
not only displayed visually, but also has child nodes. An example of this is
the windows explorer, which uses a tree view in its left pane to display the
hierarchy of folders on disk. With the use of this component memory space
will be reduced. A tree view also can be displayed with checkboxes next to
the nodes, if the tree view uses check boxes. The main properties of the tree
view are the nodes and selected node. The nodes property contains the list of
nodes in the tree view, and the selected node property sets the currently
selected node. Tree view class supports nodes themselves.

The nodes collection for a node holds the nodes child
tree node objects. You can add, remove a tree node, when you do, all child
tree nodes are added, removed at the same time. Each tree node can contain a
collection of other tree node objects, which means you can use expressions
like this: My node, Nodes (3), Nodes (5) to refer to child nodes. You can also
use the full path property to specify nodes in terms of their absolute.

Inet

This is used to connect system to internet.

5.3. FORM LAYOUT

FEASIBILITY ASSESSMENT

CHAPTER 6
FEASIBILITY ASSESSMENT

The feasibility study is performed to test the technical, social and
economical feasibility of developing this system. Investigating the existing
system and generating ideas about the new system do this.

4.1. Technical feasibility

This system technically feasible as it facilitates through user to know
about the current updating by the simple operation of a button click. It also
aids the user by informing the status of the information retrieval. The project
ensures provider’s security as it operates only in the dial up connection.

4.2. Social feasibility

For people with knowliedge of data ware housing this is a new
technical solution where in the web administration, customers of the
commerce website, web miners and wireless users will find their monitoring
of the system judicious.

4.3. Economic feasibility

Cost certainly becomes a secondary factor when there is reduction of
time and human effort. The software designed reduced time and requires less
effort of an individual as remembering the facts or data’s are not of much
importance. The project if implemented by the service provider would help
anybody on the net to have excellent knowledge of the changes or
improvement made. From the above feasibility study the proposed system is
found to be cost efficient, less time consuming, flexible and reliable and has

the high degree of acceptance.

TESTING

CHAPTER 7
TESTING

Testing plays a vital role to the success of the project, which is
the last stage of the software development. The testing stage is proposed to
affirm the quality of the project, to find and eliminate any residual errors from
the previous stage, to validate software and to eliminate the operational

reliability of the system.

7.1. Black Box Testing

This test demonstrates that all the software functions
are operational, input is properly accepted, correct outputs are generated and
the integrity of the external information is maintained. This testing was
conducted to detect errors. The internal coding is not considered and only the
user enters the input in the text box and checks whether he obtains the

relevant links in the tree view component.

7.2. White box testing
White box testing are the software predicates on close
examination of procedure details. It provides test cases that exercise specific
test for conditions and loops. White box testing was carried out in the order to
guarantee that
1. All independent paths within a module were exercised at least
once.

2. All logical decision on this true and false side was exercised.

7.3. Unit testing

The individual modules are tested for the proper
functioning and are found to be satisfactory. The algorithm modules are tested
for accurate identification of nodes and links from source code of the web
link. The search engine development module is tested for the recognition of
web page details. The algorithm module is tested for its Html stripping

method and the display of relevant links in the tree view component.

7.4. Integrated testing

As modules are successfully tested, an integrated test
plan is developed to incorporate each module into the overall software
structure. As a whole the web address is given and the output nodes are

verified whether it suits the input address.

7.5. Validation testing
This test is performed to validate the output obtained.

The URL is given as the input and the corresponding links are obtained.

7.6. Performance testing
It is carried out to test the runtime performance of the
system developed. The systems processing time is found to be dependent on

the browsing speed, it comes around 3 seconds.

FUTURE ENHANCEMENTS

CHAPTER 7
FUTURE ENHANCEMENTS

This project deals with retrieval of information of web links by giving input

URL has following future enhancements

* Retrieval of images.
e Retrieval of audio clips.

e Retrieval of video clips.

CONCLUSION

CHAPTER 8
CONCLUSION

In this work, we have proposed the algorithm to find
relevant pages of a given page: and the LLI (Latent Linkage Information)
algorithm. This algorithm is based on hyperlink analysis among the pages and
takes a new approach to construct the page source. The new page source
reduces the influence of the pages in the same Website (or mirror site) to a
reasonable level in the page similarity measurement, avoids some useful
information being omitted, and prevents the results from being distorted by
malicious hyperlinks. This algorithm could identify the pages that are relevant
to the given page in a broad sense, as well as those pages that are semantically
relevant to the given page. Furthermore, the LLI algorithm reveals deeper
(mathematical) relationships among the pages and finds out relevant pages
more precisely and effectively.

Experimental results show the advantages of this
algorithm. The ideas in this work would also be helpful to other linkage-
related analysis. The proposed algorithm in this work, as well as those in the
previous work, find relevant pages statically, as they only deal with the
“static” links among the pages.

If the algorithm is implemented on the top of a
hyperlink server such as the Connectivity Server, they are at most semi
dynamic since the hyperlink information they use depends on the information
update in the hyperlink database of the server. Extending the current
algorithm to deal with dynamic links, such as those produced by a CG/

(Common Gateway Interface) script is a valuable and a challenging problem.

The page similarity in the LLI algorithm could also be adapted for page
clustering if the number of pages to be clustered is not huge. Assigning more
semantics to hyperlinks, especially for XML documents, is another promising
approach to increase the effectiveness in finding relevant pages (documents),

clustering pages {documents), etc.

APPENDIX

CHAPTER 9
APPENDIX

9.1. SNAPSHOTS

v | fok Finder

User entering the input in the provided text box

2 Ixtractinglhtp:dhww. yakoo.comfrita)

R
Registered Domains: 374

L HyperT et TrsnsfeProtocat 122

- Emaldddiess:
3

ttp: /wewm. pabed0. cOMAT/T
Hitp:/ /v yahoo. com/r/m1
e /v pahoD, comAr/b T
Pt/ vevmvayshion, com /b
B it/ vwvew yahoo.com/tng
By hitp://ewen yahoo. com/1/bh
;v paihoo. cOMd T/
ttp: / Fwwint, y3hoo. com/ B
|hittp: A/ weiss pah00, COMAT T

Extracted links from the user provided page shown in the tree view
component

Hih
Filz qvd Tolder Tasks

@ Rename this fils fou:uwsw... footerwsw... fi

£ Move this fie
0y Conry this fhe

€ Publsh this Fie 1o the wss
@ E-rasd this file
W Daotado this il

S/

: 3 ... hEpWOWS,..
M sELEss (C) it
w5 M Documents :]
§& SheredDocyments (o HEPWOWS..
i

’ i Computer

il -
O
S
8

@@@@Q@@Q@@

1.- DUDWCWS,.,

e RIPWOWS..

=)

o DRPWOWS, .,

-

o hERWOWS..,

)

=/

o

o

e

=

S

hHpWOWS...

itpWICWS. ..

s
o

htpWCWS..,

e

S

&)

e

3

REPWOWS...,

S)

PREpWOWS. ..

S

=)

S

hitpWCws. ..

@ ° o 8 e O @_” @,.. :3}“ r_:]_“:

1 FooterwSwi... Footer

C:\tempinet folder showing the information stored by the admin

9.2 SAMPLE CODES

Imports System

Imports System.Reflection

Imports System.Runtime.InteropServices

' General Information about an assembly is controlled through the following
' set of attributes. Change these attribute values to modify the information
'associated with an assembly.

' Review the values of the assembly attributes

<Assembly: AssemblyTitle("")>

<Assembly: AssemblyDescription("")>

<Assembly: AssemblyCompany("")>

<Assembly: AssemblyProduct("")>

<Assembly: AssemblyCopyright("")>

<Assembly: AssemblyTrademark("")>

<Assembly: CLSCompliant(True)>

"The following GUID is for the ID of the typelib if this project is exposed to
COM

<Assembly: Guid("F2185C34-1FFD-41CC-9CA5-9815F7961B0D")>

' Version information for an assembly consists of the following four values:

T

Major Version
" Minor Version
' Build Number

Revision

' You can specify all the values or you can defauit the Build and Revision
Numbers
' by using the '*' as shown below:

<Assembly: AssemblyVersion("1.0.*")>

Friend Class HtmlStrip

Dim Stripped(500) As Object

Dim CurrentIndex As Integer

Public idMaxLenth As Integer

Public szBlockStart As Object

Public szBlockEnd As Object

Function aGet(ByRef index As Object) As Object

aGet = Stripped(index)

End Function

Sub aPut(ByRef index As Object, ByRef value As Object)
Stripped(index) = value
End Sub
'
Sub SetClassToFindEmails()
' set header and footer block varibles
' these determine what is to be found!
Me.szBlockStart = "<a href=" & Chr(34) & "mailto:"
Me.szBlockEnd = Chr(34)
Me.idMaxLenth = 30
End Sub

""THIS FINDS EVERYTHING IN QUOTATIONS"

Sub SetClassToFindAllBlocks()
Me.szBlockStart = Chr(34)
Me.szBlockEnd = Chr(34)
Me.idMaxLenth = 30

End Sub

'

Sub SetClassToFindLinks()
Me.szBlockStart = "<a href=" & Chr(34)
Me.szBlockEnd = Chr(34)
Me.idMaxLenth = 30

End Sub

Sub SetClassToFindScr()
Me.szBlockStart = "scr=" & Chr(34)
Me.szBlockEnd = Chr(34) ' 3}0u could add [& ">"]
Me.idMaxLenth = 30 ' no longer than 30 character
End Sub
' strips document of all links or emails or
' whatever is set to find..
Sub StripDocument(ByRef DocumentData As Object, ByRef Append As
Boolean)
Dim CurrentOffset As Integer
Dim ChStart As Integer
Dim ChEnd As Integer
' new append functions for links and images

If Append = False Then

CurrentIlndex = 0
Else
CurrentIndex = CurrentIndex + 1
End If
CurrentOffset = |
Do
' find header of block (get byte position)
ChStart = InStr(CurrentOffset, DocumentData, szBlockStart)
If ChStart > G Then
'(**) if not header found exit do
' get footer of block (get byte position)
ChEnd = InStr{(ChStart + Len(szBlockStart), DocumentData,
szBlockEnd)
If ChEnd > 0 Then
' (**)if no end found exit do
' check maxlenth
If ChStart - ChEnd > idMaxLenth Then
CurrentOffset = ChEnd ' move offset up.
Else
" extract block from document
Stripped(CurrentIndex) = Mid(DocumentData, ChStart, ChEnd
- ChStart)
Stripped(CurrentIndex) = Mid(Stripped(CurrentIndex),
InStr(1, Stripped(CurrentIindex), Chr(34)) + 1, Len(Stripped(CurrentIndex)))
' move the index up for the next array position
CurrentIndex = CurrentIndex + 1

' put offset above found email - or it will find it agin!

CurrentOffset = ChEnd
'Easy Debug Way! You can remove this it is not needed.
' Its just for demonstration and testing. Use g and p functions
" for accessing the array outside the function.
End If
Else
Exit Do
End If
Else
Exit Do
End If
System.Windows.Forms.Application.DoEvents()
Loop Until CurrentOffset > Len(DocumentData)
End Sub
End Class

Public Declare Function shellexecute Lib "shell32.d11" Alias "ShellExecuteA"
(ByVal hwnd As Integer, ByVal IpOperation As String, ByVal IpFile As
String, ByVal IpParameters As String, ByVal IpDirectory As String, ByVal
nShowCmd As Integer) As Integer

Public Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As
Integer)

Public cmlstop As Boolean

Public exitflag As Boolean

Public TemplInternetFilesPath As Object

Public llhwnd As Object

Public Sub StorelnternetPage(ByRef varPageData As Object, ByRef
varPageAddress As Object)
Dim s As Object
On Error Resume Next
s = encode(varPageAddress, "W", "WW")
s = encode(s, "/", "WS")
s = encode(s, ":", "WC")
s = encode(s, "?", "WQ")
s = encode(s, "%", "WP")
s = encode(s, "$", "WD")
MKkDir("¢:\tempinet\")
FileOpen(1, "c:\tempinet\" & s, OpenMode.Binary)
FilePutObject(1, 1, varPageData)
FileClose(1)
End Sub

Public Function RestoreFilenameToAddress(ByRef varFilename As
Object) As Object
Dim s As Object
s = encode(varFilename, "WD", "$")
s = encode(s, "WP", "%")
s = encode(s, "WQ", "7")
s = encode(s, "WC", ":")
s = encode(s, "WS", "/")
RestoreFilenameToAddress = encode(s, "WW", "W")

End Function

Public Function encode(ByRef varString As Object, ByRef varBlock As
Object, ByRef varNewBlock As Object) As Object
Dim i As Object
Fori=1 To Len(varString)
If Mid(varString, i, Len(varBlock)) = varBlock Then
encode = encode & varNewBlock
i=1+ Len(varBlock) - 1
Else
encode = encode & Mid(varString, i, 1)
End If
Next i
End Function
End Module

Dim Searched(900) As Object
Dim SearchedIndex As Integer
Dim OODMODE As Boolean
Dim OOD PURL As String
Dim INFMODE As Boolean
' Settings
Sub Lc2kSetMode OOD(ByRef bValue As Boolean, ByRef purl As
Object)
If bValue = True Then
OODMODE = True
OOD PURL = purl
Else
OODMODE = False

End If
End Sub
' Run Module
Sub Lc2kEngine(ByRef Url As String, ByRef view As
AxComctlLib.AxTreeView, ByRef inet As AxInetCtlsObjects.AxInet, ByRef
PMaxNodes As Integer, ByRef ProcessorTime As Integer, ByRef Frm As
System, Windows.Forms.Form)
Dim Gt As Object
Dim i As Object
Dim Data As Object
Dim oldimage As Object
On Error GoTo errh
If cmistop = True Then
GoTo CleanUp
Else
End If
Dim Stack As New W32LIB Stack
Dim Strip As New HtmlStrip
Dim CurUrl As String
Dim SDevice As New FSD
INFMODE = True
Stack.Reset Renamed(1)
Stack.Reset Renamed(0)
If INFMODE = True Then
view.Nodes.Clear()
view.Nodes.Add(, , "info", "WebDirectoryInfoNode", 14)
'view.Nodes.Add(, , "info", "WebDirectoryInfoNode", 14)

view.Nodes.Add("info”, 4, "rd", , 14)
view.Nodes.Add("info", 4, "gd", , 14)
view.Nodes.Add("info", 4, "tx", , 14)
view.Nodes.Add("info", 4, "cg", , 14)
view.Nodes.Add("info", 4, "hd", , 14}
view.Nodes.Add("info", 4, "ex", , 14)
view.Nodes.Add("info", 4, "hl", , 14)
view.Nodes.Add("info", 4, "em", , 14)
view.Nodes.Add("info", 4, "ot", , 14)
End If
' ¥*%¥ Major Domains *****
view.Nodes.Add(, , "mdomains", "Domain Listing", 3)
If OODMODE = False Then
view.Nodes.Add(, , Url, Url, 15)
End If
Stack.Push(0, Url)
Do
Do
repop:
WaitProcessorTime(ProcessorTime, True)
CurUrl = Stack.pop(0)
If InStr(1, CurUrl, wnd.Deflnstance.txtexclude.Text) > 0 Then

GoTo repop
If ecmlstop = True Then
GoTo CleanUp
Else

End If

Frm.Show()
Frm.Text = "Init (" & CurUrl & ")"
If HasUrlBeenSearchedBefore(CurUrl) = True Then
If Stack.Ine(0) = True Then Exit Do
GoTo repop
End If
SetUrlSearched(CurUtl)
Frm.Text = "Getting (" & CurUrl & ")"
oldimage = view.Nodes.Item({GetKeyIndex(CurUrl, view)).Image
view.Nodes.Item(GetKeyIndex(CurUrl, view)).Image = 11
Data = GetDocument(CurUrl, inet)
view.Nodes.Item(GetKeyIndex(CurUrl, view)).Image = oldimage
' **xx% StorelnternetPage ****
StorelnternetPage(Data, CurUrl)
"*E*E* Add speacil node section
AddMajorDomain(CurUrl, view)
Frm.Text = "Extracting(" & CurUrl & ")"
Strip.SetClassToFindLinks()
Strip.StripDocument(Data, False)
Strip.SetClassToFindScr()
Strip.StripDocument(Data, True)
i=0
Do
WaitProcessorTime(ProcessorTime, True)
Gt = Strip.aGet(i)
If Gt ="" Then Exit Do
If exitflag = True Then GoTo CleanUp

Gt = FixUrl{(Gt, CurUrl)
If HasUrlBeenSearchedBefore(Gt) = False Then
Stack.Push(1, Gt)
Else
Gt=Gt & ".dI"
End If
If PMaxNodes < view.Nodes.Count Then GoTo CleanUp
If OODMODE = True Then CurUrl = OOD PURL
' eEEREE StorelnternetPage ****
StorelnternetPage("", Gt)
'*¥x%% Add Major Domain ****
AddMajorDomain(Gt, view)
AddNode(view, CurUrl, Gt)
i=i+1
Loop While Strip.aGet(i) < ""
If OODMODE = True Then GoTo CleanUp
Loop Until Stack.Ine(0) = True
Stack.Reset Renamed(0)
Stack.CopyStack(1, 0)
Stack.Reset_Renamed(1)
WaitProcessorTime(ProcessorTime, True)
Loop Until Stack.Peek(0, ¢)=""
CleanUp:
Stack.Reset Renamed(0) : Stack.Reset_Renamed(1)
Frm.Text = "Done. LastDoc(" & CurUrl & "} Nodes:" &
view.Nodes.Count
Exit Sub

errh:
MsgBox(" " & Err.Description)
Lc2kInternetPageSupport.Sleep(500)
Err.Clear()
GoTo CleanUp
Stack.Reset Renamed(0) : Stack.Reset Renamed(1)
SearchedIndex = 0
GoTo repop
Exit Sub

End Sub

Function HasUrlBeenSearchedBefore(ByRef Url As Object) As Boolean
Dim i As Object
For i =0 To SearchedIndex
If Searched(i) = Url Then
HasUrlBeenSearchedBefore = True
Exit Function
End If
Next i
HasUrlBeenSearchedBefore = False

End Function

Sub SetUrlSearched(ByRef Url As Object)
Searched(SearchedIndex + 1) = Url
SearchedIndex = SearchedIndex + 1

End Sub

Sub WaitProcessorTime(ByRef ProcessorTime As Object, ByRef UselL As
Boolean)
Dim s As Object
Dim X As Object
If UseL. = True Then
For X =0 To ProcessorTime * 2
System. Windows.Forms.Application.DoEvents()
Next X
Exit Sub
Else
s = VB.Timer()
Do While VB.Timer() - s <ProcessorTime
System. Windows.Forms.Application.DoEvents()
Loop
End If
End Sub
Function GetDocument(ByRef Url As String, ByRef inet As
AxInetCtlsObjects. AxInet) As Object
On Error GoTo gde
GetDocument = LCase(inet.OpenURL(Url))
Exit Function
gde:
GetDocument =""
End Function
End Module

Dim fem, ftxt, fexe, fhtml, fdomains, fgdomains, fcgiasp, fdupl, fhlp, fot
As Object
' if key has been used before then get its index
' (view.nodes.item({=index).text = "whatever")
Function GetKeyIndex(ByRef Key As Object, ByRef view As
AxComctlLib.AxTreeView) As Object
Dim X As Object
For X =1 To view.Nodes.Count
If view.Nodes.Item(X).Key = Key Then
GetKeylndex =X
Exit Function
End If
Next X
GetKeylndex = -1
Exit Function

End Function

' Find out if the key has been used before.
Function HasKeyBeenUsed(ByRef view As Object, ByRef Key As Object)
As Object
Dim X As Object
For X =1 To view.Nodes.Count
If view.Nodes.Item(X).Key = Key Then
HasKeyBeenUsed = True
Exit Function
End If
Next X

HasKeyBeenUsed = False
Exit Function

End Function

Sub AddNode(ByRef view As Object, ByRef ParentDocument As Object,
ByRef ThisDocument As Object)

' Takes care of setting the icons

' find the parents and everthing else.

Dim doctype As Object

Dim aicon As Object

Dim SMVParentDocument As Object

Dim SMParentMissing As Object

On Error Resume Next

' Check for parent of ThisDocument

If VFindParent(view, ParentDocument) = False Then
view.Nodes.Add(, , ParentDocument, ParentDocument)
SMParentMissing = True
SMVParentDocument = ParentDocument

End If

' Set Normal Icon

aicon = 13

' Get Document Type

doctype = GetUrlDocumentType(ThisDocument)

' Registerd Normal Domains

If doctype = "com" Or doctype = "net” Or doctype = "org" Then
aicon=1

fdomains = fdomains + 1

view.Nodes.Item(GetKeyIndex("rd", view)).Text = "Registered
Domains:" & fdomains
End If
" Goverment Domains
If doctype = "gov" Then
fgdomains = fgdomains + 1
view.Nodes.[tem(GetKeyIndex("gd", view)).Text = "Goverment

Domains:" & fgdomains

aicon =12

End If

'HTML or HTM Documents

If doctype = "htm" Or doctype = "html" Then
aicon = 3
thtml = thtml + 1

view.Nodes.Item(GetKeyIndex("hd", view)).Text =
"HyperTextTransferProtocal:" & fthtml
End If
' ASP
If doctype = "asp"” Then
fcgiasp = fegiasp + 1
view.Nodes.Item(GetKeyIndex("cg", view)).Text = "CGI & ASP:" &
fcgiasp
aicon =4
End If
'CGI
If doctype = "cgi" Then
fcgiasp = fegiasp + 1

view.Nodes.JItem(GetKeyIndex("cg", view)).Text = "CGI & ASP:" &
fcgiasp
aicon =6
End If
' Executables! Setups! Compressed Files! Encrypted!
If doctype = "exe" Or doctype = "zip" Or doctype = "cab" Or doctype =
"ace" Or doctype ="dll" Then
fexe = fexe + 1
view.Nodes.Item(GetKeylndex("ex", view)). Text =
"Executable/Compressed: " & fexe
aicon =7
End If
' Link, mostly used by the internal working of
' this application
If doctype = "dl" Then
fdupl = fdupl + 1
view.Nodes.Item(GetKeyIndex("dl", view)).Text = "DuplicateLinks:"
& fdupl
aicon = 8
End If
' Readable Documents (TextEditor, WordProcessor)
If doctype = "txt " Or doctype = "doc" Or doctype = "wrd" Then
fixt = fixt + 1
view.Nodes.Item(GetKeyIndex("tx", view)). Text =
"Text/Documents:" & ftxt
aicon =9

End If

' DocumentType = HtmlHelp or WindowsHelp
If doctype = "chp" Or doctype = "hlp" Then
thlp =1thlp + 1
view.Nodes.Item(GetKeyIndex("hl", view)).Text = "HelpFiles(hlp):"
& fhlp
aicon = 10
End If
' DocumentType = Email!
If InStr(1, ThisDocument, "mailto:") = 1 Then
aicon = 2
view.Nodes.Item(GetKeyIndex("em", view)).Text = "EmailAddress:"
& fem
End If
'temp!!!!
view.Nodes.Add(ParentDocument, 4, ThisDocument, ThisDocument,
aicon)
WriteRawTreeData(ParentDocument, 4, ThisDocument, ThisDocument,
aicon)
If aicon = 5 Then
fot =fot + 1
view.Nodes.Item(GetKeyIndex("ot", view)).Text = "Other:" & fot
End If
End Sub
'write rawtree data
Sub WriteRawTreeData(ByRef Parent As Object, ByRef aType As Object,
ByRef Key As Object, ByRef Child As Object, ByRef Icon As Object)
FileOpen(1, "c:\urls.rtd", OpenMode.Append)

Debug. Write(Parent)
PrintLine(1, Parent)
PrintLine(1, aType)
PrintLine(1, Key)
PrintLine(1, Child)
PrintLine(1, Icon)
FileClose(1)
End Sub
'Gets the documents path is there is one.
Function GetUrlPath(ByRef document As Object) As Object
If Len(document) = 0 Then Exit Function
Dim X As Integer : X = Len(document)
Do
If Mid(document, X, 1) ="/" Then
GetUrlPath = Mid(document, 1, X - 1) & "/"
Exit Function
End If
X=X-1
Loop Until X =1
End Function
' find parent in view list, is used to see if document is
' already in the list also..
Function VFindParent(ByRef view As Object, ByRef Parent As Object) As
Boolean
Dim X As Object
For X =1 To view.Nodes.Count
If view.Nodes.Item(X).Key = Parent Then

VFindParent = True : Exit Function
End If
Next X
VFindParent = False
End Function
'Gets Documents Domain Type www.yahoo.com (=COM)
Function GetUrlDocumentDomainType(ByRef document As Object) As
Object
Dim yy As Object
Dim yyy As Object
Dim Y As Object
On Error GoTo le
Dim X As Integer : X =1
' if www is present or http://
If InStr(1, document, "www.") > 0 Then
Y = InStr(1, document, "www."} + 5
Else
If InStr(1, document, "http://") > 0 Then
Y = InStr(1, document, "http://") + 8
Else
Y=1
End If
End If
If InStr(Y, document, ".") > 0 Then
yyy = InStr(Y, document, ".")
Else

Exit Function

End If
If InStr(Y, document, "/") > 0 Then
vy = InStr(Y, document, "/") - 1
Else
' http://www.aol.com(/)hello/mypage.htm
'if / is presetn seperating domain from path
yy = Len(document}
End If
GetUrlDocumentDomainType = Mid(document, yyy + 1, yy - yyy)
Exit Function
le:
GetUrlDocumentDomainType = ""
End Function
'Gets url extension page.htm (EXT=htm)
Function GetUrlDocumentType(ByRef document As Object) As Object
Dim bwithfolder As Object
Dim X As Integer : X = Len(document)
"if path contains only a folder then this means no file
' attached to extract!
If bwithfolder = True Then Exit Function
Do
If Mid(document, X, 1) ="." Then
GetUrlDocumentType = Mid(document, X + 1, Len(document))

Exit Function
End If
X=X-1 // X

i -
Loop Until X =1 \\‘ LE
A\

End Function
'Fixes Url. ParentDocument is the document
' the link was found on. The link is refranced by Document
Function FixUrl(ByRef document As Object, ByRef ParentDocument As
Object) As Object
Dim urlpath As Object
Dim aext As Object
Dim bwithfolder As Object
Dim bwithdomain As Object
Dim bwithopar As Object
bwithopar = False
bwithdomain = False
bwithfolder = False
' is document without parent /~
If Mid(document, 1, 1) ="/" Then
bwithopar = True
End If
' is document domain (com,net,org)
aext = GetUrlDocumentDomainType(document)
If aext = "org" Or aext = "com" Or aext = "net" Then bwithdomain =
True
' is document folder directory or file
' document is folder ~/
If InStr(1, document, "http://") > 0 Or InStr(1, document, "www.") > 0
Then bwithdomain = True
If Mid(document, Len(document), 1} ="/" Then
bwithfolder = True

' document is file ~?
Else
bwithfolder = False
End If
If bwithdomain = False And bwithopar = False Then GoTo FixPath
' fix document path if it has no parent
If bwithopar = True Then
FixPath:
'fix document if url path is curropted by getpath.
urlpath = GetUrlPath{ParentDocument)
If LCase(urlpath) = "http://" Then
If Mid(urlpath, Len(urlpath), 1) ="/" Then
urlpath = ParentDocument
Else
urlpath = ParentDocument & "/"
End If
End If
If Mid(document, 1, 1) < "/" Then document = "/" & document
If urlpath <> "" Then
If Mid(urlpath, Len(urlpath), 1) <> "/" Then urlpath = urlpath & "/"
End If
document = urlpath & Mid(document, 2, Len(document))
End If
FixUrl = document
End Function

End Module

Dim EmailMessageRecp, EmailMessage As Object
' Get(s) Complete Domain Name And Type
Public Function GetUrlDomainName(ByRef varUrl As Object) As Object
Dim ch3 As Object
Dim ch2 As Object
Dim OODMODE As Object
If cmistop = True Then
OODMODE = True
Exit Function
Else
End If
" lower case url
Dim chl As Integer
varUrl = LCase(varUrl)
chl = InStr(1, varUrl, "http://")
If chl > 0 Then chl =chl + 7
If chl <1 Thenchl =1
ch2 = InStr(chl, varUrl, "www.")
If ch2 <1 Then
If chl = 1 Then
ch2 =1
Else
ch2 = chl
End If
End If
'if no / at end then keep going
ch3 = InStr(ch2, varUrl, "/")

' ch2 - start of domain name
' ¢h3 - end of domain name-+typename(com,net,org)
If ch3 = 0 Then ch3 = Len(varUrl) + 1
GetUrlDomainName = Mid(varUrl, ch2, ¢h3 - ch2)
End Function
' Removes Document Arguments and Extension
Public Function RemoveUrlArguments(ByRef varUrl As Object) As
Object
Dim 1 As Object
i = bblnstr(varUrl, "/.")
RemoveUrlArguments = Mid(varUrl, 1,i-1)
End Function
' BackWord Bytelnstr (multi-char find)
Public Function bblnstr(ByRef varString As Object, ByRef varTofind As
Object) As Object
Dim Y As Object
Dim i As Object
i = Len(varString)
Do
For Y =1 To Len(varTofind)
If Mid(varString, i, 1)} = Mid(varTofind, Y, 1) Then

bblnstr =1
Exit Function
End If
Next Y
i=i-1

Loop Untili=1

bblnstr = -1

End Function

Sub AddMajorDomain(ByRef Url As Object, ByRef view As
AxComctlLib.AxTreeView)
Dim ii As Object
Dim i As Object
Dim MajorDomain As Object
If cmlstop = True Then
Exit Sub
Else
End If
' for all major domains ******
MajorDomain = GetUrlDomainName(Url)
If exitflag = True Then Exit Sub
If GetKeyIndex(MajorDomain, view) = -1 Then
view.Nodes.Add("mdomains", 4, MajorDomain, MajorDomain)
view.Nodes.Add(MajorDomain, 4, MajorDomain & "Count", "1")
view.Nodes.Add(MajorDomain, 4, MajorDomain & "Email",
"WebMaster@" & MajorDomain)
EmailMessageRecp = EmailMessageRecp & "WebMaster@" &
MajorDomain & ","
EmailMessage = EmailMessage & MajorDomain & Chr(13)
Clipboard.SetDataObject(EmailMessageRecp & Chr(13) &
EmailMessage)
Else

' *** helow code also includes icon settings for servers ****

' reg server

i = GetKeyIndex(MajorDomain & "Count”, view)

ii = GetKeyIndex(MajorDomain, view)

view.Nodes.Item(i). Text = CStr(CDbl(view.Nodes.Item(i). Text) + 1)

" meduim server

If CDbl(view.Nodes.Item(i).Text) > 50 Then
view.Nodes.Item(ii).Image = 15

End If

' Big server

If CDbl(view.Nodes.Item(i). Text) > 150 Then
view.Nodes.Item(ii).Image = 16

End If

If CDbl(view.Nodes.Item(i).Text) > 250 Then
view.Nodes.Item(ii).Image = 17

End If

If CDbl(view.Nodes.Item(i). Text) > 350 Then
view.Nodes.Item(ii).Image() = 18

End If

End If
End Sub
End Module

Public Declare Function FindWindowEx Lib "user32” Alias
"FindWindowExA" (ByVal hWndl As Integer, ByVal hWnd2 As Integer,
ByVal Ipszl As String, ByVal Ipsz2 As String) As Integer

Public Declare Function SendMessage Lib "user32" Alias
"SendMessageA" (ByVal hwnd As Integer, ByVal wMsg As Integer, ByVal
wParam As Integer, ByRef IParam As Object) As Integer

Public Const WM_GETTEXT As Short = &HDS

Public Const WM_GETTEXTLENGTH As Short = &HES

Private Declare Function shellexecute Lib "shell32.d11" Alias
"ShellExecuteA" (ByVal hwnd As Integer, ByVal IpOperation As String,
ByVal IpFile As String, ByVal lpParameters As String, ByVal IpDirectory As
String, ByVal nShowCmd As Integer) As Integer

Public Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As
Integer)

Public Declare Function FindWindow Lib "user32" Alias "FindWindowA"
(ByVal IpClassName As String, ByVal [pWindowName As String) As
Integer

Public Declare Function SendMessageLong Lib "user32" Alias
"SendMessageA" (ByVal hwnd As Integer, ByVal wMsg As Integer, ByVal
wParam As Integer, ByVal |Param As Integer) As Integer

Public Declare Function SendMessageByString Lib "user32" Alias
"SendMessageA" (ByVal hwnd As Integer, ByVal wMsg As Integer, ByVal
wParam As Integer, ByVal 1Param As String) As Integer

Const WM_USER As Short = &H4008

Const EM_LIMITTEXT As Integer = WM_USER + 21

Public Const EM_GETLINECOUNT As Short = &HBAS

Public Const EM_LINEINDEX As Short = &HBBS

Public Const EM_LINELENGTH As Short = &HC1S

Public cmlflag As Boolean

Public ioption As Object

Public lhwnd As Object
End Module

'// coded stack routines
Friend Class W32LIB_Stack
Private Stack(50, 9000) As Object
Private sx(50) As Object
Sub LoadDebugWindow()
Dim debugwin As Object
Dim Y As Object
Dim X As Object
'// no copy if stack is empty
For X=0To 50
If GetStackPointer(X) = 0 Then
Else
'/ copy
For Y = 0 To GetStackPointer(X)
debugwin. Win32Stack.Push(X, Stack(X, Y))
NextY
End If
Next X
debugwin.Show()
End Sub

Sub WaitForDebugWindow()
Dim debugwin As Object
debugwin.CmdFlag = False

Do
System. Windows.Forms.Application.DoEvents()
Loop Until debugwin.CmdFlag = True
End Sub

Function GetStackPointer(ByRef stack_id As Object) As Object
GetStackPointer = sx(stack id)

End Function

Function Peek(ByRef stack_id As Object, ByRef stack_index As Object)
As Object
'// return given address in stack
Peek = Stack(stack id, stack index)
If Peck = "" Then Peek = False

End Function

Sub CopyStack(ByRef stack id_from As Object, ByRef stack id_to As
Object)
'// set counter for destination stack
Dim X As Object
sx(stack id to) = sx(stack id from)
For X =0 To sx(stack id from)
'// copy stack
Stack(stack id to, X) = Stack(stack id from, X)
Next X
End Sub

Sub Reset Renamed(ByRef stack id As Object)
sx(stack_id) = 0'// reset counter
Stack(stack id, 0)=10

End Sub

Sub Push(ByRef stack id As Object, ByRef value As Object)
Stack(stack_id, sx(stack id)) = value
sx(stack id) = sx(stack id) + 1

End Sub

Function Ine(ByRef stack id As Object) As Object
If sx(stack_id) = 0 Then
Ine =True
Else
Ine = False
End If

End Function

Function ppeek(ByRef stack id As Object, ByRef offset As Object) As
Object
If sx(stack_id) + offset <= -1 Then
ppeek = False
Exit Function
End If
ppeek = Stack(stack id, sx(stack id) + offset)

End Function

Sub poke(ByRef stack_id As Object, ByRef stack_index As Object, ByRef
value As Object)
Stack(stack id, stack index) = value

End Sub

Function pop(ByRef stack _id As Object) As Object
If sx(stack _id) - 1 =-1 Then
pop = False
Exit Function
End If
sx(stack_id) = sx(stack _id) -1
pop = Stack(stack id, sx(stack id})
End Function
End Class

Public Class Start
Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "
Public Sub New()
MyBase.New()
"This call is required by the Windows Form Designer.
InitializeComponent()
'Add any initialization after the InitializeComponent() call

End Sub

'Form overrides dispose to clean up the component list.

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

If disposing Then
If Not (components Is Nothing) Then
components.Dispose()
End If
End If
MyBase.Dispose(disposing)
End Sub

'Required by the Windows Form Designer
Private components As System.ComponentModel.IContainer
"NOTE: The following procedure is required by the Windows Form
Designer
Tt can be modified using the Windows Form Designer.
'Do not modify it using the code editor.
Friend WithEvents LinkLabell As System. Windows.Forms.LinkL.abel
Friend WithEvents PictureBox1 As System.Windows.Forms.PictureBox
<System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()
Dim resources As System.Resources.ResourceManager = New
System.Resources.ResourceManager(GetType(Start))
Me.LinkLabell = New System.Windows.Forms.LinkLabel
Me.PictureBox1 = New System.Windows.Forms.PictureBox
Me.SuspendLayout()
‘LinkLabell
Me.Linklabell.Font = New System.Drawing.Font("Microsoft Sans
Serif", 20.0!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.LinkLabeil.Location = New System.Drawing.Point(688, 424)
Me.LinkLabell .Name = "LinkLabell"
Me.LinkILabell.Size = New System.Drawing.Size(80, 40)
Me.LinkLabell.Tablndex = 0
Me.LinkLabell . TabStop = True
Me.LinkLabell.Text = "GO"
'"PictureBox1
Me.PictureBox1.Backgroundlmage =
CType(resources.GetObject("PictureBox1.BackgroundImage"),
System.Drawing.Image)
Me.PictureBox1.Location = New System.Drawing.Point(72, 168)
Me.PictureBox1.Name = "PictureBox1"
Me.PictureBox1.Size = New System.Drawing.Size(736, 200)
Me.PictureBox1.SizeMode =
System. Windows.Forms.PictureBoxSizeMode.Centerlmage
Me.PictureBox1.Tablndex = 1
Me.PictureBox1.TabStop = False
'Start
Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
Me.BackColor = System.Drawing.Color.LightCyan
Me.ClientSize = New System.Drawing.Size(792, 477)
Me.Controls.Add(Me.PictureBox1)
Me.Controls.Add(Me.LinkLabell)
Me.Name = "Start"
Me.Text = "Start"
Me.WindowState =

System. Windows.Forms. FormWindowState.Maximized

Me. ResumeLayout(False)
End Sub
#End Region

Private Sub LinkLabell LinkClicked(ByVal sender As System.Object,
ByVal e As System. Windows.Forms.LinkLabelLinkClickedEventArgs)
Handles LinkLabell.LinkClicked

Dim wind As New wnd
wind.Show()

End Sub
End Class

Friend Class FSD
Sub Store(ByRef Data As Object, ByRef id As Object)

Dim b As Object

Dim dat As Object

FileOpen(1, "data.dat", OpenMode.Binary) : FileClose(1)

FileOpen(1, "data.dat", OpenMode.Input)

FileOpen(2, "temp.dat”, OpenMode.Output)

Do
If EOF(1) Then Exit Do
Input(1, dat) : System.Windows.Forms.Application.DoEvents()
If Mid(dat, 1, InStr(1, dat, "#") - 1) = id Then

b ="x"
PrintLine(2, id & "#" & CSV(Data))
Else

PrintLine(2, dat)

End If
Loop Until EOF(1)
If b << "*" Then
PrintLine(2, id & "#" & CSV(Data))
End If
FileClose(1, 2)
FileCopy("temp.dat", "data.dat")

End Sub

Function Recv(ByRef id As Object) As Object
Dim dat As Object
FileOpen(1, "data.dat", OpenMode.Binary) : FileClose(1)
FileOpen(1, "data.dat", OpenMode.Input)
Do
If EOF(1) Then Exit Do
Input(1, dat) : System. Windows.Forms.Application.DoEvents()
If Mid(dat, 1, InStr(1, dat, "#") - 1) =id Then
Recv = CVS(Mid(dat, InStr(1, dat, "#") + 1, Len(dat)))
End If
Loop Until EOF(1)
FileClose(1)

End Function

Function CSV(ByRef xstring As Object) As Object
Dim X As Object
For X =1 To Len(xstring)

CSV = CSV & AA(Asc(Mid(xstring, X, 1))) :
System. Windows.Forms.Application.DoEvents()
Next X

End Function

Function CVS(ByRef xstring As Object) As Object
Dim esv As Object
Dim X As Object
For X =1 To Len(xstring)
esv = Mid(xstring, X, 3)
CVS =CVS & Chr(esv)
X=X+2
Next X

End Function

Function AA(ByRef xs As Object) As Object
If Len(xs) = 3 Then AA = xs
If Len(xs) =2 Then AA ="0" & xs
If Len(xs) = 1 Then AA ="00" & xs
If Len(xs) = 0 Then AA = "000"

End Function

Sub Showlds(ByRef view As AxComctlLib.AxTreeView)
Dim Data As Object
Dim kid As Object
FileOpen(1, "data.dat", OpenMode.Input)

kid = view.Nodes.Count

view.Nodes.Add(, , "K" & kid, "DeviceStorageFile Listing", , 13)
Do
Input(1, Data) : System. Windows.Forms.Application. DoEvents()
view.Nodes.Add("K" & kid, 4, view.Nodes.Count & Mid(Data, 1,
InStr(1, Data, "#") - 1), Mid(Data, 1, InStr(1, Data, "#") - 1), , 6)
Loop Until EOF(1)
FileClose(1)
End Sub
End Class

Imports System

Imports System.Runtime.InteropServices
Imports System.ComponentModel
Imports System.Drawing

Imports System.Convert

Imports AxInetCtlsObjects

Tmports Axmscomctl

Imports weblinks.HtmlStrip

Imports weblinks.LcZkInternetPageSupport
Imports weblinks.Lc2kRunModule
Imports weblinks.Lc2kSupportl

Imports weblinks.Lc2kSupport2

Imports weblinks.ModCMLchecking
Imports weblinks. W32LIB_Stack
Imports VB = Microsoft.VisualBasic
Public Class wnd

Inherits System. Windows.Forms.Form

#Region " Windows Form Designer generated code "
Public Sub New()
MyBase.New()
"This call is required by the Windows Form Designer.
InitializeComponent()

'Add any initialization after the InitializeComponent() call

End Sub

'Form overrides dispose to clean up the component list.
Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
If disposing Then
If Not (components Is Nothing) Then
components.Dispose()
End If
End If
MyBase.Dispose(disposing)
End Sub

'Required by the Windows Form Designer

Private components As System.ComponentModel.IContainer

'WOTE: The following procedure is required by the Windows Form
Designer

'[t can be modified using the Windows Form Designer.

'Do not modify it using the code editor.

Friend WithEvents btnstart As System. Windows.Forms.Button

Friend WithEvents btnfavorites As System. Windows.Forms.Button

Friend WithEvents btnhistory As System. Windows.Forms.Button
Friend WithEvents btnstop As System. Windows.Forms.Button
Friend WithEvents txtamn As System.Windows.Forms.TextBox
Friend WithEvents txtaurl As System.Windows.Forms.TextBox
Friend WithEvents txtexclude As System.Windows.Forms.TextBox
Friend WithEvents btnrestart As System. Windows.Forms.Button
Friend WithEvents btngeturl As System.Windows.Forms.Button
'Friend WithEvents ImageListl As Axmscomctl. AxImageL ist
Friend WithEvents inet As AxInetCtlsObjects.AxInet
Friend WithEvents View As AxComctiLib.AxTreeView
Friend WithEvents ImageList As AxComctlLib.AxImageL ist
Friend WithEvents Buttonl As System.Windows.Forms.Button
<System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()
Dim resources As System.Resources.ResourceManager = New
System.Resources.ResourceManager(GetType(wnd))
Me.btnstart = New System.Windows.Forms.Button
Me.btngeturl = New System. Windows.Forms.Button
Me.btnfavorites = New System. Windows.Forms.Button
Me.btnhistory = New System.Windows.Forms.Button
Me.btnrestart = New System. Windows.Forms.Bufton
Me.btnstop = New System.Windows.Forms.Button
Me.txtamn = New System.Windows.Forms.TextBox
Me.txtaurl = New System.Windows.Forms.TextBox
Me.txtexclude = New System. Windows.Forms.TextBox
Me.inet = New AxInetCtlsObjects. AxInet
Me.View = New AxComctlLib.AxTreeView

Me.ImageList = New AxComctlLib.AxImagelL.ist

Me.Buttonl = New System. Windows.Forms.Button

CType(Me.inet,
System.ComponentModel.ISupportlnitialize).Beginlnit()

CType(Me.View,
System.ComponentModel ISupportInitialize). Beginlnit()

CType(Me.ImageList,
System.ComponentModel.ISupportInitialize).BeginInit()

Me.SuspendLayout()

"btnstart

Me.btnstart.BackColor = System.Drawing.Color.LightCyan

Me.btnstart.Font = New System.Drawing.Font("Microsoft Sans Serif”,
8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.btnstart.Location = New System.Drawing,.Point(96, 32)

Me.btnstart.Name = "btnstart”

Me.btnstart.Size = New System.Drawing.Size(75, 24)

Me.btnstart. TabIndex =0

Me.btnstart. Text = "Start"

'bingeturl

Me.btngeturl.Enabled = False

Me.btngeturl. Font = New System.Drawing.Font("Microsoft Sans Serif",
8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.btngeturl.Location = New System.Drawing.Point(240, 208)

Me.btngeturl. Name = "btngeturl”

Me.btngeturl.Size = New System.Drawing.Size(104, 32)

Me.btngeturl. Tablndex = 2

Me.btngeturl. Text = "Get i.explore url"”

Me.btngeturl.Visible = False

‘bitnfavorites

Me.btnfavorites.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.btnfavorites.Location = New System.Drawing.Point(344, 32)

Me.btnfavorites.Name = "btnfavorites"

Me.btnfavorites.Size = New System.Drawing.Size(80, 24)

Me.btnfavorites. TabIndex = 3

Me.btnfavorites. Text = "Favourites"

'btnhistory

Me.btnhistory.Font = New System.Drawing.Font("Microsoft Sans
Serif", 8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.btnhistory.Location = New System.Drawing.Point(256, 32)

Me.btnhistory. Name = "btnhistory"

Me.btnhistory.Size = New System.Drawing.Size(75, 24)

Me.btnhistory.TabIndex = 4

Me.btnhistory.Text = "History"

'btnrestart

Me.btnrestart.Font = New System.Drawing.Font("Microsoft Sans Serif",
8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.btnrestart.Location = New System.Drawing.Point(256, 32)

Me.btnrestart. Name = "btnrestart"

Me.btnrestart.Size = New System.Drawing.Size(75, 24)

Me.btnrestart. Tablndex = 5

Me.btnrestart. Text = "Restart"”

'btnstop

Me.btnstop.Font = New System.Drawing.Font("Microsoft Sans Serif”,
8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.btnstop.Location = New System.Drawing.Point(176, 32)

Me.btnstop.Name = "btnstop”

Me.btnstop.Size = New System.Drawing.Size(75, 24)

Me.btnstop.TabIndex = 6

Me.btnstop.Text = "Stop"

"txtamn

Me.txtamn.Location = New System.Drawing.Point(616, 152)

Me.txtamn.Name = "txtamn"

Me.txtamn.TabIndex = 7

Me.txtamn. Text = "100000"

Me.txtamn.Visible = False

"txtaurl

Me.txtaurl. Font = New System.Drawing.Font("Microsoft Sans Serif”,
8.25!, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point,
CType(0, Byte))

Me.ixtaurl.Location = New System.Drawing.Point(176, 80)

Me.txtaurl. Name = "txtaurl"

Me.txtaurl.Size = New System.Drawing.Size(328, 20)

Me.txtaurl. Tablndex = 8

Me.txtaurl. Text = "

"txtexclude

Me.txtexclude.Font = New System.Drawing.Font("Microsoft Sans
Serif”, 8.25!, System.Drawing.FontStyle.Bold,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.txtexclude.Location = New System.Drawing.Point(512, 152)

Me.txtexclude.Name = "txtexclude"

Me.txtexclude.Tablndex = 9

Me.txtexclude.Text = "exclude"

Me.txtexclude.Visible = False

'Inet

Me.inet.Enabled = True

Me.inet.Location = New System.Drawing.Point(96, 416)

Me.inet.Name = "inet"

Me.inet.OcxState = CType(resources.GetObject("inet.OcxState"),
System. Windows.Forms.AxHost.State)

Me.inet.Size = New System.Drawing.Size(38, 38)

Me.inet. Tablndex = 10

"View

Me.View.Location = New System.Drawing.Point(8, 120)

Me.View.Name = "View"

Me.View.OcxState = CType(resources.GetObject("View.OcxState"),
System. Windows.Forms.AxHost.State)

Me.View.Size = New System.Drawing.Size(744, 392)

Me.View.Tablndex = 11

'TmageList

Me.ImageList.Enabled = True

Me.ImageList.Location = New System.Drawing.Point(176, 408)

Me.ImagelList.Name = "ImageList"

Me.Imagel ist.OcxState =
CType(resources.GetObject("ImageList.OcxState"),
System.Windows.Forms.AxHost.State)

Me.ImageList.Size = New System.Drawing.Size(38, 38)

Me.ImageList.Tablndex = 16

'Buttonl

Me.Buttonl.Font = New System.Drawing.Font("Microsoft Sans Serif",
8.25!, System.Drawing.FontStyle.Regular,
System.Drawing.GraphicsUnit.Point, CType(0, Byte))

Me.Buttonl.Location = New System.Drawing.Point(440, 32)

Me.Buttonl.Name = "Buttonl"

Me.Button1.Size = New System.Drawing.Size(80, 24)

Me.Buttonl.TabIndex = 17

Me.Buttonl.Text = "Exit"

'wnd

Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

Me.BackColor = System.Drawing.Color.LightCyan

Me.ClientSize = New System.Drawing.Size(768, 525)

Me.Controls.Add(Me.btnhistory)

Me.Controls.Add(Me.Button1)

Me.Controls.Add(Me.txtaurl)

Me.Controls.Add(Me.btnstop)

Me.Controls.Add(Me.btnrestart)

Me.Controls. Add(Me.binfavorites)

Me.Controls. Add(Me.btnstart)

Me.Controls.Add(Me.ImageList)

Me.Controls.Add(Me.inet)

Me.Controls.Add(Me.View)

Me.Controls.Add(Me.btngeturl)

Me.Controls.Add(Me.txtamn)

Me.Controls. Add{Me.txtexclude)

Me.Icon = CType(resources.GetObject("$this.Icon"),
System.Drawing.lcon)

Me.MaximizeBox = False

Me.MinimizeBox = False

Me.Name = "wnd"

Me.Text = "Link Finder"

Me.WindowState =
System. Windows.Forms.Form WindowState. Maximized

CType(Me.inet, System.ComponentModel.ISupportInitialize). EndInit()

CType(Me.View, System.ComponentModel ISupportInitialize). EndInit()

CType(Me.ImageList,
System.ComponentModel.ISupportInitialize). EndInit()

Me.ResumeL ayout(False)

End Sub
Private Shared m_vb6FormDeflnstance As wnd
Private Shared m_InitializingDefInstance As Boolean
Public Shared Property Deflnstance() As wnd
Get
If m_vb6FormDeflnstance Is Nothing OrElse
m_vb6FormDeflInstance.IsDisposed Then

m_InitializingDefInstance = True

m_vb6FormDeflnstance = New wnd
m_InitializingDefInstance = False
End If
Deflnstance = m_vb6FormDeflInstance
End Get
Set(ByVal Value As wnd)
m_vb6FormDeflnstance = Value
End Set
End Property
#End Region

REFERENCES

REFERENCES

1. K. Bharat, A. Broder, M. Hen zinger, P. Kumar, and S.
Venkatasubramanian, “The Connectivity Server: Fast Access to Linkage
Information on the Web,” Proc. Seventh Int’l World Wide Web Conf., pp.
469-477, 1998.

2. K. Bharat and M. Hen zinger, “Improved Algorithms for Topic Distillation
in a Hyper linked Environment,” Proc. 21st Int’l ACM Conf. Research and
Development in Information Retrieval, pp. 104-111, 1998.

3. S. Brin and L. Page, “The Anatomy of a Large-Scale Hyper textual Web
Search Engine,” Proc. Seventh Int’l World Wide Web Conf., Apr 1998.

4. L.A. Carr, W. Hall, and S. Hitchcock, “Link Services or Link Agents?”
Proc. Ninth ACM Conf. Hypertext and Hypermedia.

5. S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S.
Rajagopalan, “Automatic Resource Compilation by Analyzing Hyperlink
Structure and Associated Text,” Proc. Seventh Int’l World Wide Web Conf.,
pp- 65-74, 1998.

6. AltaVista search engine, http://www.altavista.com/, 2003.

