P_1§ck

RESOURCE ALLOCATION IN < BN
THE GRID WITH LEARNING AGENTS “‘\,’Z‘f

5
bl

e e

A Project Report
Submitted by
Purushothman.M, - 71203104026
Dakshnamoorthy.P. - 71203104300
Anandh.S. - 71203104304

in partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
IN
COMPUTER SCIENCE & ENGINEERING
KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE - 641006

ANNA UNIVERSITY: CHENNALI 600 025

APRIL 2007

ANNA UNIVERSITY: CHENNALI 600 025

BONAFIDE CERTIFICATE

Certified that this project work entitled “RESOURCE

ALLOCATION IN THE GRID WITH LEARNING
AGENTS?”’ is the bonafide work of

Purushothman.M - 71203104026
Dakshnamoorthy.P - 71203104300
Anandh.S - 71203104304

Who carried out the project work under my supervision.

= :
SIGNATURE LU —D/ /%GM

Dr.S.Thangasamy Mrs.S.Devaki

HEAD OF THE DEPARTMENT SUPERVISOR
Department of Computer Science Department of Computer Science
And Engineering, And Engineering,

Kumaraguru College of Kumaraguru College

Technology of Technology

Chinnavedampatti P.O., Chinnavedampatti P.O
Coimbatore-641006 Coimbatore-641006

Submitted for the Viva-Voce Examination held on el i iy
Ly

Me E ﬂ\%$

INTERNAL EXAMINER EXTERNAL EXAMINER

DECLARATION

We hereby declare that the project work entitted "RESOURCE
ALLOCATION IN THE GRID WITH LEARNING AGENTS?”. is a
record of original work done by us to the best of our knowledge, a similar
work has not been submitted to Anna University or any other institution,

for fulfillment of the requirement of the course study:.
This report is submitted in partial fulfillment of the requirements for the

award of Bachelor of Computer Science and Engineering of Anna

University, Chennai.

Place:Coimbatore

(Purushothaman.M)
Date: A3 [y [o7

(Dakshnamoorthy.P)

(Anandh.S)

ACKNOWLEDGEMENT

We express our heartful thanks to our beloved correspondent
Dr.K.ARUMUGAM for his kind patronage in pursuing this project work
successfully.

We wish to express our sincere thanks to our Principal
Dr.JOSEPH V.THANIKAL, for providing support and necessary
facilities to carryout this work..

We are highly indebted and convey our most sincere thanks to our
Head of the Department Prof. Dr.S.Thangasamy, for his invaluable
suggestions towards this project.

We deem 1t a pleasure and privilege to our guide Mrs.S.Devaki,
Assistant Professor, who is always a constant source of inspiration and
encouragement that helped us in the successful completing of this project
most effectively.

We also express our heart full thanks to our project coordinator
Ms.S.Rajini, Senior lecturer, Department of computer science for her

help rendered to us in handling various tough spots during this project.

We would like to thank all the Staff members of computer science
department and all those who have directly or indirectly assisted us in

successfully completing this project.

We extend our thanks to our family and friends for all their support and
rendered to us.

ABSTRACT

Grid computing is an emerging technology that enables users
to share a large number of computing resources distributed over a
network. We construct a multi-agent model of resource allocation
for the Grid that is simplified, yet maintains the main features of
the Grid environment: heterogeneity of dynamic, large-scale
populations of users and resources. In our system, a large number
of users submit jobs to one of the resources that are scheduled by a
local scheduler according to local policies. The users are modeled
as rational, selfish agents that try to maximize their utilities, (i.e.,
complete their jobs in the shortest possible time). The agents have
no prior knowledge about the computational capabilities of
resources. instead, they utilize a simple reinforcement learning
scheme to estimate the efficiency of different resources based on
their past experience. Namely, an agent assigns a score to each
resource that indicates how well that resource has performed in the
past.

After each submitted job, the agent updates the score of the
corresponding resource. We analyze the global behavior of the
system by numerical simulations, and compare it with a baseline
algorithm that makes use of a global knowledge of current resource

loads.

FIGURE NO.

2.1
22
23
3.1
3.2
33
3.4

3.5
3.6
3.7
3.8
3.9

3.10
3.11

LIST OF FIGURES

NAME

CREATING GRID ENVIRONMENT
RESOURCE MANAGEMENT

CLIENT SERVER CONNECTION
ARCHITECTURAL DESIGN

SERVER CLASS DIAGRAM

CLIENT CLASS DIAGRAM

GRID CREATION AND RESOURCE
MANAGEMENT

DEPLOYMENT DIAGRAM

TABLE DESIGN

SERVER APPLICATION WINDOW

CLIENT APPLICATION WINDOWS]

SERVER WINDOW SHOWING THE DETAILS
OF THE TASKS DONE BY VARIOUS CLIENTS
CLIENT WINDOW SHOWING THE WORK DONE
SERVER SHOWING THE DATABASE

PAGE

11
12

20
21
22
23

24

25

43

49

50

TABLE OF CONTENTS

CHAPTER NO TITLE PAGE NO
DECLARATION 1
ACKNOWLEDGEMENT i
ABSTRACT v
LIST OF FIGURES \%

1. INTRODUCTION 1

1.1 OVERVIEW OF GRID 1
1.1.1 Distributed vs Grid
computing

1.1.2 Benefits of Grid

1.2 PROBLEM DEFINITION
1.2.1 Job Request
1.2.2 Job Allocation By Agents

(O]

1.2.3 Process And Response

1.3 SYSTEM ENVIRONMENT 6
1.3.1 Hardware specification

1.3.2 Software specification

1.4 EXISTING SYSTEM 8

1.5 PROPOSED SYSTEM 9

2. SYSTEM ANALYSIS
2.1 SYSTEM REQUIREMENTS

2.2 SYSTEM ANALYSIS MODEL
2.2.1 Use case Diagram
2.2.2 Activity Diagram
2.2.3 Test plan and testing

3. SYSTEM DESIGN
3.1 ARCHITECTURAL DESIGN

3.2 STRUCTURAL DESIGN
3.2.1 Class Diagram

33 PROCESS DIAGRAM

3.3.1 Sequence Diagram

3.4 DEPLOYMENT DIAGRAM

3.5 DATA DESIGN
FUTURE ENHANCEMENTS
RESULT ANALYSIS
CONCLUSION

APPENDIX

7.1 SAMPLE CODES
7.2 SCREEN SHOTS
8. REFERENCES

NS0 e

10
10

11

1. INTRODUCTION

INTRODUCTION

Our project deals with the overview of grid computing and
describes the features in the system that enables the effective utilization
of the workstations in the grid. It also explains about the system

environment.

1.1 OVERVIEW OF GRID

“ Grid “ computing has emerged as an important new field,
distinguished from conventional distributed computing by its focus on
large-scale resource sharing, innovative applications, and in some cases,
high-performance orientation. When grid technology provides the
flexibility and control on sharing relationships needed to establish Virtual
Organizations, the current Grid implementation are too complex and
cannot often be used efficiently by medium scale organizations.
Moreover transparency is often not a notable feature of Grid Technology.
Here we are presenting a grid architecture that is quite simplified and
transparent yet robust enough to be used for performing high complexity

problems as compared to other available implementations.

1.1.1 DISTRIBUTED Vs GRID COMPUTING

There are actually two similar trends moving in tandem —
distributing computing and grid computing. Depending on the market
view, the two either overlap, or distributed computing is a subset of grid
computing. Grid computing got its name because it strives for an ideal

scenario in which the CPU cycles and storage of millions of systems

that could be harnessed by anyone who needs it, similar to the way power

companies and their users share the electrical grid.

Grid computing can encompass desktop PCs, but more often
than not its focus is on more powerful workstations, servers and even
mainframes and super computers working on problems involving huge
datasets that can run for days. And grid computing leans more towards

dedicated systems, than systems primarily used for other tasks.

Large-Scale distributed computing of the variety we are covering
usually refers to a similar concept, but is more geared to pooling the
resources of hundreds of thousands of networked end-users PCs, which
individually are more limited in their memory and processing power and,
whose primary purpose is not distributed computing, but rather serving

their user.

1.1.2 BENEFITS OF GRID

" LOWER COMPUTING COSTS

On a price-to-performance basis, the Grid platform gets
more work done with less administration and budget than dedicated
hardware solutions. Depending on the size of the network, the price-for-
performance ratio for computing power can be literally improved by an

order of magnitude.

* FASTER PROJECT RESULTS

The extra power generated by the Grid platform can directly
impact an organizations ability to win in the market place by shortening
product development cycles and accelerating research and development

processes.

* BETTER PRODUCT RESULTS

Increased, affordable computing power means not having to
ignore promising avenues or solutions because of a limited budget or
schedule. The power created by Grid platform can help to ensure a higher
quality product by allowing higher resolution testing and results, and can
permit an organization to test more extensively prior to product release.

1.2 PROBLEM DEFINITION

Organizations that depend on access to computational power
to advance their business objectives often sacrifice or scale back new
projects, design ideas, or innovations due to sheer lack of computational
bandwidth. Project demands simply outstrip computational power, even if
an organization has significant investments in dedicated computing

TEsouUrces.

Even given the potential financial rewards from
additional computational access, many enterprises struggle to balance the
need for additional computing resources with the need to control costs.
Upgrading and purchasing new hardware is a costly proposition, and with

the rate of technoloev obsolescence it ic eventiiallv a locine e R

better utilizing and distributing existing compute resources, grid

computing will help alleviate this problem.

This project comprises of three modules:

¢ Job Request
* Job Scheduling and Allocation by Agents

® Process and Response

1.21 JOB REQUEST

In this project, totally three types of modules used:
» User
* Broker or Agent

» Resource

Every system acts as user and resource provider in the grid
environment. In the first module, the user is connected to the agent
system. After receiving the acknowledgement, the job will be submitted
to the agent. Job can be of any type. Here, we are finding factorial for
large numbers. This application will be running in a specific port. Using

this port the job will be processed.

1.2.2 JOB ALLOCATION BY AGENTS OR BROKERS

Agent is main concept in this project. Agent work by allocating the

10b 1n some order Here mriaritv wll e cot £ amade oo A ooeoo

calculate the total time of previous job request and response. That is start

time and end time.

This will be maintained in a database on the server side. It stores
the IP address of the resource, time, and priority. This will be updated

every time the job is requested and response is sent from resource.

First, the job will be divided depending on the number of systems
connected in the grid environment. Then, the job will be allocated by the
order of the connection of the system in the grid environment. Next time,
remaining job will be allocated depending on the response time of the
resource using the priority. Every resource response time will be
maintained in agent side. Depending on the response time the job will be

allotted again and again.

1.2.3 PROCESS AND RESPONSE

Requested application will be running in resource side in a specific
port. We can add more application in resource side using different ports.
Here, factorial application will be running in all resources. The requested

job will be received from agent, and then this job will be processed there.

1.3 SYSTEM ENVIRONMENT

1.3.1 HARDWARE SPECIFICATION

MINIMUM CONFIGURATION

SERVER
Processor
RAM
Hard Disk Space

CLIENT

Processor

RAM

RECOMMENDED

SERVER

Processor

RAM

Hard Disk Space

CLIENT

Processor

- Pentium II1 440 MHz
- 120 MB
-4 GB

- Pentium 111 400 MHz
- 60 MB

- Pentium IV
- 256MB
- 10GB

- Pentium 111

1.3.2 SOFTWARE SPECIFICATION

LLanguage -Java (j2sdk1.4.2 04)

Operating system - Windows

Front end tool - Java

Backend tool - MS Access
SERVICES

e Software Development
e Web Designing

e Web Hosting

e Domain Registration

e Networking products

e MS-Suite

e CRM

1.4 EXISTING SYSTEM

Grid computing is an emerging technology that enables users to
share a large number of computing resources distributed over a network.
The dynamic, federating nature of Grid policy environments is dominated
by virtual organizations (VOs) which associate heterogeneous users and
resource providers. Users have resource-consuming activities, or jobs that
must be mapped to specific resource providers through a resource
allocation mechanism.The resource allocation mechanism may choose
among alternate mappings in order to optimize some utility metric, within

the bounds permitted by the VO policy environment.

It is envisioned that deployment of Grid technology will grow
from its current modest scale to eventually overlay the global Web. It is
not known how large individual VOs will be, but it is reasonable to
imagine resource sharing among populations with tens of thousands of

users and thousands of resources.

Hence, allocation mechanisms need to be highly scalable and
robust to localized failures in resources and communication paths. From

the perspective of a single VO, the dynamic policy environment can be

1.5 PROPOSED SYSTEM

We construct a multi-agent model of resource allocation for the
Grid that is simplified, yet maintains the main features of the Grid
environment: heterogeneity of dynamic, large-scale populations of users
and resources. In our system, a large number of users submit jobs to one
of the resources that are scheduled by a local scheduler according to local
policies. The users are modelled as rational, selfish agents that try to
maximize their utilities, (i.e., complete their jobs in the shortest possible
time). The agents have no prior knowledge about the computational
capabilities of resources. Instead, they utilize a simple reinforcement
learning scheme to estimate the efficiency of different resources based on
their past experience. Namely, an agent assigns a score to each resource

that indicates how well that resource has performed in the past.

After each submitted job, the agent updates the score of the
corresponding resource. We analyze the global behavior of the system by
numerical simulations, and compare it with a baseline algorithm that
makes use of a global knowledge of current resource loads. QOur results
illustrate that reinforcement learning can have a substantial positive effect

on the quality of resource allocation in a large scale heterogenous system.

2. SYSTEM ANALYSIS

%

SYSTEM ANALYSIS

Analysis refers to the process of examining a system with the intent
of improving the system through better procedures and methods. System
analysis is a process of gathering and interpreting the facts, diagnosing
problem and using the information, improvements are recommended to
the system. This chapter presents the overview and analysis carried out
for the development of this system. It also elucidates the requirements

and specification of the system and describes the need for the system.

2.1 SYSTEM REQUIREMENTS

2.1.1 FUNCTIONAL REQUIREMENTS

The proposed system performs the job processing in a Local

Area Network {LAN) environment.

The client, broker and resource provider communicate
through Transmission Control Protocol/Internet Protocol (TCP/IP)

using ports.

2.2 SYSTEM ANALYSIS MODEL

2.2.1 USE CASE DIAGRAM

~ Creating Grid Environment

. - .y
<<inchides>> - —
-

7 T T
(Establish connection

Pt -

oy \<<mc1udes>>

User!
Resource provider

@

On the database

withdraw from grid
environment

Qeck for time out /\‘

Check for avaiiability"
A Of the server

Fig.2.1 Creating Grid Environment

Broker

User/ 1
Resource provider

{ Subm:t Task
o ”T“

.. o
f VMU‘M“"T' -
,."") . . i u(
f’f “einchudes>> s k ¢ wsinghrdasss
/ :
/ Allocate task to
d e Users:’Resource prowders
= | e
) :
e .
o S A
A i
\‘_.Process tasksjg T
‘ e | Update Score .
P .
| g ;
i <<includess> G
' o <<inchidess> |
! : |
l ;
#
E y
1 N

Returns result)

Fig 2.2 Resource Management

Resource Management

. Prioritize user nodes

Broke

2.2.2 ACTIVITY DIAGRAM

?

The connection

[time out) o Is conmected

(Connection failed |

[FCOnnection established‘_]

Server waiting | - Store client details ’
For client request In agent)

Fig 2.3 The clients establishing connection with the server

®

"Client submits Tasks

Server Allocates tasks to |
All nodes in the
!‘ Order of the scores

y

(Process the task |

Return the value to
user and return the |
Execution time to Broker a

vy

\

(
Ié
3

Resource Management

2.3 TEST PLAN
2.3.1 UNIT TESTING

A program represents the logical elements of a system. For a
program to run satisfactorily, it must compile and test data correctly
and tie in properly with other programs. Achieving an error free
program is the responsibility of the programmer. Program testing checks
for two types of errors: syntax and logical. Syntax error is a
program statement that violates one or more rules of the language in
which it is written. An improperly defined field dimension or omitted
keywords are common syntax errors. These errors are shown through
error message generated by the computer. For Logical errors the

programmer must examine the output carefully.

When a program is tested, the actual output is compared
with the expected output. When there is a discrepancy the sequence
of instructions must be traced to determine the problem. The
process is facilitated by breaking the program into self-contained
portions, each of which can be checked at certain key points.The

idea is to compare program values against desk-calculated values to

isolate the problems.

b i i 2 A
1 Test for application window properties | All the properties of the
windows are to be properly

aligned and displayed

2 Test for mouse operations All the mouse operations

like click, drag, etc. must

perform the necessary

2.3.2 FUNCTIONAL TESTING

Functional testing of an application is used to prove that
application delivers correct results, using enough inputs to give an
adequate level of confidence that will work correctly for all sets of inputs.
The functional testing will need to prove that the application works for

cach client type and that personalization functions work correctly.

| Expected result

All clients should

produce the result after

execution.

2 Test for various input values The result after
execution should give

the accurate result.

2.3.3 NON-FUNCTIONAL TESTING

This testing is used to check that an application will work in the

operational environment,
Non-functional testing includes:

¢ Load testing
® Performance testing

¢ Usability testing

LOAD TESTING

Descnptlon ..o | Expected result

1 It 18 necessary to ascertam that Should de51gnate
the application behaves correctly | another active node as

under loads when ‘server busy’ a Server.

response is received.

PERFORMANCE TESTING

1 This is required to assure that an | Should handle large

application performed input values, and
adequately, has the capability to | produce accurate
handle any workload, delivers its | results in an expected
results in expected time and uses | time

an acceptable level of resource
and it is an aspect of operational

management.

WHITE BOX TESTING

White box testing, sometimes called

glass-box testing is atest case design method that uses the control

structure of the procedural design to derive test cases.

Using white box testing method, the software engineer can derive

test cases.

1 Exercise all logical decisions on |

their true and false sides

.Al.l the logical

decisions must be valid

2 Execute all loops at their
boundaries and within their

operational bounds.

All the loops must be

finite

3 Exercise internal data structures

to ensure their validity.

All the data structures

must be valid

BLACK BOX TESTING

Black box testing, also called behavioral testing, focuses

on the functional requirements of the crfurara

T]"\‘:ﬂ' .o Ilarls e,

testing enables the software engincer to derive sets of mput
conditions that will fully exercise all functional requirements for a
program. Black box testing is not as alternative to white box testing .
Rather it is a complementary approach that is likely to uncover a

different class of errors than white box methods. Black box testing

attempts to find errors in the following categories.

To éhe;:k for incorrect or N All the functions musf .Be vélid

missing functions

2 To check for interface errors | All the interface must function
normally
3 To check for errors in a data | The database updation and
structure or external data retrieval must be done

base access.

4 To check for initialization All the functions and data
and termination errors. structures must be initialized

properly and terminated normally

%

3. SYSTEM DESIGN
%

SYSTEM DESIGN

3.1 ARCHITECTURAL DESIGN

f(r“ || /:" " e

Rasource Provider

- Resource Provider
Resaurce Provider

Figure 3.1 Architecture Design

3.2 STRUCTURAL DESIGN

3.2.1 CLASS DIAGRAM

ServerThread

Socket se=nulk;
ServerSocket ss9=null;

PrintStrearn ps=null;
String strip =nul;

BufferedReader br=null;|_

server Thread(int port);
delDatabase(String ip):

Thread

Start();
Run{);

———

Socke! soc,
ServerSocket ss:
BufferedReader br: :
PrintStream ps;
send!P(};
ArrayList getlP()

2 oY

|
i
|
i
|
|
‘

i

Server

JPanel jpg;
JPanel jal;
JPanel jri:
JPanel jbt;
JButten cmdConfig;
JButton emdQuit:
JLabel ibiTitle;
JButton cmdStant:
JBulton emdStop;
JButtor crndClear:
JButton emdView:
JTextArea activebdArea;
JScrollPane serofiPane ;
JTextArea respondtixtArea;
JScrollPane scrollPane2:
Container contentPane;

T

Server();
init(};
ctionPerformedy);

i
L

!
!
|
!
!
i
|

Ay

WaitThread

Socket sac=null: _
BufferedReader br=nufl: |

ServerSocket ss=nut:
waitThread(int port);
insertDB(String ip.int mem)

_ JPrintStream ps=nul;
“ServerSocket sss=nul

E—— ClientListen
Socket soc=nyll:
;BufferedReader br=nuli;

I

clientListen(int port)
Arraylist getiP()

updateDatabase(String ip.String date)

ClientRequest
Socket clientSoc=rull:
BufferedReader clientBr=nui:

ClientListener

ServerSocket ss=nuli:
Socket sc=null;

ClientListener(};

Thread

Start();
Run();

PrimtSiream clientPs=null:
String ip.val;
.. LlientRequest(y.

|
1
r
|
i
I
I
'
|
H
|
I

|
Client
JButton emdConfig;
JButton cmdQuit:
JLabel b Tile;
JButton cmdStart:
JButton cmdStop:
JButton emdClear,
JTexiField txtip;
JTexiArea txtArea;
JScrallPane scroltPane:
Container contentPane;
Socket soc=null;
BuHferedReader br=null:
PrintStream ps=null:
String strip=nuil;
timeFind objTime=null;
Inti(}:

actionPerformed();
|

]
|
{
!
t
i
|
1
1
S

ClientProcess

ServerSocket serverSoc=null:
Socket clSoc=null:

BufferedReader clientBr=nufl;
PrintStream clientPs=null:

waitThread(int port);

insertDB(String ip,int mem)

Fig 3.3 Client Class Diagram

¢ timeFing
JDate d;
Date getTime():

3.2 PROCESS DESIGN

3.2.1 SEQUENCE DIAGRAM

i ? :
! Resource providers ; Broker

contect

= e e

i
i

cornnect

get task(

]

1
i
I
]
i
[
i
'
!
I
'
I
t
X send order of resources
i
T
I
!
I
;
i
|
t
1

allocate tagk()

process task()

send re-sult()

send time
o % update score

LI

e R pap—

|
!
|
|
|
!
¢

Fig3.4 Both the Grid creation and Resource Management

3.4 DEPLOYMENT DESIGN

3.4.1 DEPLOYMENT DIAGRAM

i CLIENT

/]

%L[Grid Client

__ 1 %\Nork request_J

.

TCP/IP

BROKER

Grid Broker

_____ R

Rescurce
Database -

|

- = = — — — 4

TCPP

RESOURCE
PROVIDER

% Queue

I

Task N R .
execution
—1

Fig 3.5 Deployment Diagram

3.5 DATA DESIGN

3.5.1 TABLE DESIGN

The clientip is used to store the ip address of the
client connected to the grid

score Number | The score is used for reinforcement learning and is
updated whenever the resource providers complete
their task
TotTime | Number | This is used to store the time in milli seconds which
later can be used for metered pricing
Starttime | Date/Tim | This is used to store the date and time when the
e client actually comes into the grid

Fig 3.6 Tabular design

%

4. FUTURE ENHANCEMENTS
%’

FUTURE ENHANCEMENTS

A Grid resource allocation mechanism must be adaptive to the changing
policy environment, as policy satisfies the way in which a task is
completed. This means that individual agents will not share the same
view of the environment. Different agents should have different sets of
resources under consideration and have different experiences of resource

performance due to differential policies (priorities).

In future this mechanism can be implemented as a multi agent system
by providing the agent for every resource connected in the grid. Another
significant challenge for users and brokers is co-allocation. The resources
may be heterogeneous and the co-allocating agent must coordinate
interactions with multiple providers where no pre-existing coordination can

be assumed.

By exploiting quasi-transactional mechanisms for resource allocation,
i.e., advance reservation and agreement , we believe that the learning agent
may be able to decompose the co-allocation problem into a set of simpler

independent operation types with separate learning states

%——_—_

3. RESULT ANALYSIS
m

RESULT ANALYSIS

NUMEER OF MACHINES ¥S TIME IN ms

2

Fig 5.1

From the result analysis we have concluded that

1. If the number of machines increase then the time taken to complete the
Job is decreased i.e. efficiency will be high.
2. More complex jobs can be easily done by dividing the complex jobs
into various sub-tasks.
If there is a single machine which implies work load is high and
time taken to complete the job is also very high.
If there are more than two machines which implies work load is
low and time taken to complete the job is also less.
3. The Fig 5.1 shows that the graph represents a slope line which
indicates the importance of Grid computing in order to perform

complex applications with higher efficiency in the result.

6. CONCLUSION

CONCLUSION

Our approached of the resource allocation system agents use
reinforcement learning based on local observations to adapt to changing
resource loads. However, they assumed that the capacity of the resource
is evenly distributed over the jobs, hence no queueing occurred. Although
this difference seems to be a minor, it actually has a significant impact on
the reinforcement signal received by the agents. Indeed, even within the
FCFS scheduling scheme considered in this project, the wait time for a
job submitted by an agent might vary by orders of magnitude depending
on its position in the queue due to the wide dispersion in job sizes.

The benefit we have observed for the RL algorithm over random
selection already an improvement over existing Grid meta-scheduling
strategies, many of which, while performing substantial planning of job
sequences etc., make random or otherwise uniform distribution decisions
to spread work among several (or many) large-scale resources .Even
when meta-schedulers attempt to use environmental information, such as
load levels, our results suggest that the RL algorithm can provide better
adaptive behavior because each meta-scheduler would learn from the

environment’s responses to its own queries.

%

7. APPENDIX
%

APPENDIX
8.1 SAMPLE CODES

SERVER SIDE PROGRAM:

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.net.*;

import javax.swing.*;

import java.sql.*;

import java.util.Date;

import java.util. ArrayList;

import javax.swing.table.AbstractTableModel:

class Server extends JFrame implements ActionListener {

class serverThread extends Thread {
Socket sc=null;
ServerSocket ss1=null;
BufferedReader br=null;
PrintStream ps=null;
String strip =null;

serverThread(int port) {
try {
ssl=new ServerSocket(port);
start();

}

catch(Exception ex) {

System.out.printIn("In serverThread "+ex);

}
}

public void run() {
while(true) {

try {

System.out.printin("Waiting to Del");

sc=ssl.accept();

br=new BufferedReader(new
InputStreamReader(sc. getlnputStream()));
ps=new
PrintStream(sc.getOutputStream(),true);
System.out.printin("Going to Delete the
record");
if(br.readLine().equals("0")) {
String
temp=sc.getRemoteSocketAddress().toString();
String
strip=temp.substring(1 ,temp.indexOf(":"));
delDatabase(strip);
}
ps.close();
br.close();
sc.close();

catch(Exception ex) {
System.out.printIn("ClientListen "+ex);
}

}

}

void delDatabase(String ip) {
Connection cn=null;
Statement stmt=null;

try {
System.out.println("Dele record");

Class.forName("sun.jdbc.odbc.JdchdbcDriver");
cn =
DriverManager.getConnection("jdbc:odbe:agent","™ ")
stmt
=cn.createStatement(ResuItSet.TYPE_SCROLL_SENSITIVE,ResultSet.

CONCUR_UPDATABLE);
ResultSet rs=stmt.executeQuery("select clientip
from client where clientip=""+ip+""");
if{rs.next()) {
rs.absolute(1);
rs.deleteRow();
System.out.println("Deleted”);

>

}

wmme 1 N

cn.close();

catch(Exception ex) {
System.out.println("deldb"+ex);

}

L

}

class sendIP extends Thread {

Socket soc=null;

BufferedReader br=null;

PrintStream ps=null;

ServerSocket ss=null;

sendIP(int port) {

try {

$s=new ServerSocket(port);
start(};

catch(Exception ex) {
System.out.println("ClientListen "+ex);
b

}
public void run() {

while(true) {
try {
soc=ss.accept();
ps=new
PrintStream(soc.getOutputStream(),true);

System.out, println("connectd ");

ArrayList ip=getIP();

for(int i=0;i<ip.size();i++) {
System.out.printIn(ip. get(i));
ps.printin(ip.get(i));

ps.printin("END");

catch(Exception ex) {
System.out.println("ClientListen "Fex);

ArrayList obj=new ArraylList();
try {

Class.forName("sun.jdbc.odbc.JdchdbcDriver");
Connection cn =
DriverManager.getConnection("jdbc:odbc:agent","”,'”’);
Statement stmt =cn.createStatement();
ResultSet rs=stmt.executeQuery("select clientip
from client order by score desc");
while(rs.next()) {
System.out.println("---
"+obj.add(rs.getString(1)));
}
stmt.close(};
cn.close();
b
catch(Exception ex) {
System.out.println("get IP "+ex);

}

return obj;

class waitThread extends Thread {
Socket soc=null;
BufferedReader br=null;
ServerSocket ss=null;
waitThread(int port) {
try {
ss=new ServerSocket(port);
start();
}
catch(Exception ex) {
System.out.println("ClientListen "+ex);
I

}

public void run()

1 "1 . N

System.out.println("Waiting in waitThread ");

soc=ss.accept();
System.out.println{"connectd1");
br=new BufferedReader(new

InputStreamReader{soc.getInputStream()));

}
b

String strIP=br.readLine();
int mem=Integer.parselnt(br.readLine());
//String mem=br.readLine();
System.out.println(str[P+" == "+mem);
insertDB(strIP,mem);

}

catch{Exception ex) {
System.out.println("ClientListen "+ex);

}

void insertDB(String ip,int mem) {
Connection cn=null;
Statement stmt=null,stmt=null,stmt2=null,st=null;

try {

Class.forName("sun.jdbc.odbc.JdbecOdbeDriver");

cn=

DriverManager.getConnection("jdbc:odbc:agent”,"","");

st =cn.createStatement();

stmt =cn.createStatement();
stmtl=cn.createStatement();
stmt2=cn.createStatement();

int x;

x=st.executeUpdate("update client set

TotTime="+mem+" where clientip=""+ip+""™);

count(*) from client");

System.out.println("Updated Row : "+x);
ResultSet rs1=stmt.executeQuery("select

int trow=0;
if(rs1.next())
trow=rs1.getlnt(1);

System.out.println{"Total Rows :"+trow);
rsl.close();
//ResultSet rs=stmt].executeQuery("select

P R LAY DI T. DU B . oLy o LA | R

ResultSet rs=stmt1 .executeQuery("select score
from client where clientip=""+ip+"");
while(rs.next()) {
//String t1=rs.getString(1);
/Ix=rs.getInt(2)+trow:
x=rs.getint(1);
X++;
System.out.printIn("xx "+x+" : "+ip);
x=stmt2.executeUpdate("update client set
score="+x+" where clientip=""+ip+""),
activetxtArea.setText(activetxtArea. getText()+"\n"+"IP
Address:"+ip+" UpdatedScore:"+x+" TimeTaken:"+mem);
System.out.println("Updated Row] :
x);
trow--;
!
rs.close();
stmtl.close();
stmt.close();
stmt2.close();
st.close();
cn.close();
}
catch(Exception ex) {
System.out.println("insertDB "+ex);
;

}

class clientListen extends Thread {

Socket soc=null;

BufferedReader br=null;

PrintStream ps=nuil;

ServerSocket sss=null;

clientListen(int port) {

try {

sss=new ServerSocket(port);
start();

catch(Exception ex) {

}

public void run() {
while(true) {
try {
System.out.println("Waiting");
soc=sss.accept();
System.out.printIn("connectd");
br=new BufferedReader(new
InputStreamReader(soc.getlnputStream()));
ps=new
PrintStream(soc.getOutputStream(),true);
String
temp=soc.getRemoteSocketAddress().toString();
String
strip=temp.substring(1,temp.indexOf(":"));
Date date=new Date();

activetxtArea. setText(activetxtArea.getText()+"\n"+strip+"
Connected at "+date);
updateDatabase(strip,date.toString());
ArrayList ip=getIP();
for(int i=0;i<ip.size();i++) {
System.out.println{(ip.get(i));
ps.printin(ip.get(i));
b
ps.println("END");
}
catch(Exception ex) {
System.out.printIn("ClientListen "+ex);
}

}
3
ArrayList getIP() {

ArrayList obj=new ArrayList();
try {

Class.forName("sun.jdbc.odbe.JdbeOdbeDriver™);
Connection cn =
DriverManager.getConnection("jdbc:odbc:agent”,"","");
Statement stmt =cn.createStatement();

b b R FR o, A I T o 4 | S D L

while(rs.next()) {

System.out.println("---
"+obj.add(rs.getString(1)));

j
stmt.close();
cn.close();

}

catch(Exception ex) {
System.out.println("get [P "+ex);
b

return obj;

]

void updateDatabase(String ip,String date) {
Connection cn=null;
Statement stmt=null;

try {

Class.forName("sun.jdbc.odbe.] dbcOdbcDriver™);
cn=
DriverManager.getConnection("jdbc:odbc:agent","" ")

stmt =cn.createStatement();

ResultSet rs=stmt.executeQuery("select clientip
from client where clientip=""+ip+"");

if(rs.next(}){
}

else {

String query="INSERT INTO client
ValueS('"+ip+"',"+"0,0"+",'"+date+'")";

System.out.printIn(query);
stmt.execute(query);

2

}

stmt.close();
cn.close();

b

catch(Exception ex) {
System.out.printIn("ClientListen "t+ex);
}

}
Server() {

A11ver "R am e v e Cart s €11 . 1 1%

jal = new JPanel();
jrl = new JPanel();
jbt = new JPanel();

cmdQuit= new JButton("Quit");
cmdStart = new JButton(" Start ");
cmdStop = new JButton(" Stop ");
cmdClear = new JButton("Clear Log");
cmdView=new JButton("View");
activetxtArea = new JTextArea(30, 40);

activetxtArea.setFont(new Font("Serif", Font. BOLD, 16));
scrollPanel = new JScrollPane(activetxtArea);
init();

}

public void init()

{
contentPane = getContentPane();
jpg = new JPanel();
jbt.add(cmdStart);
jbt.add(cmdStop);
cmdStart.setEnabled(true);
cmdStop.setEnabled(false);
cmdClear.setEnabled(false);
jbt.add(cmdClear);
jbt.add(cmdView);
jbt.add(cmdQuit);
jal.add(scrollPanel);
Jpg.add(jbt);
jpg-add(jal);
jpg-add(jrl);
contentPane.add(jpg);
activetxtArea.setEditable(false);
setLocation(0, 0);
setSize(500, 570);
setVisible(true);
setResizable(false);
cmdQuit.addActionListener(this);
cmdStart.addActionListener(this);
cmdStop.addActionListener(this);
cmdClear.addActionListener(this);

PR b 4 AR I Y SPLINE YT L

public void actionPerformed(ActionEvent actionevent)
{

if(actionevent. getSource().equals(cmdQuit))

f
1

System.out.println("Logout");
System.exit(0);

if(actionevent.getSource().equals(cmdStart))
ry
{
cmdStart.setEnabled(false);
cmdStop.setEnabled(true);
cmdClear.setEnabled(true);
System.out.println("Server Starts... ")
new clientListen(6000);
new waitThread(6001);
new sendIP(6002);
new serverThread(6500);
activetxtArea.setText(activetxtArea.getText()+"Grid Connectd ...");
System.out.println("Server Listen");
j
catch(Exception exception)
{
System.out.println("XXXXX"+exception);
}
if(actionevent.getSource().equals(cmdStop))
try
{
System.out.printIn("Stop");
cmdStart.setEnabled(true);
cmdStop.setEnabled(false);
activetxtArea.setText(activetxtArea. getText()+"\n"+"Grid Stop");

}

catch(Exception exception1)

{
i

if(actionevent.getSource().equals(cdelear))
{

System.out.printin("Clear Log");

P R N ST » P2 1

System.out. println("X2"+exception]);

if(actionevent.getSource().equals(cdeiew)) {

try {
int cnt=0;

Class.forName("sun.jdbc.odbc.JdchdbcDriver”);

Connection cn =
DriverManager.getConnection("jdbc:odbc:agent",”",”");

Statement stmt =cn.createStatementy();

ResultSet rs=stmt.executeQuery("SELECT
COUNT(*) FROM client"),

while(rs.next()){

cnt=rs.getlnt(1);

}

System.out.printin{"Count "+cnt);

viewTable objrt=new viewTable(cnt);
featch(Exception ex) {

System.out.println("In View Table"+ex);
]

]
}
public static void main(String args|])

{

new Server();
}
JPanel jpg;
JPanel jal;
JPanel jri;
JPanel jbt;
JButton cmdConfig;
JButton cmdQuit;
JLabel IblTitle;
JButton cmdStart;
JButton cmdStop;
JButton cmdClear;
JButton cmdView;
JTextArea activetxtArea;
JScrollPane scrollPanel;
ITextArea respondtxtArea;
JScrollPane scrollPane?;
Container contentPane;

import java.awt.*;

import java.awt.event.*:
import java.io.*;

import java.net.*;

import java.util.*;

import javax.swing.*;
import java.math.Biglnteger:

class Client extends JFrame implements ActionListener {

Socket soc=null;

BuiferedReader br=null;
PrintStream ps=null;

String strip=null;

timeFind objTime=null;

ArrayList alSum = new ArrayList();

Client{)
{

super("Realtime System Scheduling);
init();

}
public void init()

txtip=new JTextField(15);

cmdQuit= new JButton("Quit");
cmdStart = new JButton(" Connect ");
cmdStop = new JButton(" Disconnect ")
cmdClear = new JButton("Clear Log");

txtArea = new JTextArea(20, 50);
IScrollPane scrollPane =
new JScrollPane(txtArea,

JScrollPane. VERTI CAL_SCROLLBAR_ALWAYS,

J ScroIlPane.HORIZONTAL_SCROLLBAR_ALWAYS) ;
txtArea.setFont(new Font("Serif", F ont.BOLD, 16));

At A vemnn T Y XXT

txtArea.setEditable(false);
cmdStop.setEnabled(false);

getContentPane().setLayout(new
FlowLayout(FlowLayout. CENTER));
getContentPane().add(txtip);
getContentPane().add(cmdStart);
getContentPane().add(cmdStop);
getContentPane().add(cmdClear);
getContentPane().add(cmdQuit);
getContentPane().add(scroliPane);

setLocation(200, 200);
setSize(625, 550);
setVisible(true);

cmdQuit.addActionListener(this);
cmdStart.addActionListener(this);
cmdStop.addActionListener(this);
cmdClear.addActionListener(this);

}

public void actionPerformed(ActionEvent actionevent)

{

if(actionevent.getSource().equals(cmdQuit))
{
System.out.println("Logout™);
System.exit(0);
}
if(actionevent.getSource().equals(cmdStart)) {
try
{
System.out.println("Server Starts...");
if(txtip.getText().trim().equals(""))
JOptionPane.showMessageDialog(this, " Enter Valid Grid
[P","MESSAGE", 1);
else {
try {
strip=txtip.getText().trim();
soc=new Socket(strip,6000);

cmdClear.setEnabled(true);
txtip.setEnabled(false);
txtArea.setText("Connected to "+txtip.getText());
System.out.printin("Client Listen");
new clientListener();

new clientProcess();

1
J

catch(Exception ex) {
//System.out.println("ClientListen "+ex);

txtArea.setText(txtArea.getText()+"\n"+ex);

]
}

j

catch(Exception exception)

{

System.out.println("XXXXX"+exception);
}
}
if(actionevent.getSource().equals(cmdStop)) {

try

{

System.out.println{"Stop");

Socket socend=new Socket(strip,6500);

PrintStream psend=new
PrintStream(socend.getOutputStream(),true);

psend.println("0");

psend.close();

socend.close();

cmdStart.setEnabled(true);

cmdStop.setEnabled(false);

txtip.setEnabled(true);

txtArea.setText(txtArea.getText()+"\n"+strip+"
Disconnected");

}

catch(Exception exceptionl)

{

System.out.println("X2"+exception1);
}
}
if(actionevent.getSource().equals(cmdClear))
It

txtArea.setText("");

}
}

class clientListener extends Thread {
ServerSocket ss=null;
Socket sc=null;

clientListener() {

try {

ss=new ServerSocket(7000);

start();
b
catch(Exception ex) {

System.out.println("Client Process"+ex);

}

}

public void run() {
objTime=new timeFind();
while(true) {
try{
//txtArea.setText(txtArea. getText()+"\nNow this System is waiting for
job");
sc=ss.accept();
System.out.println("Connected");
txtArea.setText(txtArea. getText(+"\nJob Accepted");
BufferedReader br=new
BufferedReader(new InputStreamReader(sc. getInputStream()));
PrintStream printJob=new
PrintStream(sc. getOutputStream(),true);
FileReader fr=new F ileReader("ip.txt");
//BufferedReader bread=new BufferedReader(fr);
String temp;
ArrayList objIP=new ArrayList();
Socket skforlP=new Socket(strip,6002);
BufteredReader briP=new
BufferedReader(new InputStreamReader(skforIP, getinputStream()));

txtArea.setText(txtArea. getText()+"\nAvailble Clients");

txtArea.setText(txtArea. getText(3+"\n"+temp);
objIP.add(temp);

txtArea.setText(txtArea.getText()+"\n");

brlIP.close();
skforlP.close();

txtArea.setText(txtArea.get Text()+"\n Input : "};
ArrayList objlnput=new ArrayList();

int inp=0;

while(!(temp=br.readLine()).equals("END")) { // Read from Socket
(Input)
txtArea.setText(txtArea. getText()+"\n"+temp);
//objInput.add(temp);
inp = Integer.parselnt(temp);

}
String t ="";
int x1;
int x2;
x! =1;
do {
x2 =x1+99;
f(inp>x2)
t=xI+"-"+x2;
else
t=x1+"-"+ inp;
objInput.add(t);
System.out.printIn(t);
if(inp<=x2)
break;
X2++;
x1 =x2;
}

while(true);

txtArea.setText("\n"-+txtArea.getText()+"\nJob Allocated in
following Order ");
int diff=objlInput.size()-objIP.size();
int len=0;
boolean flag=false;

if(diff>=0) {
len=0bjIP.size();
flag=true;

}

else if(diff<0) {

len=objInput.size();
flag=false;

}
System.out.println(objInput.size()+" : "+objlP.size());

int 1=0,j=0,x=objInput.size();

while(true) {

/Nlong 11=System.current TimeMillis();
while(j<len) {

System.out.println("inside");

System.out.println{"i="+i+" j="+j);

String strip1=(String)objIP.get(j);

String strval=(String)objlnput.get(i);
System.out.printin("in ClientListener : "+stripl+" : "+strval
txtArea.setText(txtArea.getText(O+"\n"+"REQUEST

"tobjTime.getTime()+ " : "+ stripl+" : "+strval);
clientRequest clientObj=new clientRequest(strip1,strval);
1t++;
jH+

>

}

~ /long 12=System.current TimeMillis();

/ftxtArea.setText(txtArea.get Text(H+"\n"+"Time taken for this Job :
"H12-11)/1000);

if(flag=talse)
break;
else {

T1*fM 1 *TTY "IN

System.out.println("in loop "+diff);
Jj=0;
//Thread.sleep(5000);
if (diff==0)
break;
else {
//Thread.sleep(10000);
objIP.clear();
skforIP=new Socket(strip,6002);
brIP=new BufferedReader(new
InputStreamReader(skforIP. getInputStream()));
txtArea.setText(txtArea.getText()+"\nAvailble Clients");

While(!(temp=brIP.readLine()).equals("END")) {

txtArea.setText(txtArea. getText()+"\n"+temp);

objIP.add(temp);
]
continue;
}
§
}
Thread.sleep(1000);

//System.out.println("al size " + alSum.size());
Biglnteger b = new BigInteger("1 ");
for(int il = 0; il < alSum._size(); il++) {
//System.out.printin(al Sum. get(il));
b = b.multiply(new Biglnteger(alSum. get(il).toString()));
//System.out.printIn{"b = " + b);
}

txtArea.setText(txtArea.getText()+"\nResult ="+b);

}

catch(Exception ex){
System.out.printin("In clientListener : "t+ex):

}

class timeFind {
Date d;
Date getTime(){
d=new Date();
return d;

}

class clientRequest extends Thread 1
Socket clientSoc=null;
BufferedReader clientBr=null;
PrintStream clientPs=null;
String ip,val;
clientRequest(String ip,String val) {
try {
clientSoc=new Socket(ip,7001);
this.val=val;
this.ip=ip;
System.out.println("Thread going to Start");
start();
/fjoin();
}
catch(Exception ex) {
System.out.println("Client Process"+ex);
}

}

public void run() {
objTime=new timeFind();
try {
System.out.println("Coming for Processing");
clientBr=new BufferedReader(new
InputStreamReader(clientSoc.getInputStream()));
clientPs=new PrintStream(clientSoc. getOutputStream(),true);

/Nlong 11 =System.currentTimeMillis();
clientPs.println(val);

String temp,strmem;
temp=clientBr.readLine();

String strtime=clientBr.readLine();
//long 12=System.currentTimeMilIis();

(ol R o - e e

System.out.printIn("In ClientRequset value is :"+val+" = "+temp);

txtArea.setText(txtArea.getText()+"\n"+"RESPONSE :
"tobjTime.getTime()+ " : "+ip+" : "+val+" : "+temp+" : "Fstrtime);
//sum.add(new Biglnteger(temp)):
alSum.add(temp),
System.out.println("added");

Socket serSoc=new Socket(strip,6001);

PrintStream serPs=new
PrintStream(serSoc.getOutputStream(),true);

serPs.println(ip);

//serPs.printIn(strmem);

serPs.println(strtime);

serPs.close();

serSoc.close();

stop();
}

catch{Exception ex) {

System.out.println("ClientRequest "+ex);
)
§

}

public static void main(String args[])

{

new Client();

}

JButton cmdConfig;
JButton ecmdQuit;
JLabel 1blTitle;
JButton cmdStart;
JButton cmdStop;
JButton cmdClear;
JTextField txtip;
JTextArea txtArea;
JScrollPane scrollPane:
Container contentPane;

8.2 SCREENSHOTS

SERVER:

_ Realtime System Scheduling - Server

Stop | ClearLog = \View Quit -

Grid Connectd ...

Fig 3.9 Server Application window

=l

£ Realtime System Schedulir

511d Connectd ... -
10.0.0.11 Connected at Wed Apr 18 17:51:30 GMT+05:30 2007
10.0.0.34 Connected at Wed Apr 18 17:52:35 GMT+05:30 2007

IP Address:10.06.0.11 UpdatedScore:1 TimeTaken:31

IP Address:10.0.0.34 UpdatedScore:1 TimeTaken:0

TP Address:10.0.0.11 UpdatedScore:1 TimeTaken:0

IP Address:10.6.0.11 UpdatedScore:1 TimeTaken:0

TP Address:10.0.0.34 TpdatedScore:1 TimeTaken:0

TP Address:10.0.0.11 UpdatedScore:1 TimeTaken:0

1P Address:10.0.0.34 UpdatedScore:1 TimeTaken:Q

IP Address:10.0.0.34 UpdatedScore:1 TimeTaken:0

TP Address:10.0.0.11 UpdatedScore:1 TimeTaken:32

IP Address:10.0.0.11 UpdatedScore:1 TimeTaken:0

IP Address:10.0.0.34 UpdatedScore:1 TimeTaken:0

I[P Address:10.0.0.11 UpdatedScore:1 TimeTaken:0

TP Address:10.0.0.11 UpdatedScore:1 TimeTaken:0

IP Address:10.0.0.11 UpdatedScore:1 TimeTaken:0

TP Address:10.0.0.34 UpdatedScore:1 TimeTaken:0
TP Address:10.0.0.34 UpdatedScore:1 TimeTaken:0 |
[P Address:10.0.0.34 UpdatedScore:1 TimeTaken:0 t
TP Address:10.0.0.34 UpdatedScore:1 TimeTaken:0
TP Address:10.0.0.11 UpdatedScore:1 TimeTaken:0

3.11 Server window showing the details of the tasks done by various
clients connected to the Grid environment

iew Database

T —————=

IPAddress Geore

il

StartTime

10.0.0.11 M7 o wedAprien

TATII0 G

10.0.0.34 19 i wed Aprig o

TIEZIIE GM..

Fig 3.14 Server window showing the database

CLIENTSIDE:

£ Realtime System Scheduling -

=101

: Quit
Sonnde B _ =

Disconnect Job Clear Log

<]

L]

Fig 3.10 Client Application window

‘ a ner tnd fau‘:ti'
Input
5000

OK 5 ancel

= Realtime System Scheduling

Disconnect = Job | Clear Log | Quit

OSSN

&3089897646448959588936?640135418644?562403083248508480411609321097474”55153:
B525607096168747231212837471 753283000293375164799734282010533501492818 71803,
63818956493 782385152057018312651639494 710944262 76949 75829485688 769740800000
400000000000000000000 : 16
Result = 497943692 757962584112 7561 7301 77802091 356683 73089212308401 2050844897
39539310456;29534379"5535497302396933<553344¢811051314203?545443~3"<123?141
4772085516 7918646242 7845207024 70483 7218 73458452911 7322 76302 738928595 7829621
44766324752941410454816082344693 7995596434 7769666 7287991679 7605918354 200855
273164179107687265896 70913228318973204112982195998976934 72 70455583663323138
477711444188361861075825092823 76 7100966 16019582 101889364835 772663940 777552
Ig03166550?57272?95568664359561321148146?6868541633241141208628767438334364?
P019309567134465468580395298 780454 7193872103242 76 7856384180 18381762 70757347
A30331371374390316357941816090855125469205810734421263201 1671 7453421 1415517
718050639695426 741 7796 7885087371 1953654365340260071544522440535578424809440°
2233450995323866257126589796181544 786436578202 198332359628183575795 76600222
05085398172184362 757141 75891485686269415324132583 1532808922 78320488 7301512
017?91ﬂ211531?15540?49866¢383353305*5117731335071319392?76%0410?263650299?5*
19822014992281934333390009654836400000000000000000000006000000000000000000
ooﬁ0000000000000000uo0000000oooanoooooooooouoo0000000000000000000000000000

0000000 i

g

Fig 3 12 Cllent wmdow showmg the workdone detalls

8. REFERENCES

REFERENCES

1. Herbert Schildt (2002), The Complete Reference Java 2. Fourth Edition
Tata McGraw-Hill. 2002

2. Grid Computing A research Monograph ,D.janakiram 2005, Tata Mc
Graw-Hill

3.computer networks, Andrew Tanenbaum Fourth Edtion 2005 , Prentice-
Hall of India Pvt

WEBSITES

l.www.grid computing.org
2.www.globus.org
3.www.gryphyn.org

4. www.network.com

RESULT ANALYSIS

T
o

e
L.

From the result analysis we have concluded that

1. If the number of machine increases then the time taken to complete the
job is decreased i.c. efficiency will be high.
2. More complex jobs can be easily done by dividing the complex jobs into
various sub-tasks,
If there is a single machine -> work load is high and time taken to
complete the job is very high.
If there is more than two machines -> work load is low and time taken to
complete the job is less.
3.The graph represent the slope line which indicates the importance of Grid
computing in order to perform the complex application with higher
efficiency in the result.

