o

P 1813 s

FRIEND TO FRIEND SYSTEM

A PROJECT REPORT
Submitted by

JASKIRAT SINGH VEEN 71203104014
MOHANA KUMARAN.S 71203104019
SRIDAR .R 71203104051

in pardial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING

IN
COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

ANNA UNIVERSITY:: CHENNAI 600 025

APRIL 2007 T E

ACKNOWLEDGEMENT

We express our sincere thanks to our chairman Arutselvar
Dr. N. Mahalingam, B.S¢, F.LE. and ¢ pondent Prof. K. Ar £
B.E., M.S., MLLE,, for all their support and ray of strengthening hope

extended.

We are immensely grateful to our principal Dr. Joseph Y.
Thanikal, M.E., Ph.D., PDF., CEPIT., for his invaluable support to the
come outs of this project.

We are extremely thankful to Dr. S. Thangasamy., Head of
the Department, Department of Computer Science and Engineering for his
valuable advice and suggestions throughout this project.

We are indent to express our heartiest thanks to Ms. 8. Rajini,
B.E., project coordinator and Ms. V.Vanitha, M.E., guide who have helped
us to making the project work extremely well.

We are also thankful to all the faculty members of the
lep of Comp Sci and Engineering, K guru College of

Technology, CBE for their valuable guidance, support and encouragement

during the course of our project work.

We express our humble gratitude and thanks to our parents
and family members who have supported and helped us 1o complete the
project and our friends, for lending us valuable tips, support and co-

operation throughout our project work.

ANNA UNIVERSITY: CHENNALI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “FRIEND TO FRIEND SYSTEM™ is the
bonafide work of “JASKIRAT SINGH VEEN, MOHANA
KUMARAN.S, SRIDAR.R™ who carried out the project work under my
supervision,

g jL ——-6—«-4&/ \u\.«%q\ﬁ

SIGNATURE SIGNATURE
Prof. Dr. 8. Thangasamy Ms.V. Vanitha. M.L.
HEAD OF THE DEPARTMENT SUPERVISOR
Comp Sci and Engineering Comp Sci and Engineering

Kumaraguru College of Technology ~ Kumaraguru College of Technology
Coimbatore — 641 006 Coimbatore - 641 006

The candidates with University Register Numbers 71203104014,
71203104019, 7120310405! were examined by us in the project viva-voce

examination held on

OO0 i,

INTERNAL EXAMINER EXTERNAL EXAMI?

ABSTRACT

The idea of restricting a network of computers to people you know, trust, or
a closed group of users that require peer approval to allow entry of a new

user into the network is the main theme of this application.

The concept of building a trust k and maintaining it can be done in
many ways. We use a simple but effective technique of restricting access via
referrals that are already a part of the network. Based on assumptions of trust
that the invitation-only scheme imposes, the network may continue to
evolve.

We aim to build an application with the following features that uses this type
of a network of trust, and thus effectively facilitate features such as auto
retrieval of files that any user of the network may send to you based on the
fact that *you trust the network’.

The application involves the following basic features for socializing or

communication or data sharing.

* User Authentication to access the Application
* Registration of a new user based on a referral system

* Chatting in a public room with and interface similar to IRC

« Private messaging

« All communication that takes place is encrypted using Rijndael
Algorithm using a session key basically just to avoid traffic analysis
of any or all communication between users of the network/application.

« Transfer of data or media files between users

« DoodleBox . or more simply facilitation to share thumbnails and text
scribbled among users into a box called the doodlebox and sent

explicitly on user command

Whiteboard facility to share a more real time Interaction between

users based on mouse movements 1o a more pictorial interaction.

Apart from this the application is also aimed to be built with a user
friendly interface that is efficient 10 use, Easier 1o leam and more

satisfying to use.

CH NO. TITLE PAGE NO.
. THE ADDROUNDKEY STEP 30

10.2.2. THE SUBBYTES STEP 30

10.2.3. THE SHIFTROWS STEP 31

10,2.4. THE MIXCOLUMNS STEP 32

10.3. OPTIMIZATION OF THE CIPHER 3

11. APPENDIX 2 - THE SOCKETHELPER CLASS 34
12. APPENDIX 3 - MANAGING RUNDAEL ALGORITHM 53
REFERENCES 58

TABLE OF CONTENTS

CH NO. TITLE

ABSTRACT
LIST OF FIGURES
LIST OF SYMBOLS

1. INTRODUCTION
1.1 INVITATION ONLY NETWORKS
2 STREAMS AND PROTOCOLS
3 THE INTERFACE
3.1, LOGIN/REGISTRATION INTERFACE
4. COMMUNICATION / MESSAGING
4.1, MANAGING THE RIJNDAEL ALGORITHM USING C#
5. THE DOODLEBOX
5.1. WORKING OF DOODLEBOX
5.2, PROTOCOL TO SEND AND RECEIVE DOODLEBOX
[N FILE TRANSFER
6.1, PROTOCOL TO SEND AND RECEIVE FILES
6.2, PLAYING MEDIA FILES [N WINDOWS MEDIA PLAYER
7. THE SERVER
L8 WHITEBOARDING
8.1. INTERFACE
8.2, ARCHITECTURL
8.3, MESSAGING ARCHITECTURE
$.4. WORKING OF TOOLS
9. WORKING WITH THE WHITEBOARD
10. APPENDIX 1- AES ALGORITHM
10.1. DEVELOPMENT
10.2, DESCRIPTION OF THE CIPHER

LIST OF FIGURES

3.1 GUI Interface — Client Window
3.2 Login/Registration Interface

6.1 Auto Retrieve feature

7.1 Server

8.1 Architecture -White boarding
8.2 Whiteboard Application Modes
8.3 Messaging Architecture

8.4 Pen Tool

8.5 Message Format

9.1 Server Mode

9.2 Client Mode

PAGE NO.

vi

Vil

LIST OF SYMBOLS

SYMBOL/ MEANING OCCURENCES
ABREVIATION (PAGE NOS)
FIFO First In First Out 3
Gut Graphical User Interface 5
IRC Internet Relay Chat 1.4
AES Ad 1 Encryption Standard §,32-36
ul User Interface 20
Ipz Joint Photographic experts Group 20,46,49,50
P Internet Protocol 24,26
DES Data Encryption Standard 32

Here we use invitation system for registration on a permanent basis so that a
check on system is in place permanently. The concept is similar to referrals.
Although we do not have a web based registration which would definitely be
a future implementation, for the time being, registration is done during login
{ime via the application itself. A new user is assumed to have got a copy
from the peer who is inviting the new uscr and after the new user registers
via the application interface 10 get new username and password, the referral

would have to login and approve of the new user before the user can use the

application in any way.

1. INTRODUCTION

This application is designed to provide features like secure communication,
file transfer, white boarding and DoodleBox or more simply a facility to
share thumbnails and text scribbled among users inlo a box called the

dondlah

and sent

itly on user 1 all on an IRC like interface.
The idea to make this system a network of trust is simply by making it an

invitation only network.

1.1, INVITATION ONLY NETWORKS

An invitation system (or invite system) is one method of registration.
Unlike open registration, where all users can join and closed registration,
where there is a moratorium on new users joining, invites allow current users
to select who can join, while allowing site administrators to maintain a

stronghold on the population of the service,

Invitation systems are usually temporary. They are typically used for
services in private beta testing, in order 1o control the number of users on the
service. In other cases, they can be used due to limited availability of server
resources. Rarely, they may be used on a permanent basis, in order to
aggregate social network statistics (all users will ultimately have a traceable
connection to all others). They can additionally be used to avoid trolling or
spammers (all users trust all others). which is usually a positive side effect of

the invitation system

2. STREAMS AND PROTOCOLS

A stream is a continuous flow of bytes. For a chat server and a chat client 1o
communicate over the network, each would read and write 1o the network
stream. The network stream is duplex, and bytes transmitted and read are

always in FIFO order.

When a chat client is connected to a chat server, they would have established

a common network stream to use.

ingful ication, there must be some rules and

, for any
order. These rules and order would be known as the communication

protocols. There are at least a few layers of protocols,

At the lowest level, the communicating parties would need to know how to
break a continuous flow of bytes into packets/frames. These rules would be
referred to as the Network Protocol.

At the next level, the parties would need to interpret the packets/frames.
These rules would be known as the Application Protocol(s).

3. THE INTERFACE

The interface is similar to the IRC interface, which is more like a public chat
room with number of users. Internet Relay Chat (IRC) is a form of real-

time Internet chat or synchronous conferencing. It is mainly designed for

group (many-t) ication in discussion forums called channels,
but also allows one-to-one communication and data transfers via private
message. IRC is based on a line-based structure with the client sending
single-line messages to the server. receiving replies 1o those messages and
receiving copies of some messages sent by other clients. In most clients,
users can enter commands by prefixing them with */", depending on the
command these may either be passed directly to the server (generally used
for commands the client does not recognize). passed 1o the server with some

modification or handled entirely by the client.

The channels are not a part of this friend to friend system though.
Commands are similar to the IRC, prefixed with *:". which can be typed in
the client window to perform a particular action.

The various commands are

shelp — Displays a list of commands

:change room- Used to change from one public room to another
“list — Lists all users present in the curvent room

Aist all— Lists all users present in the system anywhere

.which room — Tell the user which room he/she is in
sprivate:<target>:<message> - Used to send a private message o
another user of the network

-send doodlebox;:<target> - Used to send the doodlebox to another
user

:get doodlebox:<target> - Used to get the doodlebox from another
user wha has proposed to send the same

:quit — Used to quit the application and the system

B st

-

3.1 GUI Interface — Client Window

3.1. LOGIN/REGISTRATION INTERFACE

The following is the interface that is used for login/registration.

1= M enicavon — ISR

* fagn 7 register

3.2 Login/Registration Interface

The users are stored in a file called wsers.bin, The file is nothing but a

serialized hash table that ins the list of regi d users of the system
and is used to check upon during the login time. Registration is also done
through the same interface; the new users can request the desired unique
login name and password and should specify the referral who has invited the
new user to the system. The new user will be allowed entry fater only after
the referral has approved of the new registration. To further limit the
leeching growth of the network, a user can invite a new user only one at a

time.

4. COMMUNICATION / MESSAGING

The Friend to friend system provides encrypted Communication, ensuring
all shared information is known only to you and your trusted friends.

All messages are encrypted using the Rijndael’ Algorithm. In cryptography,
the Advanced Encryption Standard (AES)', also known as Rijndael, is a
block cipher adopted as an encryption standard by the U.S. government. It
has been analyzed extensively and is now used widely worldwide

The server allocates a session password for each room to all the clients every
time a new client logs in or changes a room based on which the

communication between the clients is encrypted.

ﬂ?RV ER

2. Session
Password

2 Session 1.Login
Password p
CLIENT (CLIENT

Server sends session password at login time

1. Refer appendix 1 for a detailed descriptiun of the HRijndael / AES algoritha:

5. THE DOODLEBOX

A doodle is a mindless sketch, an aimless drawing, while a person's
attention is otherwise occupied. Random thoughts are placed upon the paper
during that time. Doodles can also just be sketches.

The doodlebox in this application is an attempt to simulate a similar effect of
doodling using the mouse, the doodlebox in this application also supports
loading one or more pictures onto the doodlebox and simultaneously
describe or doodle or communicate via pictorial representation which is
done using the options in the Doodle Box menu or by simply right clicking
on the doodlebox.

The doodlebox is sent to another user by usage of the following command in
the client window.The le ¢ d to send the doodle box is:

:send doodlebox. <targer=
Where <target> refers to the username of a user who is currently online
Alternatively the user can make use of the Main menu to send the doodlebox

o a particular user by choosing the receiver [rom the list in the send
doodlebox sub menu.

10

4,1. MANAGING THE RIJNDAEL ALGORITHM USING
C#

The C# language provides usage of various cryptic algorithms using the

o - "
pace Qpnmr}',c, ptograp

The following snippet of code is used to implement a class that manages the
Rijndael algorithm that will be later used to encrypt and decrypt messages
when and where required

Refer appendix 3 for the source code 1o manage the Rijndael algorithm.

NOTE: Refer Appendix | for a detailed description of the Rijndacl algosithan

5.1. WORKING OF DOODLEBOX

The Doodlebox used here is nothing but a picture box control in C#.
¥ Auto Fetreve Fies _ Emoticons | Dlear Chatwindow il
=]

The concept is to write handlers for mouse move and mouse down event
with respect to the picture box in the following manner to enable the

doodling action in the doodle box.

Handler for Mouse move event of the doodlebox {
J/1f the left mouse button is used then return
ifle. Button!=MouseButtons. Leftjreturn;

1/Else Create a new point which is the current point the mouse is on

Point pi=new Point(e.X.e.Y);

/fDraw a line from the previous point to the current point
Graphics g=Graphics. Fromimage(pic.Image}:
g DrawLine(new Pen{Color.Black),ptl.pt):

//Mark this new point now as a start point which maybe used later
pti=pt;

I/Refresh the Doodlebox
pic.Refresh():
)

Handler for mouse down event in the doodlebox {
Jlmark start point at mouse down for doodling further with mouse move

iffe.Bunon==MouseButtons.Lefl)
pti=new Point{e.X,e.¥);

5.2. PROTOCOL TO SEND AND RECEIVE DOODLEBOX

The p | for sending a doodlebox is as follows:

« The client sends a command :send doodlebox: <rtarger=.

« When the server receives the command, it will check if <target> has
an active connection, It then replics with “<server> send doodlebox”.

« When the client receives this special message, it will send a text
message lo indicate to the server the number of bytes of binary data
that will be sent over. Following that, the binary data are then sent.

« The server uses the ChatStream ReadBinary method to get the
binary data, and then saves the data to a file marked with the sender
and target names.

« The server will then send a message to the <rarger> that there is a

doodlebox ready for it to retrieve.

6. FILE TRANSFER

File transfer occurs on user command, It is actually a two step process where
send file is a proposal to send a file and the get file command is the
acknowledgement of the send [file command. Any user of the system can
send files to any other user who is available. The Auto retrieve feature isa
useful add-on that enables auto retrieval of files without waiting for the

receiver to y respond 1o each send proposal.

The command to send a file is
:send file:<target>

Where <target> refers to the username of a user who is currently online
Alternatively user can make use of the menu to send a file 1o a particular
user by choosing the receiver from the list under the send file menu.

The get file feature is used to get a file from a user who has proposed to send
a file 1o the receiver. The command is

:get file:<from>

Where <from> refers to the username of a user who is currently online and

has proposed to send a file

The protocol for getting a doodlebox is as follows:

+ The client sends a command :get doodlebox:<sender>.

« When the server receives the command, it will first check if there is a
file with the <sender> and the client name. If so. it will send the reply
“<server= gel doodlebox”. It will then send a lext message to indicate
1o the client the number of bytes to read. Then the binary data will be
sent over.

« The client uses the common ChatStream ReadBinary methed to

get the binary data and display the image in the 2ichTextBox.

Alternatively user can make use of the menu to get a [ile from a particular
user, who has proposed to send a file, by choosing the sender from the list
under the send file menu.

The Auto retrieve feature if enabled does the work of getting the file
automatically without waiting for the <receiver> to call for the file.

The *get file' feature can be further used in cases when the receiver had not
received a file due to some problem in transmission or some other error or
simply because the receiver deleted the file after reception and now would
like to get it again, At this point the use of “get file’ obtains the last file sent
to the user by sender without disturbing the sender again 1o explicitly send
the file,

¥ Auto Retrieve Files Emolticons

[

6.1 Auto Retrieve feature

6.1. PROTOCOL TO SEND AND RECEIVE FILES

The protocol for transferring files is very similar to that for picture transfer.

The main difference is that unlike a picture which is basically copied from a

doodle box in the Ul and saved to a file with a fixed jpg extension. the fi

are just tagged and stored by the program. and can have various different
extensions. The extension for these files has to be maintained as the media
player relies on the extension lo play the files. We have used the ¢liemt

window to enable links to be recognized and clicked so that media files may

g Windows media player

be played usi

When sending the binary data of a media clip o the server. the exiension of
the clip must be conveyed. And when the receiver retrieves the binary data
from the server, the extension must also be made known so that the media

clip file can be recreated with the correct extension.

To resolve this problem, there is a slight change in the protocol. When
sending media clip data to the server. the sender first sends a three-character
extension, followed by the number of bytes of binary data, and then finally,
the binary data. The server first reads the extension, saves the extension to a
file named <sender> <receiver> {(without the extension). and then saves

the binary data to a file named sender> <receiver>.<ext=.

Similarly, when the receiver retrieves the media clip. the server first locates
the file that stores the extension, retrieves the extension. and the retrieves the
file <sender> <receiver><ext>, and then sends the extension followed by

the media clip binary data to the receiver.

7. THE SERVER

The server program starts on the port specified as the first argument, by
creating the requested number of chat rooms specified by the second
argument. It starts out the users by deserializing the wsers. bin file. Then, it

continues to listen for connections. Once a conr

sction is established, it

Sprouts a new S

atHe

r' object to manage the communication with

the connected client.

The SocketHelper' class contains methods to perform various actions on the
server, namely the message transfer, file transfer, command interpretation
and related operations. Mothing related with encryption apan from the
password generation occurs on the server side. All the encryption and

decryption work occurs on the client side.

7.0 Server

1, Refer Appendin 2 for a the Socketbielper Cless warce code

6.2. PLAYING MEDIA FILES IN WINDOWS MEDIA
PLAYER

If the file received is a media file and if the user wishes to play the file. all
that the user has to do is to click on the link that is displayed on the client

window.
To play the media clip, the system must have the media player installed. The

client locates the media player from the Windows registry and sends the clip

1o be played by the media player.

8. WHITEBOARDI

Whiteboards provide visual communication by allowing users to draw
various shapes or lines for purposes of collaboration. Shapes can be
manipulated and moved, and the session can even be saved as an image file.
White boarding is an important feature in this Friend to Friend application to
make interactive discussions within the peers through visual diagrams or
drawing.

Any interactive discussion may require additional option apart from the
usual textual exchanges. White boarding feature serves this purpose.

The idea is to capture mouse movements pixel by pixel and transmit them 1o

the Whiteboard of its peers i.c. listeners as they oceur live.

8.1. INTERFACE

The Whiteboard appears similar to the traditional paint application in

Windows. The users work arca is a white screen with toolbar on the top and

connection panel at the bottom.
The toolbar contains the following tools

« Drawing Pen
« Rectangle auto shape
« Ellipse auto shape
» [raser
« Save button
The connection panel contains the following:
« A tree structure showing the connected peers
« A radio button that enables the Whiteboard to beh
server or as a client

« Text boxes for specifying the port number and [P address

The Whiteboard has two modes of operation:

. Server mode (Listener)

. Client mode (Connects to a listener)

Select this mode 10 make
the 8pp @ Server

it this moos to mske
8pp connect 10
ptrear wihil2boand thats

#.2 Whitehaard Application Modes

On selecting the first mode, as shown above, the application starts listening

on the machine’s |P on the pont

ave either as a

20

8.2. ARCHITECTURE

Listenes Client canmecting 1o Listens:
Wi om U App VirFoen L) App
|
ciss s Fradian ctags Frrabdan
Sy shan PAndws Fens Fam Srrlem e s Forme Forr
Frovden Ihe mai L8 cortpner Kasos &'y of e il rowes e man 8 contanes
Lot LY coris wndy 42 & Buriuig) Soesct R
etwOrkManager T Mg i
;i d et o Cherthaner ot & ool
Mroease sotee e % s {Frovoestre soviet
o each comected clert |
0 100 e g0 g i FEALI £ 0k Tor 1 250
o by i mihar ahetenes o 2 L N 10 penee 47 etrer 3 Hee! o
e accesses welngds onthe L) o
s plomn cleet 0 8 bstenex | cyecermbiar & pl b 40 3 htnee
WHREtoXTMATsIge BIRRr | g necsages 1o Lot oo it |1 iroomrd Message e

iandun; eiper cBoseT o
lercade decone Whithowd
s

Tnng hele CHLLAL 1Y
e deiderone Yhtenon o
|pareazme

_—

Beboves as o Lot Behaves a3 @ ckend 10 ey
Lostens on 8 speciied TCPIP Listeneng Whiteboard
mlm:' Corrwcts to 0 remale

s L | htepaa appacaton
| el neSHon acranTm L [oy
e e o v rasied win 2Pk

! —

| I | -

8.1 Architecture -White boarding

On selecting the second option after specifying the correet 1P/Port of another

listening whiteboard, the application connects to the server.

8.3. MESSAGING ARCHITECTURE

Once the socket is established between the two users, each peer
communicates with the other peer through Serialized Whiteboard Messages.
This is an abstract class called WBMessage that every other message like
WBMsgDrawBeqgin,

WBMsgDrawEnd, WBMsgDrawLine,

WEMsgDrawRectangle and WEMsgDrawEll i pse inherits from.

8.3 Messaging Architecture
Serializable attribute is used before each of the classes. NET provides object
serialization support through the use of Formatter classes like the

BinaryFormatter and SoapFormatter.

The application keeps transporting mouse messages (mousedown,
mousemove and mouseup coordinates) from one user 1o another remote user.

Using the SoapFormatter would have meant transporting a LOT more

1

data (since SOAP is an XML based serialization mechanism) than ina

Binary Format.

BinaryFormatters serializes and deserializes an object or an entire

graph of connected objects in binary format. For example, the following
function serializes a long into a memory stream object whose raw buffer
contents could be passed on the wire through the opened socket and then

unpacked with a similar Deserialize routine.

8.4. WORKING OF TOOLS

All the tools such as the drawing pen, ellipse tool and rectangle tool work in
a similar fashion i.e. the only difference being the type of message and the
shape appearing on the whiteboard, Let us consider one such tool, the

drawing pen, which works as follows

2= |

&4 Pen Tool
The DrawAreaCtrl custom control shifis 10 the
WHITEBOARD_DRAW_MODE of enModeLine

Once this draw mode is enabled, all mouse events are interpreted for

drawing related to scribbling lines.

9. WORKING WITH THE WHITEBOARD

« Run an instance of the application on one machine,
« Select the mode this instance would run in, i.e. client mode or server
mode. To make it run as a server lisiener, select the "Start as Listener”

option as shown and accept the default 8888 as the listening port,

unless you have another application on your system listening on it,

then click 'Start listening',

Salact this option
lo run in server
mods

9.1 Server Mode

« Run another instance of the Whiteboard application on another

machine. This time select the *Connect to” option as shown:

26

MouseDown Event

On a mousedown an instance of the serializable class WBMsgDrawBegin is
created. This class is then serialized to a byle buffer using the
BinaryFormatter class and sent across the socket. But every serialized
object's buffer is preceded with a serialized long that specifies the length of
the buffer that is going to follow it. This way the client on the other end

knows how much data to parse and deserialize.

length specitying length of the followeng
\ggmcd WheBoad Message obie

~Serisized WEMessage cbect i
(VVBMsgDrawBegn, WEMsgDrawEnd, elc) witha
~.Jotal lencih specieed 0 the preceding bytes

fF=—~=1 |

£.5 Message Format

9.2 Cliemt Mode

« The Connected Peers title on the top right would add a node with the

peer's IP.

A user drawing on one end is reflected on the other, i.e. shown at the listener
end. The whiteboard is locked when one user is drawing and can be used by
the other user only when it becomes free. That is only one user at a time can

annotate on the whiteboard.

10. APPENDIX 1- AES Algorithm

In cryptography, the Advanced Encryption Standard (AES). also known
as Rijndael, is a block cipher adopted as an encryption standard by the U.S.
government. It has been analyzed extensively and is now used widely
worldwide as was the case with its predecessor, the Data Encryption
Standard (DES). The cipher was developed by two Belgian cryplographers,
Joan Daemen and Vincent Rijmen, and submitted to the AES selection
process under the name "Rijndael”. a combination of the names of the

inventors.

10.1. DEVELOPMENT

Rijndael was a refinement of an earlier design by Daemen and Rijmen,

Square; Square was a development from Shark.

Unlike its predecessor DES. Rijndael is a substitution-permutation network,
not a Feistel network. AES is fast in both software and hardware, is
relatively easy to implement, and requires little memory. As a new

encryption standard, it is currently being deployed on a large scale.

10.2. DESCRIPTION OF THE CIPHER

Strictly speaking, AES is not precisely Rijndael (although in practice they
are used interchangeably) as Rijndael supports a larger range of block and
key sizes; AES has a fixed block size of 128 bits and a key size of 128, 192
or 256 bits, whereas Rijndael can be specified with key and block sizes in
any multiple of 32 bits, with a minimum of 128 bits and a maximum of 236
bits.

10.2.1. The AddRoundKey step

In the AddRoundKey step, each byte of the state is combined with a byte of
the round subkey using the XOR operation (7).

In the AddRoundKey step, the subkey is combined with the state. For each
round, a subkey is derived from the main key using Rijndacl's key schedule;
each subkey is the same size as the state. The subkey is added by combining
each byte of the state with the corresponding byte of the subkey using
bitwise XOR.

10.2.2. The SubBytes step

—— -

a.la.a,ja,

a.a.la, (BuoBiics) I
—

]
| 5

b..
[

30

The key is expanded using Rijndacl's key schedule.
Most of AES calculations are done in a special finite field.

AES operates on a 4x4 array of bytes, termed the stare (versions of Rijndael
with a larger block size have additional columns in the state). For
encryption, each round of AES (except the last round) consists of four

stages:

1. AddRoundKey — each byte of the state is combined with the round
key: each round key is derived from the cipher key using a key
schedule.

ra

. SubBytes — a non-linear substitution step where each byte is replaced
with another according to a lookup table.
3. ShiftRows — a transposition step where each row of the state is
shifted cyelically a certain number of steps.
4. MixColumns — a mixing operation which operates on the columns of
the state, combining the four bytes in cach column using a linear

transformation.

The final round replaces the MixColumns stage with another instance of
AddRoundKey.

In the SubBytes step, each byte in the state is replaced with its entry in a
fixed 8-bit lookup table, 5; by = Sfu).

In the SubBytes step, each byte in the array is updated using an 8-bit S-box.
This operation provides the non-linearity in the cipher. The S-box used is
derived from the multiplicative inverse over GF(2"), known to have good
non-linearity properties. To avoid attacks based on simple algebraic
properties, the S-box is constructed by combining the inverse function with
an invertible affine transformation. The S-box is also chosen to avoid any
fixed points (and so is a derangement), and also any opposite fixed points.

The S-box is more fully described in the article Rijndael S-box.

10.2.3. The ShiftRows step

i

L, |a, 8,
a.ala|a

11

In the ShiftRaws step, bytes in cach row of the state are shified cyclically to
the left. The number of places each byte is shifted differs for each row.

The ShiftRows step operates on the rows of the state: it cyclically shifis the
bytes in each row by a cenain offset. For AES. the first row is left
unchanged. Each byte of the second row is shifted one to the lefi. Similarly.
the third and fourth rows are shifted by offsets of two and three respectively.
For the block of size 128 bits and 192 bits the shifting pattern is same. In this
way, each column of the output state of the ShiftRows step is composed of

bytes from each column of the input state. {Rijndael variants with a larger
block size have slightly different offsets). In the case of the 256 bit block,
the first row is unchanged and the shifting for second, third and fourth row is
1 byte, 2 byte and 4 byte respectively - although this change only applies for
the Rijndael cipher when used with a 236-bit block, which is not used for
AES.

10.2.4. The MixColumns step

In the MixColumns step, each column of the state is multiplied with a fixed

polynomial cfx).

In the MixColumns step, the four bytes of cach column of the state are
combined using an invertible linear transformation. The MixColumns
function takes four bytes as input and outputs four bytes. where each input
byte affects all four output byles. Together with ShiftRows, MixColumns
provides diffusion in the cipher. Each column is treated as a polynomial over
GF{I‘!) and is then multiplied modulo x* + 1 with a fixed polynomial ¢(x) =
3¢ + &% + x + 2. The MixColumns step can also he viewed as a matrix

multiply in Rijndael's finite field.

This process is described further in the article Rijndacl mix columns.

11. APPENDIX 2 — The SocketHelper Class

using System;

using System.Net.Sockets;
using System.Net;

using System. Threading,
using System.10;

using System.Text:

namespace Chat
{

//Delegate for actions
public delegate void SocketHelperAction():

public class SocketHelper

1
Jireference chat server
private ChatServer chatserver.
lireference chat client
private TepClient client:
//mickname
private siring nickname =",
J/room number 0 means no room assigned yet
private int room={
//data read from chent
private string readdata=""

/faction delegate
private SocketHelperAction action;

Iipublic propertics
public int Room

{
i

public string Nickname
i

get{return room:}

get{return nickname:;

10.3. OPTIMIZATION OF THE CIPHER

On systems with 32-bit or larger words, it is possible 10 speed up execution
of this cipher by converting the SubBytes, ShifiRows and MixColumns
transformations into tables. One then has four 256-entry 32-bit tables, which
utilizes a total of four kibibytes (4096 bytes) of memory--a Kibibyte for each
table. A round can now be done with 16 table lookups and 12 32-bit
exclusive-or operations, followed by four 32-bit exclusive-or operations in
the AddRoundKey step.

If the resulting four kibibyte table size is too large for a given target
platform, the table lookup operation can be performed with a single 256-
entry 32-bit table by the use of circular rotates.

i

/2 parameters Constructor
public SocketHelper{ChatServer 5, TepClient)
i
client=c:
chatserver=s.
Thread t=new Thread({new 1hreadStart{ HandleClient));
t.Start();
!

/IActions
/MDEFAULT
private void action_defauli()

{

chatserver, Write{client.GetSircam(),

ChatProtocol Values UNKNOWN_CMD_MSGireaddata));
H

/IMESSAGE
private void action send message()

{
H

//PRIVATE MESSAGE
private void action_privale_message()

{

chatserver. Broadcasi(nick +> " + readdata,room);

string[] s=readdata.Split("');
string name="null_name"; //give a default dummy name

string temp=""; //hold the message
/iformat is
[l:private:<target>:<message>

if (s.Length>=3name=s[2]. Trim(}.
if (s.Length> =4 temp=s[3]. Trim{).

TepClient t=null;
if (chatserver.FindUserRoom(name)!=0)

t={TepClient)chatserver.ClientConnections[name. TolUpper() |

if (t!=null)
{
/fto target
chatserver, Write(t.GetStream(),

ChatProtocol Values NORMAL_MSGinickname.temp)):
/Mo inform sender
chatserver. Write{client.GetStream().

ChatProtocol Values. NORMAL_MSG(nickname,temp));
}

else
chatserver. Write({client.GetStrcam().

ChatProtocol Values.USER_NOT_FOUND_MSG(name));
¥

/ILIST

private void action_list()

i
string[] s=readdata.Split(' ")
int p1=0; //default to unknown room
ifi(s.Length)==1)pl=room; //set to current room

//Get the specified room
ifis.Length==2)
if(s[1]. ToUpper(}=="ALL")
| pl=-1; /LIST ALL: indicate all rooms
else

1
1

pl=int.Parse(s|1]}: //to get a room
number

catch{};

ifi{pl=chatserver, NumBoom)|[(pl —0})

kL)

HQUIT
private void action_ quit()

fInform client to quit the application
chatserver, Write(client.GetStream(),
ChatProtocol Values. QUIT_MSG);
H

JICHANGE ROOM
private void action_change roomi)

Jistore old room number
int oldroom=room;

//Remove the user from the chat room

chatserver. RemoveRoomlser(chatserv er.RoomUsers|oldroom-
1 },nickname):

IfAssigned to No room first
room=0;

//while no room is assigned
while{room==0)
{
J/Get room number from client
chatserver. Write(client.GetStream(),

ChalPromcoIVaIues.C]-lOOSE_ROOM(nickname,chatsewcr.NumRoom]};
string tcmp=chamerver.Read(clicnl.GetSlream{)};

Jicheck for valid room number
try

Jiconvert the text message 1o integer
int r_n=int.Parse(lemp}:
Jlcheck to make sure that the room number
is within range

chatserver. Write(client. GetStream().

ChatProtocol Values.NO_SUCH_ROOM_MSG)
else

string temp

ifipl=-1)

n

for(int i=0;i<chatserver.Ni
foreach(string sl in

i+

chatserver.RoomUsers|i]. Values)
temp=temp+™in "+sl + s
room " +{i+1%

else

foreach(string s! in
chatserver. RoomUsers|pl-1].Values)
temp=temp+"in "+sl ¢

sroom "
+pl)
H

if (temp=="") temp="Empty";
chatserver. Write(client. GetStream(),

ChatProtocol Values NORMAL MSG("server”.le mp})

!
1

//WHICH ROOM

private void action_which_room()

i
{Mnform client of room number
chatserver, Write(client.GetStream().

ChatProtocol Values. YOUR_ROOM _NO_MSG(room));

37

if((r_n>=1) &&
(r_n~:=chatserver.NumRocm}l
oom=r_n,
i
catch{}

i

//Add user to the assigned room

chatserver. AddRoomUser(chatserver. RoomUsersfroom-
1},nickname):

//Broadcast 1o old room participants

chatserver.Broadcast(ChatProtocol Values. MOV E_TO(nickname,roo
m),oldroom);
//Broadcast to new room participants

chatserver. Broadeast{ChatProtocol Values. WELCOM E{nickname,roo
m),room);

}

/HELP

private void action_help(}

{

chatserver. Write{clien.GetStreamd).

"server=in"1
" thelp\n"+
" :change room'n" +
" clistin"+

ist all\n™+

list <room_no>\n"+

:which room'n" +
:privale:ﬁ:argew:«mcssagc)\n"d
:send doodlebox:<target>\n"+
:get doodlebox:<sender=n" +
wquit”)

JISEND MEDIA
private void action send media()

string[] s=readdata.Split("');
string name="";

//format is

/:send file:<target>

if (s.Length==3 name=s|2|:

IfLocate the target
TepClient t=null;
if (chatserver. FindUserRoom(name)! =0}

F{TcpClimt)chatsenrer.Cliem(‘.onncclions[nam:.‘l‘ol.ipper{)]:

/11 target is found
if{(t!=null}}
i
/fInform the sender(client) to send the media

chatserver. Write(client.GetStream(),.ChatProtocol Values. SEND MED
1A_MSG)

string ext=chatserver.Read{client.GetStream());
/IFind out the number of byte to read from sender
string
snumbytes=chatserver. Read(client. GetStream(}):
int numbytes=int.Parse(snumbytes):

if (numbytes==0)}
chatserver. Write(client. GetStream(),
"server> No media file 1o send");

return;

i

/fmust be less than 5 MB
if (numbytes=5120000){
chatserver, Write{client. GetStream().
"server> Media File is larger than 5
MB");

40

ChatProtocol Values. MEDIA_SEND_MSG(nickname)):
H
else
|
//if target is not found inform sender
chatserver, Write{client. GetStream(),

ChatProtocolValues. USER_NOT FOUND_MSG(name)):
}
H

/NGET MEDIA

private void action_get_media(}

i
string[] s=readdata Split(""):
string sender="";
string medianame="";
string ext="";
{/format is
{l:gen filer=sender=:ext
if{s.Length>=3)sender=s[2]:
ifis.Length==4)ext=s|3];

{iformat of saved jpg file is
/l<sender>_<target>.jpg
//n this case the current user is the target

/lget the extension form the file
if (File.Exists(sender 4 "_" + nickname))

i
FileStream f=new FileStream(sender + " " +
nickname,FileMode.Open);
Filelnfo fi=new Filelnfo(sender + *_" + nickname):
byte|] b=new byte[fi.Length]:
f.Read(b,0.b.Length):
f.Close();
UnicodeEncoding Unicode = new
UnicodeEncoding();

42

relurn;

/iread the bytes

bytel]
b=chalserver.Read.Binary(clicnl.ﬁetStrcam(),numbyies);

if (b==null)

chatserver. Write(client. GetStream(),
“server> Transmission Eror”);

return;

i

{To store the data in a file
/iname convention is <sender> <target=>.ext

Jicreate a file to hold the extension
FileStream fext=new FileStream{nickname
+ "+name,FileMode.Create):
UnicodeEncoding Unicode = new
UnicodeEncoding():
byte[] bytes=LUnicode. GetBytes(ext).
fext. Write(bytes,0.bytes.Length);
fext.Close():

FileStream Fnew
FiIeSl:eam(nickna.me+"_"+nnme+"."+cxt.FiIeMode.Crcale};

f.Write(b.0.b.Length):

f.Close();

/nform the target that there is a file from sender

chatserver, Write (t.GetStream(),

Chathtocol\'a]uesMEDlA_FRE}M_MS{.‘-(nicknnme‘name)}:
//Inform the sender that server had received the
media
chatserver. Write{client. GetStream().

41

int charCount = Unicode.GetCharCount(b, 0,
b.Length):

char| | chars = new Char|charCount]:

Unicode.GetChars(b, 0, b.length. chars, 0):

ext=new string(chars),

medianame=sender + "_" + nickname + "."+ext;

JICheck for existence of file
ifi File.Exists(medianame))
chatserver. Write(client GetStream(),

ChatProtocolValues MEDIA_NOT_FOUND_MSG(medianame));
else
i
JiCreate a file stream
FileStream f=new
FileStream(medianame,FileMode.Open);
/iTo get the size of the file for purpose of memory
allocation
Filelnfo fi=new Filelnfo(medianame);
byte[] b=new byte[fi.Length]:
fiRead the content of the file and close
fRead(b,0.b.Length);
f.Close()
/fInform the client to get the media
chatserver. Write (client.GetStream(),

ChatProtocol Values. GET_MEDIA_MSG):
/finform the client of the extension
Nchatserver. Write{client.GetStream().ext);

/Anform the client of the ext

chatserver. Write(client. GetSiream(),ext);

/finform the client of number of bytes

chatserver. Write(client.GetStream().""+b Length);
/iSend the binary data

chatserver, WriteBinary(client. GetStream{).b):

Hnform the client that all binary data has been

chatserver. Write(client. GetStreamd(),
ChatProtocolValues. MEDIA_SEND_ACK_MSG),

//Locate the sender of the media

TepClient t=null;

if(chalscrver.l—‘indUserRoom(wunder}'s 0y

t=(TepClient)ck ver.ClientC ions|sender. ToUpper(}];

/finform the sender that the target has gotten the
media
if{!=null)
chatserver. Write(1.GetStream(),

ChatProtocol Values.GOTTEN_MEDIA_MSG(nickname)):

H

//SEND PIC

private void action_send_pic()

|
string[] s=readdata Split("");
string name="";
//format is
/#:send doodlebox:<target>
if (s.Length==3)name=s[2]:

//Locate the target
TepClient t=null;
if (chatserver.FindUserRoom(name)!=0)

l=(TcpC1ienl)chalserver,Clicnl(.‘onneclions]namc.'!'olfppcr(i

/11 rarget is found

44

else

//1f target is not found inform sender
chatserver, Write{client.GetStream(),

ChatProtocolValues. USER_NOT_FOUND_MSG(name)):
}
H

HWGET PIC

private void action_get_pic()

{
string[] s=readdata Split("")
string sender="";
string picname="";
//forman is
/1:get doodlebox:<sender>
if(s.Length==3)sender=s|2|:

{/format of saved jpg file is
fi<sender>_<target>.jpg

//In this case the current user is the target
picname=sender + “_" + nickname + ".jpg"

//Check for existence of file
if{ !File.Exists{picname))
chatserver. Write({client.GetStream(),

ChatProtocolValues.PIC_NOT_FOUND_MSG(picname));
else
{

/Create a file stream

FileStream f~new

FileS : £

%
{fTo get the size of the file for purpose of memory
allocation
Filelnfo fi=new Filelnfo{picname):
byte[] b=new byte[fi.Length]:
//Read the content of the file and close
f.Read(b.0.b.Length).

iff(t!=null))
/finform the sender{client) to send the picture

chatserver, Write(client.GetStream(),ChatProtocol Values. SEND_PIC_
MSG);

//Find out the number of byte to read from sender
string
snumbytes=chatserver.Read(client. GetStream()):
int numbytes=int.Parse(snumbytes):

/lread the bytes
bytel]
b=chatserver.ReadBinary(client.GetStream(),numbytes):
if (b==null)
{
chatserver, Write{client.GetStream(),
"server> Transmission Error"},

return;

/To store the data in a jpg file

//mame convention is <sender>_<target>.jpg

FileStream f=new
FileStream(nickname+"_"+name~+".jpg" FileMode Creatc):

f.Write(b,0.b.Length):

[.Close():

/fInform the target that there is a picture from
sender

chatserver. Write (L.GetStream(),

ChatProtocolValues. PIC FROM_MSG{nickname,name))
/inform the sender that server had received the
picture
chatserver. Write{client. GetStream(),

ChatProtocol Values.PIC_SEND_MSG(nickname));
H

15

f.Close();
/Minform the client to get the pic
chatserver, Write (client.GetStream(),

ChatProtocol Values.GET_PIC_MSG):
/fnforn the client of number of bytes
chatserver. Write(client.GetStream().""+b.Length):
//Send the binary data
chatserver. WriteBinary(client.GetStream(},b);

/finform the client that all binary data has been
send

chatserver. Write(client.GetStream(),
ChatProtocolValues.PIC_SEND ACK_MSG):

//Locate the sender of the picture
TepClient t=null;
if (chatserver.FindUserRoom(sender)!=0)

t=(TepClient)chatserver.ClientConnections| sender. ToUpper(}};
/Anform the sender that the target has gotien the
picture

if{t!=null)
chatserver. Write(t.GetStream().

ChatProtocol Values. GOTTEN _PIC_MSG(nickname)):

//The main method that handle all the chat communication with
the client

private void HandleClient()
|
try

/{Autheticate the user

4

AuthenticationServer auth-new
AuthenticationServer(chatserver.client):
if{fauth. Authenticate())
throw{new Exception());

//Send connection message to client
/lretuming the user id
chatserver. Write(client.GetStream),

ChatProtocolValues. CONNECTION_MSG(auth.Userl13));

IMbuffer
byte[] bytes= new byte[256];

//set nickname as user id which is alraedy unique
nickname=auth.UserlD;

//Assign a room to connected client

room=chatserver.AssignRoom(nickname);

Console.WriteLine("room assigned= "+room + "
for " + nickname});

/lAdd to Connections

try
i
chatserver. AddConnection(nickname,client):
)
catchf }

//Broadcast to chat room about the new user

chatserver. Broadcasi(ChatProtocol Values. W ELCOME(nickname,roo
m),room);

/MNisten to all client data send

while((readd chatserver. Read(client. GetStream{)))!="")
i
readdata=readdata. Trim():

48

action=new
SocketHelperAction(action_help);
if ((readdata. ToUpper()+"
).IndexOf ChatProtocol Values. QUIT CMDy==0)
action=new

SocketHelperAction(action_quit);

if ({readdata. ToUpper()*"
). IndexOf{ ChatProtocol Values. CHANGE_ROOM CMD)==0)

action=new
SocketHelperAction{action_change_room);
if ({readdata. ToUpper()+"
"} IndexOf{ ChatProtocol Values. WHICH_ROOM_CMD}==0)
action=new
SocketHelperAction(action_which_room});
if ({readdata. Tolpper()"
*).IndexOf ChatProtocolValues. LIST _CMDy==0)
action=new

SocketHelperAction(action_list):

if
((readdata. ToUpper(}+":").IndexOf ChatProtocol Values. PRIVATE_MSG_C
MD)==0)

action=new
SocketHelperActi ion_private | ge):
]
else /NON COMMAND

i
//Print out read data in console
Console. WriteLine("Read>" + readdata).
Mif not a ¢ | assign o a 2

sending action
action=new
SocketHelperAction(action_send_message):
1+ ICOMMANDS

Iiperform the action

50

/{Check if the readdata is a command

iflreaddata. ToUpper().Substring(0,1 j==ChatProtocol Values.IS_CMD

i
i

//Assign a default action
action=new
SocketHelperAction(action_default);

//Reassign action based on format
content

if
{(readdata. ToUpper(y+":").IndexOf{ ChatProtocolValues. GET_PIC_CMD)=
=0)
action=new
SocketHelperAction(action_get_pic);

if
((readdata ToUpper(}+":").IndexOfi ChatProtocol Values. SEND _PIC_CMD)
=—0)
action=new
SocketHelperAction(action_send_pic):

if
((readdata. ToUpper{)+":").IndexOf{ ChatProtocol Values. GET_MEDIA_CM
D)==0)
action=new
SocketHelperAction(action_get media);

i
((readdata. ToUpper()+":").IndexOf{ ChatProtocol Values SEND_MEDIA C
MD)==0)

action=new
SocketHelperAction(action_send_media);

il ((readdata. ToUpper()+ "
"}.IndexOf{ ChatProtocol Values HELP_CMD)==0)

49

action();
HIWHILLE

H
catch(Exception ¢)
i
/[Trapped exception
Console.WriteLine("The following error is trapped
by the chat server");
Console.WriteLine(e).

Console. WriteLine("Waiting for Connection...”);

!
finally

/fwhile loop ended or when there are some other
problems

Jiry 1o inform client to shut down

try

{

chatserver. Write(client. GetStream(),ChatProtocol Values.QUIT_MSG

1

catch{}

//if the client had belong to a room
if ((room!=0) && (nickname!=""))
{

/Iremave user from room

chatserver.RemoveRoomUser{chatserver. RoomUsers[room-
1],nickname};
/finform all that the client has logged out

chatserver.Broadeast(ChatProtocol Values. USER _LOG_OUT(nickna
me.room));

Il
'

/fremove the client connection

- rid) 12. APPENDIX 3 — Managing Rijndael Algorithm
RemoveC jon{nickname.clicnt): //Source code to manage Rijndael Algorithm using C#
b ' o public sealed class Cryption
catch{] {
} . s .
! private RijndaeIManaged Algorithm:

w
]

public Cryption(string key_val, string iv_val)
o i
key = new byte[32];
iv = new byte[32];

inti;
m_key = key_val;
m_iv=iv_val;

//key caleulation, depends on first constructor parameter
for (i=0; i <m_key.Length; i++)

{
key[i] = Convert. ToByte(m_key([i]}:
t
/IV caleulation, depends on second ,
for (i = 0; i <m_iv.Length: i++)
1
iv[i] = Convert. ToByte(m_iv[i]});
I

i
//Encrypt method implementation
public string Encrypt(string s)
{
//new instance of algorithm creation

Algorithm = new RiindaelM di);

//setting algorithm bit size

/imemory stream

private MemoryStream memStream;
/CryptoTransform interface

private [CryptoTransform EncryptorDecryptor;
/{CryptoStream

private CryptoStream crStream;
//Stream writer and Stream reader
private StreamWriter strWriter;
private StreamReader strReader;
//internal members

private string m_key;

private string m_iv;

/fthe Key and the Inicialization Vector
private byte[] key;

private byte[] iv:
lIpassword view

private string pwd_str;
private byte[] pwd_byte;
/fConstructor

53

Algorithm.BlockSize = 256;
Algorithm. KeySize = 256;

/lcreating new instance of Memory siream

memStream = new MemoryStream():

/lereating new instance of the Encryptor
EncryptorDecryptor = Algorithm.CreateEncryptor(key, iv);

/fcreating new instance of CryptoStream
crStream = new CryptoStream({memStream, EncryptorDecryptor,
CryptoStreamMaode. Write);

//ereating new instance of Stream Writer

strWriter = new StreamWriter(crStream);

/leipher input string
strWriter, Write(s);

/lclearing buffer for currnet writer and writing any
Ifbuffered data to //the underlying device
strWriter. Flush();

crStream. FlushFinalBlock():

//storing cipher string as byte array
pwd_byte = new byte[memStream.Length]:
memStream. Position = 0,

memStream.Read(pwd_byte, 0, (int)pwd_byie.Length);

return Convert. ToBase64String(pwd_byte);

/iDecrypt method implementation
public string Decrypt(string s)
{

/mew instance of algorithm creation

Algorithm = new RijndaelManaged|)

/lsetting algorithm bit size
Algorithm.BlockSize = 256;
Algorithm.KeySize = 256;

" lfereating new Memory stream as stream for input string
MemoryStream memStream = new Memory Stream(
Convert.FromBase64String(s));

//Decryptor creating
ICryptoTransform EncryptorDecryptor =
Algorithm.CreateDecryptor(key. iv);

//setting memory stream position
memStream.Position = 0;

/lereating new instance of Crupto stream

REFERENCES

1. Bruce Schneier (1996) — Applied Cryptography

2. Karli Watson , Christian Nagel , Eric White , Jacob Hammer Pedersen {Author), Jon
Reid , Matthew Reynolds . Morgan Skinner . Zach Greenvoss . David Espinosa
(2005) - Beginning Visual C# 2005

3. Advanced Encryption Standard,
hitpien.wikipedia.org/wiki/Advanced Encryption Standard

4. hutp:/imsdn2 microsoft comien-
us/library/sy: security.cryp hy.rij d.aspx

5. MSDN Online Documentation

58

CryptoS S = new Cryp!

memStream, EncryptorDecryptor, CryptoStreamMode.Read);

/ireading stream
strReader = new StreamReader{crStream):

/lreturnig decrypted string
return sirReader.ReadToEnd();

